JP4151438B2 - Rolling bearing unit with sensor - Google Patents

Rolling bearing unit with sensor Download PDF

Info

Publication number
JP4151438B2
JP4151438B2 JP2003060817A JP2003060817A JP4151438B2 JP 4151438 B2 JP4151438 B2 JP 4151438B2 JP 2003060817 A JP2003060817 A JP 2003060817A JP 2003060817 A JP2003060817 A JP 2003060817A JP 4151438 B2 JP4151438 B2 JP 4151438B2
Authority
JP
Japan
Prior art keywords
rotor
rolling bearing
rotation
sensor
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003060817A
Other languages
Japanese (ja)
Other versions
JP2004270771A (en
Inventor
桂 小八木
照之 脇阪
昌弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2003060817A priority Critical patent/JP4151438B2/en
Publication of JP2004270771A publication Critical patent/JP2004270771A/en
Application granted granted Critical
Publication of JP4151438B2 publication Critical patent/JP4151438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/723Shaft end sealing means, e.g. cup-shaped caps or covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、転がり軸受と転がり軸受の各種情報を検出するセンサ装置とが一体化されたセンサ付き転がり軸受ユニットに関し、特に、自動車を構成するハブユニットと自動車の各種情報を検出するセンサ装置とが一体化されたセンサ付きハブユニットに適用するのに好適なセンサ付き転がり軸受ユニットに関する。
【0002】
【従来の技術】
鉄道車両や自動車においては、車軸あるいは車軸に回転を伝達する回転軸を支持するとともに軸の回転速度・回転角度等の回転を検出するために、転がり軸受、ならびにそれに設けられたセンサ装置および被検出部であるパルサリングを備えたセンサ付き転がり軸受ユニットが使用されている(特許文献1参照)。
【0003】
【特許文献1】
実開平1−156463号公報
【0004】
【発明が解決しようとする課題】
上記従来のセンサ付き転がり軸受ユニットでは、回転検出の分解能の向上や小径化の要求が強くなっているが、パルサリングを使用するものでは、分解能がパルサリングの着磁極数に依存するため、分解能の向上には、その極数を増すことが必要となる。しかしながら、このようにすると、磁束密度が低くなってセンサ装置の信号出力の絶対値が小さくなり、回転を正確に測定できなくなるという問題が生じることから、分解能の向上には限界があった。
【0005】
この発明の目的は、高分解能の回転検出が可能なセンサ付き転がり軸受ユニットを提供することにある。
【0006】
【課題を解決するための手段および発明の効果】
この発明によるセンサ付き転がり軸受ユニットは、固定側軌道部材、回転側軌道部材、および両軌道部材の間に配置された転動体を有する転がり軸受と、転がり軸受に設けられたセンサ装置とからなるセンサ付き転がり軸受ユニットにおいて、センサ装置は、固定側軌道部材に設けられたステータおよび回転側軌道部材に設けられたロータからなるレゾルバを備えており、ロータの被検出面が回転側軌道部材の端面に形成され、ステータは、この被検出面に軸方向に対向するように固定側軌道部材の端部に配置され、ロータの被検出面は、ロータとなる部材を製作して回転側軌道部材に取り付けるのではなく、回転側軌道部材の端面がロータ用として加工されることにより形成されるか、または、回転側軌道部材の加工時に必然的に生じる端面の振れを利用することで形成されており、前記ロータとステータとの間のエアギャップ量の変化を検知し、前記レゾルバの出力から回転速度およびタイヤ接地荷重を求めることを特徴とするものである。
【0007】
レゾルバは、回転角度検出装置として公知のものであり、ステータに正弦波電圧を入力した状態で、回転側軌道部材と固定側軌道部材とが相対回転すると、ステータとロータの被検出面とのエアギャップ量が連続にまたは不連続に変化することに伴い、ステータに回転角に応じた電圧が得られ、これにより、転がり軸受の回転状態を検出することができる。ステータおよびロータ(回転側軌道部材)は、磁性材料で形成される。回転側軌道部材は、例えば、SUJ2製とされることにより、軸受の軌道部材としての強度とロータとしての磁性との特性を両立保持するものとされる。
【0008】
レゾルバのステータは、例えば、側面が櫛歯状に形成されたリング状の鉄心と、すべての歯の部分に順次コイルが巻かれて形成されたステータ巻線とから構成される。
【0009】
ステータの配線は、円筒状に形成された固定側軌道部材の端部開口から取り出される。この端部開口には、有底円筒状に形成されたカバーが被せられ、このカバーの底部に、送信用のハーネスが取り付けられるコネクタ部が形成される。ステータは、カバーに固定され、このカバーが固定側軌道部材に固定されるようにしてもよく、カバーを介さず圧入によって固定側軌道部材に直接固定されるようにしてもよい。リード線、コネクタピンなどの配線部材は、カバー内部に充填された樹脂により、カバー内に包埋固定される。こうして、ステータの配線を簡単にかつ断線の恐れなく外部に取り出すことができる。
【0010】
ロータの被検出面は、ロータとなる部材を製作して回転側軌道部材に取り付けるのではなく、回転側軌道部材の端面がロータ用として加工されることにより形成される。ロータの被検出面は、軸方向に対して完全に直角な平坦面からずれた側面であれば種々の形態が可能であり、例えば、側面全体を直角の面から傾斜させたり、側面全体を波形に形成したり、側面全体を円錐台状に形成したり、側面の一部または全体に1または複数の切欠きを設けたり、側面の一部または全体に1または複数の凹凸を設けたりすることにより得ることができる。また、回転側軌道部材の加工時に必然的に生じる端面の振れを利用することもできる。
【0011】
この発明のセンサ付き転がり軸受ユニットによると、ロータの被検出面が、回転側軌道部材の端面に形成されているので、ロータ用の新たな部材は不要であり、センサ装置無しの転がり軸受にステータを取り付ける工程(ステータの軌道部材への圧入または軌道部材に被せられるカバーへのステータの埋設)が増えるのみであることから、組立の自動化が従来と同様に可能であり、センサ付き転がり軸受ユニットのコストを下げることができる。また、回転側軌道部材の端面形状をロータ用に変更するとともに、ステータを固定側軌道部材に取り付けるだけで、回転検出機能が得られるので、コンパクト化を図ることもできる。例えば、このセンサ付き転がり軸受ユニットをセンサ付きハブユニットとして使用してABSのための回転を検出する場合、ロータの被検出面が上記単純な形状であっても、必要かつ十分な精度が得られ、ロータを単純な被検出面とすることによる低コスト化が可能となる。
【0012】
固定側軌道部材は、車体に固定される取付け部を有する外輪とされ、回転側軌道部材は、車輪が取り付けられる内軸および内軸に外嵌された内輪からなり、内軸に、内輪の抜けを防止しているかしめ部が設けられており、ロータの被検出面は、内輪の端面に形成されていることがある。このようにすると、内輪の内径部の端面にかしめ部が当てられて、内輪の外径部の端面近傍には、ステータを臨ませるためのスペースが形成され、レゾルバ配置のためのスペースをより少なくすることができる。
【0013】
この場合に、ステータは、カバーに固定され、このカバーが固定側軌道部材に固定されていることがより好ましい。このようにすると、ステータのカバーへの取付けを予め行うことができ、また、信号線を軌道部材から取り出さなくてもよいので、センサ付き軸受ユニットの組立てをより容易に行うことができる。
【0014】
レゾルバとしては、種々のタイプのブラシレスレゾルバや、ブラシレスシンクロを用いることができ、このうち、VR(バリアブル・リアクタンス)形レゾルバが好適である。
【0015】
センサ装置には、ステータとロータの被検出面すなわち回転側軌道部材の端面との間のエアギャップ量に応じて出力される信号を処理する処理回路が設けられ、この処理回路は、ABS等のために必要な回転角度や回転速度を求める回転検出部と、ステータとロータとの間のエアギャップ量から軌道部材にかかる荷重を求める荷重演算部とを有していることが好ましい。
【0016】
走行する車両の速度変化や姿勢変化に伴って、各タイヤに掛かる接地荷重が変動するが、この接地荷重の大きさによって車軸の車体に対する変位量が変動することとなる。この車軸の変位は、転がり軸受における固定側軌道部材に対する回転側軌道部材の変位すなわちステータとロータとの間のエアギャップ量と対応関係にある。したがって、タイヤの接地荷重と回転側軌道部材の変位量との関係を予め求めておくとともに、ステータとロータとの間のエアギャップ量をレゾルバで測定することにより、接地荷重−変位量の関係式とエアギャップ量から接地荷重を精度よく求めることができる。こうして得られたタイヤ接地荷重は、ABS制御におけるスリップ率の代替えデータとして使用されるほか、駆動力制御やブレーキ力制御などにおいて使用され、車両制御の精度向上に資することができる。レゾルバは、それ自体が回転を検出するものであることから、接地荷重とともに回転情報も知ることができ、車輪の回転とタイヤの接地荷重という車両制御で重要なパラメータを1つのセンサで得ることができる。
【0017】
【発明の実施の形態】
この発明の実施の形態を、以下図面を参照して説明する。
【0018】
図1および図2は、この発明のセンサ付き転がり軸受ユニットをセンサ付きハブユニットに適用した1実施形態を示している。以下の説明において、左右および上下は、図1の左右および上下をいうものとする。なお、左が車両の内側に、右が車両の外側となっている。
【0019】
図1に示すように、センサ付き転がり軸受ユニットは、ハブユニット(1)と、その回転および接地荷重を検出するセンサ装置としてのレゾルバ(2)とを備えている。
【0020】
ハブユニット(1)は、車体側に固定される固定側軌道部材(3)、車輪が取り付けられる回転側軌道部材(4)、両部材(3)(4)の間に2列に配置された複数の転動体である玉(5)、および各列の玉(5)をそれぞれ保持する保持器(6)を備えている。
【0021】
固定側軌道部材(3)は、内周面に2列の外輪軌道が形成されている円筒部(12)と、円筒部(12)の左端部近くに設けられて懸架装置(車体)にボルトで取り付けられるフランジ部(13)とを有している。
【0022】
回転側軌道部材(4)は、第1の軌道溝(15a)を有する大径部(15)および第1の軌道溝(15a)の径よりも小さい外径を有する小径部(16)を有している内軸(14)と、内軸(14)の小径部(16)外径に嵌め止められて右面が内軸(14)の大径部(15)左面に密接させられている内輪(17)とからなる。内軸(14)の右端近くには、車輪を取り付けるための複数のボルト(19)が固定されたフランジ部(18)が設けられている。内輪(17)の右部には、内軸(14)の軌道溝(15a)と並列するように、軌道溝(17a)が形成されており、内輪(17)の左部に肩部(17b)が形成されている。内軸(14)の左端部には、内輪(17)の抜けを防止しているかしめ部(16a)が設けられている。また、固定側軌道部材(3)の右端部と内軸(14)との間には、シール装置(20)が設けられている。
【0023】
固定側軌道部材(3)の左端部には、カバー(21)が被せ止められている。カバー(21)は、金属または樹脂により有底円筒状に形成されたもので、その右端部には、固定側軌道部材(3)の左端部内周に嵌合固定されている円筒状固定部(21a)が形成されている。
【0024】
レゾルバ(2)は、VR形ブラシレスレゾルバで、ステータ(7)およびロータ(8)からなり、そのステータ(7)は、内輪肩部(17b)の左端面に左方(軸方向外方)から対向するように、カバー(21)の固定部(21a)に支持されている。そして、ロータ(8)は、ステータ対向位置である回転側軌道部材(4)の内輪(17)の肩部(17b)左端面がロータ用として加工されることにより形成されている。ロータ(8)の被検出面となる内輪(17)の肩部(17b)左端面には、ステータ(7)が1回転するごとに検出可能な所定の被検出面(凹凸面、切欠き付き平坦面など)が形成されている。ステータ(7)の信号は、リード線(30)およびコネクタピン(31)などの配線部材を介して外部に取り出される。
【0025】
ステータ(7)は、側面が櫛歯状に形成されたリング状の鉄心(9)と、鉄心(9)のすべての歯の部分に順次コイルが巻かれて形成されたステータ巻線(10)とからなる。ステータ(7)は、その検知面が内輪(17)の肩部(17b)左端面に臨まされた状態でカバー(21)の固定部(21a)の内周面に圧入されている。
【0026】
固定側軌道部材(3)の左端部の内周面に嵌合固定されているカバー(21)の固定部(21a)の左側には、径方向外方に突出し固定側軌道部材(3)の左端部における軸方向端面に当接する環状凸部(21b)が形成されている。カバー(21)の底部には、送受信用のハーネスが取り付けられるコネクタ部(21c)が形成されている。ステータ巻線(10)の出力は、リード線(30)を介してコネクタピン(31)に接続される。リード線(30)、コネクタピン(31)およびステータ(7)は、カバー(21)内部に充填された樹脂(22)によりカバー(21)内に包埋固定されている。また、カバー(21)底部のコネクタ部(21c)も樹脂により形成されており、コネクタピン(31)は、このコネクタ部(21c)に先端を樹脂(22)から突出させて収められている。リード線(30)およびコネクタピン(31)は、信号の種類に合わせて複数設けられている。
【0027】
固定側軌道部材(3)の左端部近くには、左端開口径よりも若干径が小さくなされたストッパ部(3a)が形成されており、ステータ(7)は、カバー(21)の固定部(21a)の右端部がこのストッパ部(3a)に左方から当接することにより、内輪(17)左端面にちょうど対向するよう位置決めされている。こうして、ステータ(7)がカバー(21)を介して固定側軌道部材(3)の左端部に取り付けられている。
【0028】
回転側軌道部材(4)が回転すると、ステータ(7)の鉄心(9)とロータ(8)の被検出面とのギャップが変化し、ステータ(7)に回転角に応じた電圧が得られ、ステータ(7)の電圧変化が信号線(図示略)を介して処理回路に送られる。これにより、ABSなどのために必要な回転軸の回転状態を検出することができる。
【0029】
上記センサ付き転がり軸受ユニットによると、タイヤの接地荷重が変動すると、固定側軌道部材(3)に対する回転側軌道部材(4)の変位量が変化し、これに伴って、レゾルバ(2)で検出されるステータ(7)とロータ(8)との間のエアギャップ量が変化する。図2に示すように、このエアギャップ量の変化は、電圧変動量としてレゾルバ(2)から出力される。レゾルバ(センサ装置)の処理回路の回転検出部では、この出力信号に基づき、ABSなどのために必要な回転角度や回転速度などが求められる。レゾルバの処理回路には、さらに、電圧の変動量として出力された変位量から接地荷重を求める演算式が蓄えられた接地荷重演算部が設けられており、この演算部によって接地荷重が求められる。得られた接地荷重は、車両制御手段に出力され、車両に適正な制御が施される。
【0030】
なお、ステータ(7)の固定側軌道部材(3)への取付けは、上記実施形態では、カバー(21)にステータ(7)を圧入することにより、カバー(21)を介して行うようにしたが、ステータ(7)は、固定側軌道部材(3)の左端部内周面に直接圧入固定してもよい。
【図面の簡単な説明】
【図1】図1は、この発明によるセンサ付き転がり軸受ユニットの1実施形態を示す横断面図である。
【図2】センサ付き転がり軸受ユニットの処理回路を示すブロック図である。
【符号の説明】
(1) ハブユニット
(2) レゾルバ
(3) 固定側軌道部材
(4) 回転側軌道部材
(5) 玉(転動体)
(7) ステータ
(8) ロータ(内輪端面)
(13) フランジ部(車体への取付け部)
(14) 内軸
(16a) かしめ部
(17) 内輪
(21) カバー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rolling bearing unit with a sensor in which a rolling bearing and a sensor device that detects various types of information on the rolling bearing are integrated, and in particular, a hub unit that constitutes an automobile and a sensor device that detects various types of information on the automobile. The present invention relates to a rolling bearing unit with a sensor suitable for application to an integrated hub unit with a sensor.
[0002]
[Prior art]
In railway vehicles and automobiles, a rolling bearing, a sensor device provided in the rolling bearing, and a sensor device to be detected are detected in order to support the axle or the rotation shaft that transmits the rotation to the axle and to detect rotation such as the rotation speed and rotation angle of the shaft. A sensor-equipped rolling bearing unit having a pulsar ring as a part is used (see Patent Document 1).
[0003]
[Patent Document 1]
Japanese Utility Model Publication No. 1-156463 [0004]
[Problems to be solved by the invention]
In the conventional rolling bearing unit with a sensor, there is a strong demand for improvement in rotation detection resolution and diameter reduction. However, in the case of using a pulsar ring, the resolution depends on the number of magnetic poles of the pulsar ring. It is necessary to increase the number of poles. However, if this is done, the magnetic flux density becomes low, the absolute value of the signal output of the sensor device becomes small, and there is a problem that rotation cannot be measured accurately, so there is a limit to improving the resolution.
[0005]
An object of the present invention is to provide a rolling bearing unit with a sensor capable of detecting rotation with high resolution.
[0006]
[Means for Solving the Problems and Effects of the Invention]
A rolling bearing unit with a sensor according to the present invention includes a fixed side race member, a rotary side race member, a rolling bearing having a rolling element disposed between both raceway members, and a sensor device provided in the rolling bearing. In the additional rolling bearing unit, the sensor device includes a resolver including a stator provided on the fixed side raceway member and a rotor provided on the rotary side raceway member, and a detected surface of the rotor is provided on an end surface of the rotary side raceway member. The stator is formed and disposed at the end of the fixed-side track member so as to face the detected surface in the axial direction, and the detected surface of the rotor is attached to the rotating-side track member by manufacturing a member that becomes a rotor. Rather, the end surface of the rotation side raceway member is formed by machining for the rotor, or the end that inevitably occurs when the rotation side raceway member is machined. Shake is formed by utilizing a, in which the detected changes in the air gap volume between the rotor and the stator, characterized Rukoto determined rotational speed and the tire contact load from the output of the resolver is there.
[0007]
The resolver is known as a rotation angle detection device. When the rotation-side track member and the fixed-side track member rotate relative to each other in a state where a sine wave voltage is input to the stator, the air between the stator and the detected surface of the rotor is detected. Along with the gap amount changing continuously or discontinuously, a voltage corresponding to the rotation angle is obtained in the stator, whereby the rotation state of the rolling bearing can be detected. The stator and the rotor (rotation side raceway member) are made of a magnetic material. The rotation-side raceway member is made of, for example, SUJ2, so that both the strength as the raceway member of the bearing and the characteristics of magnetism as the rotor are maintained.
[0008]
The stator of the resolver includes, for example, a ring-shaped iron core whose side surfaces are formed in a comb-like shape, and a stator winding formed by sequentially winding coils around all tooth portions.
[0009]
The wiring of the stator is taken out from the end opening of the fixed race member formed in a cylindrical shape. The end opening is covered with a cover formed in a bottomed cylindrical shape, and a connector portion to which a transmission harness is attached is formed on the bottom of the cover. The stator may be fixed to the cover, and the cover may be fixed to the fixed-side track member, or may be directly fixed to the fixed-side track member by press-fitting without using the cover. Wiring members such as lead wires and connector pins are embedded and fixed in the cover by a resin filled in the cover. Thus, the stator wiring can be taken out easily and without fear of disconnection.
[0010]
The surface to be detected of the rotor is formed not by manufacturing a member to be a rotor and attaching it to the rotation side raceway member, but by processing the end face of the rotation side raceway member for the rotor. The detected surface of the rotor can be in various forms as long as it is a side surface deviated from a flat surface that is completely perpendicular to the axial direction.For example, the entire side surface is inclined from the right angle surface, or the entire side surface is corrugated. Forming the entire side surface in a truncated cone shape, providing one or more notches on a part or all of the side surface, or providing one or more irregularities on a part or all of the side surface. Can be obtained. Further, it is possible to use the end face runout that is inevitably generated when the rotary side raceway member is processed.
[0011]
According to the sensor-equipped rolling bearing unit of the present invention, since the detected surface of the rotor is formed on the end surface of the rotating side race member, a new member for the rotor is not required, and the stator is added to the rolling bearing without the sensor device. As a result, the assembly can be automated in the same way as before, and the rolling bearing unit with sensor can be installed in the same manner as before. Cost can be reduced. Further, since the rotation detection function can be obtained only by changing the end face shape of the rotation side raceway member for the rotor and attaching the stator to the fixed side raceway member, it is possible to achieve compactness. For example, when this sensor-equipped rolling bearing unit is used as a sensor-equipped hub unit to detect rotation for ABS, the required and sufficient accuracy can be obtained even if the detected surface of the rotor has the above simple shape. The cost can be reduced by making the rotor a simple surface to be detected.
[0012]
The fixed-side track member is an outer ring having an attachment portion fixed to the vehicle body, and the rotation-side track member is composed of an inner shaft to which the wheel is attached and an inner ring that is externally fitted to the inner shaft. There is a case where a caulking portion is provided, and the detected surface of the rotor may be formed on the end surface of the inner ring. In this way, the caulking portion is applied to the end surface of the inner diameter portion of the inner ring, and a space for facing the stator is formed in the vicinity of the end surface of the outer diameter portion of the inner ring, thereby reducing the space for arranging the resolver. can do.
[0013]
In this case, it is more preferable that the stator is fixed to the cover, and the cover is fixed to the fixed-side track member. If it does in this way, attachment to the cover of a stator can be performed beforehand, and since it is not necessary to take out a signal wire from a track member, a bearing unit with a sensor can be assembled more easily.
[0014]
As the resolver, various types of brushless resolvers and brushless synchros can be used, and among these, a VR (variable reactance) type resolver is preferable.
[0015]
The sensor device is provided with a processing circuit for processing a signal output in accordance with the amount of air gap between the stator and the detected surface of the rotor, that is, the end surface of the rotation-side raceway member. It is preferable to have a rotation detection unit that obtains a rotation angle and a rotation speed necessary for this purpose, and a load calculation unit that obtains a load applied to the track member from an air gap amount between the stator and the rotor.
[0016]
The ground load applied to each tire varies with changes in the speed and posture of the traveling vehicle. The displacement of the axle relative to the vehicle body varies depending on the magnitude of the ground load. This displacement of the axle has a corresponding relationship with the displacement of the rotation-side track member with respect to the fixed-side track member in the rolling bearing, that is, the air gap amount between the stator and the rotor. Therefore, the relationship between the ground contact load of the tire and the displacement amount of the rotating side raceway member is obtained in advance, and the relationship between the ground load and the displacement amount is determined by measuring the air gap amount between the stator and the rotor with a resolver. The ground contact load can be accurately obtained from the air gap amount. The tire ground contact load thus obtained is used as substitute data for the slip ratio in the ABS control, and is used in driving force control, braking force control, and the like, and can contribute to improvement in accuracy of vehicle control. Since the resolver itself detects rotation, it can know rotation information as well as contact load, and can obtain important parameters for vehicle control such as wheel rotation and tire contact load with a single sensor. it can.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0018]
1 and 2 show an embodiment in which the rolling bearing unit with sensor of the present invention is applied to a hub unit with sensor. In the following description, left and right and top and bottom refer to left and right and top and bottom of FIG. Note that the left is inside the vehicle and the right is outside the vehicle.
[0019]
As shown in FIG. 1, the sensor-equipped rolling bearing unit includes a hub unit (1) and a resolver (2) as a sensor device for detecting the rotation and ground load.
[0020]
The hub unit (1) is arranged in two rows between the fixed side track member (3) fixed to the vehicle body side, the rotary side track member (4) to which the wheel is attached, and both members (3) and (4). A ball (5), which is a plurality of rolling elements, and a cage (6) for holding each row of balls (5) are provided.
[0021]
The fixed-side track member (3) is provided near the left end of the cylindrical portion (12) with two rows of outer ring raceways formed on the inner peripheral surface, and bolts are attached to the suspension device (vehicle body). And a flange portion (13) to be attached.
[0022]
The rotation side raceway member (4) has a large diameter portion (15) having a first raceway groove (15a) and a small diameter portion (16) having an outer diameter smaller than the diameter of the first raceway groove (15a). The inner ring (14), and the inner ring (14), the inner ring (14), which has a small diameter part (16) and is fitted to the outer diameter, and the right side is in close contact with the left side of the large diameter part (15) of the inner axis (14) (17) Near the right end of the inner shaft (14), a flange portion (18) to which a plurality of bolts (19) for attaching a wheel is fixed is provided. A raceway groove (17a) is formed in the right part of the inner ring (17) so as to be parallel to the raceway groove (15a) of the inner shaft (14), and a shoulder part (17b ) Is formed. The left end portion of the inner shaft (14) is provided with a caulking portion (16a) that prevents the inner ring (17) from coming off. Further, a sealing device (20) is provided between the right end portion of the fixed side raceway member (3) and the inner shaft (14).
[0023]
A cover (21) is covered with the left end portion of the fixed-side track member (3). The cover (21) is formed in a bottomed cylindrical shape with metal or resin, and a cylindrical fixing portion (fitted to the inner periphery of the left end portion of the fixed-side track member (3) is fixed to the right end portion thereof ( 21a) is formed.
[0024]
The resolver (2) is a VR type brushless resolver, which is composed of a stator (7) and a rotor (8). The stator (7) is located on the left end face of the inner ring shoulder (17b) from the left (axially outward). It is supported by the fixed part (21a) of the cover (21) so as to face each other. The rotor (8) is formed by processing the left end face of the shoulder (17b) of the inner ring (17) of the rotation side raceway member (4) at the stator facing position for the rotor. On the left end surface of the shoulder (17b) of the inner ring (17), which is the detected surface of the rotor (8), is a predetermined detected surface (uneven surface, notched) that can be detected each time the stator (7) rotates once. Flat surface etc.). The signal of the stator (7) is taken out to the outside through wiring members such as the lead wire (30) and the connector pin (31).
[0025]
The stator (7) has a ring-shaped iron core (9) whose side surfaces are formed in a comb-like shape, and a stator winding (10) formed by sequentially winding coils around all teeth of the iron core (9). It consists of. The stator (7) is press-fitted into the inner peripheral surface of the fixed portion (21a) of the cover (21) with its detection surface facing the left end surface of the shoulder (17b) of the inner ring (17).
[0026]
On the left side of the fixed portion (21a) of the cover (21) fitted and fixed to the inner peripheral surface of the left end portion of the fixed-side track member (3), the fixed-side track member (3) protrudes radially outward. An annular convex portion (21b) is formed in contact with the axial end surface of the left end portion. A connector part (21c) to which a transmission / reception harness is attached is formed at the bottom of the cover (21). The output of the stator winding (10) is connected to the connector pin (31) via the lead wire (30). The lead wire (30), the connector pin (31), and the stator (7) are embedded and fixed in the cover (21) by a resin (22) filled in the cover (21). The connector (21c) at the bottom of the cover (21) is also made of resin, and the connector pin (31) is housed in the connector (21c) with its tip protruding from the resin (22). A plurality of lead wires (30) and connector pins (31) are provided according to the type of signal.
[0027]
Near the left end portion of the fixed-side track member (3), a stopper portion (3a) having a slightly smaller diameter than the left end opening diameter is formed, and the stator (7) is a fixed portion of the cover (21) ( The right end portion of 21a) abuts against the stopper portion (3a) from the left side, and is positioned so as to face the left end surface of the inner ring (17). Thus, the stator (7) is attached to the left end portion of the fixed-side track member (3) via the cover (21).
[0028]
When the rotating side raceway member (4) rotates, the gap between the iron core (9) of the stator (7) and the detected surface of the rotor (8) changes, and a voltage corresponding to the rotation angle is obtained at the stator (7). The voltage change of the stator (7) is sent to the processing circuit via a signal line (not shown). Thereby, the rotation state of the rotating shaft required for ABS etc. can be detected.
[0029]
According to the rolling bearing unit with sensor, when the ground contact load of the tire fluctuates, the amount of displacement of the rotating side raceway member (4) with respect to the fixed side raceway member (3) changes, and is detected by the resolver (2) accordingly. The amount of air gap between the stator (7) and the rotor (8) is changed. As shown in FIG. 2, the change in the air gap amount is output from the resolver (2) as a voltage fluctuation amount. In the rotation detection unit of the processing circuit of the resolver (sensor device), a rotation angle, a rotation speed, and the like necessary for the ABS are obtained based on this output signal. The resolver processing circuit is further provided with a ground load calculation unit in which an arithmetic expression for determining the ground load from the displacement output as the voltage fluctuation amount is stored, and the ground load is obtained by this calculation unit. The obtained ground load is output to the vehicle control means, and appropriate control is performed on the vehicle.
[0030]
In the above embodiment, the stator (7) is attached to the fixed-side track member (3) by press-fitting the stator (7) into the cover (21) through the cover (21). However, the stator (7) may be directly press-fitted and fixed to the inner peripheral surface of the left end portion of the fixed-side raceway member (3).
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a rolling bearing unit with a sensor according to the present invention.
FIG. 2 is a block diagram showing a processing circuit of a rolling bearing unit with a sensor.
[Explanation of symbols]
(1) Hub unit
(2) Resolver
(3) Fixed side raceway member
(4) Rotating track member
(5) Ball (rolling element)
(7) Stator
(8) Rotor (inner ring end face)
(13) Flange (mounting part to the body)
(14) Inner shaft
(16a) Caulking part
(17) Inner ring
(21) Cover

Claims (2)

固定側軌道部材、回転側軌道部材、および両軌道部材の間に配置された転動体を有する転がり軸受と、転がり軸受に設けられたセンサ装置とからなるセンサ付き転がり軸受ユニットにおいて、
センサ装置は、固定側軌道部材に設けられたステータおよび回転側軌道部材に設けられたロータからなるレゾルバを備えており、ロータの被検出面が回転側軌道部材の端面に形成され、ステータは、この被検出面に軸方向に対向するように固定側軌道部材の端部に配置され、ロータの被検出面は、ロータとなる部材を製作して回転側軌道部材に取り付けるのではなく、回転側軌道部材の端面がロータ用として加工されることにより形成されるか、または、回転側軌道部材の加工時に必然的に生じる端面の振れを利用することで形成されており、前記ロータとステータとの間のエアギャップ量の変化を検知し、前記レゾルバの出力から回転速度およびタイヤ接地荷重を求めることを特徴とするセンサ付き転がり軸受ユニット。
In a rolling bearing unit with a sensor comprising a fixed side raceway member, a rotary side raceway member, a rolling bearing having a rolling element disposed between both raceway members, and a sensor device provided in the rolling bearing,
The sensor device includes a resolver including a stator provided on the fixed-side track member and a rotor provided on the rotation-side track member, and a detected surface of the rotor is formed on an end surface of the rotation-side track member. It is arranged at the end of the fixed-side track member so as to face this detected surface in the axial direction, and the detected surface of the rotor is not manufactured by attaching a member to be a rotor and attached to the rotating-side track member. It is formed by processing the end face of the race member for the rotor or by utilizing the runout of the end face that inevitably occurs when the rotary side race member is processed. A sensor-equipped rolling bearing unit that detects a change in an air gap amount between the two and obtains a rotational speed and a tire ground contact load from an output of the resolver.
前記センサ装置は、前記レゾルバから電圧の変動量として出力される出力信号に基づき、回転角度や回転速度が求められる回転検出部と、前記電圧変動量として出力された変位量からタイヤ接地荷重を求める演算式が蓄えられた接地荷重演算部とが設けられている処理回路をさらに備えている請求項1のセンサ付き転がり軸受ユニット。  The sensor device obtains a tire ground contact load from a rotation detection unit for obtaining a rotation angle and a rotation speed based on an output signal outputted as a voltage fluctuation amount from the resolver and a displacement amount outputted as the voltage fluctuation amount. The rolling bearing unit with a sensor according to claim 1, further comprising a processing circuit provided with a ground load calculation unit in which an arithmetic expression is stored.
JP2003060817A 2003-03-07 2003-03-07 Rolling bearing unit with sensor Expired - Fee Related JP4151438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060817A JP4151438B2 (en) 2003-03-07 2003-03-07 Rolling bearing unit with sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003060817A JP4151438B2 (en) 2003-03-07 2003-03-07 Rolling bearing unit with sensor

Publications (2)

Publication Number Publication Date
JP2004270771A JP2004270771A (en) 2004-09-30
JP4151438B2 true JP4151438B2 (en) 2008-09-17

Family

ID=33123208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060817A Expired - Fee Related JP4151438B2 (en) 2003-03-07 2003-03-07 Rolling bearing unit with sensor

Country Status (1)

Country Link
JP (1) JP4151438B2 (en)

Also Published As

Publication number Publication date
JP2004270771A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
KR100859958B1 (en) Load-measuring device for rolling bearing unit
EP1962074A1 (en) Sensor-equipped bearing for wheel
US7270016B2 (en) Sensor-equipped rolling bearing unit
JP3988640B2 (en) Hub unit with sensor
US7282907B2 (en) Antifriction bearing unit having a sensor and a resolver
JPWO2004081581A1 (en) Axle support device
JP4182763B2 (en) Hub unit with sensor
JP4151438B2 (en) Rolling bearing unit with sensor
JP2006090831A (en) Bearing with rotation sensor
JP2006090511A (en) Rolling bearing device with sensor
JP4211539B2 (en) Rolling bearing device
JP5007616B2 (en) State quantity measuring device for rolling bearing units
JP5458497B2 (en) State quantity measuring device for rolling bearing units
JP4089470B2 (en) Rolling bearing unit with sensor
JP2007198885A (en) Encoder, and rolling bearing device having sensor
JP4218361B2 (en) Rolling bearing unit with sensor
JP4238676B2 (en) Rolling bearing device
JP4238576B2 (en) Rolling bearing unit with sensor
JP3939022B2 (en) Annular speed sensor
JP4498064B2 (en) Wheel bearing device
JP4285151B2 (en) VR resolver rotor and rolling bearing device
JP4178978B2 (en) Rolling bearing unit with sensor
JP4107094B2 (en) Rolling bearing unit with sensor
JP2005114710A (en) Load-measuring instrument for rolling bearing unit
JP2003097581A (en) Rotary encoder built in bearing unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees