JP2006112893A - Vector network analyzer device using 6-port type joint, and its calibration method - Google Patents

Vector network analyzer device using 6-port type joint, and its calibration method Download PDF

Info

Publication number
JP2006112893A
JP2006112893A JP2004299813A JP2004299813A JP2006112893A JP 2006112893 A JP2006112893 A JP 2006112893A JP 2004299813 A JP2004299813 A JP 2004299813A JP 2004299813 A JP2004299813 A JP 2004299813A JP 2006112893 A JP2006112893 A JP 2006112893A
Authority
JP
Japan
Prior art keywords
port
calibration
calibration method
phase shifter
network analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004299813A
Other languages
Japanese (ja)
Other versions
JP4149428B2 (en
Inventor
Toshiyuki Yakabe
利幸 矢加部
Hajime Kondo
肇 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electro Communications NUC
Chuo Electronics Co Ltd
Original Assignee
University of Electro Communications NUC
Chuo Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electro Communications NUC, Chuo Electronics Co Ltd filed Critical University of Electro Communications NUC
Priority to JP2004299813A priority Critical patent/JP4149428B2/en
Publication of JP2006112893A publication Critical patent/JP2006112893A/en
Application granted granted Critical
Publication of JP4149428B2 publication Critical patent/JP4149428B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems, wherein in a calibration method of VNA mainly used for a high-frequency measuring system, connection and disconnection of several kinds of standards are required at calibration time, and the requirement causes generation of human errors, to thereby reduce the measurement accuracy. <P>SOLUTION: In an integration calibration method, calibration can be performed with only a single phase shifter and one standard having a known complex reflection coefficient, without taking a conventional complicated calibration step, and thereby calibration accuracy is improved and errors generated in the calculation of an S parameter can be reduced. Hereby, in this 6-port VNA, calibration can be performed with only one phase shifter and one standard having the known complex reflection coefficient, without taking complicated steps as in the conventional calibration method, and thereby the calibration accuracy is improved and errors generated in calculation of the S parameter can be reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高周波領域(マイクロ波帯、ミリ波帯、サブミリ波帯、テラヘルツ帯)、光領域(赤外線、可視光線、紫外線)などにおける位相測定技術に関する。   The present invention relates to a phase measurement technique in a high frequency region (microwave band, millimeter wave band, submillimeter wave band, terahertz band), optical region (infrared ray, visible ray, ultraviolet ray) and the like.

高周波測定装置である、6ポート型リフレクトメータ、6ポート型コリレータは、校正により得られるハードウェア固有の情報(校正パラメータ)と、複数の電力測定値(スカラー量)から、2つの波の振幅比と位相差(ベクトル量)を導出する測定装置である。
本測定装置を実現するために用いられるハードウェア(junction:接合)は、6ポートである場合でも6ポートではない場合でも「型」という表現を付加し、「6ポート型接合」と呼ぶ。そして、この「6ポート型接合」を用いた測定装置も同様に「型」という表現を付加し、「6ポート型リフレクトメータ」、「6ポート型コリレータ」と呼ぶ。
以下、6ポートのハードウェアを例に説明する。したがって、「6ポート接合」、「6ポートリフレクトメータ」、「6ポートコリレータ」と表現する。
The 6-port reflectometer and 6-port correlator, which are high-frequency measuring devices, are based on hardware-specific information (calibration parameters) obtained by calibration and multiple power measurement values (scalar quantities), and the amplitude ratio of the two waves And a phase difference (vector quantity).
The hardware (junction) used to realize this measurement apparatus is called “6-port type junction” by adding the expression “type” regardless of whether it is 6 ports or not. Similarly, the measurement device using the “6-port type joint” is also referred to as “6-port type reflectometer” and “6-port type correlator” with the expression “type” added thereto.
Hereinafter, a description will be given by taking 6-port hardware as an example. Therefore, they are expressed as “6-port junction”, “6-port reflectometer”, and “6-port correlator”.

現在のベクトル・ネットワーク・アナライザ(VNA)の校正は、数種類の標準器(ショート、オープン、負荷、スルー、ライン等)を接続することによって行われている。
本願出願人は図1に示すように、6ポート接合16、検波器11、スイッチSW1・13,SW2・14、方向性結合器22,23、電力分配器26、発振源21、移相器15、無反射終端器24,25を用いることにより、従来のVNAの測定原理とは異なるVNAを実現している。以下、本VNAを6ポートVNAと呼び、この6ポートVNAの測定ポート1をポートP1、測定ポート2をポートP2と表現する。
この6ポートVNAの校正方法は、現在のところ、6ポート接合部分については、本願出願人が発明した積分校正法によって校正を行い、その他の回路部分については、従来のVNAと同様の校正方法を適用している。
Current vector network analyzer (VNA) calibration is performed by connecting several types of standard devices (short, open, load, through, line, etc.).
As shown in FIG. 1, the applicant of the present application has a 6-port junction 16, a detector 11, switches SW 1, 13, SW 2, 14, directional couplers 22, 23, a power distributor 26, an oscillation source 21, and a phase shifter 15. By using the non-reflective terminators 24 and 25, a VNA different from the measurement principle of the conventional VNA is realized. Hereinafter, this VNA is referred to as a 6-port VNA, and the measurement port 1 of this 6-port VNA is expressed as a port P1, and the measurement port 2 is expressed as a port P2.
At present, the 6-port VNA is calibrated by the integral calibration method invented by the applicant of the present application for the 6-port junction, and the same calibration method as the conventional VNA is used for the other circuit parts. Applicable.

図2に示すように、ポート1に発振源19を、ポート2に1ポート供試デバイス(Device Under Test:DUT)18を接続し、ポート2から出力する波bと入力する波aとの比、つまり、ポート2から1ポートDUT18側を見た複素反射係数γ
γ=a/b ・・・・・ (1)
の測定装置をリフレクトメータと呼ぶ。
また、図3に示すように、ポート1から入力する波aとポート2から入力する波aの複素振幅比W
W=a/a ・・・・・ (2)
の測定装置をコリレータと呼ぶ。
6ポート接合は、回路が線形で単一モードのみが伝播する条件下で、出力する波b,b,b,bはポート1,2に対して入出力する波a,a,bの線形結合で表わすことができる。
すなわち、b(i=3,4,5,6)はa,a,bを用いて、
=Aa+B ・・・・・ (3)
=Ca+D ・・・・・ (4)
と表わすことができる。
ただし、A,B,C,Dは6ポート接合固有の周波数に依存する複素定数である。
そして、ポートiに接続した検波器による電力測定値をPとするとPは出力する波bの振幅の二乗に比例し、αを比例定数とすると、
=α|Aa+B ・・・・・ (5)
=α|Ca+D ・・・・・ (6)
と表わすことができる。そして、ポート3に対するポートh(h=4,5,6)の電力比は、

Figure 2006112893
と表わされる。この,t,kは校正によって求められる校正パラメータである。
特許第3540797号公報 As shown in FIG. 2, an oscillation source 19 is connected to port 1, a 1-port device under test (DUT) 18 is connected to port 2, and a wave b 2 output from port 2 and an input wave a 2 Ratio, that is, the complex reflection coefficient γ as seen from the port 2 to the 1-port DUT 18 side
γ = a 2 / b 2 (1)
This measuring device is called a reflectometer.
Also, as shown in FIG. 3, the complex amplitude ratio W of the wave a 1 input from the port 1 and the wave a 2 input from the port 2
W = a 2 / a 1 (2)
This measuring device is called a correlator.
6-port junction is under conditions where the circuit is only a single mode propagates in the linear wave b 3 outputs, b 4, b 5, b 6 is a wave a 1, a to output to the port 1, 2 2 and b 2 .
That is, b i (i = 3, 4, 5, 6) uses a 1 , a 2 , b 2 ,
b i = A ia 1 + B ia 2 (3)
b i = C ia 2 + D i b 2 (4)
Can be expressed as
However, A i , B i , C i , and D i are complex constants depending on the frequency inherent to the 6-port junction.
When the power value measured by the detector which is connected to the port i When P i is P i proportional to the square of the amplitude of the wave b i to be output to the proportional constant alpha,
P i = α | A ia 1 + B ia 2 | 2 (5)
P i = α | C ia 2 + D i b 2 | 2 (6)
Can be expressed as Then, the power ratio 3 P h ports h (h = 4,5,6) with respect to port 3,
Figure 2006112893
It is expressed as The 3 T h, t h, 3 K h, k h is a calibration parameter obtained by the calibration.
Japanese Patent No. 35409797

従来から用いられているVNAの校正方法は、校正手順が複雑であるという問題がある。
この校正手順が複雑であるために、人為的ミスが発生する原因となる。また、校正時に数種類の標準器の接続と取り外しが必要であり、そのために測定精度低下の問題が発生する。
本願出願人が発明した6ポートVNAを用いてDUTのSパラメータを算出する場合、従来の方法では、6ポート接合部分に対する校正パラメータ、その他の回路部分に対する校正パラメータという2種類の校正パラメータを必要とする。
そして、その他の回路部分に対する校正パラメータの精度は、6ポート接合部分の校正パラメータの精度とその他の回路部分の校正時に測定する電力測定値の精度に依存する。従って、DUTのSパラメータを算出する際の誤差が増大する。
Conventional VNA calibration methods have a problem that the calibration procedure is complicated.
The complexity of this calibration procedure can cause human error. In addition, it is necessary to connect and remove several kinds of standard devices at the time of calibration, which causes a problem of deterioration in measurement accuracy.
When calculating the S-parameters of a DUT using the 6-port VNA invented by the applicant of the present application, the conventional method requires two types of calibration parameters: calibration parameters for the 6-port junction and calibration parameters for the other circuit portions. To do.
The accuracy of the calibration parameters for the other circuit portions depends on the accuracy of the calibration parameters for the 6-port joint portion and the accuracy of the power measurement value measured during calibration of the other circuit portions. Accordingly, an error in calculating the S parameter of the DUT increases.

本願出願人が発明した積分校正法は、任意の6ポート接合に適用可能である。そして、6ポート接合にスイッチ、方向性結合器を追加した6ポートVNAもまた6ポート接合として取り扱える。従って、6ポートVNAに対して積分校正法を適用することができる。   The integral calibration method invented by the present applicant can be applied to any 6-port junction. A 6-port VNA obtained by adding a switch and a directional coupler to the 6-port junction can also be handled as a 6-port junction. Therefore, the integral calibration method can be applied to the 6-port VNA.

本願出願人が発明した積分校正法を用いると、6ポートVNAは従来の校正方法のような複雑な手順を踏むことなく、1つの移相器と、1つの複素反射係数既知の標準器のみで校正することができるので校正精度が向上し、Sパラメータを算出する際の誤差を減少させることができる。   Using the integral calibration method invented by the applicant of the present application, the 6-port VNA requires only one phase shifter and one standard unit with a known complex reflection coefficient without going through the complicated procedure of the conventional calibration method. Since the calibration can be performed, the calibration accuracy can be improved and the error in calculating the S parameter can be reduced.

以下に、本発明の実施形態を図面を参照しながら説明する。
本発明は、S11,S12,S21,S22を測定する4通りの回路の状態それぞれについて、本願出願人が発明した積分校正法を実行し、4通りの校正パラメータを算出する。
算出した校正パラメータをS11測定時にはS11測定用に校正した校正パラメータ、S12測定時にはS12測定用に校正した校正パラメータ、S21測定時にはS21測定用に校正した校正パラメータ、S22測定時にはS22測定用に校正した校正パラメータを使用する。
Embodiments of the present invention will be described below with reference to the drawings.
In the present invention, the integral calibration method invented by the applicant of the present application is executed for each of four circuit states for measuring S 11 , S 12 , S 21 , and S 22 , and four calibration parameters are calculated.
Calculating calibration parameters calibration parameters at S 11 measurements calibrated for S 11 measurements, calibration parameters during S 12 measurements calibrated for S 12 measured, the calibration parameter when S 21 measurements calibrated for S 21 measurements, S 22 measured sometimes using calibration parameters calibrated for S 22 measurements.

図4は、2ポートDUT17のS11測定用の校正パラメータを算出する場合の回路状態を示す。スイッチSW1・13を接点(1)に、スイッチSW2・14を接点(1)に接続し、既知の標準器12をポートP1に接続する。この状態は図5に示されている6ポートリフレクトメータに対応する。この状態で移相器15の可動部分を始動位置に固定後、検波器11のP〜Pの電力を測定し、基準とする。
次に、移相器15の可動部分を動かしながら、検波器11のP〜Pの電力を一周期分測定する。
以上の電力測定値を用いて2ポートDUT17のS11測定用の校正パラメータ,k,k,k,kを算出する。
Figure 4 shows a circuit state when calculating the calibration parameters for S 11 Measurement of 2-port DUT17. The switches SW1 and 13 are connected to the contact (1), the switches SW2 and 14 are connected to the contact (1), and the known standard 12 is connected to the port P1. This state corresponds to the 6-port reflectometer shown in FIG. In this state, after fixing the movable part of the phase shifter 15 to the starting position, the power of P 3 to P 6 of the detector 11 is measured and used as a reference.
Next, while moving the movable part of the phase shifter 15, the power of P 3 to P 6 of the detector 11 is measured for one period.
Calculating the S 11 calibration parameters 3 K 4 for measuring, 3 K 5, 3 K 6 , k 3, k 4, k 5, k 6 of the two-port DUT17 using more power measurements.

図6は、2ポートDUT17のS12測定用の校正パラメータを算出する場合の回路状態を示す。スイッチSW1・13を接点(2)に、スイッチSW2・14を接点(1)に接続し、ポートP1とポートP2を直結する。この状態は図7に示されている6ポートコリレータに対応する。この状態で移相器15の可動部分を始動位置に固定後、検波器11のP〜Pの電力を測定し、基準とする。
次に、移相器15の可動部分を動かしながら、検波器11のP〜Pの電力を一周期分測定する。
以上の電力測定値を用いて2ポートDUT17のS12測定用の校正パラメータ,t,t,t,tを算出する。
Figure 6 shows a circuit state when calculating the calibration parameters for S 12 Measurement of 2-port DUT17. The switches SW1 and 13 are connected to the contact (2), the switches SW2 and 14 are connected to the contact (1), and the port P1 and the port P2 are directly connected. This state corresponds to the 6-port correlator shown in FIG. In this state, after fixing the movable part of the phase shifter 15 to the starting position, the power of P 3 to P 6 of the detector 11 is measured and used as a reference.
Next, while moving the movable part of the phase shifter 15, the power of P 3 to P 6 of the detector 11 is measured for one period.
The calibration parameters 3 T 4 , 3 T 5 , 3 T 6 , t 3 , t 4 , t 5 , t 6 for the S 12 measurement of the 2-port DUT 17 are calculated using the above power measurement values.

図8は、2ポートDUT17のS21測定用の校正パラメータを算出する場合の回路状態を示す。スイッチSW1・13を接点(1)に、スイッチSW2・14を接点(2)に接続し、ポートP1とポートP2を直結する。この状態は、図9に示されている6ポートコリレータに対応する。この状態で移相器15の可動部分を始動位置に固定後、検波器11のP〜Pの電力を測定し、基準とする。
次に、移相器15の可動部分を動かしながら、検波器11のP〜Pの電力を一周期分測定する。
以上の電力測定値を用いて2ポートDUT17のS21測定用の校正パラメータ´,´,´,t´,t´,t´,t´を算出する。
FIG. 8 shows a circuit state when calculating calibration parameters for S 21 measurement of the 2-port DUT 17. The switches SW1 and 13 are connected to the contact (1), the switches SW2 and 14 are connected to the contact (2), and the port P1 and the port P2 are directly connected. This state corresponds to the 6-port correlator shown in FIG. In this state, after fixing the movable part of the phase shifter 15 to the starting position, the power of P 3 to P 6 of the detector 11 is measured and used as a reference.
Next, while moving the movable part of the phase shifter 15, the power of P 3 to P 6 of the detector 11 is measured for one period.
Using the above power measurement values, calibration parameters 3 T 4 ′, 3 T 5 ′, 3 T 6 ′, t 3 ′, t 4 ′, t 5 ′, t 6 ′ for S 21 measurement of the 2-port DUT 17 are obtained. calculate.

図10は、2ポートDUT17のS22測定用の校正パラメータを算出する場合の回路状態を示す。スイッチSW1・13を接点(2)に、スイッチSW2・14を接点(2)に接続し、既知の標準器12をポートP2に接続する。この状態は、図11に示されている6ポートリフレクトメータに対応する。この状態で移相器15の可動部分を始動位置に固定後、検波器11のP〜Pの電力を測定し、基準とする。
次に、移相器15の可動部分を動かしながら、検波器11のP〜Pの電力を一周期分測定する。
以上の電力測定値を用いて2ポートDUT17のS22測定用の校正パラメータ´,´,´,k´,k´,k´,k´を算出する。
以上述べた手順により、従来の校正方法と比較し、6ポートVNAを簡単かつ高精度に校正することができる。
Figure 10 shows a circuit state when calculating the calibration parameters for S 22 Measurement of 2-port DUT17. The switches SW1 and 13 are connected to the contact (2), the switches SW2 and 14 are connected to the contact (2), and the known standard 12 is connected to the port P2. This state corresponds to the 6-port reflectometer shown in FIG. In this state, after fixing the movable part of the phase shifter 15 to the starting position, the power of P 3 to P 6 of the detector 11 is measured and used as a reference.
Next, while moving the movable part of the phase shifter 15, the power of P 3 to P 6 of the detector 11 is measured for one period.
More calibration parameters 3 K 4 for S 22 Measurement of 2-port DUT17 using power measurements', 3 K 5 ', 3 K 6', k 3 ', k 4', k 5 ', a k 6' calculate.
By the procedure described above, the 6-port VNA can be calibrated easily and with high accuracy as compared with the conventional calibration method.

6ポートVNAの構成図。The block diagram of 6 port VNA. リフレクトメータ。Reflectometer. コリレータ。Correlator. 11測定用校正回路図。S 11 calibration circuit diagram for measurement. 11測定用校正回路に対応する6ポートリフレクトメータ。6 port reflectometer corresponding to S 11 for measurement calibration circuit. 12測定用校正回路図。S 12 calibration circuit diagram for measurement. 12測定用校正回路に対応する6ポートコリレータ。6 port correlator corresponding to S 12 for measurement calibration circuit. 21測定用校正回路図。S 21 calibration circuit diagram for measurement. 21測定用校正回路に対応する6ポートコリレータ。6 port correlator corresponding to the calibration circuit S 21 measurements. 22測定用校正回路図。S 22 measured calibration circuit diagram. 22測定用校正回路に対応する6ポートリフレクトメータ。6 port reflectometer corresponding to S 22 for measurement calibration circuit.

符号の説明Explanation of symbols

1,2,3,4,5,6 ポート1〜ポート6
11 検波器
12 標準器
13,14 スイッチ
15 移相器
16 6ポート接合
17 DUT(2ポート供試デバイス)
18 DUT(1ポート供試デバイス)
19,20,21 発振源
22,23 方向性結合器
24,25 無反射終端器
26 電力分配器
1, 2, 3, 4, 5, 6 Port 1 to Port 6
11 detector 12 standard device 13, 14 switch 15 phase shifter 16 6-port junction 17 DUT (2-port test device)
18 DUT (1 port EUT)
19, 20, 21 Oscillation source 22, 23 Directional coupler 24, 25 Non-reflective terminator 26 Power distributor

Claims (3)

6ポート型接合、検波器、スイッチ、方向性結合器、電力分配器、発振源、移相器、無反射終端器により構成される回路において、DUTの接続を変更することなく、DUTの全Sパラメータを算出することを特徴とする、6ポート型接合を用いたベクトル・ネットワーク・アナライザ装置。   In a circuit composed of a 6-port junction, a detector, a switch, a directional coupler, a power divider, an oscillation source, a phase shifter, and a non-reflection terminator, all SUTs of the DUT can be connected without changing the connection of the DUT. A vector network analyzer using a 6-port junction, characterized in that a parameter is calculated. 1つの移相器で6ポート型コリレータを校正する積分校正法を、請求項1に記載の6ポート型接合を用いたベクトル・ネットワーク・アナライザ装置に適用し、6ポート型コリレータとして校正することを特徴とする、6ポート型接合を用いたベクトル・ネットワーク・アナライザ装置の校正方法。   An integral calibration method for calibrating a 6-port correlator with a single phase shifter is applied to the vector network analyzer apparatus using a 6-port junction according to claim 1 and calibrated as a 6-port correlator. A method for calibrating a vector network analyzer device using a 6-port junction. 1つの移相器と1つの複素反射係数既知の標準器で6ポート型リフレクトメータを校正する積分校正法を、請求項1に記載の6ポート型接合を用いたベクトル・ネットワーク・アナライザ装置に適用し、6ポート型リフレクトメータとして校正することを特徴とする、6ポート型接合を用いたベクトル・ネットワーク・アナライザ装置の校正方法。   2. An integral calibration method for calibrating a 6-port reflectometer with one phase shifter and one standard with a known complex reflection coefficient is applied to the vector network analyzer apparatus using the 6-port junction according to claim 1. And a calibration method for a vector network analyzer apparatus using a 6-port junction, wherein the calibration is performed as a 6-port reflectometer.
JP2004299813A 2004-10-14 2004-10-14 Vector network analyzer and calibration method thereof Active JP4149428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004299813A JP4149428B2 (en) 2004-10-14 2004-10-14 Vector network analyzer and calibration method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004299813A JP4149428B2 (en) 2004-10-14 2004-10-14 Vector network analyzer and calibration method thereof

Publications (2)

Publication Number Publication Date
JP2006112893A true JP2006112893A (en) 2006-04-27
JP4149428B2 JP4149428B2 (en) 2008-09-10

Family

ID=36381523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004299813A Active JP4149428B2 (en) 2004-10-14 2004-10-14 Vector network analyzer and calibration method thereof

Country Status (1)

Country Link
JP (1) JP4149428B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068932A (en) * 2007-09-12 2009-04-02 Campus Create Co Ltd Method and apparatus for measuring system parameter of linear multi-port, measuring method using vector network analyzer, and program
CN102087346A (en) * 2010-12-16 2011-06-08 哈尔滨工业大学 Phase response calibration method of nonlinear vector network analyzer based on fine frequency grid calibration
US8725442B2 (en) 2009-02-04 2014-05-13 The University Of Electro-Communications Method for measuring system parameter of linear multiport and measuring method using vector network analyzer
CN111983431A (en) * 2020-08-31 2020-11-24 中电科仪器仪表有限公司 Method for improving simulation precision of port reflection coefficient of vector network analyzer
RU2805381C1 (en) * 2023-07-04 2023-10-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ") Device for measuring complex transmission and reflection coefficients of microwave quadripoles with frequency conversion

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167668A (en) * 2017-05-25 2017-09-15 中国电子科技集团公司第十三研究所 1 40GHz is in piece S parameter measuring method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068932A (en) * 2007-09-12 2009-04-02 Campus Create Co Ltd Method and apparatus for measuring system parameter of linear multi-port, measuring method using vector network analyzer, and program
JP4517119B2 (en) * 2007-09-12 2010-08-04 株式会社キャンパスクリエイト Linear multiport system parameter measurement method, measurement method using vector network analyzer, and program
US8725442B2 (en) 2009-02-04 2014-05-13 The University Of Electro-Communications Method for measuring system parameter of linear multiport and measuring method using vector network analyzer
CN102087346A (en) * 2010-12-16 2011-06-08 哈尔滨工业大学 Phase response calibration method of nonlinear vector network analyzer based on fine frequency grid calibration
CN102087346B (en) * 2010-12-16 2012-08-22 哈尔滨工业大学 Phase response calibration method of nonlinear vector network analyzer based on fine frequency grid calibration
CN111983431A (en) * 2020-08-31 2020-11-24 中电科仪器仪表有限公司 Method for improving simulation precision of port reflection coefficient of vector network analyzer
RU2805381C1 (en) * 2023-07-04 2023-10-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ") Device for measuring complex transmission and reflection coefficients of microwave quadripoles with frequency conversion

Also Published As

Publication number Publication date
JP4149428B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
JP6556930B2 (en) Vector network analyzer
Rytting Network analyzer error models and calibration methods
US9921287B2 (en) Method for calibrating a test rig
US10042029B2 (en) Calibration of test instrument over extended operating range
US6188968B1 (en) Removing effects of adapters present during vector network analyzer calibration
US7592818B2 (en) Method and apparatus for measuring scattering coefficient of device under test
US8508241B2 (en) Method and device for the calibration of network analyzers using a comb generator
US20040201383A1 (en) Balanced device characterization including test system calibration
JPH11326413A (en) Measurement error correcting method in network analyzer
US6836743B1 (en) Compensating for unequal load and source match in vector network analyzer calibration
US8798953B2 (en) Calibration method for radio frequency scattering parameter measurement applying three calibrators and measurement structure thereof
US11927661B2 (en) Integrated vector network analyzer
JP2006317448A (en) Power calibration for multi-port vector network analyzer (vna)
US20100204941A1 (en) Method and device for calibrating a network analyzer for measuring at differential connections
US5734268A (en) Calibration and measurment technique and apparatus for same
US7768271B2 (en) Method for calibration of a vectorial network analyzer having more than two ports
US20140118004A1 (en) Measurement Structure for Radio Frequency Scattering Parameter Measurement Applying Two Calibrators and Calibration Method Thereof
JP2008164418A (en) Vector network analyzer, and measuring method and program using this
US20050256658A1 (en) Multi-port scattering parameter calibration system and method
JP2006189440A (en) Vector network analyzer mixer calibration using unknown thru calibration
US6571187B1 (en) Method for calibrating two port high frequency measurements
JP2006112893A (en) Vector network analyzer device using 6-port type joint, and its calibration method
JP2005148067A (en) Acquisition of calibration parameters for examined three-port device
US6982561B2 (en) Scattering parameter travelling-wave magnitude calibration system and method
US20080010034A1 (en) Method for network analyzer calibration and network analyzer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070404

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080625

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350