JP4153118B2 - 高周波増幅器及びそれを利用した無線通信システム - Google Patents

高周波増幅器及びそれを利用した無線通信システム Download PDF

Info

Publication number
JP4153118B2
JP4153118B2 JP06866999A JP6866999A JP4153118B2 JP 4153118 B2 JP4153118 B2 JP 4153118B2 JP 06866999 A JP06866999 A JP 06866999A JP 6866999 A JP6866999 A JP 6866999A JP 4153118 B2 JP4153118 B2 JP 4153118B2
Authority
JP
Japan
Prior art keywords
frequency
superconducting
power
signal
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06866999A
Other languages
English (en)
Other versions
JP2000269754A (ja
Inventor
一彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP06866999A priority Critical patent/JP4153118B2/ja
Priority to US09/525,423 priority patent/US6317003B1/en
Publication of JP2000269754A publication Critical patent/JP2000269754A/ja
Application granted granted Critical
Publication of JP4153118B2 publication Critical patent/JP4153118B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/605Distributed amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Microwave Amplifiers (AREA)
  • Transmitters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高周波増幅器に関し、特に高周波帯域においても高い効率で動作し且つ高い電力領域まで線形性が保たれた高周波増幅器及びそれを利用した無線通信システムに関する。
【0002】
【従来の技術】
ワイドバンドのCDMA(Code Division Multiple Access)方式やTDMA(Time Division Multiple Access)方式などを利用した移動体通信などの無線通信システムでは、割り当てられた周波数帯域(チャネル)で通信を行う必要がある。そのような無線通信システムでは、送信回路により所望の変調処理された狭帯域の送信信号が、高周波増幅器により電力増幅され、アンテナから送信される。従って、無線通信システムにおいて、高い電力領域までその線形特性が保たれてダイナミックレンジを広くとることができる高周波増幅器が要求される。
【0003】
図1は、従来例の高周波増幅器を利用した通信システムを示す図である。ここに示した例は、図1(A)に示される通り、ワイドバンドのCDMA方式の送信回路1により生成された高周波信号RF1が、電力増幅器PAにより電力増幅され、その出力信号RF2のスペクトラムの広がりが、バンドパスフィルタ2により抑圧又は除去されて、狭帯域の高周波信号RF3がアンテナ3から送信される。通常、高周波増幅器PAは、低い入力電力の領域では十分な線形特性を有するが、高い入力電力の領域では出力電力が飽和して非線形特性になる。このため、高周波増幅器PAを高効率動作させるために広いダイナミックレンジを利用しようとすると、高周波増幅器PAの出力信号RF2のスペクトラムが、希望する帯域(チャネル)の外側まで広がり、隣接するチャネルの通信に妨害を与えることになる。
【0004】
即ち、図1(B)に示す通り、送信回路1により生成された送信信号RF1は、狭い帯域(チャネル)内に納まっているが、高周波増幅器PAの出力信号RF2は、増幅器PAの非線形特性により、隣接する周波数帯域まで広がってしまう。そこで、従来は、高周波増幅器PAの出力側に希望する帯域の信号だけを通過させるバンドパスフィルタ2を挿入している。かかるバンドパスフィルタ2により、隣接する周波数帯域に広がった電力が抑圧され、図1(C)に示される通り、信号RF3の隣接する帯域の信号のパワーが抑圧されている。
【0005】
しかしながら、通常、金属により形成されるバンドパスフィルタ2の抑圧特性は、理想的ではなく、希望する帯域を中心にしたシャープスカート特性ではない。従って、信号RF3のスペクトラムの広がりは十分に除去されていない。十分に除去する為に、バンドパスフィルタを多数段設けることが行われるが、かかる構成を採用すると、希望する帯域での損失が大きくなり、好ましくない。また、高周波増幅器PAの入力電力を、増幅器の飽和領域からバックオフ(低く)することで、上記のスペクトラムの広がりをなくすこともできるが、その場合は、高周波増幅器の効率が悪くなる。
【0006】
そこで、従来、バンドパスフィルタ2として、低損失でシャープスカート特性を有し、多段接続しても損失が少ない超伝導材料をストリップラインに利用する超伝導バンドパスフィルタを利用することが提案されている。例えば、特開平9-261082号公報には、超伝導バンドパスフィルタを挿入することで、そのシャープなカットオフ特性を利用することが開示されている。
【0007】
【発明が解決しようとする課題】
しかしながら、単に超伝導バンドパスフィルタを挿入しただけでは、高い効率での動作と線形特性の両方を兼ね備えた高周波増幅器を得ることはできない。即ち、電力増幅器PAを高い効率で動作させる為には、入力電力を飽和領域からバックオフせずに高い電力領域まで使用して、できるだけ広いダイナミックレンジを利用することが要求される。従って、超伝導バンドパスフィルタ2に入力される高周波信号RF2の電力が高くなる。
【0008】
その結果、超伝導バンドパスフィルタ2の超伝導材料で形成された伝送路には、高い周波数で高いパワーの信号が伝搬する。超伝導バンドパスフィルタは、通常冷凍機内に格納されて超伝導材料の臨界温度より十分低い温度に保たれる。しかし、上記の高周波数で高パワーの信号RF2が伝搬することで、超伝導材料の伝送路の抵抗が高くなり発熱し、更に伝送路の両端部の電磁波が集中する領域ではその発熱の程度が一層大きくなる。その結果、伝送路が超伝導材料の臨界温度を超えてしまい、もはや超伝導としての高い導電度を持たなくなり、セラミック材料による高温超伝導の場合は絶縁物の特性を持つに至る。従って、高周波数で高いパワーの信号に対しては、超伝導バンドパスフィルタの挿入損失が大きくなる。
【0009】
このように、従来の方法では、超伝導膜の耐電力性により、電力増幅器PAの出力電力RF2により超伝導バンドパスフィルタの超伝導特性が崩れ、送信される信号RF3のスペクトラムの広がりを十分に抑えることができない。
【0010】
更に、上記の超伝導膜の耐電力性により、例えばアンテナに落雷が発生して非常に高いパワーの信号が超伝導フィルタに供給されると、超伝導膜が破壊され、もはや超伝導フィルタとして使用することができなくなる。その場合、破壊された超伝導フィルタを取り換えることが必要になる。しかし、超伝導フィルタの特性は、一定のばらつきを伴うので、取り換えた後の無線通信システムにおいては微調整が必要になり、通信に支障をきたすことになる。
【0011】
そこで、本発明の目的は、超伝導膜の耐電力性を考慮して、高い効率で動作し且つ線形性が確保されている高周波増幅器、及びそれを利用した無線通信システムを提供することにある。
【0012】
更に、本発明の目的は、ダイナミックレンジが広く高い効率で動作し、隣接する帯域(チャネル)へのスペクトラムの広がりを抑えた高周波増幅器及びそれを利用した無線通信システムを提供することにある。
【0013】
更に、本発明の目的は、超伝導フィルタを落雷などから保護することができる高周波増幅器及びそれを利用した無線通信システムを提供することにある。
【0014】
【課題を解決するための手段】
上記の目的を達成するために、本発明の高周波増幅器は、所望の周波数帯域を有する高周波信号を電力増幅する電力増幅器と、その電力増幅器が出力する高周波信号を供給され、当該高周波信号の所望の帯域に隣接する周波数帯域の信号の通過を制限するバンドリジェクションフィルタとを有する。そして、そのバンドリジェクションフィルタは、高周波信号が供給され非超伝導材料により形成された第1のラインと、超伝導材料により形成され前記隣接する周波数に対して共振する共振器用の第2のラインとを有する。かかる構成の超伝導フィルタを利用することで、供給される高パワーの高周波信号は、熱の発生によっても導電率が低下しない非超伝導材料により形成された第1のラインを伝搬し、比較的低パワーの除去すべき隣接周波数帯域の高周波信号は、超伝導材料で形成された共振器用の第2のラインで抑圧される。従って、この超伝導バンドリジェクションフィルタは、高周波で高パワーの高周波信号に対しても、シャープスカート特性を持ち、且つ超伝導特性を維持することができる。その結果、電力増幅器の後段に挿入することで、高い効率の電力増幅動作が可能で線形特性もよい高周波増幅器を提供することができる。
【0015】
上記の目的を達成するために、本発明は、所望の周波数帯域を有する高周波入力信号を増幅する高周波増幅器において、
前記高周波入力信号を電力増幅する電力増幅器と、
前記電力増幅器が出力する高周波出力信号を供給され、当該高周波出力信号の前記所望の周波数帯域に隣接する周波数帯域の信号の通過を制限する超伝導バンドリジェクションフィルタとを有し、
前記超伝導バンドリジェクションフィルタは、前記高周波出力信号が供給され非超伝導材料により形成された第1のラインと、超伝導材料により形成され前記隣接する周波数帯域の信号に対して共振する共振器用の第2のラインとを有することを特徴とする。
【0016】
更に、上記の発明において、前記電力増幅器と前記超伝導バンドリジェクションフィルタとの間に、超伝導材料によるラインを有する保護回路装置が挿入されていることを特徴とする。
【0017】
超伝導伝送路の高い電力に対する非線形特性により、後段の超伝導バンドリジェクションフィルタの破壊が防止される。
【0018】
更に、本発明の目的を達成するために、本発明は、所望の周波数帯域を有する高周波入力信号を増幅する高周波増幅器において、
前記高周波入力信号を電力増幅する電力増幅器と、
前記電力増幅器が出力する高周波出力信号を供給され、当該高周波出力信号が通過する超伝導材料によるラインを有する保護回路装置と、
前記保護回路装置の出力信号を供給され、前記所望の周波数帯域に隣接する周波数帯域の信号の通過を制限する超伝導バンドパスフィルタとを有することを特徴とする。
【0019】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態例を説明する。しかしながら、かかる実施の形態例が、本発明の技術的範囲を限定するものではない。
【0020】
図2は、超伝導バンドパスフィルタの構造例を示す図である。また、図3は、その超伝導バンドパスフィルタの等価回路図である。この超伝導バンドパスフィルタの例は、誘電体基板10の裏面側にグランド導電層11が形成され、表面側に超伝導材料からなる3つのマイクロストリップライン12,13,14が形成される。マイクロストリップライン12には高周波入力信号INが入力され、マイクロストリップライン14から通過した高周波出力信号OUTが出力される。マイクロストリップライン12と13とは、通過帯域の信号の波長をλとすると、例えばλ/4の長さで互いに対向し、容量C1によってカップリングしている。同様に、マイクロストリップライン13と14とは、λ/4の長さで互いに対向し、容量C2によってカップリングしている。それぞれのマイクロストリップライン12,13,14は、インダクタンスL12,L13,L14を有し、グランド導電層11との間にも、それぞれ容量C3,C4,C5を有する。
【0021】
図4は、超伝導伝送路の構造例を示す図である。図2と同じ様に、誘電体基板10の裏面側にグランド導電層11が形成され、表面側に例えばセラミックの超伝導材料で形成されたマイクロストリップライン15が形成される。そして、ライン15の一方端に入力INが供給され、他方端に出力OUTが出力される。かかる超伝導伝送路は、導電率が非常に高いので挿入損失が少ない。
【0022】
図5は、超伝導伝送路の入出力特性を示す図である。横軸に入力電力を縦軸に出力電力を示す。図5に示される通り、超伝導伝送路は、入力電力が高くなれば、それを通過する出力電力も同様に高くなる線形特性を有する。しかし、入力電力が高い領域では、出力電力が低下する。しかも、超伝導伝送路が格納される冷凍機内の温度が高温であると、入力電力がそれほど高くなくても出力電力が低下して損失が大きくなる。また、冷凍機内の温度を低温にしても入力電力が一定の高い領域になると、出力電力が低下して損失が大きくなる。
【0023】
このような入出力特性になる理由は、例えばイットリウム系等のセラミック材料からなる高温超伝導材料でマイクロストリップラインを形成すると、その伝送路は、高周波信号に対して抵抗が大きくなり熱を発生し、更に、高パワーになるとラインエッジ部分の電磁波の集中により同様に熱を発生し、その結果臨界温度を超えて、超伝導特性を失った絶縁物になってしまうからである。従って、図5の通り、超伝導特性を出すための冷凍機内の温度が例えば30Kと低温であれば、比較的高い入力電力に対して高い出力電力を得ることができるが、冷凍機の温度が例えば60Kと高温で臨界温度に近い温度であると、比較的低い入力電力での損失が大きい特性になる。
【0024】
図6は、超伝導バンドパスフィルタのスペクトラム抑圧特性を示す図である。横軸が周波数で中心周波数が1950MHzであり、縦軸が相対値である。理想的なスペクトラム抑圧特性は、中心周波数を中心とする所定の周波数帯域においては抑圧が少なく、所定の周波数帯域の外側で抑圧が大きい。図6には、入力電力を変化させた場合の複数の特性が示される。
【0025】
図5で説明した通り、超伝導バンドパスフィルタにおいて、超伝導材料により伝送路が形成されていると、入力電力が高くなると、伝送路が超伝導特性を維持することができなくなり、図6に示される通り、通過すべき周波数帯域での損失が大きくなる。その結果、超伝導バンドパスフィルタの挿入損失が、金などの金属材料により伝送路を形成する従来のマイクロストリップラインよりも大きくなる。
【0026】
図7は、図4の超伝導伝送路にワイドバンドCDMAの信号を印加した場合の出力特性を示す図である。横軸が周波数を、縦軸が電力(パワー)を示す、図7の例は、入力電力Pinが5dBm程度の比較的低いパワーの場合である。図示される通り、超伝導伝送路は低いパワー領域では損失が少ない理想的な線形特性を有するので、希望する周波数帯域で高いパワーを有し、その両側の帯域で低いパワーを有し、スペクトラムの広がりはない。
【0027】
一方、図8は、超伝導伝送路にワイドバンドCDMAの信号を印加した場合の別の出力特性を示す図である。この例は、入力電力Pinが21dBmと比較的高いパワーの場合である。このような高い入力電力になると、超伝導伝送路は超伝導特性を維持することができなくなり、図5の如く線形特性を維持できなくなる。従って、図8の出力特性は、希望する周波数帯域の隣接する帯域で出力のパワーが高くなり、スペクトラムの広がりが発生している。
【0028】
上記した超伝導伝送路の耐電力特性を考慮して、本実施の形態例では、高周波増幅器の非線形特性を修正するためのフィルタとして、超伝導バンドリジェクションフィルタを採用する。図9は、本実施の形態例における超伝導バンドリジェクションフィルタの構造例を示す図である。このフィルタは、マイクロストリップライン構造であり、誘電体基板10の裏面側にグランド導電層11が形成され、表面側に金(Au)等の金属材料(非超伝導材料)で形成された第1の導電層ライン20と、高温セラミック等の超伝導材料で形成された第2の導電層ライン21,22とが形成される。
【0029】
第2の導電層ライン21,22は、それぞれ通過を制限したい周波数帯域の波長λに対してλ/4の長さで第1の導電層ライン20と対向するマイクロストリップライン型の共振器を構成する。そして、金属で構成される第1の導電層ライン20の一端に入力信号INを供給し、他端から出力信号OUTを取り出す。
【0030】
超伝導材料の例として、次のようなセラミックからなる高温超伝導材料が使用される。
【0031】
Y-Ba-Cu-O、Nd-Ba-Cu-O、Bi-Sr-Ca-Cu-O(Bi系セラミック)、
Bi(Pb)-Sr-Ca-Cu-O(Bi-Pb系セラミック)、
Tl-Ba-Ca-Cu-O(Tl系セラミック)、
Hg-Ba-Ca-Cu-O(Hg系セラミック)
また、誘電体基板の材料としては、次のようなものが使用される。
【0032】
MgO、LaAlO3、サファイア、YSZ
また、第1のラインは、金以外の非超伝導材料の導電性材料で形成することも可能である。但し、通常は金(Au)を利用することにより、その挿入損失を最小限に抑えることができる。
【0033】
図10は、超伝導バンドリジェクションフィルタの等価回路図である。第1の導電層ライン20のインダクタンス成分L20と、第2の導電層のライン21,22のインダクタンス成分L21,L22と、それらの間のキャパシタ成分C21,C22とが示される。そして、第1の導電層ライン20に対して共振回路を構成する第2の導電層ライン21(L21)側には、第1の周波数帯域f1の信号が共振して、フィルタの通過を制限される。また、第1の導電層ライン20に対して共振回路を構成する第2の導電層ライン22(L22)側には、第2の周波数帯域f2の信号が共振して、フィルタの通過を制限される。
【0034】
従って、後述する通り、第1及び第2の周波数帯f1,f2を、希望する通信の周波数帯域f0に隣接する帯域に選ぶことで、通信帯域f0の両側の周波数帯域f1,f2の信号の通過を抑圧することができる。しかも、図1(B)の高周波出力信号RF2に示される通り、通信帯域f0の電力は高いが、通過を制限すべき隣接帯域f1,f2の電力はそれに比較すると低い。つまり、図9,図10の超伝導バンドリジェクションフィルタを利用すれば、通過すべき高いパワーの通信帯域f0の信号は、非超伝導材料で形成された第1の導電層ライン20を伝播し、通過を制限すべき低いパワーの隣接帯域f1,f2の信号は、超伝導材料で形成された第2の導電層ライン21,22の共振器側に伝播する。即ち、低いパワーの信号に対してのみ超伝導フィルタとして動作させることができる。従って、通信帯域f0の信号の伝播に対しては、図5に示したような超伝導伝送路特有の耐電力特性の影響はなく、制限すべき隣接帯域f1,f2の信号に対しては、図5の入出力特性に示される低い電力領域の線形領域でしか使用せず、同様に超伝導伝送路特有の耐電力特性の影響はない。
【0035】
図11は、本実施の形態例における無線通信システムを示す図である。例えばワイドバンドCDMAの送信回路1により、所望の周波数帯域f0の高周波信号RF1が生成され、電力増幅器PAに高周波入力信号として供給される。電力増幅器PAは、高周波入力信号RF1を電力増幅し、高周波出力信号RF2を出力する。電力増幅器PAは、高い入力電力に対して飽和する非線形特性を有するため、増幅された高周波出力信号RF2は、通信帯域f0の隣接する帯域f1,f2まで広がったス ペクトラムを有する。
【0036】
高周波出力信号RF2は、冷凍機40内に収納されて臨界温度より低い温度に保たれた超伝導バンドリジェクションフィルタ30に供給される。この超伝導バンドリジェクションフィルタ30は、図9に示したフィルタである。この超伝導バンドリジェクションフィルタ30により、通信帯域f0の両側の帯域f1,f2のパワーが抑圧され、隣接チャネルのパワーが例えば40dBm以下に抑えられた高周波信号RF3が出力される。そして、この高周波信号RF3がアンテナ3から送信される。本実施の形態例において、電力増幅器PAと超伝導バンドリジェクションフィルタ30とにより高周波増幅器32を構成し、高周波入力信号RF1に対して、スペクトラムの広がりを抑えた増幅された高周波信号RF3を生成する。
【0037】
図12は、上記高周波増幅器のスペクトラムを説明する図である。図12(A)は、超伝導バンドリジェクションフィルタの周波数特性である。第1の超伝導マイクロストリップライン20を非超伝導材料で形成したので、通信帯域f0に対する高い入力電力に対しても損失が少ない特性を有する。また、通信帯域f0の隣接する周波数帯域f1,f2に対しては、超伝導マイクロストリップライン21,22による共振器を有するので、かかる帯域f1,f2の信号の通過は制限される。即ち、本実施の形態例の超伝導バンドリジェクションフィルタ30は、電力増幅器PAからの高周波出力信号に対して、低損失でシャープスカート特性を有する。
【0038】
図12(B)は、電力増幅器PAの出力信号RF2のスペクトラムである。電力増幅器PAを高い効率で使用した場合、高い入力電力での非線形特性により、出力信号RF2は通信帯域f0の隣接するチャネルf1,f2に漏洩電力が発生している。かかる隣接チャネルf1,f2の電力レベルは、通信帯域f0の電力レベルより低い。この出力信号RF2が超伝導バンドリジェクションフィルタ30を通過することで、隣接チャネルf1.f2の漏洩電力が抑圧され、軽減される。隣接チャネルf1.f2での電力レベルは低いので、超伝導マイクロストリップライン21,22で形成された共振器では、超伝導伝送路の耐電力特性の影響を受けない。即ち、超伝導バンドリジェクションフィルタのフィルタとして動作させる部分の電力を、漏洩電力の低い範囲に限定して、従来の超伝導バンドパスフィルタにおける耐電力特性の問題を解決している。その結果、電力増幅器PAのダイナミックレンジを広くして高い効率で使用しても、フィルタの挿入損失が悪くなることはない。
【0039】
図13は、第2の実施の形態例における無線通信システムを示す図である。この例では、高周波増幅器32は、図11の電力増幅器PA2と超伝導バンドリジェクションフィルタ30の組み合わせの前段に、別の電力増幅器PA1と超伝導バンドパスフィルタ33が設けられる。それぞれの超伝導フィルタ33,30は、冷凍機40内に格納され、臨界温度より低い温度に保たれる。
【0040】
この例では、前段の電力増幅器PA1が、図示しない送信回路で生成された狭帯域の高周波信号RF1を電力増幅する。その場合、出力信号RF10のパワーは、超伝導バンドパスフィルタ33が超伝導特性を失わない程度に低く抑えられている。超伝導バンドパスフィルタ33により、出力信号RF10の隣接帯域への漏洩電力が除去され、出力信号RF11が主電力増幅器PA2に供給される。その結果、電力増幅された出力信号RF2が出力される。この出力信号RF2は、通信帯域において非常に高いパワーを有する。その後は、図11の例と同様に、超伝導バンドリジェクションフィルタ30により隣接帯域の漏洩電力が除去され、隣接帯域での電力が抑えられた高周波信号RF3がアンテナ3から送信される。
【0041】
第2の実施の形態例では、超伝導マイクロストリップラインのみで形成された超伝導バンドパスフィルタ33は、前段の低いパワーの信号に対してのみ使用される。そして、高いパワーになる後段の信号に対しては、図9の超伝導バンドリジェクションフィルタ30が使用される。従って、高いパワーの信号に対して超伝導特性が失われることはない。
【0042】
図14は、第3の実施の形態例における高周波増幅器を示す図である。この例は、図11の実施の形態例での高周波増幅器32において、電力増幅器PAと超伝導バンドリジェクションフィルタ30との間に、超伝導伝送路により形成される保護回路装置34が挿入されている。この保護回路装置34は、図4に示した超伝導伝送路である。
【0043】
超伝導伝送路34は、図5の入出力特性に示される通り、入力電力が所定のレベルを超えると、その超伝導特性が維持されずに大きな挿入損失を有する。この特性を利用して、本実施の形態例では、超伝導伝送路34を保護回路装置として使用する。例えば、落雷などの何らかの要因で高周波信号RF2が非常に高いパワーを有するに至った場合、保護回路装置34がないと超伝導バンドリジェクションフィルタ30の超伝導マイクロストリップライン21,22等が破壊されてしまう。一旦破壊されると、超伝導バンドリジェクションフィルタ30を取り換える必要があり、取り換えた後は、再度無線通信システムを微調整する必要がある。
【0044】
そこで、保護回路装置34として、超伝導伝送路を挿入することで、予期しない高いパワーの信号に対してのみ大きな損失を与えて、超伝導バンドリジェクションフィルタ30の破壊を防止できる。保護回路装置34も破壊されるが、保護回路装置34は単に取り換えるだけでよく、同じ超伝導バンドリジェクションフィルタ30を使用できるので、その後の微調整作業は不要である。尚、超伝導バンドリジェクションフィルタ30が図11の如くアンテナ3に接続される場合は、アンテナとの間に同様の保護回路装置を設けることもできる。
【0045】
図15は、第4の実施の形態例における高周波増幅器を示す図である。この例では、電力増幅器PAと超伝導バンドパスフィルタ33との間に保護回路装置34が挿入されている。この場合も、信号RF2が予期しない高いパワーになったときの超伝導バンドパスフィルタ33の破壊が防止される。
【0046】
図16は、第5の実施の形態例における無線通信システムを示す図である。この例は、図13に示した無線通信システムにおいて、それぞれの超伝導フィルタ33,30の前段に、図14,15で示した保護回路装置34を設けた例である。保護回路装置34は、超伝導伝送路で構成され、その保護機能は、図14,15の場合と同じである。超伝導伝送路の耐電力特性を利用して、超伝導フィルタが高いパワーの信号により破壊されることを防止することができる。
【0047】
【発明の効果】
以上、本発明によれば、電力増幅器の後段に挿入するフィルタを、通過を制限する周波数に共振する共振器を超伝導マイクロストリップラインで構成し、高いパワーの高周波信号が通過する伝送路を非超伝導材料で形成したので、電力増幅器のもつ非線形特性による漏洩電力を効果的に抑圧することができ、出力信号のスペクトルの広がりを抑えることができる。しかも、高いパワーに対して超伝導特性が失われる現象を防止することができる。
【0048】
また、超伝導フィルタの前段に超伝導伝送路からなる保護回路装置を挿入したので、予定しない程の高いパワーの信号が供給されても、後段の超伝導フィルタの破壊を防止することができる。
【図面の簡単な説明】
【図1】従来例の高周波増幅器を利用した通信システムを示す図である。
【図2】超伝導バンドパスフィルタの構造例を示す図である。
【図3】超伝導バンドパスフィルタの等価回路図である。
【図4】超伝導伝送路の構造例を示す図である。
【図5】超伝導伝送路の入出力特性を示す図である。
【図6】超伝導バンドパスフィルタのスペクトラム抑圧特性を示す図である。
【図7】超伝導伝送路にワイドバンドCDMAの信号を印加した場合の出力特性を示す図である。
【図8】超伝導伝送路にワイドバンドCDMAの信号を印加した場合の別の出力特性を示す図である。
【図9】本実施の形態例における超伝導バンドリジェクションフィルタの構造例を示す図である。
【図10】超伝導バンドリジェクションフィルタの等価回路図である。
【図11】本実施の形態例における無線通信システムを示す図である。
【図12】高周波増幅器のスペクトラムを説明する図である。
【図13】第2の実施の形態例における無線通信システムを示す図である。
【図14】第3の実施の形態例における高周波増幅器を示す図である。
【図15】第4の実施の形態例における高周波増幅器を示す図である。
【図16】第5の実施の形態例における無線通信システムを示す図である。
【符号の説明】
PA、PA1、PA2 電力増幅器
RF1、RF2、RF3 高周波信号
f0,f1,f2 通信帯域とその隣接帯域
30 超伝導バンドリジェクションフィルタ
32 高周波増幅器
33 超伝導バンドパスフィルタ
34 保護回路装置
40 冷凍機

Claims (8)

  1. 所望の周波数帯域を有する高周波入力信号を増幅する高周波増幅器において、
    前記高周波入力信号を電力増幅する電力増幅器と、
    前記電力増幅器が出力する高周波出力信号を供給され、当該高周波出力信号の前記所望の周波数帯域に隣接する周波数帯域の信号の通過を制限する超伝導バンドリジェクションフィルタとを有し、
    前記超伝導バンドリジェクションフィルタは、前記高周波出力信号が供給され非超伝導材料により形成された第1のラインと、超伝導材料により形成され前記隣接する周波数帯域の信号に対して共振する共振器用の第2のラインとを有することを特徴とする高周波増幅器。
  2. 請求項1において、
    前記超伝導バンドリジェクションフィルタの第2のラインは、前記所望の周波数帯域よりも高い隣接周波数帯域の信号に共振する高周波数側ラインと、前記所望の周波数帯域よりも低い隣接周波数帯域の信号に共振する低周波数側ラインとを有することを特徴とする高周波増幅器。
  3. 請求項1または2において、
    前記超伝導バンドリジェクションフィルタは、裏面にグランド導電膜が形成され、表面に前記第1のラインと第2のラインとが形成された誘電体基板からなるマイクロストリップライン構造を有することを特徴とする高周波増幅器。
  4. 請求項1において、
    更に、前記高周波入力信号を電力増幅する前段電力増幅器と、
    前記前段電力増幅器の出力信号を供給され、当該出力信号の前記前記所望の周波数帯域に隣接する周波数帯域の信号の通過を制限する超伝導バンドパスフィルタとを有し、
    前記超伝導バンドパスフィルタの出力信号が、前記電力増幅器に入力信号として供給されることを特徴とする高周波増幅器。
  5. 請求項1において、
    更に、前記電力増幅器と前記超伝導バンドリジェクションフィルタとの間に、超伝導材料によるラインを有する保護回路装置が挿入されていることを特徴とする高周波増幅器。
  6. 所望の周波数帯域を有する高周波入力信号を増幅する高周波増幅器において、
    前記高周波入力信号を電力増幅する電力増幅器と、
    前記電力増幅器が出力する高周波出力信号を供給され、当該高周波出力信号が通過する超伝導材料によるラインを有する保護回路装置と、
    前記保護回路装置の出力信号を供給され、前記所望の周波数帯域に隣接する周波数帯域の信号の通過を制限する超伝導バンドパスフィルタとを有することを特徴とする高周波増幅器。
  7. 請求項1乃至6のいずれかにおいて、
    前記超伝導フィルタ及び保護回路装置は、それぞれの超伝導材料の臨界温度より低い温度に維持される冷凍機内に格納されていることを特徴とする高周波増幅器。
  8. 請求項1乃至7のいずれかに記載された高周波増幅器と、
    前記高周波増幅器の出力信号を送信する送信アンテナとを有することを特徴とする無線通信システム。
JP06866999A 1999-03-15 1999-03-15 高周波増幅器及びそれを利用した無線通信システム Expired - Fee Related JP4153118B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP06866999A JP4153118B2 (ja) 1999-03-15 1999-03-15 高周波増幅器及びそれを利用した無線通信システム
US09/525,423 US6317003B1 (en) 1999-03-15 2000-03-14 Radio-frequency amplifier, and radio communication system using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06866999A JP4153118B2 (ja) 1999-03-15 1999-03-15 高周波増幅器及びそれを利用した無線通信システム

Publications (2)

Publication Number Publication Date
JP2000269754A JP2000269754A (ja) 2000-09-29
JP4153118B2 true JP4153118B2 (ja) 2008-09-17

Family

ID=13380364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06866999A Expired - Fee Related JP4153118B2 (ja) 1999-03-15 1999-03-15 高周波増幅器及びそれを利用した無線通信システム

Country Status (2)

Country Link
US (1) US6317003B1 (ja)
JP (1) JP4153118B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7035617B2 (en) * 2001-01-29 2006-04-25 U.S. Monolithics, L.L.C. High power block upconverter
US6686811B2 (en) * 2001-03-26 2004-02-03 Superconductor Technologies, Inc. Filter network combining non-superconducting and superconducting filters
US20050164888A1 (en) * 2001-03-26 2005-07-28 Hey-Shipton Gregory L. Systems and methods for signal filtering
JP4171015B2 (ja) * 2005-09-29 2008-10-22 株式会社東芝 フィルタ及びこれを用いた無線通信装置
JP4264101B2 (ja) * 2006-12-08 2009-05-13 株式会社東芝 フィルタ回路および無線通信装置
JP2008199076A (ja) * 2007-02-08 2008-08-28 National Institute Of Information & Communication Technology 帯域阻止フィルタ
US8872333B2 (en) 2008-02-14 2014-10-28 Viasat, Inc. System and method for integrated waveguide packaging
WO2010028520A1 (en) * 2008-09-11 2010-03-18 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Mixed material rf circuits and components
JPWO2010055639A1 (ja) * 2008-11-13 2012-04-12 パナソニック株式会社 変調装置及び変調方法
AU2011218651B2 (en) 2010-08-31 2014-10-09 Viasat, Inc. Leadframe package with integrated partial waveguide interface
US9131454B2 (en) * 2013-03-13 2015-09-08 Qualcomm Incorporated Compensating power spectral density for power levels
KR101876190B1 (ko) * 2017-04-12 2018-07-10 모본주식회사 비결선 방식 차량 정보 신호 수취 장치
WO2020246112A1 (ja) * 2019-06-05 2020-12-10 国立研究開発法人産業技術総合研究所 パラメトリック増幅器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746070A (ja) 1993-07-29 1995-02-14 Nec Corp マイクロ波回路
US5496795A (en) * 1994-08-16 1996-03-05 Das; Satyendranath High TC superconducting monolithic ferroelectric junable b and pass filter
JPH09261082A (ja) 1996-03-27 1997-10-03 Idoutai Tsushin Sentan Gijutsu Kenkyusho:Kk 通信システム
US6094588A (en) * 1997-05-23 2000-07-25 Northrop Grumman Corporation Rapidly tunable, high-temperature superconductor, microwave filter apparatus and method and radar receiver employing such filter in a simplified configuration with full dynamic range

Also Published As

Publication number Publication date
US6317003B1 (en) 2001-11-13
JP2000269754A (ja) 2000-09-29

Similar Documents

Publication Publication Date Title
JP4153118B2 (ja) 高周波増幅器及びそれを利用した無線通信システム
KR101758086B1 (ko) 개선된 선형적 특징을 가지는 전력 증폭기
US20050164888A1 (en) Systems and methods for signal filtering
ITRM960329A1 (it) Amplificatore di potenza lineare per prestazioni in multi-portante ad alta efficienza.
KR19980014205A (ko) 고주파 전력분배기/결합기 회로
Xie et al. A K-band high interference-rejection GaAs low-noise amplifier using multizero control method for satellite communication
US6823201B2 (en) Superconducting microstrip filter having current density reduction parts
EP1104041A1 (en) Laminated notch filter and cellular phone using it
JP4068521B2 (ja) 超伝導デュプレクサ装置
CN116683874A (zh) 一种低噪声放大器
JP4707682B2 (ja) 超伝導デバイス
JP4822970B2 (ja) 分割型マイクロストリップライン共振器およびこれを用いたフィルタ
CN115118242A (zh) 限幅器
JP2000183772A (ja) 高感度無線機
JP2529074B2 (ja) 高出力電力増幅器
JP2006101187A (ja) 超伝導デバイス
Carey-Smith et al. Distortion mechanisms in varactor diode-tuned microwave filters
De Koning et al. Gunn-Effect amplifiers for microwave communication systems in X, Ku, and Ka bands
JPH1168404A (ja) 周波数フィルタ
Chandler et al. Active varactor tunable microwave filters
Ishikawa et al. GaAs P-HEMT MMICs for K-to-Ka band wireless communications
CN221103310U (zh) 一种低通匹配结构的高线性GaN内匹配功率管
Kaundinya et al. Recent advancements in design of microwave components for space applications
Jiang et al. A Compact Ka-Band GaAs pHEMT MMIC Notch Filtering Power Amplifier
JPH10224252A (ja) フィルタ回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees