JP4153371B2 - Pneumatic tire and rim assembly - Google Patents

Pneumatic tire and rim assembly Download PDF

Info

Publication number
JP4153371B2
JP4153371B2 JP2003164263A JP2003164263A JP4153371B2 JP 4153371 B2 JP4153371 B2 JP 4153371B2 JP 2003164263 A JP2003164263 A JP 2003164263A JP 2003164263 A JP2003164263 A JP 2003164263A JP 4153371 B2 JP4153371 B2 JP 4153371B2
Authority
JP
Japan
Prior art keywords
tire
rim
porous material
sound
lumen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003164263A
Other languages
Japanese (ja)
Other versions
JP2005001428A (en
Inventor
泰久 皆川
文明 柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2003164263A priority Critical patent/JP4153371B2/en
Publication of JP2005001428A publication Critical patent/JP2005001428A/en
Application granted granted Critical
Publication of JP4153371B2 publication Critical patent/JP4153371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • B60C19/002Noise damping elements provided in the tyre structure or attached thereto, e.g. in the tyre interior

Description

【0001】
【発明の属する技術分野】
本発明は、走行中のロードノイズを、低減しうる空気入りタイヤとリムとの組立体に関する。
【0002】
【従来の技術】
タイヤ騒音の一つに、路面を走行した際に、50〜400Hzの周波数範囲で「ゴー」という音が生じるいわゆるロードノイズがあり、その主原因として、タイヤ内腔内で起こす空気の共鳴振動(空洞共鳴)が知られている。
【0003】
そこで近年、タイヤ内腔内に、スポンジ材を用いた制音体を配し、タイヤ内腔内で生じた共鳴音エネルギーを緩和、吸収することにより、空洞共鳴を抑制しロードノイズを低減することが提案されている(例えば特許文献1、2参照)。このとき、スポンジ材として、例えばゴムや合成樹脂を発泡させた発泡性多孔質材、および動物繊維、植物繊維又は合成繊維等を絡み合わせた繊維多孔質材が採用しうることが記載されている。
【0004】
【特許文献1】
特開2002−67608号公報
【特許文献2】
特開2002−144809号公報
【0005】
【発明が解決しようとする課題】
しかし、前記スポンジ材をタイヤ内腔内に装着した組立体では、ロードノイズ低減効果を長期に亘って発揮することが難しく、又タイヤの高速耐久性を低下させるという問題があった。
【0006】
その原因として、制音体が走行時の遠心力や横力によってタイヤ内腔面と衝突し、制音体自体が破壊を起こすことが考えられ、これによって、空洞共鳴の抑制効果を経時的に低下させるとともに、タイヤ内腔面をなすインナーライナゴム等に損傷を与えタイヤの高速耐久性を減じさせると推測される。しかし、制音体をタイヤ或いはリムに固定しタイヤ内腔面との衝突を防止した場合にも、前記問題点が十分に解決されないことが判明した。
【0007】
そこで本発明者がさらに研究した結果、制音体の熱劣化による変形および破壊も大きく関与していることを究明し得た。即ち、タイヤ内腔内は、走行に伴う発熱により、高速走行時には160〜180℃にまで温度上昇する。しかし、前記スポンジ材として提案された発泡性多孔質材および繊維多孔質材は何れも有機物であるため、熱劣化し、形状変化や体積変化(空隙率の変化)を起こして空洞共鳴の抑制効果を損ねるとともに、変質により強度低下を起こして破壊しタイヤに損傷を与えるのである。
【0008】
そこで本発明は、制音体として、無機繊維を絡み合わせた無機繊維多孔質材を用いることを基本として、高速走行による熱劣化を防止し、変質による強度低下および変形を抑えることにより、タイヤの高速耐久性を低下させることなくロードノイズ低減効果を長期に亘って発揮しうる空気入りタイヤとリムとの組立体を提供することを目的としている。
【0009】
【課題を解決するための手段】
前記目的を達成するために、請求項1に係る発明は、リムと、このリムに装着される空気入りタイヤとがなすタイヤ内腔内に、制音体を配するとともに、
前記制音体は、無機繊維を絡み合わせた無機繊維多孔質材からなりかつリム側内腔面を周方向に連続してのびる帯状体をなす
【0010】
又請求項1に係る発明は、該制音体が、接着剤を用いて、前記リム側内腔面に固定されることを特徴とする。
【0011】
さらに請求項1に係る発明では、前記制音体は、前記リム側内腔面を周方向に連続してのびる帯状体であって、かつその巾W1がリムのウェル部の底巾W2より大であり、この底巾W2を越えた制音体の両側部分は、リムと非接着としたことを特徴としている。
【0012】
又請求項2に係る発明では、前記制音体は、前記内腔面を1周巻きする長さであることを特徴としている。
【0013】
又請求項3に係る発明では、前記無機繊維多孔質材は、ロックウールであり、かつその比重を0.01〜0.2としたことを特徴とする。
【0014】
又請求項4に係る発明では、前記無機繊維多孔質材は、グラスウールであり、かつその比重を0.005〜0.1としたことを特徴とする。
【0015】
【発明の実施の形態】
以下本発明の実施の一形態を図面に基づき説明する。
図1は本発明の空気入りタイヤとリムとの組立体(以下、単に「組立体」ということがある。)の子午断面図、図2は組立体のタイヤ赤道面に沿った周方向略断面図を示している。
【0016】
図1において、組立体1は、空気入りタイヤ2(単に「タイヤ2」ということがある。)とリム3とからなり、前記タイヤ2をリム3に装着することにより、該タイヤ2とリム3とが囲むタイヤ内腔4を形成している。
【0017】
前記リム3は、前記タイヤ2を装着する環状のリム本体3aと、このリム本体3aを支持しかつ車軸に固定されるディスク3bとを具える周知構造をなし、本例では、正規リムを採用した場合を例示している。なお「正規リム」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めているリムであり、JATMAであれば標準リム、TRAであれば "Design Rim" 、ETRTOであれば "Measuring Rim"を意味する。
【0018】
また前記タイヤ2は、ビード部2aを前記リム本体3aのフランジに密着させてリム組みされる例えば乗用車用ラジアルタイヤであって、タイヤ内腔4を囲む内腔面4Sのうち、タイヤ側内腔面4S1を、低空気透過性ゴムからなる所謂インナーライナゴムで形成したチューブレス構造を具える。これにより、タイヤ2は、前記リム本体3aとで気密なタイヤ内腔4を形成する。
【0019】
そして前記組立体1には、前記タイヤ内腔4内に、タイヤ周方向に延在する制音体5が配される。この制音体5は、無機繊維を絡み合わせた無機繊維多孔質材からなり、タイヤ周方向に連続してのびる長尺な帯状体として形成される場合を例示している。
【0020】
前記無機繊維として、例えばガラス繊維、岩石繊維、鉱滓繊維、シリカ繊維、石英繊維、セラミック繊維、炭素繊維、金属繊維等を挙げることができ、このような無機繊維を絡み合わせて(要求によりバインダも使用して)結合するにより、例えば綿状の無機繊維多孔質材が形成される。
【0021】
このような無機繊維多孔質材は、繊維間に空気室を十分に保持しているため、発泡性多孔質材(スポンジ)と同様、優れた防振性や吸音性を発揮する。従って、タイヤ内腔4内で生じた共鳴音エネルギーを効果的に緩和吸収でき、空洞共鳴を抑制しロードノイズを低減しうる。しかも、熱的に安定な無機繊維で形成されているため、少なくとも350℃までは熱による変質や変形を招くことがなく、制音体5の強度や形状を維持できる。従って、高速走行時に高温に温度上昇した場合にも、形状変化や体積変化(空隙率の変化)を防止でき、空洞共鳴の抑制効果、即ちロードノイズの低減効果を長期に亘って発揮できる。又変質による強度低下によって制音体自体が破壊するのを防止できるなど、その破片によるタイヤ損傷を抑えることができ、タイヤの高速耐久性を向上できる。
【0022】
ここで、前記無機繊維多孔質材として、前記ガラス繊維を綿状に絡み合わせたグラスウール、並びに岩石繊維及び鉱滓繊維を綿状に絡み合わせたロックウールが周知であり、これらは、前記作用効果に優れることに加え、安価でありかつ市場で入手し易い等の観点から好適に採用しうる。
【0023】
なお前記グラスウールは、ガラス繊維からなり、溶けたガラスを、例えば高圧気体で吹き飛ばして(吹き付け法)、或いは遠心力で吹き飛ばして(ハーガー法)繊維化することにより綿状に形成される。このグラスウールは、特に弾性力が高くかつ復元力にも優れるため取り扱いやすく、しかも曲げや引っ張りにも強いため、より好適に採用しうる。グラスウールの場合、その比重が0.005〜0.1のものを使用するのが好ましく、0.005未満では、空洞共鳴の抑制効果を不十分とするとともに、制音体5自体の強度が減じるなど耐久性を損ねる傾向となる。逆に、比重が0.1を越えると、重量が不必要に増加するなど、タイヤ走行性能に悪影響を及ぼす傾向となる。従って、より好ましくは、比重を0.01〜0.08の範囲とするのが良い。
【0024】
又前記ロックウールは、厳密には、玄武岩等を高温溶解した融体を、前記吹き付け法、或いはハーガー法によって綿状に繊維化させた岩石繊維からなるものを意味するが、本明細書では、例えば鉄鋼生産により生じる残滓(スラグ)の融体を綿状に繊維化させた鉱滓繊維からなるもの(スラグウール)を含んで定義している。このロックウールは、前記グラスウールに比して、空洞共鳴の抑制効果にやや劣るものの、より安価で入手し易い点で好適である。ロックウールの場合、その比重が0.01〜0.2のものを使用するのが好ましく、0.01未満では、空洞共鳴の抑制効果を不十分とするとともに、制音体5自体の強度が減じるなど耐久性を損ねる傾向となる。逆に、比重が0.2を越えると、重量が不必要に増加するなど、タイヤ走行性能に悪影響を及ぼす傾向となる。従って、より好ましくは、比重を0.02〜0.15の範囲とするのが良い。
【0025】
又このような無機繊維多孔質材からなる制音体5の体積V2は、前記特許文献1に記載の場合と同様、タイヤ内腔4の全体積V1の0.4〜20%の範囲に設定することが好ましく、比V2/V1が0.4%未満では、空洞共鳴の抑制効果が十分に発揮されなくなる。又比V2/V1が20%を越えると、空洞共鳴の抑制効果が頭打ちとなるばかりか重量やコストの不必要な増加を招く。
【0026】
このような観点から、制音体5は、その体積V2が前記範囲を満たしていれば、図2、3の如く、その厚さT1、巾W1、及び長さL1は特に限定されなが、形状安定性のために、W1>T1とした断面横長矩形状のものが好ましく使用できる。又重量バランスの観点から、図2の如く、制音体5は周方向に一周巻きされる。
【0027】
なお前記「制音体5の体積V2」とは、制音体5の見かけの全体積であって、多孔質材の空孔部も含めた制音体5の外形から定まる体積をいう。また前記「タイヤ内腔4の全体積V1」は、組立体1の正規状態において下記式(1)で近似的に求めるものとする。
V1=A×{(Di−Dr)/2+Dr}×π …(1)
式中、”A”は前記正規状態のタイヤ内腔4をCTスキャニングして得られるタイヤ内腔4の横断面積、”Di”は図1に示す正規状態でのタイヤ内腔4の最大外径、”Dr”はリム径、”π”は円周率である。また前記「正規状態」とは、組立体に正規内圧を充填しかつ無負荷とした状態を指す。また「正規内圧」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "INFLATION PRESSURE" とするが、タイヤが乗用車用の場合には、現実の使用頻度などを考慮し200kPaとする。
【0028】
次に、前記制音体5は、リム側内腔面4S2に固定される。固定する理由は、高速走行時、制音体5に大きな遠心力や横力が作用するからであり、固定されていないと、制音体5が動いて内腔面4Sと接触するなど制音体5自体の破壊を招く。その結果、無機繊維多孔質材によって制音体5を形成した場合にも、空洞共鳴の抑制効果を長期に亘って発揮できず、また高速耐久性の向上効果が得られなくなる。
【0029】
そこで、前記制音体5を固定することで、前述の無機繊維多孔質材の採用と相俟って、空洞共鳴の抑制効果を長期に亘って発揮でき、かつ高速耐久性を高めうるのである。本例では、前記制音体5が、断面横長矩形の長尺帯状をなし、その底面5Sが前記リム3のウェル部3a1に、接着剤によって固定される。
【0030】
制音体5は、図3に略示するように、その巾W1が前記ウェル部3a1の底巾W2より大であり、この底巾W2を越えた制音体5の両側部分5eは、リム3と非接着としている。これによって、リム組み性を確保することができる。なお接着方法としては、制音体5の全長に亘って接着剤をベタ状に、或いはスポット状に分散させて塗布し接着するのが好ましい。
【0031】
接着剤としては、合成ゴムを有機溶剤に溶解した溶液型、及び水に分散させたラテックス型などの合成ゴム系の液状の接着剤が好適に採用できる。特に合成ゴムとしてクロロプレンゴムを用いたクロロプレン系溶液型接着剤は、優れた接着力を有し、かつ柔軟で曲げや衝撃等にも強いためより好ましく用いうる。このときクロロプレンゴムの含有量は、合成ゴム系の接着剤の全体を100重量部としたとき、25〜35重量部が好ましく、25重量部未満では接着強度が損なわれる傾向となり、35重量部を越えると、高粘度となって塗布しにくくなる。
【0032】
次に、前記制音体5は、図4は、一本の帯状体で形成する以外に、周方向に分割された複数の分割片5Aによって形成する場合を単に例示している。このとき、各分割片5Aは、周方向に等間隔を隔てて固定される。なお分割片5Aの数は、特に規制されないが、接着の作業性の観点から、10個以下、さらには6個以下とするのが好ましいが、ユニフォミティーの観点からは3個以上とするのが良い。
【0033】
又図5は、前記制音体5をタイヤ側内腔面4S1に接着する場合を単に示している。このときには剛性が大なトレッド領域Jに接着するのが、制音体5によるタイヤ走行性能への影響を抑える点で好ましい。なお前記「トレッド領域J」とは、ベルト層7の両外端を通る半径方向線の間の領域を意味する。
【0034】
なお制音体5のタイヤ2又はリム3への固定は、前記接着剤を使用する。
【0035】
以上、本発明の好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
【0036】
【実施例】
表1の仕様に基づき、タイヤ(195/60R15)のトレッド裏面、又はリム(15×6JJ)のウェル部底面に、長尺帯状の制音体を一周に亘って接着した組立体を試作し、ロードノイズ性能及びタイヤ高速耐久性をテストした。
【0037】
なお制音体は、それぞれ無機繊維多孔質材であるグラスウール、ロックウール、及び発泡性多孔質材である軟質ウレタンスポンジを用いて形成した。グラスウールは、比重0.024の株式会社マグ製のマグロールRR2425を使用し、ロックウールは、比重0.025のニチアス株式会社製のMGベルト1号を使用し、又軟質ウレタンスポンジ(連続気泡)は、比重0.02の株式会社イノアック製のカームフレックスF−50を使用した。
【0038】
又接着は、クロロプレン系溶液型接着剤(ノーテープ工業株式会社製の型番9383)を使用し、制音体の底面に一様に薄く塗った後、タイヤ又はリムに押し付けて接着するとともに、接着後1日おいてから各テストを行った。
【0039】
(1)ロードノイズ性能:
内圧200kPaでリム組みして車両(国産2000ccのFR車)の全輪に装着し、1名乗車にてロードノイズ計測路(アスファルト粗面路)を速度60km/hで走行した。そのときの前席車内音を測定し、226Hz、240Hz、253Hzの3チャンネルのパーシャルオーバオールを算出し、従来例(制音具なし)を基準とする増減値(dB(A))にて評価した。−(マイナス)表示は、ロードノイズの減少を意味している。
【0040】
(2)高速耐久性:
内圧(280kPa)の下で、ECE30により規定された荷重にて、200km/hから10km/h−20分のステップスピード方式にてドラム上を走行させ、タイヤに破損が生じたときの速度と時間を測定した。
【0041】
【表1】

Figure 0004153371
【0042】
テストの結果、実施例品及び比較例品は、何れもロードノイズ低減効果に優れていることが確認できた。又実施例品は、比較例品に比して高速耐久性を大巾に向上させうることが確認できた。
【0043】
【発明の効果】
叙上の如く本発明は、制音体として無機繊維を絡み合わせた無機繊維多孔質材を用いているため、高速走行による熱劣化を防止しでき、変質による強度低下および変形を抑え、タイヤの高速耐久性を低下させることなくロードノイズ低減効果を長期に亘って発揮しうる。
【図面の簡単な説明】
【図1】 本発明の空気入りタイヤとリムとの組立体の一実施例を示す子午断面図である。
【図2】 そのタイヤ赤道に沿った周方向断面図である。
【図3】 制音体を拡大して示す断面図である。
【図4】 複数の分割片から制音体が形成される場合を単に示す組立体の周方向断面図である。
【図5】 制音体はタイヤに固定される場合を単に例示する組立体の子午断面図である。
【符号の説明】
2 空気入りタイヤ
3 リム
3a1 ウェル部
4 タイヤ内腔
5 制音体
5S 底面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pneumatic tire and rim assembly that can reduce road noise during traveling.
[0002]
[Prior art]
One of the tire noises is so-called road noise that produces a “go” sound in the frequency range of 50 to 400 Hz when traveling on the road surface, and the main cause is resonance vibration of air that occurs in the tire lumen ( Cavity resonance) is known.
[0003]
Therefore, in recent years, a sound control body using sponge material is arranged in the tire lumen, and resonance energy generated in the tire lumen is relaxed and absorbed, thereby suppressing cavity resonance and reducing road noise. Has been proposed (see, for example, Patent Documents 1 and 2). At this time, it is described that, as the sponge material, for example, a foamable porous material obtained by foaming rubber or synthetic resin, and a fiber porous material in which animal fibers, plant fibers, synthetic fibers or the like are entangled can be employed. .
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-67608 [Patent Document 2]
Japanese Patent Laid-Open No. 2002-144809
[Problems to be solved by the invention]
However, the assembly in which the sponge material is mounted in the tire lumen has a problem that it is difficult to exert a road noise reduction effect for a long period of time, and the high-speed durability of the tire is lowered.
[0006]
As a cause of this, it is considered that the noise control body collides with the tire cavity surface due to centrifugal force or lateral force during traveling, and the sound suppression body itself is destroyed. It is presumed that the internal high speed durability of the tire is reduced by damaging the inner liner rubber and the like forming the tire lumen surface. However, it has been found that the above problem cannot be solved sufficiently even when the sound control body is fixed to a tire or a rim to prevent a collision with the tire cavity surface.
[0007]
Therefore, as a result of further research by the present inventor, it has been found that deformation and destruction due to thermal deterioration of the sound damper are also greatly involved. That is, the temperature in the tire lumen rises to 160 to 180 ° C. during high speed running due to heat generated by running. However, since both the foamable porous material and the fiber porous material proposed as the sponge material are organic substances, they are thermally deteriorated, causing a shape change and a volume change (a change in porosity) to suppress cavity resonance. In addition to damage to the tire, the deterioration causes a drop in strength and breaks down, resulting in damage to the tire.
[0008]
Therefore, the present invention is based on the use of an inorganic fiber porous material in which inorganic fibers are entangled as a sound damping body, and prevents thermal deterioration due to high-speed running and suppresses strength reduction and deformation due to alteration, thereby reducing the An object of the present invention is to provide an assembly of a pneumatic tire and a rim that can exhibit a road noise reduction effect over a long period of time without reducing high-speed durability.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is characterized in that a sound damping body is disposed in a tire lumen formed by a rim and a pneumatic tire attached to the rim.
The noise damper forms a strip extending the result or hanging arm in side luminal surface of inorganic fibers intertwined allowed inorganic fibrous porous material in the circumferential direction continuously.
[0010]
The invention according to claim 1 is characterized in that the sound damping body is fixed to the rim side lumen surface using an adhesive.
[0011]
Further, in the invention according to claim 1, the sound damping body is a band-like body extending continuously in the circumferential direction on the rim side lumen surface, and the width W1 thereof is larger than the bottom width W2 of the well portion of the rim. The both sides of the sound control body exceeding the bottom width W2 are characterized by being non-adhered to the rim.
[0012]
The invention according to claim 2 is characterized in that the sound damping body has a length that wraps around the lumen surface once.
[0013]
The invention according to claim 3 is characterized in that the inorganic fiber porous material is rock wool and has a specific gravity of 0.01 to 0.2.
[0014]
In the invention according to claim 4, the inorganic fiber porous material is glass wool and has a specific gravity of 0.005 to 0.1.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a meridional cross-sectional view of an assembly of a pneumatic tire and a rim according to the present invention (hereinafter sometimes simply referred to as “assembly”), and FIG. 2 is a schematic cross-sectional view in the circumferential direction along the tire equatorial plane of the assembly. The figure is shown.
[0016]
In FIG. 1, an assembly 1 includes a pneumatic tire 2 (sometimes simply referred to as “tire 2”) and a rim 3, and the tire 2 and the rim 3 are mounted by attaching the tire 2 to the rim 3. And the tire lumen 4 is formed.
[0017]
The rim 3 has a well-known structure including an annular rim body 3a for mounting the tire 2 and a disk 3b that supports the rim body 3a and is fixed to an axle. In this example, a regular rim is used. The case is shown as an example. The “regular rim” is a rim defined for each tire in the standard system including the standard on which the tire is based, and is a standard rim for JATMA, “Design Rim” for TRA, ETRTO Then means "Measuring Rim".
[0018]
The tire 2 is, for example, a radial tire for a passenger car that is assembled with the bead portion 2a in close contact with the flange of the rim body 3a, and the tire side lumen of the lumen surface 4S surrounding the tire lumen 4 is provided. The surface 4S1 includes a tubeless structure formed of a so-called inner liner rubber made of low air permeability rubber. Thereby, the tire 2 forms an airtight tire lumen 4 with the rim body 3a.
[0019]
In the assembly 1, a sound damping body 5 extending in the tire circumferential direction is disposed in the tire lumen 4. The noise damper 5 is Ri Do inorganic fibers porous material intertwined inorganic fiber, illustrates a case which is formed as a long strip extending continuously in the tire circumferential direction.
[0020]
Examples of the inorganic fiber include glass fiber, rock fiber, slag fiber, silica fiber, quartz fiber, ceramic fiber, carbon fiber, metal fiber, and the like. For example, a cotton-like inorganic fiber porous material is formed by bonding.
[0021]
Since such an inorganic fiber porous material sufficiently holds an air chamber between fibers, it exhibits excellent vibration-proofing and sound-absorbing properties as well as a foamable porous material (sponge). Accordingly, resonance energy generated in the tire lumen 4 can be effectively relaxed and absorbed, and cavity resonance can be suppressed and road noise can be reduced. In addition, since it is formed of thermally stable inorganic fibers, the strength and shape of the sound damper 5 can be maintained without incurring alteration or deformation due to heat up to at least 350 ° C. Therefore, even when the temperature rises to a high temperature during high-speed traveling, shape change and volume change (change in porosity) can be prevented, and the effect of suppressing cavity resonance, that is, the effect of reducing road noise can be exhibited over a long period of time. In addition, it is possible to prevent damage to the tire due to the fragments, for example, it is possible to prevent the sound damping body itself from being destroyed due to strength reduction due to alteration, and the high-speed durability of the tire can be improved.
[0022]
Here, as the inorganic fiber porous material, glass wool in which the glass fiber is entangled in the form of cotton, and rock wool in which the rock fiber and the slag fiber are intertwined in the form of cotton are well known. In addition to being excellent, it can be suitably employed from the viewpoint of being inexpensive and easily available in the market.
[0023]
The glass wool is made of glass fiber, and is formed into a cotton shape by blowing molten glass, for example, with a high-pressure gas (a spraying method) or by blowing with a centrifugal force (a Hanger method). This glass wool is particularly easy to handle because of its high elastic force and excellent resilience, and it can be more suitably employed because it is resistant to bending and pulling. In the case of glass wool, it is preferable to use one having a specific gravity of 0.005 to 0.1. If it is less than 0.005, the effect of suppressing the cavity resonance is insufficient, and the strength of the sound damper 5 itself is reduced. It tends to impair durability. Conversely, if the specific gravity exceeds 0.1, the tire running performance tends to be adversely affected, such as an unnecessary increase in weight. Therefore, more preferably, the specific gravity is in the range of 0.01 to 0.08.
[0024]
In addition, the rock wool, strictly speaking, means a material made of rock fibers obtained by pulverizing a melt obtained by dissolving basalt at a high temperature into a cotton form by the spraying method or the Hager method. For example, it is defined to include a slag wool made of slag fibers obtained by forming a melt of residue (slag) produced by steel production into a fiber. Although this rock wool is somewhat inferior to the suppression effect of cavity resonance as compared with the glass wool, it is preferable in that it is cheaper and easily available. In the case of rock wool, it is preferable to use one having a specific gravity of 0.01 to 0.2. If it is less than 0.01, the effect of suppressing cavity resonance is insufficient, and the strength of the sound damper 5 itself is low. It tends to impair durability, such as decreasing. Conversely, if the specific gravity exceeds 0.2, the tire running performance tends to be adversely affected, for example, the weight increases unnecessarily. Therefore, more preferably, the specific gravity is in the range of 0.02 to 0.15.
[0025]
Further, the volume V2 of the sound damper 5 made of such an inorganic fiber porous material is set in the range of 0.4 to 20% of the total volume V1 of the tire lumen 4 as in the case of Patent Document 1. Preferably, when the ratio V2 / V1 is less than 0.4%, the effect of suppressing cavity resonance is not sufficiently exhibited. On the other hand, if the ratio V2 / V1 exceeds 20%, the cavity resonance suppression effect reaches its peak, and an unnecessary increase in weight and cost is caused.
[0026]
From such a viewpoint, if the volume V2 of the sound damper 5 satisfies the above range, the thickness T1, the width W1, and the length L1 are not particularly limited as shown in FIGS. In view of shape stability, a rectangular shape having a horizontally long cross section with W1> T1 can be preferably used. From the viewpoint of weight balance, as shown in FIG. 2, the sound damper 5 is wound once in the circumferential direction .
[0027]
The “volume V2 of the sound damper 5” is an apparent total volume of the sound damper 5 and is a volume determined from the outer shape of the sound damper 5 including the pores of the porous material. The “total volume V1 of the tire lumen 4” is approximately obtained by the following formula (1) in the normal state of the assembly 1.
V1 = A × {(Di−Dr) / 2 + Dr} × π (1)
In the formula, “A” is the cross-sectional area of the tire lumen 4 obtained by CT scanning of the tire lumen 4 in the normal state, and “Di” is the maximum outer diameter of the tire lumen 4 in the normal state shown in FIG. , “Dr” is the rim diameter, and “π” is the circumference. The “normal state” refers to a state in which the assembly is filled with a normal internal pressure and is not loaded. In addition, “regular internal pressure” is the air pressure that each standard defines for each tire in the standard system including the standard on which the tire is based. The maximum air pressure for JATMA and the table “TIRE LOAD LIMITS AT for TRA” The maximum value described in “VARIOUS COLD INFLATION PRESSURES”, “INFLATION PRESSURE” if it is ETRTO, but if the tire is for a passenger car, it will be 200 kPa considering the actual frequency of use.
[0028]
Next, the noise damper 5 is fixed to the Trim side cavity surface 4S2. The reason for fixing is that a large centrifugal force or lateral force acts on the sound control body 5 during high-speed traveling. If the sound control body 5 is not fixed, the sound control body 5 moves and contacts the lumen surface 4S. The body 5 itself is destroyed. As a result, even when the noise control body 5 is formed of a porous inorganic fiber material, the effect of suppressing cavity resonance cannot be exhibited over a long period of time, and the effect of improving high-speed durability cannot be obtained.
[0029]
Therefore, by fixing the sound damping body 5, coupled with the use of the inorganic fiber porous material described above, the effect of suppressing cavity resonance can be exhibited over a long period of time, and high-speed durability can be improved. . In this example, the sound-damping body 5 has a long band shape with a horizontally long cross section, and its bottom surface 5S is fixed to the well portion 3a1 of the rim 3 with an adhesive .
[0030]
As schematically shown in FIG. 3, the sound damping body 5 has a width W1 larger than the bottom width W2 of the well portion 3a1, and both side portions 5e of the sound damping body 5 exceeding the bottom width W2 are rims. 3 and non-adhesive. Thereby, rim assemblability can be ensured. As the bonding method, it is preferable to apply and bond the adhesive in a solid shape or a spot shape over the entire length of the sound damper 5.
[0031]
As the adhesive, a synthetic rubber-based liquid adhesive such as a solution type obtained by dissolving synthetic rubber in an organic solvent and a latex type dispersed in water can be suitably used. In particular, a chloroprene-based solution-type adhesive using chloroprene rubber as a synthetic rubber can be used more preferably because it has excellent adhesive strength and is flexible and resistant to bending and impact. At this time, the content of the chloroprene rubber is preferably 25 to 35 parts by weight when the total amount of the synthetic rubber adhesive is 100 parts by weight, and if it is less than 25 parts by weight, the adhesive strength tends to be impaired, and 35 parts by weight is reduced. When it exceeds, it becomes difficult to apply because of high viscosity.
[0032]
Next, FIG. 4 merely illustrates a case where the sound damping body 5 is formed by a plurality of divided pieces 5A divided in the circumferential direction, in addition to being formed by a single band-shaped body. At this time, the divided pieces 5A are fixed at equal intervals in the circumferential direction. Although the number of the divided pieces 5A is not particularly limited, it is preferably 10 or less, more preferably 6 or less from the viewpoint of workability of adhesion, but 3 or more is preferable from the viewpoint of uniformity. good.
[0033]
FIG. 5 simply shows a case where the sound damping body 5 is bonded to the tire side lumen surface 4S1. At this time, it is preferable to adhere to the tread region J having a large rigidity in order to suppress the influence of the noise control body 5 on the tire running performance. The “tread region J” means a region between radial lines passing through both outer ends of the belt layer 7.
[0034]
In addition, the said adhesive agent is used for fixation to the tire 2 or the rim | limb 3 of the noise suppression body 5 .
[0035]
The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the illustrated embodiments, and can be implemented in various forms.
[0036]
【Example】
Based on the specifications of Table 1, an assembly in which a long band-shaped sound absorber is bonded to the tread back surface of the tire (195 / 60R15) or the bottom surface of the well portion of the rim (15 × 6JJ) over one round, Road noise performance and tire high speed durability were tested.
[0037]
The noise control body was formed using glass wool, rock wool, which are inorganic fiber porous materials, and soft urethane sponge, which is a foamable porous material. Glass wool uses Magroll RR2425 made by Mag Co., Ltd. with a specific gravity of 0.024, rock wool uses MG Belt No. 1 made by Nichias Co., Ltd. with a specific gravity of 0.025, and soft urethane sponge (open cells) is Calm flex F-50 manufactured by Inoac Co., Ltd. having a specific gravity of 0.02 was used.
[0038]
For adhesion, use a chloroprene-based solution type adhesive (Model No. 9383 manufactured by No-Tape Kogyo Co., Ltd.). Each test was conducted after 1 day.
[0039]
(1) Road noise performance:
The rim was assembled at an internal pressure of 200 kPa and mounted on all wheels of a vehicle (domestic 2000cc FR vehicle), and one person took a road noise measurement road (asphalt rough road) at a speed of 60 km / h. Measure the sound in the front seat car at that time, calculate the partial overall of 226Hz, 240Hz, 253Hz, and evaluate with the increase / decrease value (dB (A)) based on the conventional example (no sound control tool) did. -(Minus) display means a reduction in road noise.
[0040]
(2) High speed durability:
The speed and time when the tire is damaged by running on the drum by the step speed method of 200km / h to 10km / h-20 minutes under the internal pressure (280kPa) with the load specified by ECE30. Was measured.
[0041]
[Table 1]
Figure 0004153371
[0042]
As a result of the test, it was confirmed that the example product and the comparative product were all excellent in road noise reduction effect. In addition, it was confirmed that the example product can greatly improve the high-speed durability as compared with the comparative product.
[0043]
【The invention's effect】
As described above, the present invention uses an inorganic fiber porous material in which inorganic fibers are entangled as a sound damper, so that thermal degradation due to high-speed running can be prevented, strength reduction and deformation due to alteration are suppressed, and the tire A road noise reduction effect can be exhibited over a long period of time without reducing high-speed durability.
[Brief description of the drawings]
FIG. 1 is a meridional sectional view showing an embodiment of an assembly of a pneumatic tire and a rim according to the present invention.
FIG. 2 is a circumferential sectional view along the tire equator.
FIG. 3 is an enlarged cross-sectional view of a sound control body.
FIG. 4 is a cross-sectional view in the circumferential direction of an assembly simply showing a case in which a sound damping body is formed from a plurality of divided pieces.
[5] the noise damper is a meridional section view of an assembly for merely illustrative of the case to be fixed to the tire.
[Explanation of symbols]
2 Pneumatic tire 3 Rim 3a1 Well part 4 Tire lumen 5 Sound absorber 5S Bottom

Claims (4)

リムと、このリムに装着される空気入りタイヤとがなすタイヤ内腔内に、制音体を配するとともに、
前記制音体は、無機繊維を絡み合わせた無機繊維多孔質材からなり
つリム側内腔面を周方向に連続してのびる帯状体であって
該制音体は、接着剤を用いて、前記リム側内腔面に固定され、
しかも前記制音体は、巾W1がリムのウェル部の底巾W2より大であり、この底巾W2を越えた制音体の両側部分は、リムと非接着としたことを特徴とするタイヤとリムの組立体。
In the tire lumen formed by the rim and the pneumatic tire attached to the rim, a sound damping body is arranged,
The noise damper is a strip extending the result or hanging arm in side luminal surface of inorganic fibers intertwined allowed inorganic fibrous porous material continuously in the circumferential direction,
The sound absorber is fixed to the rim side lumen surface using an adhesive ,
Moreover, the tire has a width W1 larger than the bottom width W2 of the well portion of the rim, and both side portions of the noise suppression body exceeding the bottom width W2 are not bonded to the rim. And rim assembly.
前記制音体は、前記内腔面を1周巻きする長さであることを特徴とする請求項1記載のタイヤとリムの組立体。The tire and rim assembly according to claim 1, wherein the noise control body has a length that wraps around the lumen surface once. 前記無機繊維多孔質材は、ロックウールであり、かつその比重を0.01〜0.2としたことを特徴とする請求項1又は2に記載の空気入りタイヤとリムとの組立体。The pneumatic tire and rim assembly according to claim 1 or 2, wherein the inorganic fiber porous material is rock wool and has a specific gravity of 0.01 to 0.2. 前記無機繊維多孔質材は、グラスウールであり、かつその比重を0.005〜0.1としたことを特徴とする請求項1又は2に記載の空気入りタイヤとリムとの組立体。The pneumatic tire / rim assembly according to claim 1 or 2 , wherein the inorganic fiber porous material is glass wool and has a specific gravity of 0.005 to 0.1.
JP2003164263A 2003-06-09 2003-06-09 Pneumatic tire and rim assembly Expired - Fee Related JP4153371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003164263A JP4153371B2 (en) 2003-06-09 2003-06-09 Pneumatic tire and rim assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003164263A JP4153371B2 (en) 2003-06-09 2003-06-09 Pneumatic tire and rim assembly

Publications (2)

Publication Number Publication Date
JP2005001428A JP2005001428A (en) 2005-01-06
JP4153371B2 true JP4153371B2 (en) 2008-09-24

Family

ID=34091105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003164263A Expired - Fee Related JP4153371B2 (en) 2003-06-09 2003-06-09 Pneumatic tire and rim assembly

Country Status (1)

Country Link
JP (1) JP4153371B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111098633A (en) * 2018-10-25 2020-05-05 上汽通用汽车有限公司 Tire assembly
KR20230061960A (en) * 2021-10-29 2023-05-09 금호타이어 주식회사 Tire rims with noise dampers

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101100065B1 (en) * 2003-08-04 2011-12-29 미쯔비시 지도샤 고교 가부시끼가이샤 Low noise pneumatic tire
JP2008044574A (en) * 2006-08-21 2008-02-28 Sumitomo Rubber Ind Ltd Assembly of pneumatic tire and rim
WO2008142914A1 (en) * 2007-05-23 2008-11-27 Bridgestone Corporation Tire rim assembly
WO2009001779A1 (en) * 2007-06-27 2008-12-31 Bridgestone Corporation Tire-rim assembly
JP2009286271A (en) * 2008-05-29 2009-12-10 Bridgestone Corp Sound absorption member, tire equipped with such sound absorption member, and assembly of tire and rim equipped with such sound absorption member
JP2014031027A (en) * 2010-11-30 2014-02-20 Bridgestone Corp Rim wheel, tire assembly, and manufacturing method of rim wheel
JP5860411B2 (en) * 2010-12-28 2016-02-16 コンパニー ゼネラール デ エタブリッスマン ミシュラン Pneumatic tire
JP6029884B2 (en) 2012-08-02 2016-11-24 東洋ゴム工業株式会社 Pneumatic tire and rim assembly
EP3192669B1 (en) 2014-09-12 2019-10-02 Bridgestone Corporation Pneumatic tire
CN104553633A (en) * 2014-12-12 2015-04-29 重庆长安汽车股份有限公司 Pneumatic tire with noise reduction device
JP6510875B2 (en) * 2015-05-01 2019-05-08 株式会社ブリヂストン tire
DE102015215738A1 (en) * 2015-08-18 2017-02-23 Continental Reifen Deutschland Gmbh Vehicle tires
JP6674772B2 (en) * 2015-12-18 2020-04-01 株式会社ブリヂストン Pneumatic tire, pneumatic tire and rim assembly, and rim
JP7024705B2 (en) * 2016-10-18 2022-02-24 住友ゴム工業株式会社 Pneumatic tires
JP2019177753A (en) * 2018-03-30 2019-10-17 株式会社サンエー化研 Sound absorber for pneumatic tire, and pneumatic tire
WO2021080119A1 (en) * 2019-10-21 2021-04-29 현대성우캐스팅(주) Vehicle wheel including housing having sound absorption module with porous structure
CN110641222B (en) * 2019-10-30 2020-06-05 常州机电职业技术学院 High-strength wheel and manufacturing method thereof
JP2021123312A (en) * 2020-02-10 2021-08-30 旭化成株式会社 Rim and pneumatic tire assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111098633A (en) * 2018-10-25 2020-05-05 上汽通用汽车有限公司 Tire assembly
CN111098633B (en) * 2018-10-25 2022-04-19 上汽通用汽车有限公司 Tire assembly
KR20230061960A (en) * 2021-10-29 2023-05-09 금호타이어 주식회사 Tire rims with noise dampers
KR102590427B1 (en) 2021-10-29 2023-10-19 금호타이어 주식회사 Tire rims with noise dampers

Also Published As

Publication number Publication date
JP2005001428A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
JP4153371B2 (en) Pneumatic tire and rim assembly
JP3787343B2 (en) Pneumatic tire and rim assembly
JP3621899B2 (en) Pneumatic tire and rim assembly
KR101265674B1 (en) Assembly of pneumatic tire and rim
JP3622957B2 (en) Pneumatic tire and rim assembly
JP4787784B2 (en) Pneumatic tire set
JP4785820B2 (en) Tire and rim assembly
EP1574360B1 (en) Noise damper
JP3953264B2 (en) Pneumatic tire and rim assembly
JP6536744B2 (en) Pneumatic tire
JP3612059B2 (en) Pneumatic tire and rim assembly
JP5280104B2 (en) Rolling noise reduction type tire
JP4960626B2 (en) Pneumatic tire with noise control
JP3974437B2 (en) Pneumatic tire
JPWO2005012005A1 (en) Low noise pneumatic tire
US20020033215A1 (en) Noise damper for pneumatic tire
JP5274106B2 (en) Tire with bubble layer
JP2001239804A (en) Assembly of pneumatic tire and rim
JP4533130B2 (en) Pneumatic tire and rim assembly
CN1978226B (en) Assembly of pneumatic tire and rim
KR100917443B1 (en) Manufacturing method of tire reduced noise
JP3373596B2 (en) Core assembly for pneumatic tires
JP2001347807A (en) Assembly of pneumatic tire and rim
KR20090120911A (en) Method for improving noise effect of the vehicle tire
JP4575765B2 (en) Pneumatic tire and rim assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees