JP4151412B2 - Intake device for internal combustion engine - Google Patents

Intake device for internal combustion engine Download PDF

Info

Publication number
JP4151412B2
JP4151412B2 JP2003006089A JP2003006089A JP4151412B2 JP 4151412 B2 JP4151412 B2 JP 4151412B2 JP 2003006089 A JP2003006089 A JP 2003006089A JP 2003006089 A JP2003006089 A JP 2003006089A JP 4151412 B2 JP4151412 B2 JP 4151412B2
Authority
JP
Japan
Prior art keywords
intake
partition plate
divided
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003006089A
Other languages
Japanese (ja)
Other versions
JP2004218509A (en
Inventor
隆文 益田
宏祐 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003006089A priority Critical patent/JP4151412B2/en
Publication of JP2004218509A publication Critical patent/JP2004218509A/en
Application granted granted Critical
Publication of JP4151412B2 publication Critical patent/JP4151412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリンダヘッド内の吸気ポートを仕切板により上下の分割吸気ポートに仕切るようにした内燃機関の吸気装置に関する。
【0002】
【従来の技術】
内燃機関のシリンダへ導入される吸気のタンブル流(縦渦流)を強化するため、シリンダヘッド内の吸気ポートを仕切板により上下の分割吸気ポートに仕切る吸気通路構造としたものが、特許文献1により公知である。
【0003】
また、特許文献1では、シリンダヘッドの鋳造時に仕切板を鋳込む際に、熱膨張による仕切板変形の対策として、仕切板を波板形状としている。
【0004】
【特許文献1】
特開2001−193469号公報(特に段落番号0020、0022)
【0005】
【発明が解決しようとする課題】
しかしながら、前記特許文献1のような波板形状の仕切板では、吸気ポートの半径方向の熱膨張は吸収することができるが、仕切板の長手方向である吸気ポートの軸線方向の熱膨張は、その熱膨張が大きいにもかかわらず、吸収することができない。
【0006】
このため、シリンダヘッド鋳造時の吸気ポート形成用の中子に仕切板をセットして鋳込む際に、仕切板と中子(鋳砂)との熱膨張差により、仕切板の長手方向端部にて中子に割れ(クラック)を生じてしまい、割れを生じた部分には湯(アルミ)が流れ込んで、バリを発生することになるので、吸気性能に影響を与えたり、後加工でのバリ取り作業が極めて面倒となるという問題点があった。
【0007】
本発明は、このような従来の問題点に鑑み、シリンダヘッドの鋳造時に仕切板を鋳込む際に、仕切板の長手方向の熱膨張による中子の割れを回避できるようにすることを目的とする。
【0008】
【課題を解決するための手段】
このため、本発明では、シリンダヘッド内に鋳込む仕切板を吸気ポート軸線方向に複数に分割し、分割部間に隙間を形成する構成とする。
【0009】
【発明の効果】
本発明によれば、シリンダヘッド内に鋳込む仕切板をその長手方向に分割することで、それぞれの熱膨張を小さくし、かつ分割部間の隙間にて熱膨張を吸収できるので、鋳造時の中子の割れを防止することができる。
【0010】
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明の一実施形態を示す内燃機関のシリンダヘッドの断面図、図2は図1のA−A線に沿う吸気ポートの平面図、図3は図1のB矢視でのシリンダヘッド側壁の吸気ポート開口面の図、図4は吸気ポートの拡大断面図である。
【0011】
アルミ合金により鋳造されるシリンダヘッド1には、シリンダ2に対し、吸気ポート3と排気ポート4とが2本ずつ形成されている。
2本の吸気ポート3は、下流側でそれぞれ吸気弁5(図4)を介してシリンダ2内に開口し、上流側はシリンダヘッド1の側壁(吸気ポート開口面)6に開口している。
【0012】
また、吸気ポート3には、これを上下の分割吸気ポート3a、3bに仕切るアルミ合金(例えばシリンダヘッド鋳造用の一般的なアルミ合金より高強度なジュラルミン)あるいはSUS等からなる仕切板7、8が、設けられている。ここで、仕切板7、8は、2本の吸気ポート3を一緒に上下に仕切っているが、長手方向(吸気ポート軸線方向)に2つに分割し、分割部間(上流側の仕切板7と下流側の仕切板8との間)に、熱膨張吸収用の隙間Cを形成してある。
【0013】
また、図示は省略するが、シリンダヘッド1の吸気ポート3に接続される例えば樹脂製の吸気マニホールドのブランチ部内にも、吸気ポート3側の仕切板7を実質的に延長させる形で、仕切板が内装されて、ブランチ部内も上下に分割されている。そして、ブランチ部内の分割通路のうち下側の分割通路には、これを開閉するタンブル制御弁が設けられ、このタンブル制御弁を所定の運転条件にて閉じることで、上側の分割吸気ポート3aのみを通して吸気をシリンダ2内へ導入することができ、これにより吸気のタンブル流を強化して、燃費向上等を図ることができる。
【0014】
上記の仕切板7、8は、シリンダヘッド1を鋳造する際に、シリンダヘッド1内に鋳込まれる。
具体的には、図5及び図6に示すように、仕切板7、8を、シリンダヘッド鋳造時の吸気ポート形成用の中子10にセットし、かつ仕切板7、8の一部を中子10の側部より突出させ、当該部分にて、シリンダヘッド1の吸気ポート内壁部に鋳込むようにする。尚、この例では、2気筒分(4本)の中子を、支持用の幅木(鋳砂)11により一体化している。
【0015】
このように鋳込みにより仕切板7、8をシリンダヘッド1に固定する構造を採用することにより、仕切板7、8を十分に薄くして、通気抵抗を抑制することが可能になると共に、仕切板7、8をシリンダヘッド1とは異なるジュラルミンあるいはSUS等の適切な材料により形成することが可能になる。
【0016】
また、図7及び図8を参照し、シリンダヘッド1の鋳造時に、仕切板7、8がその長手方向に熱膨張しても、予め分割してあるので、それぞれの熱膨張を小さくし、かつ分割部間の隙間Cにて熱膨張を吸収できるので、仕切板7、8の端部を起点として中子10に割れが発生するのを回避することができる。
【0017】
次に更に改良を加えた実施形態について図9〜図11により説明する。
図4の場合、上側の分割吸気ポート3aを流れる吸気の主流(図示MF)が、仕切板7、8の分割部の隙間Cから、わずかではあるが、図示点線のように、下側の分割吸気ポート3bへ漏れ出て、エンジン性能の低下を招く恐れがある。
【0018】
そこで、図9の実施形態では、仕切板7、8の分割部において互いに相対する分割面7a、8aを仕切板7、8の板面と直角な面に対し傾斜させ、分割面7a、8aの上側部分が吸気流れ方向下流側に位置し、下側部分が吸気流れ方向上流側に位置するようにしている。
【0019】
このように仕切板7、8の上側(主流側)の分割位置を下側の分割位置よりも吸気流れ方向下流側に配置することで、吸気の主流の漏れを低減し、エンジン性能を確保することができる。
【0020】
また、図10の実施形態では、仕切板7、8の分割部において互いに相対する分割端部のうち、上流側の仕切板7の分割端部に、その上側部分より下流側に突出する庇(ひさし)9を設け、この庇9により、下流側の仕切板8の分割端部の上面を覆うようにしている。また、下流側の仕切板8は、上流側の仕切板7より板厚を薄くしている。言い換えれば、上流側の仕切板7の分割端部を断面L字状として、板厚を薄くした下流側の仕切板8の上面を覆うようにしている。
【0021】
このようにすることで、吸気の主流の漏れを低減し、エンジン性能を確保することができる。また、下流側の仕切板8の板厚を薄くすることができるので、その熱膨張量を低減でき、その分、隙間Cを小さくできるので、吸気の主流の漏れをより低減することができる。
【0022】
また、図11の実施形態では、仕切板7、8の分割部において互いに相対する分割端部のうち、上流側の仕切板7の分割端部に、その上側部分及び下側部分よりそれぞれ下流側に突出する庇(ひさし)9a、9bを設け、これらの庇9a、9bにより、下流側の仕切板8の分割端部の上面及び下面を覆うようにしている。言い換えれば、上流側の仕切板7の分割端部を断面コ字状として、その凹部内に、板厚を薄くした下流側の仕切板8の分割端部を突入させている。
【0023】
この図11の実施形態によれば、図10の実施形態と同様な効果が得られる他、分割部の合い口形状がより複雑となるため、吸気の主流の漏れを更に低減することができる。
【0024】
尚、以上の実施形態では、1気筒につき2本設けられる吸気ポートが独立しているものについて説明したが、下流側で2本に分岐し、上流側で1本に集合するサイヤミーズタイプのものにも適用できることは言うまでもない。
【図面の簡単な説明】
【図1】 本発明の一実施形態を示す内燃機関のシリンダヘッドの断面図
【図2】 図1のA−A線に沿う吸気ポートの平面図
【図3】 図1のB矢視でのシリンダヘッドの吸気ポート開口面の図
【図4】 吸気ポートの拡大断面図
【図5】 吸気ポート形成用の中子の平面図
【図6】 吸気ポート形成用の中子の正面図
【図7】 鋳造時の熱膨張の説明図
【図8】 図7のX部の拡大図
【図9】 分割部の改良例(1)を示す図
【図10】 分割部の改良例(2)を示す図
【図11】 分割部の改良例(3)を示す図
【符号の説明】
1 シリンダヘッド
2 シリンダ
3 吸気ポート
3a 上側の分割吸気ポート
3b 下側の分割吸気ポート
4 排気ポート
5 吸気弁
6 シリンダヘッドの吸気ポート開口面
7、8 仕切板
C 分割部の隙間
7a、8a 傾斜分割面
9、9a、9b 庇(ひさし)
10 吸気ポート形成用の中子
11 幅木
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an intake device for an internal combustion engine in which an intake port in a cylinder head is partitioned into upper and lower divided intake ports by a partition plate.
[0002]
[Prior art]
Patent Document 1 discloses an intake passage structure in which an intake port in a cylinder head is partitioned into upper and lower divided intake ports by a partition plate in order to enhance the tumble flow (vertical vortex flow) of intake air introduced into a cylinder of an internal combustion engine. It is known.
[0003]
Moreover, in patent document 1, when casting a partition plate at the time of casting of a cylinder head, a partition plate is made into the corrugated plate shape as a countermeasure of a partition plate deformation | transformation by thermal expansion.
[0004]
[Patent Document 1]
JP 2001-193469 A (particularly paragraph numbers 0020 and 0022)
[0005]
[Problems to be solved by the invention]
However, the corrugated plate-like partition plate as in Patent Document 1 can absorb the thermal expansion in the radial direction of the intake port, but the thermal expansion in the axial direction of the intake port, which is the longitudinal direction of the partition plate, Despite its large thermal expansion, it cannot absorb.
[0006]
For this reason, when the partition plate is set and cast into the core for forming the intake port during casting of the cylinder head, the longitudinal end portion of the partition plate is caused by a difference in thermal expansion between the partition plate and the core (cast sand). Will cause cracks in the core, and hot water (aluminum) will flow into the cracked part and generate burrs. There was a problem that the deburring work was extremely troublesome.
[0007]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described conventional problems, and it is an object of the present invention to avoid cracking of a core due to thermal expansion in the longitudinal direction of a partition plate when casting the partition plate during casting of a cylinder head. To do.
[0008]
[Means for Solving the Problems]
For this reason, in this invention, it is set as the structure which divides | segments into a some in the intake port axial direction the partition plate cast in a cylinder head, and forms a clearance gap between division parts.
[0009]
【The invention's effect】
According to the present invention, by dividing the partition plate to be cast into the cylinder head in the longitudinal direction, the respective thermal expansion can be reduced and the thermal expansion can be absorbed in the gaps between the divided portions. The core can be prevented from cracking.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
1 is a cross-sectional view of a cylinder head of an internal combustion engine showing an embodiment of the present invention, FIG. 2 is a plan view of an intake port along line AA in FIG. 1, and FIG. 3 is a cylinder as viewed in the direction of arrow B in FIG. FIG. 4 is an enlarged cross-sectional view of the intake port.
[0011]
The cylinder head 1 cast from an aluminum alloy is provided with two intake ports 3 and two exhaust ports 4 for the cylinder 2.
The two intake ports 3 open into the cylinder 2 via the intake valves 5 (FIG. 4) on the downstream side, and open to the side wall (intake port opening surface) 6 of the cylinder head 1 on the upstream side.
[0012]
The intake port 3 includes partition plates 7 and 8 made of aluminum alloy (for example, duralumin having higher strength than a general aluminum alloy for cylinder head casting), SUS, or the like that partitions the intake port 3 into upper and lower divided intake ports 3a and 3b. Is provided. Here, the partition plates 7 and 8 partition the two intake ports 3 up and down together, but are divided into two in the longitudinal direction (intake port axial direction) and between the divided portions (upstream partition plates). 7 and a downstream partition plate 8), a thermal expansion absorbing gap C is formed.
[0013]
Although not shown, the partition plate 7 on the side of the intake port 3 is substantially extended into the branch portion of the intake manifold 3 made of resin, for example, connected to the intake port 3 of the cylinder head 1. The interior of the branch is also divided vertically. The lower divided passage among the divided passages in the branch portion is provided with a tumble control valve for opening and closing the divided passage, and only the upper divided intake port 3a is closed by closing the tumble control valve under a predetermined operating condition. The intake air can be introduced into the cylinder 2 through this, thereby enhancing the tumble flow of the intake air and improving the fuel consumption.
[0014]
The partition plates 7 and 8 are cast into the cylinder head 1 when the cylinder head 1 is cast.
Specifically, as shown in FIGS. 5 and 6, the partition plates 7 and 8 are set on the core 10 for forming the intake port at the time of casting the cylinder head, and a part of the partition plates 7 and 8 is placed in the middle. It protrudes from the side of the child 10 and is cast into the inner wall of the intake port of the cylinder head 1 at that portion. In this example, the cores for two cylinders (four) are integrated by a support baseboard (casting sand) 11.
[0015]
By adopting a structure in which the partition plates 7 and 8 are fixed to the cylinder head 1 by casting as described above, the partition plates 7 and 8 can be made sufficiently thin to suppress the airflow resistance, and the partition plate 7 and 8 can be formed of a suitable material such as duralumin or SUS different from the cylinder head 1.
[0016]
7 and 8, when the cylinder head 1 is cast, even if the partition plates 7 and 8 are thermally expanded in the longitudinal direction, they are divided in advance, so that each thermal expansion is reduced, and Since thermal expansion can be absorbed in the gaps C between the divided portions, it is possible to avoid cracks in the core 10 starting from the end portions of the partition plates 7 and 8.
[0017]
Next, a further improved embodiment will be described with reference to FIGS.
In the case of FIG. 4, the main flow (MF in the figure) of the intake air flowing through the upper divided intake port 3a is slightly separated from the gap C between the divided portions of the partition plates 7 and 8, but as shown in the dotted line in the lower part. There is a risk of leakage into the intake port 3b, leading to a decrease in engine performance.
[0018]
Therefore, in the embodiment of FIG. 9, the divided surfaces 7 a and 8 a facing each other in the divided portions of the partition plates 7 and 8 are inclined with respect to a plane perpendicular to the plate surface of the partition plates 7 and 8, and the divided surfaces 7 a and 8 a The upper part is located downstream in the intake flow direction, and the lower part is located upstream in the intake flow direction.
[0019]
As described above, the upper (main flow side) division position of the partition plates 7 and 8 is arranged downstream of the lower division position in the intake flow direction, thereby reducing intake main flow leakage and ensuring engine performance. be able to.
[0020]
Further, in the embodiment of FIG. 10, out of the split end portions facing each other in the split portions of the partition plates 7 and 8, the split end portion of the upstream partition plate 7 protrudes downstream from its upper portion. An eaves 9 is provided, and the upper surface of the divided end portion of the partition plate 8 on the downstream side is covered with the flange 9. Further, the downstream partition plate 8 is made thinner than the upstream partition plate 7. In other words, the divided end portion of the upstream partition plate 7 has an L-shaped cross section so as to cover the upper surface of the downstream partition plate 8 having a reduced plate thickness.
[0021]
By doing so, leakage of the mainstream of intake air can be reduced and engine performance can be ensured. Moreover, since the plate | board thickness of the downstream partition plate 8 can be made thin, the amount of thermal expansion can be reduced, and since the clearance gap C can be made small by that much, the leakage of the mainstream of intake air can be reduced more.
[0022]
Further, in the embodiment of FIG. 11, among the divided end portions facing each other in the divided portions of the partition plates 7 and 8, the divided end portion of the upstream partition plate 7 is further downstream than the upper portion and the lower portion thereof. The eaves 9a and 9b are provided so as to cover the upper and lower surfaces of the divided end portion of the downstream partition plate 8 by these eaves 9a and 9b. In other words, the divided end portion of the upstream partition plate 7 has a U-shaped cross section, and the divided end portion of the downstream partition plate 8 having a reduced thickness is inserted into the recessed portion.
[0023]
According to the embodiment of FIG. 11, the same effect as that of the embodiment of FIG. 10 can be obtained, and the shape of the joint of the dividing portion becomes more complicated, so that the leakage of the mainstream of intake air can be further reduced.
[0024]
In the above embodiment, the description has been given of the case where the two intake ports provided for each cylinder are independent. However, the Siamese type of branching into two at the downstream side and collecting into one at the upstream side. Needless to say, it can also be applied.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a cylinder head of an internal combustion engine showing an embodiment of the present invention. FIG. 2 is a plan view of an intake port along line AA in FIG. Drawing of the intake port opening surface of the cylinder head [Fig. 4] Expanded sectional view of the intake port [Fig. 5] Plan view of the core for forming the intake port [Fig. 6] Front view of the core for forming the intake port [Fig. ] Explanatory drawing of thermal expansion during casting [FIG. 8] Enlarged view of part X in FIG. 7 [FIG. 9] Diagram showing an improvement example (1) of the split part [FIG. 10] An improvement example (2) of the split part FIG. 11 is a diagram showing an improvement example (3) of the dividing unit.
DESCRIPTION OF SYMBOLS 1 Cylinder head 2 Cylinder 3 Intake port 3a Upper division | segmentation intake port 3b Lower division | segmentation intake port 4 Exhaust port 5 Intake valve 6 Cylinder head intake port opening surface 7, 8 Partition plate C Dividing part gap 7a, 8a Inclined division Surface 9, 9a, 9b eaves
10 Inlet port forming core 11 Skirting board

Claims (4)

シリンダヘッド内に、吸気ポートを上下の分割吸気ポートに仕切る仕切板を鋳込むようにした内燃機関の吸気装置において、
前記シリンダヘッド内に鋳込む仕切板を吸気ポート軸線方向に複数に分割し、分割部間に隙間を形成したことを特徴とする内燃機関の吸気装置。
In the intake system for an internal combustion engine in which a partition plate that partitions the intake port into upper and lower divided intake ports is cast into the cylinder head.
An intake device for an internal combustion engine, wherein a partition plate to be cast into the cylinder head is divided into a plurality of portions in the intake port axial direction, and a gap is formed between the divided portions.
前記仕切板の分割部において互いに相対する分割面を前記仕切板の板面と直角な面に対し傾斜させ、前記分割面の上側部分が吸気流れ方向下流側に位置し、下側部分が吸気流れ方向上流側に位置するようにしたことを特徴とする請求項1記載の内燃機関の吸気装置。In the split part of the partition plate, the split surfaces facing each other are inclined with respect to a plane perpendicular to the plate surface of the partition plate, the upper part of the split surface is located downstream in the intake flow direction, and the lower part is the intake flow 2. The intake device for an internal combustion engine according to claim 1, wherein the intake device is located upstream in the direction. 前記仕切板の分割部において互いに相対する分割端部のうち、上流側の分割端部に、その上側部分より下流側に突出して、下流側の分割端部の上面を覆う庇を形成したことを特徴とする請求項1記載の内燃機関の吸気装置。Among the split end portions facing each other in the split portion of the partition plate, the upstream split end portion protrudes downstream from the upper portion thereof, and a ridge that covers the upper surface of the downstream split end portion is formed. 2. An intake device for an internal combustion engine according to claim 1, wherein the intake device is an internal combustion engine. 前記仕切板の分割部において互いに相対する分割端部のうち、上流側の分割端部に、その上側部分及び下側部分よりそれぞれ下流側に突出して、下流側の分割端部の上面及び下面を覆う庇を形成したことを特徴とする請求項1記載の内燃機関の吸気装置。Of the divided end portions facing each other in the divided portion of the partition plate, the upstream divided end portion protrudes downstream from the upper portion and the lower portion, respectively, and the upper surface and the lower surface of the downstream divided end portion are formed. 2. The intake device for an internal combustion engine according to claim 1, wherein a cover is formed.
JP2003006089A 2003-01-14 2003-01-14 Intake device for internal combustion engine Expired - Fee Related JP4151412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006089A JP4151412B2 (en) 2003-01-14 2003-01-14 Intake device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006089A JP4151412B2 (en) 2003-01-14 2003-01-14 Intake device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004218509A JP2004218509A (en) 2004-08-05
JP4151412B2 true JP4151412B2 (en) 2008-09-17

Family

ID=32896577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006089A Expired - Fee Related JP4151412B2 (en) 2003-01-14 2003-01-14 Intake device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4151412B2 (en)

Also Published As

Publication number Publication date
JP2004218509A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
US8904773B2 (en) Cooling water passage structure in cylinder head of internal combustion engine
JP4788236B2 (en) Cylinder head cooling structure
JP2008038838A (en) Internal combustion engine
JP5719334B2 (en) Cylinder head water jacket structure
CN110905645A (en) Integrated double-runner exhaust manifold cylinder cover structure
JP3695401B2 (en) Intake device for internal combustion engine
US20050229875A1 (en) Cylinder head for a water-cooled internal combustion piston engine having inner reinforcement
JPH06264816A (en) Cylinder head for internal combustion engine
JP4151412B2 (en) Intake device for internal combustion engine
JP4250723B2 (en) Cylinder head cooling water passage structure and manufacturing method
JP2008014263A (en) Cooling structure for internal combustion engine and cylinder head gasket used for same
JP3417116B2 (en) Internal combustion engine with rocker cover integrated with intake manifold
JP4587070B2 (en) Turbocharged engine
JP6413746B2 (en) Intercooler
JPS6347898B2 (en)
JP5550884B2 (en) Exhaust gas recirculation device in internal combustion engine
EP3112655B1 (en) Intake manifold
JP3557681B2 (en) Cylinder head cooling device for internal combustion engine
CN215279776U (en) Cylinder cover sand core
JP2004027901A (en) Internal combustion engine with plural air coolers
JP7064175B2 (en) cylinder head
JPH0144767Y2 (en)
JPS5856355Y2 (en) 3-valve cylinder head
JP2017166341A (en) Engine with turbosupercharger
JP4461951B2 (en) Engine cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees