JP2004027901A - Internal combustion engine with plural air coolers - Google Patents

Internal combustion engine with plural air coolers Download PDF

Info

Publication number
JP2004027901A
JP2004027901A JP2002182731A JP2002182731A JP2004027901A JP 2004027901 A JP2004027901 A JP 2004027901A JP 2002182731 A JP2002182731 A JP 2002182731A JP 2002182731 A JP2002182731 A JP 2002182731A JP 2004027901 A JP2004027901 A JP 2004027901A
Authority
JP
Japan
Prior art keywords
cooling water
air
air cooler
case
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002182731A
Other languages
Japanese (ja)
Other versions
JP4274746B2 (en
Inventor
Takuya Kumagai
熊谷 拓也
Akira Numata
沼田 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Mitsubishi Heavy Industries Ltd filed Critical Petroleum Energy Center PEC
Priority to JP2002182731A priority Critical patent/JP4274746B2/en
Publication of JP2004027901A publication Critical patent/JP2004027901A/en
Application granted granted Critical
Publication of JP4274746B2 publication Critical patent/JP4274746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate a cooling water piping work in a narrow space by simplifying a cooling water piping of a plurality of air coolers, reduce manhour of piping work, and reduce a cooling water piping part cost by reducing a number of cooling water piping parts in an internal combustion engine provided with a plurality of air coolers in the front and rear directions. <P>SOLUTION: This internal combustion engine is equipped with a plurality of air coolers arranged parallel to air flow. A cooling water inlet pipe and a cooling water outlet pipe are connected with an upstream air cooler, and a cooling water passage toward a downstream air cooler is installed inside the upstream air cooler, and cooling water supplied and exhausted to the downstream air cooler can be made to flow through the cooling water passage. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、V型ディーゼル機関、多シリンダの直列型ディーゼル機関等に適用され、機関への空気を冷却水により冷却するエアクーラを給気通路に空気流に対して並列に複数個配設した内燃機関に関する。
【0002】
【従来の技術】
V型ディーゼル機関や多シリンダの直列型ディーゼル機関において、冷却水により機関への空気を冷却するエアクーラを複数個設置する場合には、機関の前後方向(軸方向)の気筒(シリンダ)間で給気温度を一定に保持するため、給気通路に複数個のエアクーラを空気流に対して並列に配置して、各エアクーラに冷却水を均一に流すようにしている。
【0003】
図7及び図8は、かかる複数個のエアクーラを給気通路に空気流に対して並列に配置したディーゼル機関の1例を模式的に示しており、図7はエアクーラの平面構成図、図8は斜視構成図である。
図7〜8において、100、100aはエアクーラであり、この例では該エアクーラ100を機関の前後方向(軸方向)に2個(100、100a)、空気流に対して並列に配置して各エアクーラ100、100aに冷却水を均一に流すようにしている。
該エアクーラ100において、01はケース、2は該ケース01内に収納された冷却用エレメント、4は該冷却用エレメント2を貫流する空気の流路である空気通路で、過給機(図示省略)からの空気は該空気通路4を紙面に直角方向に前記冷却用エレメント2を貫流するようになっている。
【0004】
06は冷却水入口管、07は冷却水出口管であり、該冷却水入口管06及び冷却水出口管07は上流側のエアクーラ100における冷却用エレメント2の冷却水ヘッダー2aに接続されている。20及び05は下流側のエアクーラ100aへの冷却水接続管で、該下流側のエアクーラ100aにおける冷却用エレメント2の冷却水ヘッダー2aと前記冷却水入口管06及び冷却水出口管07とを接続している。
【0005】
かかる構成からなるエアクーラを備えたディーゼル機関において、冷却水は冷却水入口管06から上流側のエアクーラ100における冷却用エレメント2の冷却水ヘッダー2aに流入するとともに、一方側の冷却水接続管20、05を通って下流側のエアクーラ100aにおける冷却用エレメント2の冷却水ヘッダー2aに流入する。
そして、該冷却水は前記上流側のエアクーラ100における冷却用エレメント2内及び下流側のエアクーラ100aにおける冷却用エレメント2内を通流して、夫々の冷却用エレメント2にて該冷却用エレメント2を紙面に直角方向に貫流している過給機(図示省略)からの空気と熱交換して該空気を冷却する。
【0006】
前記上流側のエアクーラ100の冷却用エレメント2において空気を冷却した冷却水は冷却水ヘッダー2aを経て冷却水出口管07に流出し、また前記下流側のエアクーラ100aの冷却用エレメント2において空気を冷却した冷却水は冷却水ヘッダー2aを経て前記冷却水接続管05、20に入り、該冷却水接続管20から前記冷却水出口管07に入って前記上流側のエアクーラ100からの冷却水と合流する。
【0007】
【発明が解決しようとする課題】
V型内燃機関、多シリンダの直列型内燃機関の何れにおいても、複数のエアクーラ100、100aを機関の前後方向に配設する場合には、該エアクーラ100、100aの側部のスペースがきわめて狭い。
然るに、図7〜8に示される従来技術にあっては、複数個(この例では2個)のエアクーラ100、100aを空気流に対して機関の前後方向に並列に配置して、各エアクーラ100、100aに冷却水を均一に流すようにしているのに伴い、下流側のエアクーラ100aと冷却水入口管06及び冷却水出口管07との間を上流側のエアクーラ100におけるケース01の外側を通した冷却水接続管20によって接続している。
【0008】
このため、かかる従来技術にあっては、前記のように、下流側のエアクーラ100aと冷却水入口管06及び冷却水出口管07とを接続する冷却水接続管20をケース01の外側を通していることから、狭隘なスペースでの冷却水接続管20の配管作業が困難となり、エアクーラの冷却水配管作業に多大な工数を要する。
また、前記ケース01の外側を通した冷却水接続管20を設けるため、冷却水配管部品数が多くなり部品コストが増加する、
等の問題点を有している。
【0009】
本発明はかかる従来技術の課題に鑑み、複数のエアクーラを機関の前後方向に配設する内燃機関において、前記複数のエアクーラの冷却水配管を簡単化して狭隘なスペースでの冷却水配管作業を容易になし得るとともに配管作業工数を低減し、かつ冷却水配管部品数を減少して冷却水配管部品コストを低減することを目的とする。
【0010】
【課題を解決するための手段】
本発明はかかる課題を解決するため、請求項1の発明として、ケース内に設置された冷却用エレメントにて該ケース内を流過する機関への空気と冷却水とを熱交換して該空気を冷却するエアクーラを前記機関の給気通路に空気流に対して並列に複数個配設してなる内燃機関において、前記エアクーラのうち冷却水流の上流側に位置する上流側エアクーラのケース内部にこれよりも下流側に位置する下流側エアクーラへの冷却水が通流する冷却水通路を形成するとともに、最上流側のエアクーラの冷却用エレメント及び冷却水通路に冷却水入口管及び冷却水出口管を接続したことを特徴とする複数のエアクーラを備えた内燃機関を提案する。
【0011】
請求項1において、好ましくは請求項2及び請求項3のように構成するのがよい。
即ち、請求項2においては、前記冷却水通路は、前記ケース内部の冷却用エレメントが収納される空気通路の両側に隔壁を介して形成されてなる。
【0012】
また、請求項3においては、前記複数のエアクーラのケースを共通に構成し、各ケースに形成された前記冷却水通路を接続管路により接続してなる。
【0013】
かかる発明によれば、冷却水流の上流側エアクーラのケース内に下流側に位置するエアクーラへの冷却水通路を設けて、該上流側エアクーラの冷却用エレメントへの通路とともにケース内に設けた下流側エアクーラへの冷却水通路を冷却水入口管及び冷却水出口管に接続したので、複数のエアクーラの冷却水通路を全てケース内に形成することにより、エアクーラケースの外側を通す冷却水配管が不要となる。
【0014】
これにより、従来技術のような冷却水接続管をエアクーラケースの外側を通すものに比べてエアクーラ冷却水配管を簡単化できて、狭隘なスペースであっても冷却水配管作業を容易に行うことができ、従来技術に比べて冷却水配管の作業工数を大幅に低減できる。
【0015】
また、従来技術のような、エアクーラケースの外側を通す冷却水配管が不要となることにより、従来技術に比べて冷却水配管部品数を減少することができて、エアクーラの組立コスト及び部品コストを低減することができる。
さらに請求項3のように構成すれば、複数のエアクーラケースの内部に冷却水通路を夫々形成し、該複数のエアクーラケースを共通に構成したので、エアクーラ部品の互換性が向上するとともに部品アイテム数が減少する。
【0016】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
【0017】
図1は本発明の実施例に係るディーゼル機関用エアクーラの平面構成図、図2は図1のA―A線断面図、図3は図1のB―B矢視図、図4は斜視構成図である。図5は前記実施例におけるエアクーラの配置態様を示す平面構成図である。図6は本発明が適用されるエアクーラを装備したV型ディーゼル機関の断面図である。
【0018】
本発明が適用されるV型ディーゼル機関を示す図6において、200はエンジン(V型ディーゼル機関)、201はクランクケース、201aは機関中心、202は該クランクケース201のVバンク上に固着されたシリンダヘッドである。
100は該シリンダヘッド202の間に、機関の前後方向(クランク軸方向)に複数個設置されたエアクーラ、2は該エアクーラ100の冷却用エレメントである。101は過給機(図示省略)の空気出口と該エアクーラ100とを接続する給気管である。
【0019】
本発明は、前記のような機関の前後方向に複数個設置されたエアクーラの構造に係るものである。
本発明の実施例を示す図1〜図4において、100は冷却水流の上流側に配置された上流側エアクーラ、100aは下流側エアクーラであり、この例では該エアクーラ100及び100aを機関の前後方向即ちクランク軸方向に2個、図2〜3のように空気流に対して並列に配置して各エアクーラ100、100aに冷却水を均一に流すようにしている。
【0020】
該エアクーラ100、100aにおいて、1はケース、2は該ケース1内に収納された冷却用エレメント、4は該冷却用エレメント2を貫流する空気の流路である空気通路で、過給機(図示省略)からの空気は該空気通路4を紙面に直角方向に前記冷却用エレメント2を貫流するようになっている。
【0021】
6は冷却水入口管、7は冷却水出口管であり、該冷却水入口管6及び冷却水出口管7は、冷却水入口フランジ12及び冷却水出口フランジ8が夫々形成された冷却水入口7a及び冷却水出口8aを介して、前記上流側エアクーラ100における冷却用エレメント2の冷却水ヘッダー部2aに接続されている。
3は前記上流側エアクーラ100の内部に形成された冷却水通路で、図2に示すように、ケース1内の前記冷却用エレメント2が収納される空気通路4の両側にケース外壁1a及びケース内壁1bに囲まれて形成されている。
【0022】
前記冷却水通路3は前記上流側エアクーラ100の内部において該上流側エアクーラ100の冷却水ヘッダー部2aへの冷却水通路に接続されている。
5は接続管で、前記上流側エアクーラ100内に形成された冷却水通路3の下流端部と前記下流側エアクーラ100aの冷却水ヘッダー部2aとを接続管フランジ10を介して接続している。
【0023】
かかる構成からなるエアクーラを備えたディーゼル機関において、冷却水は冷却水入口管6から上流側エアクーラ100における冷却用エレメント2の冷却水ヘッダー部2aに流入する。これとともに前記冷却水は上流側エアクーラ100のケース1内に形成された冷却水通路3の一方側(入口側)を通り接続管5を経て下流側エアクーラ100aにおける冷却用エレメント2の冷却水ヘッダー2aに流入する。
【0024】
そして、該冷却水は前記上流側エアクーラ100おける冷却用エレメント2内及び下流側エアクーラ100aにおける冷却用エレメント2内を通流して、夫々の冷却用エレメント2において該冷却用エレメント2を紙面に直角方向に貫流している過給機(図示省略)からの空気と熱交換して該空気を冷却する。
【0025】
前記上流側エアクーラ100の冷却用エレメント2において空気を冷却した冷却水は冷却水ヘッダー部2aを経て冷却水出口管7に流出する。また前記下流側エアクーラ100aの冷却用エレメント2において空気を冷却した冷却水は、該冷却水ヘッダー2aを経て上流側エアクーラ100のケース1内に形成された冷却水通路3の他方側(出口側)を通り、前記冷却水出口管7に入って前記上流側エアクーラ100からの冷却水と合流し、系外に排出される。
【0026】
かかる実施例によれば、空気流に対して並列に設けられた複数のエアクーラのうち、冷却水流の上流側エアクーラ100のケース1内に下流側エアクーラ100aに接続される冷却水通路3を設けて、該上流側エアクーラ100の冷却水ヘッダー部2aへの冷却水通路とともに該上流側エアクーラ100のケース1内に設けた下流側エアクーラ100aへの冷却水通路3を冷却水入口管6及び冷却水出口管7に接続したので、複数のエアクーラの冷却水通路3を全てケース1内に形成することができて、図7〜8に示す従来技術のようなエアクーラのケース01の外側を通す冷却水配管05、20が不要となる。
【0027】
これにより、従来技術のような冷却水接続管をエアクーラケースの外側を通すものに比べてエアクーラ冷却水配管をコンパクトにかつ簡単化できる。従って、エアクーラケースの外側を通す冷却水配管がないため、狭隘なスペースであっても冷却水配管作業を容易にかつ少ない作業工数で行うことができ、また従来技術に比べて冷却水配管部品数を減少することができる。
【0028】
また、図5に示すように、空気流に対して並列に配置した複数のエアクーラのケースを共通に構成する。
即ち、図5の(A)はエアクーラ100を1個設置した場合、(B)及び(C)は本発明に係るもので、(B)はエアクーラを空気流に対して2個(100、100a)並列に配置した場合、(C)はエアクーラを空気流に対して3個(100、100a、100b)並列に配置した場合を夫々示す。
【0029】
図5において、1はエアクーラのケースであり、内部に図1〜4の実施例と同様な冷却水通路3を形成して、複数のエアクーラ(100、100a、100b等)について後端部の一部を除いて同一寸法に形成され、共用可能となっている。11は前記ケース1の後端部に設けられた接続用の開口部を覆蓋するためのカバーである。
このように構成すれば、複数の(100、100a、100b等)について、ケース1の内部に冷却水通路3を形成して該ケース1を共用可能にしたので、該ケース1を含むエアクーラ部品の互換性が向上するとともに部品アイテム数が減少する。
【0030】
【発明の効果】
以上記載の如く本発明によれば、上流側エアクーラのケース内に下流側に位置するエアクーラへの冷却水通路を設けて、該上流側エアクーラの冷却用エレメントへの通路とともに前記下流側エアクーラへの冷却水通路を冷却水入口管及び冷却水出口管を接続したので、複数のエアクーラの冷却水通路を全てケース内に形成することにより、エアクーラケースの外側を通す冷却水配管が不要となり、エアクーラ冷却水配管を簡単化できて、狭隘なスペースであっても冷却水配管作業を容易に行うことができ、従来技術に比べて冷却水配管の作業工数を大幅に低減できる。
【0031】
また、エアクーラケースの外側を通す冷却水配管が不要となることにより、従来技術に比べて冷却水配管部品数を減少することができて、エアクーラの組立コスト及び部品コストを低減することができる。
さらに請求項3のように構成すれば、複数のエアクーラケースの内部に冷却水通路を夫々形成し、該複数のエアクーラケースを共通に構成したので、エアクーラ部品の互換性が向上するとともに部品アイテム数が減少する。
【図面の簡単な説明】
【図1】本発明の実施例に係るディーゼル機関用エアクーラの平面構成図である。
【図2】図1のA―A線断面図である。
【図3】図1のB―B矢視図である。
【図4】前記実施例における斜視構成図である。
【図5】前記実施例におけるエアクーラの配置態様を示す平面構成図である。
【図6】本発明が適用されるエアクーラを装備したV型ディーゼル機関の断面図である。
【図7】従来技術を示す図1対応図である。
【図8】従来技術を示す図4対応図である。
【符号の説明】
1  ケース
1a  ケース外壁
1b  ケース内壁
2  冷却用エレメント
3  冷却水通路
4  空気通路
5  接続管
6  冷却水入口管
7  冷却水出口管
100、100a、100b エアクーラ
101 給気管
200 エンジン
201 クランクケース
202 シリンダヘッド
[0001]
BACKGROUND OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is applied to a V-type diesel engine, a multi-cylinder serial type diesel engine, etc. Related to institutions.
[0002]
[Prior art]
In a V-type diesel engine or a multi-cylinder in-line type diesel engine, when installing multiple air coolers that cool the air to the engine with cooling water, supply between the cylinders (cylinders) in the longitudinal direction (axial direction) of the engine. In order to keep the air temperature constant, a plurality of air coolers are arranged in parallel to the air flow in the air supply passage so that the cooling water flows uniformly to each air cooler.
[0003]
7 and 8 schematically show an example of a diesel engine in which a plurality of air coolers are arranged in parallel to the air flow in the air supply passage. FIG. 7 is a plan view of the air cooler. FIG.
7 to 8, reference numerals 100 and 100a denote air coolers. In this example, two air coolers 100 (100, 100a) are arranged in parallel in the longitudinal direction (axial direction) of the engine and are arranged in parallel to the air flow. The cooling water is allowed to flow uniformly through 100 and 100a.
In the air cooler 100, 01 is a case, 2 is a cooling element housed in the case 01, and 4 is an air passage that is a flow path of air that flows through the cooling element 2. The air from the air flows through the cooling element 2 through the air passage 4 in a direction perpendicular to the paper surface.
[0004]
Reference numeral 06 denotes a cooling water inlet pipe, and 07 denotes a cooling water outlet pipe. The cooling water inlet pipe 06 and the cooling water outlet pipe 07 are connected to the cooling water header 2 a of the cooling element 2 in the upstream air cooler 100. Reference numerals 20 and 05 denote cooling water connecting pipes to the downstream air cooler 100a, which connect the cooling water header 2a of the cooling element 2 to the cooling water inlet pipe 06 and the cooling water outlet pipe 07 in the downstream air cooler 100a. ing.
[0005]
In the diesel engine having the air cooler having such a configuration, the cooling water flows from the cooling water inlet pipe 06 into the cooling water header 2a of the cooling element 2 in the upstream air cooler 100, and the cooling water connecting pipe 20 on one side, 05 and flows into the cooling water header 2a of the cooling element 2 in the downstream air cooler 100a.
Then, the cooling water flows in the cooling element 2 in the upstream air cooler 100 and in the cooling element 2 in the downstream air cooler 100a, and the cooling element 2 is made to pass through the cooling element 2 by the respective cooling elements 2. The air is cooled by exchanging heat with air from a supercharger (not shown) flowing in a direction perpendicular to the air.
[0006]
The cooling water that has cooled the air in the cooling element 2 of the upstream air cooler 100 flows out to the cooling water outlet pipe 07 through the cooling water header 2a, and cools the air in the cooling element 2 of the downstream air cooler 100a. The cooled water enters the cooling water connection pipes 05 and 20 through the cooling water header 2a, enters the cooling water outlet pipe 07 from the cooling water connection pipe 20, and merges with the cooling water from the upstream air cooler 100. .
[0007]
[Problems to be solved by the invention]
In both the V-type internal combustion engine and the multi-cylinder in-line internal combustion engine, when a plurality of air coolers 100, 100a are arranged in the front-rear direction of the engine, the space on the side of the air coolers 100, 100a is extremely small.
However, in the related art shown in FIGS. 7 to 8, a plurality (two in this example) of air coolers 100 and 100 a are arranged in parallel in the front-rear direction of the engine with respect to the air flow, and each air cooler 100 is arranged. As the cooling water flows uniformly to 100a, the outside of the case 01 in the upstream air cooler 100 passes between the downstream air cooler 100a and the cooling water inlet pipe 06 and the cooling water outlet pipe 07. The cooling water connecting pipe 20 is connected.
[0008]
For this reason, in this prior art, as described above, the cooling water connection pipe 20 that connects the downstream air cooler 100a, the cooling water inlet pipe 06, and the cooling water outlet pipe 07 passes through the outside of the case 01. Therefore, the piping work of the cooling water connection pipe 20 in a narrow space becomes difficult, and a great number of man-hours are required for the cooling water piping work of the air cooler.
In addition, since the cooling water connecting pipe 20 that passes through the outside of the case 01 is provided, the number of cooling water piping parts increases and the part cost increases.
And so on.
[0009]
SUMMARY OF THE INVENTION The present invention has been made in view of the problems of the prior art, and in an internal combustion engine in which a plurality of air coolers are arranged in the front-rear direction of the engine, the cooling water piping of the plurality of air coolers is simplified to facilitate the cooling water piping work in a narrow space. The purpose of the present invention is to reduce the number of piping work man-hours and reduce the number of cooling water piping parts to reduce the cost of cooling water piping parts.
[0010]
[Means for Solving the Problems]
In order to solve such a problem, the present invention provides a first aspect of the present invention by exchanging heat between the air to the engine flowing through the case and the cooling water by a cooling element installed in the case. In an internal combustion engine in which a plurality of air coolers for cooling the engine are arranged in parallel to the air flow in the air supply passage of the engine, the air cooler is disposed inside the case of the upstream air cooler located upstream of the cooling water flow in the air cooler. Forming a cooling water passage through which cooling water flows to the downstream air cooler located further downstream than the cooling air inlet pipe and the cooling water outlet pipe in the cooling element and cooling water passage of the uppermost air cooler. An internal combustion engine having a plurality of air coolers characterized by being connected is proposed.
[0011]
In Claim 1, it is preferable to configure as in Claim 2 and Claim 3.
That is, according to a second aspect of the present invention, the cooling water passage is formed on both sides of the air passage in which the cooling element inside the case is accommodated via the partition walls.
[0012]
According to a third aspect of the present invention, the cases of the plurality of air coolers are configured in common, and the cooling water passages formed in the cases are connected by connecting pipes.
[0013]
According to this invention, a cooling water passage to the air cooler located downstream is provided in the case of the upstream air cooler of the cooling water flow, and the downstream side provided in the case together with the passage to the cooling element of the upstream air cooler. Since the cooling water passage to the air cooler is connected to the cooling water inlet pipe and the cooling water outlet pipe, the cooling water piping that passes the outside of the air cooler case is unnecessary by forming all the cooling water passages of the plurality of air coolers inside the case. It becomes.
[0014]
This makes it possible to simplify the air cooler cooling water piping compared to the conventional technology where the cooling water connecting pipe is passed outside the air cooler case, and the cooling water piping work can be easily performed even in a narrow space. Therefore, the number of man-hours for cooling water piping can be greatly reduced compared to the prior art.
[0015]
In addition, the cooling water piping that passes the outside of the air cooler case as in the prior art is not required, so that the number of cooling water piping parts can be reduced compared to the conventional technology, and the assembly cost and component cost of the air cooler can be reduced. Can be reduced.
According to the third aspect of the present invention, since the cooling water passages are respectively formed in the plurality of air cooler cases and the plurality of air cooler cases are configured in common, the compatibility of the air cooler parts is improved and the parts The number of items decreases.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.
[0017]
1 is a plan view of a diesel engine air cooler according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1, FIG. 3 is a view taken along the line BB in FIG. FIG. FIG. 5 is a plan view showing the arrangement of the air cooler in the embodiment. FIG. 6 is a cross-sectional view of a V-type diesel engine equipped with an air cooler to which the present invention is applied.
[0018]
In FIG. 6 showing a V-type diesel engine to which the present invention is applied, 200 is an engine (V-type diesel engine), 201 is a crankcase, 201a is an engine center, and 202 is fixed on a V bank of the crankcase 201. It is a cylinder head.
A plurality of air coolers 100 are installed between the cylinder heads 202 in the longitudinal direction of the engine (crankshaft direction), and 2 is a cooling element for the air cooler 100. An air supply pipe 101 connects an air outlet of a supercharger (not shown) and the air cooler 100.
[0019]
The present invention relates to the structure of a plurality of air coolers installed in the longitudinal direction of the engine as described above.
1 to 4 showing an embodiment of the present invention, reference numeral 100 denotes an upstream air cooler disposed upstream of the cooling water flow, and 100a denotes a downstream air cooler. In this example, the air coolers 100 and 100a are arranged in the longitudinal direction of the engine. That is, two in the crankshaft direction are arranged in parallel to the air flow as shown in FIGS. 2 to 3 so that the cooling water flows uniformly to the air coolers 100 and 100a.
[0020]
In the air coolers 100 and 100a, 1 is a case, 2 is a cooling element housed in the case 1, 4 is an air passage which is a flow path of air passing through the cooling element 2, and is a supercharger The air from (omitted) flows through the cooling element 2 through the air passage 4 in a direction perpendicular to the paper surface.
[0021]
6 is a cooling water inlet pipe, and 7 is a cooling water outlet pipe. The cooling water inlet pipe 6 and the cooling water outlet pipe 7 are formed of a cooling water inlet 7a formed with a cooling water inlet flange 12 and a cooling water outlet flange 8, respectively. And the cooling water outlet portion 8a is connected to the cooling water header portion 2a of the cooling element 2 in the upstream air cooler 100.
Reference numeral 3 denotes a cooling water passage formed inside the upstream air cooler 100. As shown in FIG. 2, a case outer wall 1a and a case inner wall are provided on both sides of the air passage 4 in which the cooling element 2 in the case 1 is accommodated. It is surrounded by 1b.
[0022]
The cooling water passage 3 is connected to the cooling water passage to the cooling water header portion 2 a of the upstream air cooler 100 inside the upstream air cooler 100.
Reference numeral 5 denotes a connecting pipe that connects a downstream end portion of the cooling water passage 3 formed in the upstream air cooler 100 and a cooling water header portion 2 a of the downstream air cooler 100 a via a connecting pipe flange 10.
[0023]
In the diesel engine having the air cooler having such a configuration, the cooling water flows from the cooling water inlet pipe 6 into the cooling water header portion 2 a of the cooling element 2 in the upstream air cooler 100. At the same time, the cooling water passes through one side (inlet side) of the cooling water passage 3 formed in the case 1 of the upstream air cooler 100, passes through the connecting pipe 5, and the cooling water header 2a of the cooling element 2 in the downstream air cooler 100a. Flow into.
[0024]
The cooling water flows in the cooling element 2 in the upstream air cooler 100 and in the cooling element 2 in the downstream air cooler 100a, and the cooling element 2 in each cooling element 2 is perpendicular to the paper surface. The air is cooled by exchanging heat with air from a supercharger (not shown) flowing through the air.
[0025]
The cooling water that has cooled the air in the cooling element 2 of the upstream air cooler 100 flows out to the cooling water outlet pipe 7 through the cooling water header portion 2a. The cooling water that has cooled the air in the cooling element 2 of the downstream air cooler 100a passes through the cooling water header 2a, and the other side (outlet side) of the cooling water passage 3 formed in the case 1 of the upstream air cooler 100. , Enters the cooling water outlet pipe 7, merges with the cooling water from the upstream air cooler 100, and is discharged out of the system.
[0026]
According to this embodiment, the cooling water passage 3 connected to the downstream air cooler 100a is provided in the case 1 of the upstream air cooler 100 of the cooling water flow among the plurality of air coolers provided in parallel with the air flow. The cooling water passage 3 to the downstream air cooler 100a provided in the case 1 of the upstream air cooler 100 together with the cooling water passage to the cooling water header portion 2a of the upstream air cooler 100 is connected to the cooling water inlet pipe 6 and the cooling water outlet. Since all the cooling water passages 3 of the plurality of air coolers can be formed in the case 1 because they are connected to the pipe 7, the cooling water piping that passes outside the case 01 of the air cooler as shown in FIGS. 05 and 20 become unnecessary.
[0027]
Thereby, the air cooler cooling water piping can be made compact and simple as compared with the case where the cooling water connecting pipe is passed through the outside of the air cooler case as in the prior art. Therefore, since there is no cooling water piping through the outside of the air cooler case, the cooling water piping work can be performed easily and with less work man-hours even in a confined space. The number can be reduced.
[0028]
Moreover, as shown in FIG. 5, the case of the several air cooler arrange | positioned in parallel with the airflow is comprised in common.
5A shows a case where one air cooler 100 is installed, FIGS. 5B and 5C relate to the present invention, and FIG. 5B shows two air coolers (100, 100a) for the air flow. ) When arranged in parallel, (C) shows a case where three air coolers (100, 100a, 100b) are arranged in parallel to the air flow.
[0029]
In FIG. 5, 1 is an air cooler case, in which a cooling water passage 3 similar to that of the embodiment of FIGS. 1 to 4 is formed, and a plurality of air coolers (100, 100a, 100b, etc.) It is formed in the same dimension except for the part and can be shared. Reference numeral 11 denotes a cover for covering the connection opening provided at the rear end of the case 1.
With this configuration, since the cooling water passage 3 is formed inside the case 1 so that the case 1 can be shared for a plurality (100, 100a, 100b, etc.), the air cooler component including the case 1 can be used. Compatibility is improved and the number of parts items is reduced.
[0030]
【The invention's effect】
As described above, according to the present invention, a cooling water passage to the air cooler located downstream is provided in the case of the upstream air cooler, and the passage to the cooling element of the upstream air cooler is connected to the downstream air cooler. Since the cooling water inlet pipe and the cooling water outlet pipe are connected to the cooling water passage, all the cooling water passages of the plurality of air coolers are formed in the case, thereby eliminating the need for cooling water piping through the outside of the air cooler case. The cooling water piping can be simplified, the cooling water piping work can be easily performed even in a narrow space, and the number of work steps of the cooling water piping can be greatly reduced as compared with the prior art.
[0031]
In addition, since the cooling water piping that passes the outside of the air cooler case becomes unnecessary, the number of cooling water piping components can be reduced as compared with the prior art, and the assembly cost and the component cost of the air cooler can be reduced. .
According to the third aspect of the present invention, since the cooling water passages are respectively formed in the plurality of air cooler cases and the plurality of air cooler cases are configured in common, the compatibility of the air cooler parts is improved and the parts The number of items decreases.
[Brief description of the drawings]
FIG. 1 is a plan configuration diagram of an air cooler for a diesel engine according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a view taken along the line BB in FIG. 1;
FIG. 4 is a perspective configuration diagram in the embodiment.
FIG. 5 is a plan view showing the arrangement of air coolers in the embodiment.
FIG. 6 is a cross-sectional view of a V-type diesel engine equipped with an air cooler to which the present invention is applied.
FIG. 7 is a diagram corresponding to FIG.
FIG. 8 is a diagram corresponding to FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Case 1a Case outer wall 1b Case inner wall 2 Cooling element 3 Cooling water passage 4 Air passage 5 Connection pipe 6 Cooling water inlet pipe 7 Cooling water outlet pipe 100, 100a, 100b Air cooler 101 Supply pipe 200 Engine 201 Crankcase 202 Cylinder head

Claims (3)

ケース内に設置された冷却用エレメントにて該ケース内を流過する機関への空気と冷却水とを熱交換して該空気を冷却するエアクーラを前記機関の給気通路に空気流に対して並列に複数個配設してなる内燃機関において、前記エアクーラのうち冷却水流の上流側に位置する上流側エアクーラのケース内部にこれよりも下流側に位置する下流側エアクーラへの冷却水が通流する冷却水通路を形成するとともに、最上流側のエアクーラの冷却用エレメント及び冷却水通路に冷却水入口管及び冷却水出口管を接続したことを特徴とする複数のエアクーラを備えた内燃機関。An air cooler that cools the air by exchanging heat between the air to the engine flowing through the case and the cooling water by a cooling element installed in the case is provided in the air supply passage of the engine against the air flow. In an internal combustion engine having a plurality of parallel arrangements, cooling water flows to a downstream air cooler located downstream from the inside of the case of the upstream air cooler located upstream of the cooling water flow among the air coolers. An internal combustion engine comprising a plurality of air coolers, wherein a cooling water passage is formed and a cooling water inlet pipe and a cooling water outlet pipe are connected to the cooling element and the cooling water passage of the air cooler on the most upstream side. 前記冷却水通路は、前記ケース内部の冷却用エレメントが収納される空気通路の両側に隔壁を介して形成されてなることを特徴とする請求項1に記載の複数のエアクーラを備えた内燃機関。2. The internal combustion engine having a plurality of air coolers according to claim 1, wherein the cooling water passage is formed on both sides of an air passage in which a cooling element inside the case is accommodated via a partition wall. 前記複数のエアクーラのケースを共通に構成し、各ケースに形成された前記冷却水通路を接続管路により接続してなることを特徴とする請求項1に記載の複数のエアクーラを備えた内燃機関。The internal combustion engine having a plurality of air coolers according to claim 1, wherein the plurality of air cooler cases are configured in common, and the cooling water passages formed in each case are connected by a connecting pipe. .
JP2002182731A 2002-06-24 2002-06-24 Internal combustion engine with multiple air coolers Expired - Fee Related JP4274746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002182731A JP4274746B2 (en) 2002-06-24 2002-06-24 Internal combustion engine with multiple air coolers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002182731A JP4274746B2 (en) 2002-06-24 2002-06-24 Internal combustion engine with multiple air coolers

Publications (2)

Publication Number Publication Date
JP2004027901A true JP2004027901A (en) 2004-01-29
JP4274746B2 JP4274746B2 (en) 2009-06-10

Family

ID=31179147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002182731A Expired - Fee Related JP4274746B2 (en) 2002-06-24 2002-06-24 Internal combustion engine with multiple air coolers

Country Status (1)

Country Link
JP (1) JP4274746B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6910469B2 (en) * 2002-01-17 2005-06-28 Wartsila Technology Oy Ab Inlet air arrangement for piston engine
WO2008104402A1 (en) * 2007-02-28 2008-09-04 Behr Gmbh & Co.Kg Charge-air cooling device, system for turbocharging and/or charge-air cooling, method for charge-air cooling
WO2008104373A1 (en) * 2007-02-28 2008-09-04 Behr Gmbh & Co. Kg Charge-air cooling device, system for turbocharging and/or charge-air cooling, method for charge-air cooling
WO2009156572A1 (en) * 2008-06-26 2009-12-30 Wärtsilä Finland Oy Combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6910469B2 (en) * 2002-01-17 2005-06-28 Wartsila Technology Oy Ab Inlet air arrangement for piston engine
WO2008104402A1 (en) * 2007-02-28 2008-09-04 Behr Gmbh & Co.Kg Charge-air cooling device, system for turbocharging and/or charge-air cooling, method for charge-air cooling
WO2008104373A1 (en) * 2007-02-28 2008-09-04 Behr Gmbh & Co. Kg Charge-air cooling device, system for turbocharging and/or charge-air cooling, method for charge-air cooling
WO2009156572A1 (en) * 2008-06-26 2009-12-30 Wärtsilä Finland Oy Combustion engine

Also Published As

Publication number Publication date
JP4274746B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP6315020B2 (en) Internal combustion engine
US8904773B2 (en) Cooling water passage structure in cylinder head of internal combustion engine
JP2002242767A (en) Egr gas cooling system for internal combustion engine
JP4564333B2 (en) EGR system
US8544427B2 (en) Cooling water passage structure in cylinder head of internal combustion engine
JP4537615B2 (en) EGR gas recirculation device for internal combustion engine
JP5001752B2 (en) EGR cooler bypass switching system
JP2008297960A (en) Air intake manifold for internal combustion engine
EP2426345B1 (en) Intake device of internal combustion engine
JP4020059B2 (en) Intake device for internal combustion engine
JP4375261B2 (en) Cylinder head and water-cooled engine using the same
US20080141971A1 (en) Cylinder head and exhaust system of a multi-cylinder engine
JP2009203935A (en) Cooling system of v-type engine
JP2009180109A (en) Cooling structure of exhaust manifold integrated cylinder head
JP4274746B2 (en) Internal combustion engine with multiple air coolers
JPS61175217A (en) Cooling structure for cylinder head
JP4228209B2 (en) EGR cooler
EP1283345A2 (en) Cylinder head cooling structure for an internal combustion engine
JP6361719B2 (en) Engine intake system with EGR device
JP2001221106A (en) Circulated gas cooling system
JP2004044465A (en) Cylinder head structure in engine
JP6399074B2 (en) Engine intake system with intercooler
WO2018084042A1 (en) Intake device for multi-cylinder engine
JP3556378B2 (en) Intercooler
JP2006307804A (en) Engine provided with supercharger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090303

R150 Certificate of patent or registration of utility model

Ref document number: 4274746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees