JP4149428B2 - Vector network analyzer and calibration method thereof - Google Patents

Vector network analyzer and calibration method thereof Download PDF

Info

Publication number
JP4149428B2
JP4149428B2 JP2004299813A JP2004299813A JP4149428B2 JP 4149428 B2 JP4149428 B2 JP 4149428B2 JP 2004299813 A JP2004299813 A JP 2004299813A JP 2004299813 A JP2004299813 A JP 2004299813A JP 4149428 B2 JP4149428 B2 JP 4149428B2
Authority
JP
Japan
Prior art keywords
switch
port
measurement
power
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004299813A
Other languages
Japanese (ja)
Other versions
JP2006112893A (en
Inventor
利幸 矢加部
肇 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE UNIVERSITY OF ELECTRO-COMUNICATINS
Chuo Electronics Co Ltd
Original Assignee
THE UNIVERSITY OF ELECTRO-COMUNICATINS
Chuo Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE UNIVERSITY OF ELECTRO-COMUNICATINS, Chuo Electronics Co Ltd filed Critical THE UNIVERSITY OF ELECTRO-COMUNICATINS
Priority to JP2004299813A priority Critical patent/JP4149428B2/en
Publication of JP2006112893A publication Critical patent/JP2006112893A/en
Application granted granted Critical
Publication of JP4149428B2 publication Critical patent/JP4149428B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高周波領域(マイクロ波帯、ミリ波帯、サブミリ波帯、テラヘルツ帯)、光領域(赤外線、可視光線、紫外線)などにおける位相測定技術に関する。   The present invention relates to a phase measurement technique in a high frequency region (microwave band, millimeter wave band, submillimeter wave band, terahertz band), optical region (infrared ray, visible ray, ultraviolet ray) and the like.

現在のベクトルネットワークアナライザ(VNA)の校正は、数種類の標準器(ショート、オープン、負荷、スルー、ライン等)を接続することによって行われている。
特許第3540797号公報
The calibration of the current vector network analyzer (VNA) is performed by connecting several kinds of standard devices (short, open, load, through, line, etc.).
Japanese Patent No. 35409797

従来から用いられているVNAの校正方法は、校正手順が複雑であるという問題がある。
この校正手順が複雑であるために、人為的ミスが発生する原因となる。また、校正時に数種類の標準器の接続と取り外しが必要であり、そのために測定精度低下の問題が発生する。
Conventional VNA calibration methods have a problem that the calibration procedure is complicated.
This calibration procedure is complicated and causes human error. In addition, it is necessary to connect and remove several kinds of standard devices at the time of calibration, which causes a problem of deterioration in measurement accuracy.

この発明に係るベクトルネットワークアナライザは、  The vector network analyzer according to the present invention is:
高周波信号を発生する発振源と、  An oscillation source that generates a high-frequency signal;
前記発振源の出力を2つに分配する電力分配器と、  A power distributor that distributes the output of the oscillation source in two;
2つの入力ポート1と2及び4個の電力計測用の出力ポート3乃至6を含み、前記入力ポート1で前記電力分配器の一方から出る波を受ける6ポート接合と、  A 6-port junction comprising two input ports 1 and 2 and 4 power measurement output ports 3 to 6 for receiving a wave from one of the power distributors at the input port 1;
前記6ポート接合の前記出力ポート3乃至6から出る波をそれぞれ検波する検波器と、  A detector for detecting each of the waves output from the output ports 3 to 6 of the 6-port junction;
前記電力分配器の他方から出る波を受け、その位相を変化させる移相器と、  Receiving a wave from the other of the power distributor and changing its phase;
前記移相器から出る波を受け、これを出口(1)又は(2)のいずれか一方へ出す第1スイッチと、  A first switch that receives the wave exiting the phase shifter and exits it to either the outlet (1) or (2);
入口(1)及び(2)のいずれか一方を選択して、そこに入った波を前記6ポート接合の前記入力ポート2に入れる第2スイッチと、  A second switch that selects any one of the inlets (1) and (2) and puts the wave that enters the inlet into the input port 2 of the 6-port junction;
4つの端をもち、ひとつの端は前記第1スイッチの前記出口(1)に接続され、他のひとつの端は前記第2スイッチの前記入口(1)に接続され、他のひとつの端は第1無反射終端器に接続され、残りのひとつの端は測定ポートP1となる第1方向性結合器と、  It has four ends, one end is connected to the outlet (1) of the first switch, the other end is connected to the inlet (1) of the second switch, and the other end is A first directional coupler connected to the first non-reflective terminator, the remaining one end being the measurement port P1,
4つの端をもち、ひとつの端は前記第1スイッチの前記出口(2)に接続され、他のひとつの端は前記第2スイッチの前記入口(2)に接続され、他のひとつの端は第2無反射終端器に接続され、残りのひとつの端は測定ポートP2となる第2方向性結合器と、を備えるものである。  It has four ends, one end is connected to the outlet (2) of the first switch, the other end is connected to the inlet (2) of the second switch, and the other end is A second directional coupler connected to the second non-reflecting terminator and having the remaining one end serving as the measurement port P2 is provided.

本願発明に係るベクトルネットワークアナライザ及びその校正方法によれば、従来のベクトルネットワークアナライザにおける校正方法のような複雑な手順を踏むことなく、1つの移相器と、1つの複素反射係数既知の標準器のみで校正することができるので校正精度が向上し、Sパラメータを算出する際の誤差を減少させることができる。 According to the vector network analyzer and the calibration method thereof according to the present invention , one standard phase shifter and one standard reference having a known complex reflection coefficient can be used without performing complicated procedures as in the calibration method in the conventional vector network analyzer . Thus, the calibration accuracy can be improved, and the error in calculating the S parameter can be reduced.

以下に、本発明の実施形態を図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の実施の形態では、図1に示すように、6ポート接合16、検波器11、スイッチSW1・13,SW2・14、方向性結合器22,23、電力分配器26、発振源21、移相器15、無反射終端器24,25を用いることにより、従来のヘテロダイン方式VNAの測定原理とは異なるホモダイン方式VNAを実現している。以下、本VNAを6ポートVNAと呼び、この6ポートVNAの測定ポート1をポートP1、測定ポート2をポートP2と表現する。  In the embodiment of the present invention, as shown in FIG. 1, a 6-port junction 16, a detector 11, switches SW1, 13 and SW2, 14, directional couplers 22, 23, a power distributor 26, an oscillation source 21, By using the phase shifter 15 and the non-reflection terminators 24 and 25, a homodyne VNA different from the measurement principle of the conventional heterodyne VNA is realized. Hereinafter, this VNA is referred to as a 6-port VNA, and measurement port 1 of this 6-port VNA is represented as port P1, and measurement port 2 is represented as port P2.

6ポート接合16について説明を加える。6ポート接合そのものは公知である。
6ポート接合16は、高周波測定用の装置である。6ポート接合16は、校正により得られるハードウェア固有の情報(校正パラメータ)と、複数の電力測定値(スカラー量)から、2つの波の振幅比と位相差(ベクトル量)を導出する測定装置である。6ポート接合16は、図2に示すようにリフレクトメータと図3に示すようにコリレータのいずれにも使用することができる。リフレクトメータとは、供試デバイス(Device Under Test:DUT)の複素反射係数を測定する装置であり、コリレータとは2つの波の複素振幅比を測定する装置である。
The 6-port junction 16 will be further described. The 6-port joint itself is known.
The 6-port junction 16 is a device for high frequency measurement. The 6-port junction 16 is a measurement device that derives the amplitude ratio and phase difference (vector quantity) of two waves from hardware-specific information (calibration parameters) obtained by calibration and a plurality of power measurement values (scalar quantities). It is. The 6-port junction 16 can be used for either a reflectometer as shown in FIG. 2 or a correlator as shown in FIG. A reflectometer is a device that measures the complex reflection coefficient of a device under test (DUT), and a correlator is a device that measures the complex amplitude ratio of two waves.

図2では、ポート1に発振源19を、ポート2に1ポート供試デバイス(Device Under Test:DUT)18を接続し、ポート2から出力する波b  In FIG. 2, an oscillation source 19 is connected to port 1, and a 1-port device under test (DUT) 18 is connected to port 2. 22 と入力する波aEnter the wave a 22 との比、つまり、ポート2から1ポートDUT18側を見た複素反射係数γThat is, the complex reflection coefficient γ as seen from the port 2 to the 1-port DUT 18 side
γ=a    γ = a 22 /b/ B 22 ・・・・・ (1)  (1)
を測定する。Measure.
また、図3では、ポート1から入力する波a  In FIG. 3, the wave a input from port 1 11 とポート2から入力する波aAnd wave input from port 2 22 の複素振幅比WComplex amplitude ratio W
W=a    W = a 22 /a/ A 11 ・・・・・ (2)  (2)
を測定する。Measure.
回路が線形で単一モードのみが伝播する条件下で、6ポート接合から出力される波b  Wave b output from a 6-port junction under conditions where the circuit is linear and only a single mode propagates 3Three ,b, B 4Four ,b, B 5Five ,b, B 66 は、ポート1,2に対して入出力する波aIs the wave a that is input to and output from ports 1 and 2 11 ,a, A 22 ,b, B 22 の線形結合で表わすことができる。It can be expressed by a linear combination of
すなわち、b  That is, b ii (i=3,4,5,6)はa(I = 3,4,5,6) is a 11 ,a, A 22 ,b, B 22 を用いて、Using,
    b ii =A= A ii aa 11 +B+ B ii a 22 ・・・・・ (3)    (3)
    b ii =C= C ii aa 22 +D+ D ii b 22 ・・・・・ (4)    (4)
と表わすことができる。Can be expressed as
ただし、A  However, A ii ,B, B ii ,C, C ii ,D, D ii は6ポート接合固有の周波数に依存する複素定数である。Is a complex constant that depends on the frequency inherent to the 6-port junction.
ポートiに接続した検波器による電力測定値をP  The power measured by the detector connected to port i is P ii とすると、PThen, P ii は出力する波bIs the output wave b ii の振幅の二乗に比例する。αを比例定数とすると、Is proportional to the square of the amplitude of. If α is a proportional constant,
    P ii =α|A= Α | A ii aa 11 +B+ B ii a 22 22 ・・・・・ (5)        (5)
    P ii =α|C= Α | C ii aa 22 +D+ D ii b 22 22 ・・・・・ (6)    (6)
と表わすことができる。Can be expressed as
そして、ポート3に対するポートh(h=4,5,6)の電力比  And the power ratio of port h (h = 4, 5, 6) to port 3 3Three P hh は、Is

Figure 0004149428
Figure 0004149428

と表わされる。このIt is expressed as this 3Three T hh ,t, T hh , 3Three K hh ,k, K hh は校正によって求められる校正パラメータである。Is a calibration parameter obtained by calibration.

本発明の実施の形態では、S11,S12,S21,S22を測定する4通りの回路の状態それぞれについて、公知の積分校正法(T.Yakabe, et al., IEEE IM, vol.50, no.2 pp377-380, Apr. 2001)を実行し、4通りの校正パラメータを算出する。
算出した4通りの校正パラメータを用い、検波器11による電力測定値(スカラー量)からDUTのS11,S12,S21,S22を測定する。すなわち、S11測定時にはS11測定用に校正した校正パラメータを使用し、S12測定時にはS12測定用に校正した校正パラメータを使用し、S21測定時にはS21測定用に校正した校正パラメータを使用し、S22測定時にはS22測定用に校正した校正パラメータを使用する。
In the embodiment of the present invention, a known integral calibration method (T. Yakabe, et al., IEEE IM, vol. 4) is used for each of four circuit states for measuring S 11 , S 12 , S 21 , and S 22 . 50, no.2 pp377-380, Apr. 2001) and calculate the four calibration parameters.
Using the calculated four calibration parameters, D 11 S 11 , S 12 , S 21 and S 22 are measured from the power measurement value (scalar amount) by the detector 11. That is, when S 11 measured using the calibration parameters calibrated for S 11 measured, the calibration parameters at S 12 measured using the calibration parameters calibrated for S 12 measurements, the time S 21 measurements calibrated for S 21 measured use, at the time of S 22 measured using the calibration parameters calibrated for measuring S 22.

図4は、2ポートDUT17のS11測定用の校正パラメータを算出する場合の回路状態を示す。スイッチSW1・13を接点(1)に、スイッチSW2・14を接点(1)に接続し、既知の標準器12をポートP1に接続する。この状態は図5に示されている6ポートリフレクトメータに対応する。この状態で移相器15の可動部分を始動位置に固定後、検波器11のP3〜P6の電力を測定し、基準とする。
次に、移相器15の可動部分を動かしながら、検波器11のP3〜P6の電力を一周期分測定する。
以上の電力測定値を用いて2ポートDUT17のS11測定用の校正パラメータ343536,k3,k4,k5,k6を算出する。
FIG. 4 shows a circuit state when calculating calibration parameters for S 11 measurement of the 2-port DUT 17. The switches SW1 and 13 are connected to the contact (1), the switches SW2 and 14 are connected to the contact (1), and the known standard 12 is connected to the port P1. This state corresponds to the 6-port reflectometer shown in FIG. In this state, after fixing the movable part of the phase shifter 15 to the starting position, the power of P 3 to P 6 of the detector 11 is measured and used as a reference.
Next, while moving the movable part of the phase shifter 15, the power of P 3 to P 6 of the detector 11 is measured for one period.
Calculating the S 11 calibration parameters 3 K 4 for measuring, 3 K 5, 3 K 6 , k 3, k 4, k 5, k 6 of the two-port DUT17 using more power measurements.

図6は、2ポートDUT17のS12測定用の校正パラメータを算出する場合の回路状態を示す。スイッチSW1・13を接点(2)に、スイッチSW2・14を接点(1)に接続し、ポートP1とポートP2を直結する。この状態は図7に示されている6ポートコリレータに対応する。この状態で移相器15の可動部分を始動位置に固定後、検波器11のP3〜P6の電力を測定し、基準とする。
次に、移相器15の可動部分を動かしながら、検波器11のP3〜P6の電力を一周期分測定する。
以上の電力測定値を用いて2ポートDUT17のS12測定用の校正パラメータ343536,t3,t4,t5,t6を算出する。
FIG. 6 shows a circuit state when calculating calibration parameters for S 12 measurement of the 2-port DUT 17. The switches SW1 and 13 are connected to the contact (2), the switches SW2 and 14 are connected to the contact (1), and the port P1 and the port P2 are directly connected. This state corresponds to the 6-port correlator shown in FIG. In this state, after fixing the movable part of the phase shifter 15 to the starting position, the power of P 3 to P 6 of the detector 11 is measured and used as a reference.
Next, while moving the movable part of the phase shifter 15, the power of P 3 to P 6 of the detector 11 is measured for one period.
The calibration parameters 3 T 4 , 3 T 5 , 3 T 6 , t 3 , t 4 , t 5 , t 6 for the S 12 measurement of the 2-port DUT 17 are calculated using the above power measurement values.

図8は、2ポートDUT17のS21測定用の校正パラメータを算出する場合の回路状態を示す。スイッチSW1・13を接点(1)に、スイッチSW2・14を接点(2)に接続し、ポートP1とポートP2を直結する。この状態は、図9に示されている6ポートコリレータに対応する。この状態で移相器15の可動部分を始動位置に固定後、検波器11のP 3〜P6の電力を測定し、基準とする。
次に、移相器15の可動部分を動かしながら、検波器11のP3〜P6の電力を一周期分測定する。
以上の電力測定値を用いて2ポートDUT17のS21測定用の校正パラメータ34´,35´,36´,t3´,t4´,t5´,t6´を算出する。
FIG. 8 shows a circuit state when calculating calibration parameters for S 21 measurement of the 2-port DUT 17. The switches SW1 and 13 are connected to the contact (1), the switches SW2 and 14 are connected to the contact (2), and the port P1 and the port P2 are directly connected. This state corresponds to the 6-port correlator shown in FIG. In this state, after fixing the movable part of the phase shifter 15 to the starting position, the power of P 3 to P 6 of the detector 11 is measured and used as a reference.
Next, while moving the movable part of the phase shifter 15, the power of P 3 to P 6 of the detector 11 is measured for one period.
Using the above power measurement values, calibration parameters 3 T 4 ′, 3 T 5 ′, 3 T 6 ′, t 3 ′, t 4 ′, t 5 ′, t 6 ′ for S 21 measurement of the 2-port DUT 17 are set. calculate.

図10は、2ポートDUT17のS22測定用の校正パラメータを算出する場合の回路状態を示す。スイッチSW1・13を接点(2)に、スイッチSW2・14を接点(2)に接続し、既知の標準器12をポートP2に接続する。この状態は、図11に示されている6ポートリフレクトメータに対応する。この状態で移相器15の可動部分を始動位置に固定後、検波器11のP3〜P6の電力を測定し、基準とする。
次に、移相器15の可動部分を動かしながら、検波器11のP3〜P6の電力を一周期分測定する。
以上の電力測定値を用いて2ポートDUT17のS22測定用の校正パラメータ34´,35´,36´,k3´,k4´,k5´,k6´を算出する。
以上述べた手順により、従来の校正方法と比較し、6ポートVNAを簡単かつ高精度に校正することができる。
FIG. 10 shows a circuit state when calculating calibration parameters for S 22 measurement of the 2-port DUT 17. The switches SW1 and 13 are connected to the contact (2), the switches SW2 and 14 are connected to the contact (2), and the known standard 12 is connected to the port P2. This state corresponds to the 6-port reflectometer shown in FIG. In this state, after fixing the movable part of the phase shifter 15 to the starting position, the power of P 3 to P 6 of the detector 11 is measured and used as a reference.
Next, while moving the movable part of the phase shifter 15, the power of P 3 to P 6 of the detector 11 is measured for one period.
Using the above measured power values, calibration parameters 3 K 4 ′, 3 K 5 ′, 3 K 6 ′, k 3 ′, k 4 ′, k 5 ′, k 6 ′ for S 22 measurement of the 2-port DUT 17 are set. calculate.
By the procedure described above, the 6-port VNA can be calibrated easily and with high accuracy as compared with the conventional calibration method.

発明の実施の形態に係るベクトルネットワークアナライザ(VNA)の構成を示す図である。It is a figure which shows the structure of the vector network analyzer (VNA) which concerns on embodiment of invention. 6ポート接合を用いたリフレクトメータの説明図である。It is explanatory drawing of the reflectometer using 6 port junction. 6ポート接合を用いたコリレータの説明図である。It is explanatory drawing of the correlator using 6 port junction. 発明の実施の形態に係る、SS according to the embodiment of the invention 1111 測定用の校正パラメータを測定するためのVNAの接続を示す図である。It is a figure which shows the connection of VNA for measuring the calibration parameter for a measurement. 図4の接続に対応する、6ポート接合を用いたリフレクトメータである。It is a reflectometer using 6 port junction corresponding to the connection of FIG. 発明の実施の形態に係る、S 12 測定用の校正パラメータを測定するためのVNAの接続を示す図である。 According to an embodiment of the invention, showing the connection of the VNA to measure the calibration parameters for S 12 measurements. . 図6の接続に対応する、6ポート接合を用いたコリレータである。FIG. 7 is a correlator using a 6-port junction corresponding to the connection of FIG. 発明の実施の形態に係る、S 21 測定用の校正パラメータを測定するためのVNAの接続を示す図である。 According to an embodiment of the invention, showing the connection of the VNA to measure the calibration parameters for S 21 measurements. . 図8の接続に対応する、6ポート接合を用いたコリレータである。It is a correlator using 6 port junction corresponding to the connection of FIG. 発明の実施の形態に係る、SS according to the embodiment of the invention 22twenty two 測定用の校正パラメータを測定するためのVNAの接続を示す図である。It is a figure which shows the connection of VNA for measuring the calibration parameter for a measurement. 図10の接続に対応する、6ポート接合を用いたリフレクトメータである。It is the reflectometer using 6 port junction corresponding to the connection of FIG.

符号の説明Explanation of symbols

1,2,3,4,5,6 ポート1〜ポート6
11 検波器
12 標準器
13,14 スイッチ
15 移相器
16 6ポート接合
17 DUT(2ポート供試デバイス)
18 DUT(1ポート供試デバイス)
19,20,21 発振源
22,23 方向性結合器
24,25 無反射終端器
26 電力分配器
1, 2, 3, 4, 5, 6 Port 1 to Port 6
11 detector 12 standard device 13, 14 switch 15 phase shifter 16 6-port junction 17 DUT (2-port test device)
18 DUT (1 port EUT)
19, 20, 21 Oscillation source 22, 23 Directional coupler 24, 25 Non-reflective terminator 26 Power distributor

Claims (2)

高周波信号を発生する発振源と、  An oscillation source that generates a high-frequency signal;
前記発振源の出力を2つに分配する電力分配器と、  A power distributor that distributes the output of the oscillation source in two;
2つの入力ポート1と2及び4個の電力計測用の出力ポート3乃至6を含み、前記入力ポート1で前記電力分配器の一方から出る波を受ける6ポート接合と、  A 6-port junction comprising two input ports 1 and 2 and 4 power measurement output ports 3 to 6 for receiving a wave from one of the power distributors at the input port 1;
前記6ポート接合の前記出力ポート3乃至6から出る波をそれぞれ検波する検波器と、  A detector for detecting each of the waves output from the output ports 3 to 6 of the 6-port junction;
前記電力分配器の他方から出る波を受け、その位相を変化させる移相器と、  Receiving a wave from the other of the power distributor and changing its phase;
前記移相器から出る波を受け、これを出口(1)又は(2)のいずれか一方へ出す第1スイッチと、  A first switch that receives the wave exiting the phase shifter and exits it to either the outlet (1) or (2);
入口(1)及び(2)のいずれか一方を選択して、そこに入った波を前記6ポート接合の前記入力ポート2に入れる第2スイッチと、  A second switch that selects any one of the inlets (1) and (2) and puts the wave that enters the inlet into the input port 2 of the 6-port junction;
4つの端をもち、ひとつの端は前記第1スイッチの前記出口(1)に接続され、他のひとつの端は前記第2スイッチの前記入口(1)に接続され、他のひとつの端は第1無反射終端器に接続され、残りのひとつの端は測定ポートP1となる第1方向性結合器と、  It has four ends, one end is connected to the outlet (1) of the first switch, the other end is connected to the inlet (1) of the second switch, and the other end is A first directional coupler connected to the first non-reflective terminator, the remaining one end being the measurement port P1,
4つの端をもち、ひとつの端は前記第1スイッチの前記出口(2)に接続され、他のひとつの端は前記第2スイッチの前記入口(2)に接続され、他のひとつの端は第2無反射終端器に接続され、残りのひとつの端は測定ポートP2となる第2方向性結合器と、を備えるベクトルネットワークアナライザ。  It has four ends, one end is connected to the outlet (2) of the first switch, the other end is connected to the inlet (2) of the second switch, and the other end is A vector network analyzer comprising: a second directional coupler connected to the second non-reflecting terminator and having the remaining one end serving as a measurement port P2.
高周波信号を発生する発振源と、  An oscillation source that generates a high-frequency signal;
前記発振源の出力を2つに分配する電力分配器と、  A power distributor that distributes the output of the oscillation source in two;
2つの入力ポート1と2及び4個の電力計測用の出力ポート3乃至6を含み、前記入力ポート1で前記電力分配器の一方から出る波を受ける6ポート接合と、  A 6-port junction comprising two input ports 1 and 2 and 4 power measurement output ports 3 to 6 for receiving a wave from one of the power distributors at the input port 1;
前記6ポート接合の前記出力ポート3乃至6から出る波をそれぞれ検波する検波器と、  A detector for detecting each of the waves output from the output ports 3 to 6 of the 6-port junction;
前記電力分配器の他方から出る波を受け、その位相を変化させる移相器と、  Receiving a wave from the other of the power distributor and changing its phase;
前記移相器から出る波を受け、これを出口(1)又は(2)のいずれか一方へ出す第1スイッチと、  A first switch that receives the wave exiting the phase shifter and exits it to either the outlet (1) or (2);
入口(1)及び(2)のいずれか一方を選択して、そこに入った波を前記6ポート接合の前記入力ポート2に入れる第2スイッチと、  A second switch that selects any one of the inlets (1) and (2) and puts the wave that enters the inlet into the input port 2 of the 6-port junction;
4つの端をもち、ひとつの端は前記第1スイッチの前記出口(1)に接続され、他のひとつの端は前記第2スイッチの前記入口(1)に接続され、他のひとつの端は第1無反射終端器に接続され、残りのひとつの端は測定ポートP1となる第1方向性結合器と、  It has four ends, one end is connected to the outlet (1) of the first switch, the other end is connected to the inlet (1) of the second switch, and the other end is A first directional coupler connected to the first non-reflective terminator, the remaining one end being the measurement port P1,
4つの端をもち、ひとつの端は前記第1スイッチの前記出口(2)に接続され、他のひとつの端は前記第2スイッチの前記入口(2)に接続され、他のひとつの端は第2無反射終端器に接続され、残りのひとつの端は測定ポートP2となる第2方向性結合器と、を備えるベクトルネットワークアナライザの校正方法であって、  It has four ends, one end is connected to the outlet (2) of the first switch, the other end is connected to the inlet (2) of the second switch, and the other end is A vector network analyzer calibration method comprising: a second directional coupler connected to a second non-reflecting terminator, and the remaining one end serving as a measurement port P2.
前記第1スイッチで前記出口(1)を選択し、前記第2スイッチで前記入口(1)を選択し、前記測定ポートP1に既知の標準器を接続し、前記移相器の可動部分を動かしながら前記検波器の電力を一周期分測定し、得られた電力測定値を用いてS  Select the outlet (1) with the first switch, select the inlet (1) with the second switch, connect a known standard to the measurement port P1, and move the movable part of the phase shifter While measuring the power of the detector for one period, using the obtained power measurement value, S 1111 測定用の校正パラメータを算出するステップと、Calculating calibration parameters for measurement;
前記第1スイッチで前記出口(2)を選択し、前記第2スイッチで前記入口(1)を選択し、前記測定ポートP1とP2を直結し、前記移相器の可動部分を動かしながら前記検波器の電力を一周期分測定し、得られた電力測定値を用いてS  The outlet (2) is selected by the first switch, the inlet (1) is selected by the second switch, the measurement ports P1 and P2 are directly connected, and the detection part is moved while moving the movable part of the phase shifter. Measure the power of the instrument for one cycle and use the power measurement value 1212 測定用の校正パラメータを算出するステップと、Calculating calibration parameters for measurement;
前記第1スイッチで前記出口(1)を選択し、前記第2スイッチで前記入口(2)を選択し、前記測定ポートP1とP2を直結し、前記移相器の可動部分を動かしながら前記検波器の電力を一周期分測定し、得られた電力測定値を用いてS  The outlet (1) is selected by the first switch, the inlet (2) is selected by the second switch, the measurement ports P1 and P2 are directly connected, and the detection part is moved while moving the movable part of the phase shifter. Measure the power of the instrument for one cycle and use the power measurement value 21twenty one 測定用の校正パラメータを算出するステップと、Calculating calibration parameters for measurement;
前記第1スイッチで前記出口(2)を選択し、前記第2スイッチで前記入口(2)を選択し、前記測定ポートP2に既知の標準器を接続し、前記移相器の可動部分を動かしながら前記検波器の電力を一周期分測定し、得られた電力測定値を用いてS  The outlet (2) is selected by the first switch, the inlet (2) is selected by the second switch, a known standard is connected to the measurement port P2, and the movable part of the phase shifter is moved. While measuring the power of the detector for one period, using the obtained power measurement value, S 22twenty two 測定用の校正パラメータを算出するステップと、を備えるベクトルネットワークアナライザの校正方法。A vector network analyzer calibration method comprising: calculating calibration parameters for measurement.
JP2004299813A 2004-10-14 2004-10-14 Vector network analyzer and calibration method thereof Active JP4149428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004299813A JP4149428B2 (en) 2004-10-14 2004-10-14 Vector network analyzer and calibration method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004299813A JP4149428B2 (en) 2004-10-14 2004-10-14 Vector network analyzer and calibration method thereof

Publications (2)

Publication Number Publication Date
JP2006112893A JP2006112893A (en) 2006-04-27
JP4149428B2 true JP4149428B2 (en) 2008-09-10

Family

ID=36381523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299813A Active JP4149428B2 (en) 2004-10-14 2004-10-14 Vector network analyzer and calibration method thereof

Country Status (1)

Country Link
JP (1) JP4149428B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167668A (en) * 2017-05-25 2017-09-15 中国电子科技集团公司第十三研究所 1 40GHz is in piece S parameter measuring method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4517119B2 (en) * 2007-09-12 2010-08-04 株式会社キャンパスクリエイト Linear multiport system parameter measurement method, measurement method using vector network analyzer, and program
JP5213124B2 (en) 2009-02-04 2013-06-19 中央電子株式会社 Linear multiport system parameter measurement method and vector network analyzer measurement method
CN102087346B (en) * 2010-12-16 2012-08-22 哈尔滨工业大学 Phase response calibration method of nonlinear vector network analyzer based on fine frequency grid calibration
CN111983431B (en) * 2020-08-31 2022-11-15 中电科思仪科技股份有限公司 Method for improving simulation precision of port reflection coefficient of vector network analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167668A (en) * 2017-05-25 2017-09-15 中国电子科技集团公司第十三研究所 1 40GHz is in piece S parameter measuring method

Also Published As

Publication number Publication date
JP2006112893A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
Rytting Network analyzer error models and calibration methods
US7061221B2 (en) Reduced complexity transmission line and waveguide fault tester
US9366743B2 (en) Time domain network analyzer
JP6474720B2 (en) Method for determining the scattering parameters of the electronic device under test
US7256585B1 (en) Match-corrected power measurements with a vector network analyzer
US8508241B2 (en) Method and device for the calibration of network analyzers using a comb generator
US7592818B2 (en) Method and apparatus for measuring scattering coefficient of device under test
US20120326737A1 (en) Method of measuring scattering parameters of device under test
RU2524049C1 (en) Device for measuring absolute complex transmission and reflection coefficients of microwave devices with frequency conversion
JPH11352163A (en) Calibration method of network analyzer
JP2012515347A (en) High frequency analysis of device under test
Rytting Network analyzer accuracy overview
US6496785B1 (en) Network analyzer, network analytical method and recording medium
JP2009068932A (en) Method and apparatus for measuring system parameter of linear multi-port, measuring method using vector network analyzer, and program
WO2014182669A1 (en) Vector network power meter
JP2009058348A (en) Measurement method using vector network analyzer, and calibration method and program of the same
JP4149428B2 (en) Vector network analyzer and calibration method thereof
JP2008164418A (en) Vector network analyzer, and measuring method and program using this
US6982561B2 (en) Scattering parameter travelling-wave magnitude calibration system and method
JP7086323B2 (en) Noise intrusion position estimation device and noise intrusion position estimation method
JP3540797B2 (en) Seven-port correlator, calibration method thereof, and vector network analyzer using seven-port correlator
Nikolaenko et al. Analysis of modern techniques for automatic measurements in microwaves
Heuermann et al. Results of network analyzer measurements with leakage errors-corrected with direct calibration techniques
Torok et al. Efficient broadband method for equivalent source reflection coefficient measurements
RU2682079C1 (en) Device for measuring complex transmission and reflection coefficients of microwave devices with frequency conversion

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070404

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350