JP4147563B1 - Circulating internal pressure engine and power generation system - Google Patents
Circulating internal pressure engine and power generation system Download PDFInfo
- Publication number
- JP4147563B1 JP4147563B1 JP2007144080A JP2007144080A JP4147563B1 JP 4147563 B1 JP4147563 B1 JP 4147563B1 JP 2007144080 A JP2007144080 A JP 2007144080A JP 2007144080 A JP2007144080 A JP 2007144080A JP 4147563 B1 JP4147563 B1 JP 4147563B1
- Authority
- JP
- Japan
- Prior art keywords
- carbon dioxide
- dioxide gas
- engine
- pressure
- expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
【課題】燃料資源に起因する問題を起こさずに、従来の内燃機関によるのと同等程度以上のエネルギを効率よく取り出すこと
【解決手段】高圧状態で供給される炭酸ガス35aが大気圧になるときの体積膨張による力により作動子を駆動する炭酸ガスエンジン1と、上記炭酸ガスエンジン1に高圧状態の炭酸ガス35aを供給する供給系経路34Aと、上記炭酸ガスエンジン1から排出される大気圧の炭酸ガス35bを回収する回収系経路34Bとからなり、上記供給系経路34Aと回収系経路34Bを接続して炭酸ガスが循環する循環回路34を構成する。
【選択図】図1[PROBLEMS] To efficiently extract energy equal to or higher than that of a conventional internal combustion engine without causing a problem caused by fuel resources. When carbon dioxide gas 35a supplied in a high pressure state becomes atmospheric pressure The carbon dioxide engine 1 that drives the actuator by the force of the volume expansion of the gas, the supply system path 34A that supplies the carbon dioxide gas 35a in a high pressure state to the carbon dioxide engine 1, and the atmospheric pressure discharged from the carbon dioxide engine 1 A circulation circuit 34 is configured which includes a recovery system path 34B for recovering the carbon dioxide gas 35b, and circulates the carbon dioxide gas by connecting the supply system path 34A and the recovery system path 34B.
[Selection] Figure 1
Description
本願発明は、炭酸ガスの物理的性状を最大限に活用した、燃料の燃焼を伴わずにエネルギを取り出す循環式内圧機関及びこれを使用した発電システムに関する。 The present invention relates to a circulation type internal pressure engine that takes out energy without combustion of fuel and makes the best use of the physical properties of carbon dioxide, and a power generation system using the same.
内燃機関は機関の内部で燃料を燃焼させてその熱エネルギを利用する。使用する燃料のちがいによりガソリン機関、ガス機関、石油機関等種々のものがあり、世界中で広く普及し使用されている。 An internal combustion engine burns fuel inside the engine and uses its thermal energy. There are various types such as a gasoline engine, a gas engine, an oil engine, etc. depending on the fuel used, and it is widely used all over the world.
しかしながら、石油資源の枯渇が懸念されており、また燃焼の結果排出される排気ガスによる公害問題を惹起している。 However, there is concern about the exhaustion of petroleum resources, and it causes pollution problems due to exhaust gas emitted as a result of combustion.
外燃機関も燃料を燃焼させるという点で、上記した問題、即ち、資源の枯渇や排気ガスによる公害問題を惹起する。 The external combustion engine also causes the above-described problems, that is, pollution problems due to exhaustion of resources and exhaust gas in that the fuel is burned.
これらを解消すべく、クリーンエネルギとして水素の利用が注目されているが、取扱いが至難のため、開発に行き詰まっているのが現状である。また原子力利用は公害乃至環境問題や安全性の点で懸念がある。 In order to solve these problems, the use of hydrogen as a clean energy has been attracting attention. In addition, the use of nuclear power is a concern in terms of pollution, environmental issues and safety.
このようにエネルギー源の確保が重要である反面、炭酸ガスの増大による弊害とくに地球温暖化問題が指摘されている。日本の炭酸ガス排出量は全世界の5%を占めると言われ、毎年約38100万トンもの膨大な量の炭酸ガスが大気中に排出されている。このうち約3割が発電等のエネルギ転換部門が占めている。このような憂慮すべき状態にあるにもかかわらず、世界経済の活発化・発展途上国の発展等により、京都議定書の如き政治的制約を尻目に炭酸ガスの排出は一層増大すると言われ、その有効利用はおろか増大防止を阻止できないでいる。とくに現代生活を支える電力エネルギは炭酸ガスを大量に発生させる石油等の化石燃料を燃焼する火力発電が中心であるため、上記憂慮は深刻である。 While securing an energy source is important in this way, adverse effects caused by the increase in carbon dioxide, especially the problem of global warming, have been pointed out. Japan's carbon dioxide emissions are said to account for 5% of the world, and an enormous amount of carbon dioxide of about 381 million tons is released into the atmosphere every year. About 30% of this is occupied by energy conversion departments such as power generation. Despite this alarming situation, CO2 emissions are said to increase further due to political constraints such as the Kyoto Protocol due to the global economic revitalization and the development of developing countries. The effective use as well as the prevention of increase cannot be prevented. In particular, the above-mentioned concerns are serious because electric power energy that supports modern life is mainly thermal power generation that burns fossil fuels such as oil that generate a large amount of carbon dioxide.
本願発明はこのような背景の下に、提唱される全く新しい画期的なエネルギシステムである。 The present invention is a completely new and innovative energy system that is proposed under such a background.
本願発明に関し、先行技術文献の調査をしたが有効な特許文献を発見することができなかった。強いて挙げるとすれば出願人の特許出願に係る次の文献である。
本願発明は燃料の燃焼を伴わずにエネルギを取り出すことにより上記欠点を解消する全く新しい画期的な循環式内圧機関及び発電システムを提案する。 The present invention proposes a completely new and innovative circulating internal pressure engine and power generation system that eliminates the above-mentioned drawbacks by extracting energy without burning fuel.
つまり本願発明の目的は、燃料資源に起因する問題を起こさずに、従来の内燃機関によるのと同等程度以上のエネルギを効率よく取り出すことができる循環式内圧機関及び発電システムを供することである。 That is, an object of the present invention is to provide a circulating internal pressure engine and a power generation system that can efficiently extract energy equal to or higher than that of a conventional internal combustion engine without causing problems due to fuel resources.
また他の目的は、エネルギ発生機関乃至発電機関による炭酸ガスの増加を防止することであり、ひいては温暖化現象の防止に寄与することである。 Another object is to prevent an increase in carbon dioxide gas by an energy generation engine or a power generation engine, and thus contribute to prevention of a warming phenomenon.
上記目的達成のため、本願発明による循環式内圧機関は、高圧状態で供給される炭酸ガスが大気圧になるときの体積膨張による力により作動子が駆動され、1サイクルの間に吸入膨張行程、膨張排出行程及び大気圧保持行程を経る炭酸ガスエンジンと、上記炭酸ガスエンジンに高圧状態の炭酸ガスを供給する供給系経路と、上記炭酸ガスエンジンから排出される大気圧の炭酸ガスを回収する回収系経路とからなり、上記回収系経路は、上記炭酸ガスエンジンから排出される炭酸ガスを冷却する冷却部と、上記冷却部より圧送される冷却された炭酸ガスを高圧にて圧縮する炭酸ガス圧縮部とを含み、上記供給系経路と回収系経路を接続して炭酸ガスが循環する循環回路を構成し、上記循環回路の供給系経路と回収系経路との接点に三方切替弁を設け、該三方切替弁を介して初期タンクを連結し、供給系のパイプ及び回収系のパイプに送給されてくる炭酸ガスが設定範囲内の濃度にあるか否かを検知するセンサを設け、該センサは上記濃度が設定範囲内に満たないときは初期切替信号を発し、設定範囲内であるときは循環切替信号を発することを特徴とする。
また、請求項1記載の循環式内圧機関において、大気圧状態の炭酸ガスを収納する調整タンクを設け、該調整タンクは、上記炭酸ガスエンジンの排気口側に連通可能な弁を有し、該弁の調整により上記炭酸ガスエンジンの排気口側と上記調整タンクとが連通されることを特徴とする。
また、本願発明による発電システムは、高圧状態で供給される炭酸ガスが大気圧になるときの体積膨張による力により作動子が駆動され、1サイクルの間に吸入膨張行程、膨張排出行程及び大気圧保持行程を経る炭酸ガスエンジンと、上記炭酸ガスエンジンに高圧状態の炭酸ガスを供給する供給系経路と、上記炭酸ガスエンジンから排出される大気圧の炭酸ガスを回収する回収系経路とからなり、上記回収系経路は、上記炭酸ガスエンジンから排出される炭酸ガスを冷却する冷却部と、上記冷却部より圧送される冷却された炭酸ガスを高圧にて圧縮する炭酸ガス圧縮部とを含み、上記供給系経路と回収系経路を接続して炭酸ガスが循環する循環回路を構成する循環回路を構成し、上記循環回路の供給系経路と回収系経路との接点に三方切替弁を設け、該三方切替弁を介して初期タンクを連結し、供給系のパイプ及び回収系のパイプに送給されてくる炭酸ガスが設定範囲内の濃度にあるか否かを検知するセンサを設け、該センサは上記濃度が設定範囲内に満たないときは初期切替信号を発し、設定範囲内であるときは循環切替信号を発し、上記炭酸ガスエンジンにより発電することを特徴とする。
また、請求項3記載の発電システムにおいて、大気圧状態の炭酸ガスを収納する調整タンクを設け、該調整タンクは、上記炭酸ガスエンジンの排気口側に連通可能な弁を有し、該弁の調整により上記炭酸ガスエンジンの排気口側と上記調整タンクとが連通されることを特徴とする。
To achieve the above object, the circulating internal pressure engine according to the present invention is driven by a force due to volume expansion when the carbon dioxide gas supplied in a high pressure state becomes atmospheric pressure, and the suction expansion stroke is performed during one cycle. A carbon dioxide engine that undergoes an expansion and discharge process and an atmospheric pressure maintaining process, a supply system path that supplies high-pressure carbon dioxide to the carbon dioxide engine, and a recovery that collects atmospheric carbon dioxide discharged from the carbon dioxide engine The recovery system path includes a cooling unit that cools the carbon dioxide gas discharged from the carbon dioxide engine, and carbon dioxide compression that compresses the cooled carbon dioxide pumped from the cooling unit at a high pressure. and a part, constitutes a circulation circuit carbon dioxide by connecting the recovery system path and the supply pathway is circulated, the three-way valve in contact with the collection pathway and the supply pathway of the circulation circuit The initial tank is connected via the three-way switching valve, and a sensor is provided for detecting whether or not the carbon dioxide gas supplied to the supply system pipe and the recovery system pipe has a concentration within a set range. the sensor when the concentration is less than the set range emits an initial switching signal, when it is within the setting range characterized by emitting a circulation switching signal.
The circulating internal pressure engine according to
Further, in the power generation system according to the present invention, the actuator is driven by the force due to the volume expansion when the carbon dioxide gas supplied in the high pressure state becomes the atmospheric pressure, and the suction expansion stroke, the expansion / discharge stroke, and the atmospheric pressure during one cycle. A carbon dioxide engine that undergoes a holding stroke, a supply system path that supplies high-pressure carbon dioxide to the carbon dioxide engine, and a recovery system path that collects atmospheric carbon dioxide discharged from the carbon dioxide engine, The recovery system path includes a cooling unit that cools the carbon dioxide gas discharged from the carbon dioxide engine, and a carbon dioxide compression unit that compresses the cooled carbon dioxide pumped from the cooling unit at a high pressure, connect the recovery system path and the supply pathway carbon dioxide constitute a circulation circuit constituting a circulation circuit for circulating, contacts three-way valve of the recovery pathway and the supply pathway of the circulation circuit Providing a sensor for detecting whether the carbon dioxide gas fed to the supply system pipe and the recovery system pipe is at a concentration within a set range, by connecting the initial tank via the three-way switching valve, The sensor generates an initial switching signal when the concentration is not within a set range, and generates a circulation switching signal when the concentration is within the set range, and generates electricity by the carbon dioxide engine.
The power generation system according to claim 3, further comprising an adjustment tank for storing carbon dioxide gas in an atmospheric pressure state, the adjustment tank having a valve that can communicate with the exhaust port side of the carbon dioxide engine, The exhaust port side of the carbon dioxide engine and the adjustment tank are communicated with each other by adjustment.
本願発明は炭酸ガスの有する3つの優れた物理的性状、即ち、ガスの不活性、常温液化性及び高度の体積膨張性を利用し、高圧状態で内室に供給された炭酸ガスが常圧になるときの体積膨張による力により作動子を駆動させ、これにより発生するエネルギを取り出す。よって、燃料の燃焼を伴わずにエネルギを取り出すから、燃料資源に起因する問題、即ち、資源の枯渇や排気ガスによる公害問題を惹起することがない。よって完全なクリーンエネルギである。 The present invention utilizes three excellent physical properties of carbon dioxide, that is, gas inertness, room temperature liquefaction and high volume expansion, so that carbon dioxide supplied to the inner chamber at high pressure is at normal pressure. The actuator is driven by the force due to the volume expansion at the time, and the energy generated thereby is taken out. Therefore, since energy is extracted without fuel combustion, problems caused by fuel resources, that is, resource depletion and pollution problems due to exhaust gas are not caused. Therefore, it is completely clean energy.
上記エネルギの取出しにおいて、循環回路を構成することにより排出された炭酸ガスを回収して再利用するから、エネルギ効率を非常に増大することができる。 In the extraction of the energy, the carbon dioxide gas discharged by configuring the circulation circuit is recovered and reused, so that the energy efficiency can be greatly increased.
また、炭酸ガスを用いるものの炭酸ガスを生じることがないので、現在以上の炭酸ガスの増加を防止することができ、温暖化現象の防止に寄与することができる。 Further, although carbon dioxide is used, carbon dioxide is not generated, so that an increase in carbon dioxide more than the current amount can be prevented, which can contribute to prevention of global warming.
エネルギ源は資源枯渇のおそれがない炭酸ガスであり、しかも取り出されるエネルギは後述するようにガソリンエンジンと同等程度以上であるから、エネルギの実行性の点でも問題はない。 Since the energy source is carbon dioxide gas with no fear of resource depletion, and the extracted energy is equal to or higher than that of a gasoline engine as will be described later, there is no problem in terms of energy performance.
次に、実施の形態を示す図面に基づき本願発明による循環式内圧機関をさらに詳しく説明する。なお、便宜上同一の機能を奏する部分には同一の符号を付してその説明を省略する。 Next, the circulating internal pressure engine according to the present invention will be described in more detail with reference to the drawings showing embodiments. For convenience, portions having the same function are denoted by the same reference numerals and description thereof is omitted.
(第1実施例)
図1及び図2は本願発明の第1実施例を示す。1は炭酸ガスエンジンであり、気化後の高圧状態で供給される炭酸ガス35aの体積膨張による力により作動子を駆動せしめる。炭酸ガスエンジン1は具体的には、図11、図13及び図15に例示するロータリ型炭酸ガスエンジン又は図17に例示するレシプロ型炭酸ガスエンジンである。前者の場合作動子はロータ105、155であり、後者の場合作動子はピストン7である。本実施例の場合炭酸ガスエンジン1はロータ軸116、106、102の軸受部を介して内室103に接せられる大気により大気圧となる。
(First embodiment)
1 and 2 show a first embodiment of the present invention.
炭酸ガスエンジン1の詳細は後述する。上記炭酸ガスエンジン1に圧料となる炭酸ガス35aを供給する供給経路34Aと、炭酸ガス35bを回収する回収経路34Bを閉回路に接続し、循環回路34を構成する。
Details of the
上記供給経路34Aは、具体的には、液体状態のバージン炭酸ガスを貯溜する圧力容器からなる初期タンク31と、該初期タンク31に切替弁51、三方切替弁54及び流量制御弁55を介してパイプ33a、33b、33cにより連結される加熱部56と、該加熱部56に連結された炭酸ガスエンジン1の供給口13、107、117に接続されるパイプ33dとからなる。
Specifically, the
上記回収経路34Bは、具体的には、炭酸ガスエンジン1の排出口11、109、119から噴出状態で排出される大気圧の炭酸ガス35bを回収する冷却部57と、大気圧の排出炭酸ガス35bよりエンジンオイル成分を分離するフィルタからなる分離部68と、圧縮機からなり該分離部68による上記分離処理を経た上記排出炭酸ガス35bが圧送される1次炭酸ガス圧縮部69aと、該1次炭酸ガス圧縮部69aにて加圧・圧縮される炭酸ガス35a’が送給され、送給されてくる上記炭酸ガス35a’を例えば−30℃の排気の気化熱等にて冷却する上記冷却部57と、圧縮機からなり上記冷却部57から送給されてくる上記炭酸ガス35a’をさらに加圧・圧縮する2次炭酸ガス圧縮部69bと、上記2次炭酸ガス圧縮部69bから送給されてくる炭酸ガス35aを貯溜する圧力容器からなる循環タンク73とからなる。上記炭酸ガスエンジン1と上記冷却部57とはパイプ33eにより、上記冷却部57と上記分離部68とはパイプ33gにより、上記分離部68と上記1次炭酸ガス圧縮部69aとはパイプ33hにより、上記1次炭酸ガス圧縮部69aと上記冷却部57とはパイプ33iにより、上記冷却部57と上記2次炭酸ガス圧縮部69bとはパイプ33kにより、上記2次炭酸ガス圧縮部69bと上記循環タンク73とはパイプ33mにより、さらに上記循環タンク73と上記三方切替弁54とはパイプ33nにより、各連結されている。なお、上記パイプを総称するときは「パイプ33」と表わす。
Specifically, the
上記供給経路34Aと上記回収経路34Bとの接点には上記した三方切替弁54を設けてあり、上記炭酸ガスエンジン1及び上記三方切替弁54を介して両経路34A、34Bが閉回路に接続され、循環回路34を構成する。また、供給経路34Aのパイプ33aと回収経路34Bのパイプ33nには炭酸ガス35aの濃度を検知するセンサ53が接続されている。該センサ53はパイプ33a及びパイプ33n内を送給されてくる炭酸ガス35aの濃度を常に検知し、上記濃度が設定範囲内に満たないときは初期切替信号を発し、設定範囲内であるときは循環切替信号を発する。
The above-described three-
炭酸ガスエンジン1から排出される炭酸ガスが冷却部57に回収される際、炭酸ガスは気化熱等により−30℃位に冷却される。この排出炭酸ガスは大気圧になる際爆発的に膨張する。この膨張した炭酸ガスは、排気される際噴出状態で排出されるので、この噴出力により、上記排出炭酸ガス35bは上記冷却部57内に回収され、該冷却部57を介して1次炭酸ガス圧縮部69aまで圧送される。上記分離部68には逆止弁75が設けられ、分離されたエンジンオイルが該逆止弁75を介して炭酸ガスエンジン1に戻される。
When the carbon dioxide gas discharged from the
上記冷却部57は、ケーシング57aと該ケーシング57a内に幾重にも重なるように内蔵される復路のパイプ33jとからなる。該パイプ33jは前記パイプ33iと前記パイプ33kと連結される。往路のパイプ33eより流れてくる排出炭酸ガス35bは大気圧下に曝されると気化熱等により例えば−30℃と低温になるため、ケーシング57aには−30℃の排出炭酸ガス35bが充満している。ここに1次炭酸ガス圧縮部69aにてすべての量を圧縮処理しきれなかった炭酸ガス35a’が復路のパイプ33j中に流れてくる。よってかかる炭酸ガス35a’を上記−30℃の排出炭酸ガスの気化熱等により冷却するのである。この一次冷却ステップを経ることにより、次の2次炭酸ガス圧縮部69bによる炭酸ガス35bの圧縮のための負荷エネルギを小とすることが可能となる。
The
この点をもう少し詳しく説明する。炭酸ガス圧縮部を構成する1次炭酸ガス圧縮部69a及び2次炭酸ガス圧縮部69bの構造はいずれも同様の圧縮機からなり、その羽根構造(図示省略)により流入する炭酸ガスの引張り込み(吸引)と流出する炭酸ガスの排出(圧送)をする。よって前機69aによる吸引と後機69bによる圧送とがセットとなって作用するので、両者の相乗作用により炭酸ガスの圧縮処理能力を炭酸ガスの量に応じて容易に増大させることができる。これが炭酸ガス圧縮部を複数とする実質的な理由である。
This point will be explained in more detail. The structure of the primary carbon
冷却部57には、高圧の炭酸ガス35aが常圧の炭酸ガス35bになって排出口119、109、11よりパイプ33eを経て回収されるのであるが、このとき当初冷却部57内に混入している大気は計測ができない程の極く微量であるので、この大気が以降の炭酸ガス35a、35bの循環に混入していてもエンジン1の作動にとって実質上全く問題ないことが最近の実験で判明した。炭酸ガスは外界の大気より比重が大であり、かつ、この炭酸ガス35aが高圧状態で下方に移動し排出口119、109、11より噴出する。このため排出口119、109、11付近の圧力不均衡部P0で炭酸ガス35aが大気圧になっても、同圧の外界の大気は内室103、9内に流入してこない。よって冷却部57に回収される大気圧となった炭酸ガス35bには外界の大気が混入せず、以降の炭酸ガスの循環において大気が混入してこないためと考えられる。よって、大気の混入による実質上の弊害がないので、回収経路34Bに大気を放出するための単離装置を設けなくともよいのである。
The high-pressure
初期タンク31内に貯蔵されている炭酸ガス35aは大部分液体状態であるが、一部がタンク内において気体状態となっている場合がある。この場合は液体の炭酸ガス35aはタンクの下部に、また気体の炭酸ガス35aはタンクの上部に存在する。
Most of the
図2に本願発明による循環式内圧機関及び発電システムの動作のステップを示す。初期始動は、まず切替弁51を「開」とし、初期タンク31よりバージン炭酸ガス35aをパイプ33aに流す(S1)。パイプ33aを流れてくるバージン炭酸ガス35aの濃度はセンサ53により検知され(S2)、初期切替信号が発せられる(S3)。これにより三方切替弁54が作動し、パイプ33a・パイプ33b間を「開」としパイプ33b・パイプ33n間を「閉」とする「第1開」の状態にする(S4)。次いでエンジンスロットル用の流量制御弁55が「開」とされ(S5)、炭酸ガス35aは加熱部56により熱せられ圧力を一層大にした状態でパイプ33d内より(S6)、炭酸ガスエンジン1内に供給される(S7)。
FIG. 2 shows the operation steps of the circulating internal pressure engine and the power generation system according to the present invention. In the initial start, first, the switching
炭酸ガスエンジン1が炭酸ガス35aの体積膨張による力により駆動されると、その動力により例えば自動車が駆動される(A)。このとき同時に上記動力がベルト58aにより1次炭酸ガス圧縮部69aに伝動され、該1次炭酸ガス圧縮部69aの作動に寄与する。また上記動力はベルト58bにより2次炭酸ガス圧縮部69bに伝動され、該2次炭酸ガス圧縮部69bの作動に寄与する。
When the
炭酸ガスエンジン1から排出された炭酸ガス35bは爆発的に膨張した後排出されるが、この排出時の噴出力により冷却部57に送給される(S8)。冷却部57から出た炭酸ガス35bは分離部68でオイルを分離されてから(S10)、1次炭酸ガス圧縮部69aに圧送される(S9)。該1次炭酸ガス圧縮部69aにて圧縮された炭酸ガス35a’は再び冷却部57に送給され、ここでケーシング57a内の排出炭酸ガス35bの低温と接触しその気化熱等により冷却される(S11)。冷却された炭酸ガス35a’は2次炭酸ガス圧縮部69bに送られ、ここで加圧され炭酸ガス35aとされる(S12)。次いでこの炭酸ガス35aはパイプ33mより循環タンク73に送られ、該循環タンク73に貯溜される(S13)。
The
始動後においては、センサ53はパイプ33nとパイプ33aを流れる炭酸ガス35aの濃度を検知している(S2)。この炭酸ガス35aの濃度が設定範囲内であるときは、循環切替信号を発する(S3)。この循環切替信号により三方切替弁54が作動し、パイプ33n・パイプ33b間を「開」としパイプ33a・パイプ33bを間を「閉」とする「第2開」の状態にする(S4)。以降は上記した一連のステップが繰返され、エンジンが連続的に作動する。
After the start-up, the
炭酸ガスはパイプ33を通って開弁された供給口13、107、117より密室内に高圧状態35aで供給され、常圧状態で排出・回収される。炭酸ガス35につき、高圧状態の炭酸ガスを「35a」で表わし、常圧状態のものを「35b」で表わす。
Carbon dioxide gas is supplied into the closed chamber from the
(第2実施例)
図3は本願発明の第2実施例を示す。第1実施例と異なるのは、次に述べるように炭酸ガスの常圧化の手段が異なることと、炭酸ガスの循環送給手段として回収経路34B中に組み込んだポンプ61を用いる点である。
(Second embodiment)
FIG. 3 shows a second embodiment of the present invention. The difference from the first embodiment is that the means for normalizing the carbon dioxide gas is different as described below, and that the
回収経路34Bは、具体的には、炭酸ガスエンジン1の排出口11、109、119から排出される大気圧の炭酸ガス35bを回収する回収タンク67と、大気圧の排出炭酸ガス35bよりエンジンオイル成分を分離するフィルタからなる分離装置68と、該分離装置68による上記分離処理を経た上記排出炭酸ガス35bをタンク69に圧送するポンプ61と、上記タンク69から送給されてくる上記排出炭酸ガス35bを例えば−30℃の排気の気化熱等にて冷却する冷却装置57と、上記冷却装置57から送給されてくる上記排出炭酸ガス35bを高圧(例えば40気圧)に加圧・圧縮する炭酸ガス圧縮機59と、上記炭酸ガス圧縮機59から送給されてくる炭酸ガス35bより空気成分を放出して炭酸ガス35aのみ単離する逆止弁77を設けたタンクからなる単離装置71と、該単離装置71から送給されてくる炭酸ガス35aを貯溜する圧力容器からなる循環タンク73とからなり、上記炭酸ガスエンジン1と上記回収タンク67はパイプ33fにより、上記回収タンク67と上記分離装置68とはパイプ33gにより、上記分離装置68と上記ポンプ61とはパイプ33hにより、上記ポンプ61と上記タンク69とはパイプ33iにより、上記タンク69と上記冷却装置57とはパイプ33jにより、上記冷却装置57と上記炭酸ガス圧縮機59とはパイプ33lにより、上記炭酸ガス圧縮機59と上記単離装置71とはパイプ33mにより、上記単離装置71上記循環タンク73とはパイプ33pにより、さらに上記循環タンク73と上記三方切替弁54とはパイプ33qにより、各連結されている。
Specifically, the
炭酸ガスエンジン1から排出される大気圧の炭酸ガス35bは上記ポンプ61による吸引及び排出時の噴出力により、上記回収タンク67内に回収される。上記回収タンク67にはパイプ33r、33sにより逆止弁63及び大気乾燥装置65が接続される。なお、上記冷却装置57は、上記パイプ33dと上記パイプ33kとが相互に巻き着くような状態で内蔵され、パイプ33dを流れてくる大気圧に曝された炭酸ガスの気化熱等によりパイプ33k内を流れる炭酸ガス35bを冷却する。その余の構成は第1実施例と同一であるのでその説明を省略する。
The atmospheric pressure
図4に本願発明による循環式内圧機関の動作のステップを示す。初期始動は、まず切替弁51を「開」とし、初期タンク31よりバージン炭酸ガス35aをパイプ33aに流す(S1)。パイプ33aを流れてくるバージン炭酸ガス35aの濃度はセンサ53により検知され(S2)、初期切替信号が発せられる(S3)。これにより三方切替弁54が作動し、パイプ33aとパイプ33bを「開」としパイプ33bとパイプ33qを「閉」とする「第1開」の状態にする(S4)。次いでエンジンスロットル用の流量制御弁55が「開」とされ(S5)、炭酸ガス35aはパイプ33cより冷却装置57のパイプ33d内を通って(S6)、パイプ33eより炭酸ガスエンジン1内に供給される(S7)。
FIG. 4 shows the operation steps of the circulating internal pressure engine according to the present invention. In the initial start, first, the switching
炭酸ガスエンジン1が炭酸ガス35aの体積膨張による力により駆動されると、その動力により例えば自動車が駆動される(図示省略)。このとき同時に上記動力がベルト58aにより炭酸ガス圧縮機59に伝動され、該炭酸ガス圧縮機59を作動する(S8)。また上記動力はベルト58bにより圧縮機49に伝動され、該圧縮機49を作動する(S9)。さらに上記動力はベルト58cによりポンプ61に伝動され、該ポンプ61を作動する(S10)。
When the
上記ポンプ61は、炭酸ガスエンジン1から排出される大気圧の炭酸ガス35bを吸引し、回収タンク67内に回収する(S13)。この回収の際大気乾燥装置65により水分が除去される(S11、S12)。次いで炭酸ガス35bよりオイルを分離した後(S14)、上記排出炭酸ガス35bをタンク69に圧送する(S15)。タンク69に送給された排出炭酸ガス35bは、パイプ33jより上記冷却装置57のパイプ33kに送られ、ここでパイプ33dを流れてくる大気圧に曝された炭酸ガスの気化熱等により冷却される(S16)。冷却された炭酸ガス35bは炭酸ガス圧縮機59に送られ、ここで例えばステップ8で述べた駆動力により40気圧に加圧された炭酸ガスとされる(S8)。次いでこの炭酸ガスは単離装置71に送られ(S17)、ここで炭酸ガス以外の空気成分を放出する(S18)。かくして高純度となった炭酸ガス35aは循環タンク73に送られ、該循環タンク73に貯溜される(S19)。
The
始動後においては、センサ53はパイプ33qとパイプ33aを流れる炭酸ガス35aの濃度を検知している(S2)。この炭酸ガス35aの濃度が設定範囲内であるときは、循環切替信号を発する(S3)。この循環切替信号により三方切替弁54が作動し、パイプ33qとパイプ33bを「開」としパイプ33aとパイプ33bを「閉」とする「第2開」の状態にする(S4)。以降は上記した一連のステップが繰返され、エンジンが連続的に作動する。
After the start-up, the
ステップ9にて駆動される上記圧縮機49は、炭酸ガスエンジン1が後述する加熱部を有する場合、熱風供給パイプ45、熱風排出パイプ47より炭酸ガスエンジン1に熱風40a、40bを循環供給し(S20)、炭酸ガスエンジン1に供給される高圧状態の炭酸ガス35aの体積膨張を効率的に行わせる。
The
(第3実施例)
図5は本願発明の第3実施例を示す。第1実施例と異なるのは、次に述べるように、炭酸ガスの常圧化手段として圧力調整装置を用いる点である。
(Third embodiment)
FIG. 5 shows a third embodiment of the present invention. The difference from the first embodiment is that a pressure adjusting device is used as a normal pressure means for carbon dioxide gas as described below.
調整タンク72は炭酸ガスエンジン1の排気口11、109、119側の内室の圧力を常圧にする圧力調整弁70aを設けるとともに、炭酸ガスエンジン1の給気口13、107、117側の圧力を高圧にする圧力調整弁70bを設ける。圧力調整弁70aは図示しないコンピュータによる自動制御により調整タンク72内の炭酸ガスの圧力を設定された圧力(例えば1気圧)に調整する。また圧力調整弁70bは炭酸ガスの圧力を設定された圧力(例えば40気圧)に調整する。
The
冷却部57内には、上記圧力調整弁70aにより圧力調整された調整タンク72内の炭酸ガスが設定された圧力(例えば1気圧)にて流入され上記冷却部57内が常圧となっているため、該冷却部57に連通する炭酸ガスエンジン1の内室内に排出された炭酸ガスは常圧になる際爆発的に膨張する。この膨張した炭酸ガスは、排気される際噴出状態で排出される。よってこの噴出力により、上記排出炭酸ガス35bは上記冷却部57内に回収され、該冷却部57を介して1次炭酸ガス液化部69aまで圧送される。その余の構成は第1実施例と同一であるのでその説明を省略する。
Carbon dioxide gas in the
図6に本願発明による循環式内圧機関及び発電システムの動作のステップを示す。初期始動は、まず切替弁51を「開」とし、初期タンク31よりバージン炭酸ガス35aをパイプ33aに流す(S1)。パイプ33aを流れてくるバージン炭酸ガス35aの濃度はセンサ53により検知され(S2)、初期切替信号が発せられる(S3)。これにより三方切替弁54が作動し、パイプ33a・パイプ33b間を「開」としパイプ33b・パイプ33n間を「閉」とする「第1開」の状態にする(S4)。次いでエンジンスロットル用の流量制御弁55が「開」とされ(S5)、炭酸ガス35aは加熱部56により熱せられ圧力を一層大にした状態でパイプ33d内より(S6)、炭酸ガスエンジン1内に供給される(S7)。
FIG. 6 shows the operation steps of the circulating internal pressure engine and the power generation system according to the present invention. In the initial start, first, the switching
炭酸ガスエンジン1が炭酸ガス35aの体積膨張による力により駆動されると、その動力により例えば自動車が駆動される(A)。このとき同時に上記動力がベルト58aにより1次炭酸ガス圧縮部69aに伝動され、該1次炭酸ガス圧縮部69aの作動に寄与する。また上記動力はベルト58bにより2次炭酸ガス圧縮部69bに伝動され、該2次炭酸ガス圧縮部69bの作動に寄与する。
When the
炭酸ガスエンジン1から排出された炭酸ガス35bは、調整タンク72由来の圧力調整用炭酸ガスG(図1示す)が冷却部57を経て(S8〜S10)排気口から内室内に流入するため大気圧になるので爆発的に膨張し排出される。この排出時の噴出力により、炭酸ガス35bは冷却部57に送給される(S10)。冷却部57から出た炭酸ガス35bはオイルを分離されてから(S11)、1次炭酸ガス圧縮部69aに圧送される(S12)。該1次炭酸ガス圧縮部69aにて圧縮された炭酸ガス等35a’は再び冷却部57に送給され、ここでケーシング57a内の排出炭酸ガス35bの低温と接触しその気化熱等により冷却される(S13)。冷却された炭酸ガス等35a’は2次炭酸ガス圧縮部69bに送られ、ここで加圧され炭酸ガス35aとされる(S14)。この炭酸ガス35aは高純度でありパイプ33mより循環タンク73に送られ、該循環タンク73に貯溜される(S15)。なお、予期しない空気漏れに対応するため、2次炭酸ガス圧縮部69bと循環タンク73との間に炭酸ガス単離タンク(図示省略)を設けることができる。この場合は該炭酸ガス単離タンクに逆止弁を設け、比重差により比重の大なる液化炭酸ガスをタンクの下部へ、比重の小なる大気をタンクの上部に分け、逆止弁を「開」とすることにより大気を放出する。
The
始動後においては、センサ53はパイプ33nとパイプ33aを流れる炭酸ガス35aの濃度を検知している(S2)。この炭酸ガス35aの濃度が設定範囲内であるときは、循環切替信号を発する(S3)。この循環切替信号により三方切替弁54が作動し、パイプ33n・パイプ33b間を「開」としパイプ33a・パイプ33bを間を「閉」とする「第2開」の状態にする(S4)。以降は上記した一連のステップが繰返され、エンジンが連続的に作動する。
After the start-up, the
(第4実施例)
図7は本願発明の第4実施例を示す。第1実施例と異なるのは、次に述べるように炭酸ガスの常圧化の手段が異なることと、炭酸ガスの循環送給手段として回収経路34B中に組み込んだポンプ61を用いる点である。
(Fourth embodiment)
FIG. 7 shows a fourth embodiment of the present invention. The difference from the first embodiment is that the means for normalizing the carbon dioxide gas is different as described below, and that the
回収経路34Bは、具体的には、炭酸ガスエンジン1の排出口11、109、119から排出される大気圧の炭酸ガス35bを回収する回収タンク67と、大気圧の排出炭酸ガス35bよりエンジンオイル成分を分離するフィルタからなる分離装置68と、該分離装置68による上記分離処理を経た上記排出炭酸ガス35bをタンク69に圧送するポンプ61と、上記タンク69から送給されてくる上記排出炭酸ガス35bを例えば−30℃の排気の気化熱等にて冷却する冷却装置57と、上記冷却装置57から送給されてくる上記排出炭酸ガス35bを高圧(例えば40気圧)に加圧・圧縮する炭酸ガス圧縮機59と、上記炭酸ガス圧縮機59から送給されてくる炭酸ガス35aを貯溜する圧力容器からなる循環タンク73とからなり、上記炭酸ガスエンジン1と上記回収タンク67はパイプ33fにより、上記回収タンク67と上記分離装置68とはパイプ33gにより、上記分離装置68と上記ポンプ61とはパイプ33hにより、上記ポンプ61と上記タンク69とはパイプ33iにより、上記タンク69と上記冷却装置57とはパイプ33jにより、上記冷却装置57と上記炭酸ガス圧縮機59とはパイプ33lにより、上記炭酸ガス圧縮機59と上記循環タンク73とはパイプ33mにより、さらに上記循環タンク73と上記三方切替弁54とはパイプ33qにより、各連結されている。
Specifically, the
炭酸ガスエンジン1から排出される大気圧の炭酸ガス35bは上記ポンプ61による吸引及び排出時の噴出力により、上記回収タンク67内に回収される。上記回収タンク67にはパイプ33r、33sにより逆止弁63及び大気乾燥装置65が接続される。なお、上記冷却装置57は、上記パイプ33dと上記パイプ33kとが相互に巻き着くような状態で内蔵され、パイプ33dを流れてくる大気圧に曝された炭酸ガスの気化熱等によりパイプ33k内を流れる炭酸ガス35bを冷却する。その余の構成は第1実施例と同一であるのでその説明を省略する。
The atmospheric pressure
図8に本願発明による循環式内圧機関の動作のステップを示す。初期始動は、まず切替弁51を「開」とし、初期タンク31よりバージン炭酸ガス35aをパイプ33aに流す(S1)。パイプ33aを流れてくるバージン炭酸ガス35aの濃度はセンサ53により検知され(S2)、初期切替信号が発せられる(S3)。これにより三方切替弁54が作動し、パイプ33aとパイプ33bを「開」としパイプ33bとパイプ33qを「閉」とする「第1開」の状態にする(S4)。次いでエンジンスロットル用の流量制御弁55が「開」とされ(S5)、炭酸ガス35aはパイプ33cより冷却装置57のパイプ33d内を通って(S6)、パイプ33eより炭酸ガスエンジン1内に供給される(S7)。
FIG. 8 shows the operation steps of the circulating internal pressure engine according to the present invention. In the initial start, first, the switching
炭酸ガスエンジン1が炭酸ガス35aの体積膨張による力により駆動されると、その動力により例えば自動車が駆動される(図示省略)。このとき同時に上記動力がベルト58aにより炭酸ガス圧縮機59に伝動され、該炭酸ガス圧縮機59を作動する(S8)。また上記動力はベルト58bにより圧縮機49に伝動され、該圧縮機49を作動する(S9)。さらに上記動力はベルト58cによりポンプ61に伝動され、該ポンプ61を作動する(S10)。
When the
上記ポンプ61は、炭酸ガスエンジン1から排出される大気圧の炭酸ガス35bを吸引し、回収タンク67内に回収する(S13)。この回収の際大気乾燥装置65により水分が除去される(S11、S12)。次いで炭酸ガス35bよりオイルを分離した後(S14)、上記排出炭酸ガス35bをタンク69に圧送する(S15)。タンク69に送給された排出炭酸ガス35bは、パイプ33jより上記冷却装置57のパイプ33kに送られ、ここでパイプ33dを流れてくる大気圧に曝された炭酸ガスの気化熱等により冷却される(S16)。冷却された炭酸ガス35bは炭酸ガス圧縮機59に送られ、ここで例えばステップ8で述べた駆動力により40気圧に加圧された炭酸ガスとされる(S8)。次いで高純度のこの炭酸ガスはパイプ33mにより循環タンク73に送られ、該循環タンク73に貯溜される(S17)。
The
始動後においては、センサ53はパイプ33qとパイプ33aを流れる炭酸ガス35aの濃度を検知している(S2)。この炭酸ガス35aの濃度が設定範囲内であるときは、循環切替信号を発する(S3)。この循環切替信号により三方切替弁54が作動し、パイプ33qとパイプ33bを「開」としパイプ33aとパイプ33bを「閉」とする「第2開」の状態にする(S4)。以降は上記した一連のステップが繰返され、エンジンが連続的に作動する。
After the start-up, the
ステップ9にて駆動される上記圧縮機49は、炭酸ガスエンジン1が後述する加熱部を有する場合、熱風供給パイプ45、熱風排出パイプ47より炭酸ガスエンジン1に熱風40a、40bを循環供給し(S18)、炭酸ガスエンジン1に供給される高圧状態の炭酸ガス35aの体積膨張を効率的に行わせる。
The
(上記実施例の組合せ例)
図9は第1実施例と第4実施例との適宜組合せ例を示す。第1実施例と異なるのは、次に述べるように、炭酸ガスの常圧化手段としてポンプ61及び圧力調整装置を設置する点である。
(Example of combination of the above embodiments)
FIG. 9 shows an example of an appropriate combination of the first embodiment and the fourth embodiment. The difference from the first embodiment is that, as will be described below, a
回収経路34Bは、具体的には、炭酸ガスエンジン1の排気口11、109、119から排出される大気圧の炭酸ガス35bを回収する回収タンク67と、大気圧の排出炭酸ガス35bよりエンジンオイル成分を分離するフィルタからなる分離装置68と、該分離装置68による上記分離処理を経た排出炭酸ガス35bを圧送するポンプ61と、上記ポンプ61により送給されてくる上記排出炭酸ガス35bを例えば−30℃の排気の気化熱等にて冷却する冷却装置57と、上記冷却装置57から送給されてくる上記排出炭酸ガス35bを高圧(例えば40気圧)に加圧・圧縮して炭酸ガス35aを製造する炭酸ガス圧縮機59と、上記炭酸ガス圧縮機59から送給されてくる炭酸ガス35aを貯溜する圧力容器からなる循環タンク73と、上記回収タンク67及び上記循環タンク73に夫々圧力調整弁70a、70bを介して連結され炭酸ガスを貯溜する調整タンク72とからなる。上記炭酸ガスエンジン1と上記回収タンク67はパイプ33fにより、上記回収タンク67と上記分離装置68とはパイプ33gにより、上記分離装置68と上記ポンプ61とはパイプ33hにより、上記ポンプ61と上記冷却装置57とはパイプ33jにより、上記冷却装置57と上記炭酸ガス圧縮機59とはパイプ33lにより、上記炭酸ガス圧縮機59と上記循環タンク73とはパイプ33mにより、さらに上記循環タンク73と上記三方切替弁54とはパイプ33qにより、各連結されている。
Specifically, the
上記調整タンク72は炭酸ガスエンジン1の排気口11、109、119側の内室の圧力を常圧にする圧力調整弁70aを設けるとともに、炭酸ガスエンジン1の給気口13、107、117側の圧力を高圧にする圧力調整弁70bを設ける。圧力調整弁70aは図示しないコンピュータによる自動制御により調整タンク72内の炭酸ガスの圧力を設定された圧力(例えば1気圧)に調整する。また圧力調整弁70bは炭酸ガスの圧力を設定された圧力(例えば40気圧)に調整する。
The
上記冷却装置57は、上記パイプ33dと上記パイプ33kとが相互に巻き着くような状態で内蔵され、パイプ33dを流れてくる大気圧に曝された炭酸ガスの気化熱等によりパイプ33k内を流れる炭酸ガス35bを冷却する。その余の構成は第1実施例と同一であるのでその説明を省略する。
The
図10に本願発明による循環式内圧機関の動作のステップを示す。初期始動は、まず切替弁51を「開」とし、初期タンク31よりバージン炭酸ガス35aをパイプ33aに流す(S1)。パイプ33aを流れてくるバージン炭酸ガス35aの濃度はセンサ53により検知され(S2)、初期切替信号が発せられる(S3)。これにより三方切替弁54が作動し、パイプ33aとパイプ33bを「開」としパイプ33bとパイプ33qを「閉」とする「第1開」の状態にする(S4)。次いでエンジンスロットル用の流量制御弁55が「開」とされ(S5)、炭酸ガス35aはパイプ33cより冷却装置57のパイプ33d内を通って(S6)、パイプ33eより炭酸ガスエンジン1内に供給される(S7)。
FIG. 10 shows the operation steps of the circulating internal pressure engine according to the present invention. In the initial start, first, the switching
炭酸ガスエンジン1が炭酸ガス35aの体積膨張による力により駆動されると、その動力により例えば自動車が駆動される(図示省略)。このとき同時に上記動力がベルト58aにより炭酸ガス製造機59に伝動され、該炭酸ガス製造機59を作動する(S8)。また上記動力はベルト58bにより圧縮機49に伝動され、該圧縮機49を作動する(S9)。さらに上記動力はベルト58cによりポンプ61に伝動され、該ポンプ61を作動する(S10)。
When the
上記ポンプ61は、炭酸ガスエンジン1から排出される大気圧となった、つまり圧力調整弁70aにより常圧に調整された状態の炭酸ガス35bを吸引し、回収タンク67内に回収する(S11〜S13)。次いで炭酸ガス35bよりオイルを分離した後(S14)、上記排出炭酸ガス35bを冷却装置57に圧送する(S15)。炭酸ガス35bは、ここでパイプ33dを流れてくる大気圧に曝された炭酸ガスの気化熱等により冷却される(S16)。冷却された炭酸ガス35bは炭酸ガス製造機59に送られ、ここで例えばステップ8で述べた駆動力により40気圧に加圧され炭酸ガス35aとされる(S8)。この炭酸ガス35aは高純度でありパイプ33mより循環タンク73に送られ、該循環タンク73に貯溜される(S17)。
The
始動後においては、センサ53はパイプ33qとパイプ33aを流れる炭酸ガス35aの濃度を検知している(S2)。この炭酸ガス35aの濃度が設定範囲内であるときは、循環切替信号を発する(S3)。この循環切替信号により三方切替弁54が作動し、パイプ33qとパイプ33bを「開」としパイプ33aとパイプ33bを「閉」とする「第2開」の状態にする(S4)。以降は上記した一連のステップが繰返され、エンジンが連続的に作動する。
After the start-up, the
ステップ9にて駆動される上記圧縮機49は、熱風供給パイプ45、熱風排出パイプ47より炭酸ガスエンジン1に熱風40a、40bを循環供給し(S18)、炭酸ガスエンジン1に供給される高圧状態の炭酸ガス35aの体積膨張を効率的に行わせる。
The
次に本願発明に用いられる炭酸ガスエンジン1について説明する。図11は炭酸ガスエンジン1をロータリ型炭酸ガスエンジンとする場合である。炭酸ガスエンジン1はアルミニウム合金製の密閉された円筒からなるハウジング101と、該ハウジング101の内室103に回転可能に設けられるアルミニウム合金製のロータ155とからなる。上記ハウジング101は密閉に形成された円筒が横設され、内部に断面円形に形成される内室103を有する。上記ハウジング101の上部周壁に上記内室103に通ずる供給口117を設け、対向する側の周壁に排出口119を開口する。排出口119の設置位置は高圧の炭酸ガス35aが常圧の炭酸ガス35bとなる圧力の均衡点の直前とする。本実施例の場合、該排出口119は上記供給口117を通る直径線fよりやや2次作動室122側に位置するように設けてあり、直径線fに対し角度αが約15°程度としてある。上記排出口119は上記供給口117より大に形成される。
Next, the
上記ロータ155は図12に示すような略楕円形状の板体からなり、上記ハウジング101の内室103の中央部に回転可能に設けられる。上記ハウジング101及び上記ロータ155はロータ軸116に複数個位相をずらせて通常2個固設されている。上記ロータ155の輪郭には、図12に示すように、圧力保持のための圧力シール155aを設ける。該圧力シール155aはオイルシールも兼ねる。上記ハウジング101の上部周壁には供給口117を被覆するバルブ室124を設け、該バルブ室124に上下動自在の供給弁125を設ける。該供給弁125の弁軸127には上記バルブ室124を閉塞する方向に付勢されるスプリング129を巻着する。131は上記ロータ155に連動するカムであり、該カム131により上記供給弁125を開閉する。130はスプリングカバーである。
The
上記内室103には高圧状態の炭酸ガス35aが供給され、該炭酸ガス35aが大気圧になるときの体積膨張による力により上記ロータ155がロータ軸116を中心にして矢示する一方向に回転する。上記内室103は上記ロータ155の回転に伴ない、1次作動室121、2次作動室122に区画・形成される。上記各作動室121、122は上記ロータ155の作動面a,bとの関係で、吸入膨張行程、膨張排出行程又は大気圧保持行程のいずれかを担う。
The
吸入膨張行程は炭酸ガス35aが1次作動室121内に供給され、上記ロータ155のいずれかの作動面a又はbを押圧する行程で、このとき供給口117は「開」、排出口119は「閉」となっている(図11(A))。膨張排出行程はロータ155の回転に与り大気圧状態となった炭酸ガス35bが排出口119より外部に排出される行程で、このとき供給口117は「閉」、排出口119は「開」となっている(図11(B))。大気圧保持行程は、供給口117が「閉」、排出口119が「開」であり、内室103内が作動室121、122ともに大気圧となった炭酸ガス35bを大気圧状態に保持する行程であり、これによりロータ155の回転に円滑性を付与する(図11(C))。
The suction expansion stroke is a stroke in which
図13のロータリ型炭酸ガスエンジンはロータが図14で示すような三面ロータの場合である。図13において、炭酸ガスエンジン1はアルミニウム合金製の密閉された円筒からなるハウジング101と、該ハウジング101の内室103に回転可能に設けられるアルミニウム合金製のロータ105とからなる。上記ハウジング101は密閉に形成された円筒が横設され、内部に断面円形に形成される内室103を有する。また上記ハウジング101は周壁に供給口107を設け、対向する側の周壁に排出口109を開口する。該排出口109は上記供給口107より下方に位置するように設けるのが望ましい。なお、ここで「対向」とは供給口107と排出口109のこのような位置関係のある設置も含むものとする。上記排出口109は上記供給口107より大に形成される。
The rotary type carbon dioxide engine shown in FIG. 13 is a three-sided rotor as shown in FIG. In FIG. 13, the
上記ロータ105は丸みを帯びた正三角形状の板体からなり、上記ハウジング101の内室103の中央部に回転可能に設けられる。上記ハウジング101及び上記ロータ105はロータ軸106に複数個位相をずらせて通常2個固設されている。上記ロータ105の輪郭には、図14に示すように、圧力保持のための圧力シール105aを設ける。該圧力シール105aはオイルシールも兼ねる。
The
上記内室103には高圧状態の炭酸ガス35aが供給され、該炭酸ガス35aが大気圧になるときの体積膨張による力により上記ロータ105がロータ軸106を中心にして矢示する一方向に回転する。上記内室103は上記ロータ105の回転に伴ない、1次作動室111、2次作動室112及び3次作動室113に区画・形成される。上記各作動室111、112、113は上記ロータ105の作動面a,b,cとの関係で、吸入膨張行程、膨張排出行程又は大気圧保持行程のいずれかを担う。
The
吸入膨張行程は炭酸ガス35aが1次作動室111内に供給され、このときの炭酸ガス35aは「亜膨張」の状態となり、上記ロータ105のいずれかの作動面(図13(A)では「a面」)を押圧する。膨張排出行程はロータ105の回転に与り大気圧状態となった炭酸ガス35bが排出口109より外部に排出される。このときの炭酸ガス35aは「連鎖膨張」の状態となる(図13(B))。大気圧保持行程は、供給口107及び排出口109が上記ロータ105の他の作動面によりブロックされるため、大気圧となった炭酸ガス35bを保持する行程であり、これによりロータ105の回転に円滑性を付与する。このときの内室103(図13(C)では3次作動室113)は大気圧(1気圧)となる(図13(C))。
During the suction and expansion stroke,
図15及び図16はロータリ型炭酸ガスエンジンが五面ロータの場合であり、この場合炭酸ガスの膨張エネルギを2回取り出す。図15及び図16において、炭酸ガスエンジン1はアルミニウム合金製の密閉された円筒からなるハウジング101と、該ハウジング101の内室103に回転可能に設けられるアルミニウム合金製のロータ105とからなる。上記ハウジング101は密閉に形成された円筒が横設され、内部に断面円形に形成される内室103を有する。上記ハウジング101の周壁を4等分した部位に第1供給口107a、第1排出口109a、第2供給口107b及び第2排出口109bを順次設ける(総称するときは便宜上供給口「107」、排出口「109」の如く表記する)。これにより、第1排出口109a、第2排出口109bは、第1供給口107a、第2供給口107bより供給される高圧の炭酸ガス35aが常圧の炭酸ガス35bとなる圧力の均衡点の直前となるよう配設される。上記第1排出口109a、第2排出口109bは上記第1供給口107a、第2供給口107bより大に形成される。
15 and 16 show the case where the rotary carbon dioxide engine is a five-sided rotor, and in this case, the expansion energy of carbon dioxide is taken out twice. 15 and 16, the
上記ロータ105は矢示する回転方向に沿って周面を5等分して作動面a、b、c、d、eを形成する。各作動面a、b、c、d、eは凹弧状に形成され、対応するハウジング101の内周面の弧と略線対称に形成される。上記ロータ105の各頂点部は弯曲に形成され、また圧力保持のための圧力シール105aを設ける。該圧力シール105aはオイルシールも兼ねる。
The
本実施例の場合、上記構成のハウジング101及びロータ105が2個連結される。なお、図15及び図16ではハウジング及びロータを「ハウジング101A」、「ハウジング101B」、「ロータ105A」、「ロータ105B」と示すが、以下の説明で区別する必要がないとき及び総称するときは便宜上「ハウジング101」及び「ロータ105」と表記する。102は上記2個のロータ105が固着されるロータ軸であり、該ロータ軸102により2個のロータ105が2個のハウジング101内の中央部に回転可能に取り付けられる。この際各ロータ105は出力の円滑性を確保するため、作動面の位相が重ならないようずらせて設ける。110は上記ロータ軸102の一端に設けるフライホイールである。
In the case of this embodiment, two
上記各ハウジング101の各内室103には高圧状態の炭酸ガス35aが供給され、該炭酸ガス35aが大気圧になるときの体積膨張による力により上記各ロータ105がロータ軸102を中心にして矢示する一方向に回転する。上記内室103は上記ロータ105の回転に伴ない、第1室111、第2室112、第3室113、第4室114、第5室115に区画・形成される。上記各室111、112、113、114、115は上記ロータ105の作動面a,b,c,d,eとの関係で、吸入膨張行程、膨張排出行程又は大気圧保持行程のいずれかを担う。第1室111はある作動面(図20A及び図20Bの場合はa面)が第1供給口107aを「開」とする位置にきたときから第1排出口109aを「開」に至らしめないまでの位置とし、このとき第1室111に隣接する各室を回転方向に順次第2室112、第3室113、第4室114及び第5室115とする。
Each
吸入膨張行程は炭酸ガス35aが第1室111内に供給され、上記ロータ105のいずれかの作動面a〜eを押圧する行程で、このとき供給口107a、107bは「開」、排出口109a、109bは「閉」となっている(図20AのA1〜A2、図20BのB1〜B2)。膨張排出行程はロータ105の回転に与り大気圧状態となった炭酸ガス35bが排出口109a、109bより外部に排出される行程で、このとき供給口107a、107bは「閉」、排出口109a、109bは「開」となっている(図20AのA3〜A4、図20BのB3〜B4)。大気圧保持行程は、供給口107a、107bが「閉」、排出口109a、109bが「開」であり、図20AのA5の場合作動室111、112が、図20BのB5の場合作動室113、114がいずれも大気圧となった炭酸ガス35bを大気圧状態に保持する行程であり、これによりロータ105の回転に円滑性を付与する(図20AのA5、図20BのB5)。
The suction expansion stroke is a stroke in which
図22A乃至図22Cはロータ105の作動面a、b、c、d、e、f、gを7個とした七面ロータの場合を示す。七面ロータのロータリ型炭酸ガスエンジンは炭酸ガスの膨張エネルギを3回取り出す。ハウジング101は、周壁を6等分にした部位に第1供給口107a、第1排出口109a、第2供給口107b、第2排出口109b及び第3供給口107c、第3排出口109cを順次設ける。(総称するときは便宜上供給口「107」、排出口「109」の如く表記する)。これにより第1排出口109a、第2排出口109b、第3排出口109cは第1供給口107a、第2供給口107b、第3供給口107cより供給される高圧の炭酸ガス35aが常圧の炭酸ガス35bとなる圧力の均衡点の直前となるよう配設される。上記第1排出口109a、第2排出口109b、第3排出口109cは上記第1供給口107a、第2供給口107b、第3供給口107cより大に形成される。
22A to 22C show the case of a seven-sided rotor in which the working surfaces a, b, c, d, e, f, and g of the
ロータ105は矢示する回転方向に沿って周面を7等分して作動面a、b、c、d、e、f、gを形成する。各作動面a、b、c、d、e、f、gは凹弧状に形成され、対応するハウジング101の内周面の弧と略線対称に形成される。五面ロータと同様にこの七面ロータ105の各頂点部は弯曲に形成され、また圧力保持のための圧力シールを設ける。該圧力シール105aはオイルシールも兼ねる(図示省略)。
The
図17は炭酸ガスエンジン1たるレシプロ型炭酸ガスエンジンを示す。炭酸ガスエンジン1を構成するシリンダ2はアルミニウム合金製のシリンダヘッド3とアルミニウム合金製のシリンダ本体5とからなり、シリンダヘッド3がシリンダ本体5に分解可能に固着される。該シリンダ本体5内にはアルミニウム合金製ピストン7が往復動可能に摺接される。上記シリンダ本体5の上部には上記シリンダヘッド3と上記ピストン7とによって密閉構造とされる内室9が形成される。上記シリンダ本体5の側壁にはピストン7の下死点D時に開口する排出口11が設けられる。上記シリンダヘッド3には供給口13が開口され、該供給口13に上下動自在の供給弁15を設ける。該供給弁15の弁軸17には上記供給口13を閉塞する方向に付勢されるスプリング19を巻着する。21は上記ピストン7に連動するカムであり、該カム21により上記供給弁15の開閉をする。23はコネクティングロッドであり、上記ピストン7とクランクシャフト25とを連結する。該クランクシャフト25の一端にはフライホイール27が取り付けられている。26は該クランクシャフト25のバランスウェイトを示す。20はスプリングカバーである。29aは圧力リングであり、上記内室9を密閉するため上記ピストン7の上部に取り付けられる。29bはオイルリングである。
FIG. 17 shows a reciprocating type carbon dioxide engine as the
次に図18に基づき二面ロータのロータリ型炭酸ガスエンジンの作動原理を説明する。図18はロータ155が内室103内で回転するときの位置と炭酸ガスの膨張の様子を模式化した図である。図18(A1)(図11(A))及び図18(A2)は吸入膨張行程を示し、このときの炭酸ガスは「亜膨張」の状態となる。図18(B1)及び図18(B2)(図11(B))は膨張排出行程を示し、このときの炭酸ガスは「連鎖膨張」の状態となる。図18(C)は大気圧保持行程を示し、図11(C)の直前の状態であり、このときの内室103は大気圧(1気圧)となる。図18(D)はロータ155が1回転し他の面(b面)が作動面となった状態を示す。
Next, based on FIG. 18, the operation principle of the two-sided rotary carbon dioxide engine will be described. FIG. 18 is a diagram schematically showing the position when the
炭酸ガス35aは初期タンク31又は循環タンク73よりパイプ33a〜33cを経、加熱部56により加熱されて高圧状態のまま炭酸ガスエンジン1に供給されるのであるが、この炭酸ガス35aが炭酸ガスエンジン1の内室103に流入されるときの様子を図18に基づいて説明してみる。
The
まず始動を図示しないセルスターターにより行ない、ロータ155を強制回転させる。ロータ155が図18(A1)の位置即ち供給口117の直前の位置にくると供給弁125が「開」となり、高圧状態の炭酸ガス35aが1次作動室121に流入してくる。この炭酸ガス35aは1次作動室121に流入するとすぐに膨張を開始するが、ロータ155が図18(A2)に示すように供給口117を通過する位置にくると供給弁125が「閉」となるため膨張が一旦終了する。これは炭酸ガス35aの膨張が1次作動室121の容積の限度内で行われるためである。これを仮りに「亜膨張」と呼ぶ。亜膨張時にロータ155が受ける圧力エネルギーは、ガソリンエンジンにおける場合と同様、a面全体で圧力を受けることになる。つまり図18(A1)及び図18(A2)の吸入膨張行程において、炭酸ガス35aは亜膨張エネルギーのストレスを溜め保持した状態で次の膨張排出行程に移行することになる。なお、この吸入膨張行程における他面(b面)側の圧力は大気圧である。
First, starting is performed by a cell starter (not shown), and the
図18(B1)及び図18(B2)の膨張排出行程において、ロータ155の回転により排出口119が「開」となった瞬間、即ち排出口119がピンホール状態となると炭酸ガス35aは大気圧になるため爆発的に膨張する。このとき炭酸ガス35aの動きを中心にみると、膨張した炭酸ガス35aはロータ155の表面に沿って動き「開」となった排出口119に向かって急激に移動する。このときの炭酸ガス35aの膨張圧力は吸入膨張行程における場合とは異なり、ロータ155のa面全体に均等にかかるのではなく、ロータ155の排出口119側の半面にだけ集中してかかる。よって排出口119は益々大きく開口し、これにより炭酸ガス35aが益々排出口119に向かって急激に移動するため、炭酸ガス35aの膨張による力(これを「膨張力」と呼ぶ)は一層ロータ155の排出口119側の半面にだけ集中する。この状態は「連鎖膨張」の状態と呼ぶことができ、こうなると炭酸ガス35aは十分に膨張しきり、このためロータ155の排出口119側の半面には十分な回転モーメントを得ることができ、これによりロータ155は回転する。この膨張排出行程における各面の圧力は、図18(B1)では他面(b面)側の圧力が大気圧であり、図18(B2)(図11(B))ではa、b両面側とも大気圧である。
18B1 and 18B2, the
この点を図19(A)乃至図19(D)に基づきもう少し詳しく説明する。図19(A)に示すように膨張排出行程の直前の状態では炭酸ガス35aの膨張(亜膨張)の力は1次作動室121及びロータ155のすべての面にかかっている。しかし、排出口119が「開」となった瞬間、炭酸ガス35aは高圧の1次作動室121から低圧(大気圧)の開口部分119に向けて急激に流れ噴出する(図19(B))。このとき1次作動室121内をみると、排出口119付近は大気圧に曝されるので圧力が不均衡となる圧力不均衡部P0が形成され、この圧力不均衡部P0は、炭酸ガス35aが噴出すると低圧となるので、隣接する層P1の炭酸ガス35aが移動してくる。これにより、1次作動室121内の上部Lには比較的に低圧の部分が形成される(図19(B))。このような炭酸ガス35aの移動は図19(C)及び図19(D)に示すように次々に連鎖的になされる。よって1次作動室121の上部には炭酸ガス35aが抜けた低圧空間Lが形成されこの低圧空間Lは徐々に大となり、他方、排出口119付近の圧力不均衡部P0には次々に新たな炭酸ガス35aが爆発的に移動してくるので、圧力不均衡部P0は大気圧より常に高圧となっている。そして圧力不均衡部P0から次々に排出される炭酸ガス35aは排出口119より排出されるとき、即ちロータ155が「1」の位置から「n」の位置に至るまで爆発的に膨張するから、排出される炭酸ガス35aはロータ105の第1排出口109a側の半面を押圧し、ロータ105はハウジング101に枢着されているため、上記した炭酸ガス35aの膨張力により回転するのである。つまり、排出される炭酸ガス35aは圧力不均衡部P0での爆発的膨張と該圧力不均衡部P0への補給が連続的になされるため爆発的な膨張が持続的になされ、これによりロータ105が回転する。
なお、この膨張排出行程において炭酸ガス35bは排出口119より噴出状態で排出されるので、この排出時の噴出力によりパイプ内を圧送される。
This point will be described in more detail based on FIGS. 19A to 19D. As shown in FIG. 19A, in the state immediately before the expansion / discharge stroke, the expansion (subexpansion) force of the
In this expansion / discharge process, the
次いで図18(B2)に示す膨張排出行程の終了時から図18(C)及び図11(C)に示す大気圧保持行程において、ロータ155のa、b両面とも大気圧となるため、ロータ155は慣性力により回転し図18(D)(図11(D))に示す位置となる。これにより、他面(b面)が作動面となり、今度はロータ155のb面において上記した一連の行程が繰り返されることになる。
Next, in the atmospheric pressure holding process shown in FIGS. 18C and 11C from the end of the expansion / discharge process shown in FIG. 18B2, both the a and b sides of the
かくして始動が終了すると、その後は上記した一連の行程が連続的に繰り返されることにより炭酸ガスエンジンが本格作動することになるのである。 Thus, when the start is completed, the carbon dioxide engine starts full-scale operation by continuously repeating the above-described series of strokes.
図13に示す三面ロータの場合の作動原理も上記と同様であり、炭酸ガス35aの膨張は吸入膨張行程、膨張排出行程及び大気圧保持行程をとり、各行程において上記と同様に作用する。図11に示す二面ロータの場合と異なるのは供給弁125がないことであるが、この供給弁125の機能即ち供給口117の開閉はロータ105の回転位置によって行なうのである。
The operation principle in the case of the three-surface rotor shown in FIG. 13 is also the same as described above, and the expansion of the
図13に基づき炭酸ガスエンジン1の動きを詳しくみてみる。
図13(A)に示すように、ロータ105の作動面aが吸入膨張行程をする位置にあるとき、高圧状態(例えば40気圧)の炭酸ガス35a(気体)が供給口107より1次作動室111内に供給される。上記炭酸ガス35aは1次作動室111内に供給されると、1気圧の大気圧下に曝されるから、一気にその体積を膨張させる。この膨張は「亜膨張」である。
The movement of the
As shown in FIG. 13A, when the working surface “a” of the
吸入膨張行程では慣性力によりロータ105が押圧されて図13(B)に示す位置に回転する。これにより作動面aは2次作動室112に位置し、排出口109が「開」となるため膨張排出行程となる。ロータ105の回転により排出口109が「開」となった瞬間、即ち排出口109がピンホール状態となると炭酸ガス35aは大気圧になるため爆発的に膨張する。このとき炭酸ガス35aの動きを中心にみると、膨張した炭酸ガス35aはロータ105の表面に沿って動き「開」となった排出口109に向かって急激に移動する。よって二面ロータの場合で述べたように、炭酸ガス35aは2次作動室112が大気圧となるので、爆発的に膨張する「連鎖膨張」となり、この排出口109より噴出する。
In the suction / expansion stroke, the
さらにロータ105が図13(C)に示す位置に回転すると、供給口107と排出口109とがともに「閉」となるので大気圧保持行程となり、上記混合気体を大気圧状態で保持する。
When the
ロータ105はさらに回転し図13(A)に示す位置となる。かくして炭酸ガス35aの体積膨張力と慣性力によりハウジング内をロータが連続的に回転するから、これによるエネルギを適宜手段により取り出す。
The
次に図20A及び図20Bに基づき五面ロータのロータリ型炭酸ガスエンジンの作動原理を説明する。図20A及び図20Bはロータ105が内室103内で回転するときの位置と炭酸ガスの膨張の様子を模式化した図である。図20AのA1乃至A5は作動面aにおける1回目の膨張エネルギー取出工程を示し、図20BのB1乃至B5は作動面aにおける2回目の膨張エネルギー取出工程を示す。図20AのA1及びA2は吸入膨張行程を示し、このときの炭酸ガスは「亜膨張」の状態となる。図20AのA3及びA4は膨張排出行程を示し、このときの炭酸ガスは「連鎖膨張」の状態となる。図20AのA5は大気圧保持行程を示し、このときの作動室111、112は大気圧(1気圧)となる。また図20BのB1及びB2は吸入膨張行程を示し、このときの炭酸ガスは「亜膨張」の状態となる。図20BのB3及びB4は膨張排出行程を示し、このときの炭酸ガスは「連鎖膨張」の状態となる。図20BのB5は大気圧保持行程を示し、このときの作動室113、114は大気圧(1気圧)となる。これによりロータ105が1回転し他の面(b面)が作動面となる。
Next, the principle of operation of the rotary carbon dioxide engine with a five-sided rotor will be described with reference to FIGS. 20A and 20B. 20A and 20B are diagrams schematically illustrating the position when the
炭酸ガス35aは初期タンク31又は循環タンク73よりパイプ33を経て高圧状態のまま炭酸ガスエンジン1に供給されるのであるが、この炭酸ガス35aが炭酸ガスエンジン1の内室103に流入されるときの様子を図20A及び図20Bに基づいて説明してみる。
The
まず始動を図示しないセルスターターにより行ない、ロータ105を強制回転させる。ロータ105が図20AのA1の位置即ち供給口107aが「開」のときは、高圧状態の炭酸ガス35aが第1室111に流入してくる。この炭酸ガス35aは第1室111に流入するとすぐに膨張を開始するが、この膨張はロータ105が図20AのA2に示すように排出口109aの位置にくると一旦終了する。これは炭酸ガス35aの膨張が第1室111の容積の限度内で行われるためである。これを仮りに「亜膨張」と呼ぶ。亜膨張時にロータ105が受ける圧力エネルギーは、ガソリンエンジンにおける場合と同様、a面全体で圧力を受けることになる。つまり図20AのA1及びA2の吸入膨張行程において、炭酸ガス35aは亜膨張エネルギーのストレスを溜め保持した状態で次の膨張排出行程に移行することになる。
First, starting is performed by a cell starter (not shown), and the
図20AのA3及びA4の膨張排出行程において、ロータ105の回転により排出口109aが「開」となった瞬間、即ち排出口109aがピンホール状態となると炭酸ガス35aは大気圧となるため爆発的に膨張する。このとき炭酸ガス35aの動きを中心にみると、膨張した炭酸ガス35aはロータ105の表面に沿って動き「開」となった排出口109aに向かって急激に移動する。このときの炭酸ガス35aの膨張圧力は吸入膨張行程における場合とは異なり、ロータ105のa面全体に均等にかかるのではなく、ロータ105の排出口109a側の半面にだけ集中してかかる。よって排出口109aは益々大きく開口し、これにより炭酸ガス35aが益々排出口109aに向かって急激に移動するため、炭酸ガス35aの膨張による力(これを「膨張力」と呼ぶ)は一層ロータ105の排出口109a側の半面にだけ集中する。この状態は「連鎖膨張」の状態と呼ぶことができ、こうなると炭酸ガス35aは十分に膨張しきり、このためロータ105の排出口109a側の半面には十分な回転モーメントを得ることができ、これによりロータ105は回転する。
In the expansion and discharge strokes of A3 and A4 in FIG. 20A, when the
この点を図21A(A)乃至(D)に基づきもう少し詳しく説明する。図21A(A)は図20Aの行程A2のA部拡大図、図21A(B)は図20Aの行程A3のB部拡大図、図21A(C)は図20Aの行程A3と行程A4の中間状態を示す拡大図、図21A(D)は図20Aの行程A4のD部拡大図である。図21A(A)に示すように膨張排出行程の直前の状態では炭酸ガス35aの膨張(亜膨張)の力は第1室111及びロータ105のすべての面にかかっている。しかし、排出口109aが「開」となった瞬間、炭酸ガス35aは高圧の第1室111から低圧(大気圧)の開口部分109aに向けて急激に流れ噴出する(図21A(B))。このとき第1室111内をみると、排出口109a付近は大気圧に曝されるので圧力が不均衡となる圧力不均衡部P0が形成され、この圧力不均衡部P0は、炭酸ガス35aが噴出すると低圧となるので、隣接する層P1の炭酸ガス35aが移動してくる。これにより、第1室111内の排出口109aの反対側には比較的に低圧の部分L(図20AのA3に示す)が形成される。このような炭酸ガス35aの移動は図21A(C)及び図21A(D)に示すように次々に連鎖的になされる。よって第1室111には炭酸ガス35aが抜けた低圧空間Lが形成されこの低圧空間Lは徐々に大となり、他方、排出口109a付近の圧力不均衡部P0には次々に新たな炭酸ガス35aが爆発的に移動してくるので、圧力不均衡部P0は大気圧より常に高圧となっている。そして圧力不均衡部P0から次々に排出される炭酸ガス35aは排出口109aより排出されるとき、即ちロータ105が「1」の位置から「n」の位置に至るまで爆発的に膨張するから、排出される炭酸ガス35aはロータ105の第1排出口109a側の半面を押圧し、ロータ105はハウジング101に枢着されているため、上記した炭酸ガス35aの膨張力により回転するのである。つまり、排出される炭酸ガス35aは圧力不均衡部P0での爆発的膨張と該圧力不均衡部P0への補給が連続的になされるため爆発的な膨張が持続的になされ、これによりロータ105が回転する。
なお、ロータ105の回転に伴ない各室の区画が変化しているから、正確に言えば、図20Aの行程A3以降の行程において「111」で示す区画は第1室ではないかもしれないが、便宜上図20Aの行程A3乃至行程A5及び図20Bの行程B1乃至行程B5のいずれも図20Aの行程A1で示した各室の符号を用いることとする。
This point will be described in more detail based on FIGS. 21A (A) to (D). 21A (A) is an enlarged view of part A in step A2 in FIG. 20A, FIG. 21A (B) is an enlarged view of part B in step A3 in FIG. 20A, and FIG. 21A (C) is an intermediate between step A3 and step A4 in FIG. FIG. 21A (D) is an enlarged view showing a state, and is an enlarged view of a portion D in step A4 in FIG. As shown in FIG. 21A (A), in the state immediately before the expansion / discharge process, the expansion (subexpansion) force of the
Since the compartments of the respective chambers change as the
次いで図20AのA4に示す膨張排出行程の終了時から図20AのA5に示す大気圧保持行程においてロータ105は慣性力により回転し、a面が大気圧の第2室112に移行し、さらに、図20BのB1に示す位置まで回転する。これにより、a面における2回目の膨張エネルギー取出工程となる。
Next, from the end of the expansion / discharge process shown at A4 in FIG. 20A, the
即ち、ロータ105が慣性モーメントにより回転しa面が図20BのB1に示す位置のときは供給口107bが「開」であり、高圧状態の炭酸ガス35aが第3室113に流入してくる。この炭酸ガス35aは第3室113に流入するとすぐに膨張を開始するが、この膨張はロータ105が図20BのB2に示すように排出口109bの位置にくると一旦終了する。これは炭酸ガス35aの膨張が第3室113の容積の限度内で行われる「亜膨張」のためである。亜膨張時にロータ105が受ける圧力エネルギーは、ガソリンエンジンにおける場合と同様、a面全体で圧力を受けることになる。つまり図20BのB1及びB2の吸入膨張行程において、炭酸ガス35aは亜膨張エネルギーのストレスを溜め保持した状態で次の膨張排出行程に移行することになる。
That is, when the
図20BのB3及びB4の膨張排出行程において、ロータ105の回転により排出口109bが「開」となった瞬間、即ち排出口109bがピンホール状態となると炭酸ガス35aは大気圧となるため爆発的に膨張する。このとき炭酸ガス35aの動きを中心にみると、膨張した炭酸ガス35aはロータ105の表面に沿って動き「開」となった排出口109bに向かって急激に移動する。このときの炭酸ガス35aの膨張圧力は吸入膨張行程における場合とは異なり、ロータ105のa面全体に均等にかかるのではなく、ロータ105の排出口109b側の半面にだけ集中してかかる。よって排出口109bは益々大きく開口し、これにより炭酸ガス35aが益々排出口109bに向かって急激に移動するため、炭酸ガス35aの膨張による力(膨張力)は一層ロータ105の排出口109b側の半面にだけ集中する。この状態は「連鎖膨張」の状態と呼ぶことができ、こうなると炭酸ガス35aは十分に膨張しきり、このためロータ105の排出口109b側の半面には十分な回転モーメントを得ることができ、これによりロータ105は回転する。
In the expansion / discharge process of B3 and B4 in FIG. 20B, when the
この点を図21B(E)乃至図21B(H)に基づきもう少し詳しく説明する。図21B(E)は図20Bの行程B2のE部拡大図、図21B(F)は図20Bの行程B3のF部拡大図、図21B(G)は図20Bの行程B3と行程B4の中間状態を示す拡大図、図21B(H)は図20Bの行程B4のH部拡大図である。図21B(E)に示すように膨張排出行程の直前の状態では炭酸ガス35aの膨張(亜膨張)の力は第3室113及びロータ105のすべての面にかかっている。しかし、排出口109bが「開」となった瞬間、炭酸ガス35aは高圧の第3室113から低圧(大気圧)の開口部分109bに向けて急激に流れ噴出する(図21B(F))。このとき第3室113内をみると、排出口109b付近は大気圧に曝されるので圧力が不均衡となる圧力不均衡部P0が形成され、この圧力不均衡部P0は、炭酸ガス35aが噴出すると低圧となるので、隣接する層P1の炭酸ガス35aが移動してくる。これにより、第3室113内の排出口109bの反対側は比較的に低圧の部分L(図20BのB3に示す)が形成される。このような炭酸ガス35aの移動は図21B(G)及び図21B(H)に示すように次々に連鎖的になされる。よって第3室113には炭酸ガス35aが抜けた低圧空間Lが形成されこの低圧空間Lは徐々に大となり、他方、排出口109b付近の圧力不均衡部P0には次々に新たな炭酸ガス35aが爆発的に移動してくるので、圧力不均衡部P0は大気圧より常に高圧となっている。そして圧力不均衡部P0から次々に排出される炭酸ガス35aは排出口109bより排出されるとき、即ちロータ105が「1」の位置から「n」の位置に至るまで爆発的に膨張するから、排出される炭酸ガス35aはロータ105の第2排出口109b側の半面を押圧し、ロータ105はハウジング101に枢着されているため、上記した炭酸ガス35aの膨張力により回転するのである。つまり、排出される炭酸ガス35aは圧力不均衡部P0での爆発的膨張と該圧力不均衡部P0への補給が連続的になされるため爆発的な膨張が持続的になされ、これによりロータ105が回転する。
This point will be described in more detail based on FIGS. 21B (E) to 21B (H). 21B (E) is an enlarged view of portion E in step B2 in FIG. 20B, FIG. 21B (F) is an enlarged view of portion F in step B3 in FIG. 20B, and FIG. 21B (G) is an intermediate between steps B3 and B4 in FIG. An enlarged view showing the state, FIG. 21B (H) is an enlarged view of a portion H in the process B4 of FIG. 20B. As shown in FIG. 21B (E), in the state immediately before the expansion / discharge process, the expansion (sub-expansion) force of the
次いで図20BのB4に示す膨張排出行程の終了時から図20BのB5に示す大気圧保持行程においてロータ105は慣性力により回転し、a面が大気圧の第4室114に移行する。これにより、他面(b面)が第1供給口107a「開」の位置となり作動面となるので、今度はロータ105のb面において上記した一連の行程が繰り返されることになる。
Next, from the end of the expansion / discharge stroke shown in B4 of FIG. 20B, the
その後は上記した一連の行程が連続的に繰り返されることにより炭酸ガスエンジンが作動することになるのである。 After that, the carbon dioxide engine is operated by continuously repeating the series of steps described above.
そしてb面においても上記したと同様の行程を経て炭酸ガスによる2回の膨張エネルギーを取り出す。さらにロータ105が回転し、c面乃至e面においても上記したと同様の行程を経て炭酸ガスによる2回の膨張エネルギーを取り出す。また本実施例においてはロータ105は位相をずらせて2個連接されているため、作動面a〜eにおける上記行程はロータ105Aの作動面a〜eとロータ105Bの作動面a〜eがそれぞれ連続して行われる。よってエンジン出力が増大するとともに、出力の円滑性が確保される。
And also in b surface, the expansion energy of carbon dioxide twice is taken out through the same process as described above. The
次に七面ロータのロータリ型炭酸ガスエンジンの作動原理を図22A乃至図22Cに基づき説明する。図22A乃至図22Cはロータ105が内室103内で回転するときの位置と炭酸ガスの膨張の様子を模式化した図である。図22AのA1乃至A5は作動面aにおける1回目の膨張エネルギー取出工程を示し、図22BのB1乃至B5は作動面aにおける2回目の膨張エネルギー取出工程を示し、図22CのC1乃至C5は作動面aにおける3回目の膨張エネルギー取出工程を示す。図22AのA1及びA2は吸入膨張行程を示し、このときの炭酸ガスは「亜膨張」の状態となる。図22AのA3及びA4は膨張排出行程を示し、このときの炭酸ガスは「連鎖膨張」の状態となる。図22AのA5は大気圧保持行程を示し、このときの作動室111、112は大気圧(1気圧)となる。また図22BのB1及びB2は吸入膨張行程を示し、このときの炭酸ガスは「亜膨張」の状態となる。図22BのB3及びB4は膨張排出行程を示し、このときの炭酸ガスは「連鎖膨張」の状態となる。図22BのB5は大気圧保持行程を示し、このときの作動室113、114は大気圧(1気圧)となる。さらに図22CのC1及びC2は吸入膨張行程を示し、このときの炭酸ガスは「亜膨張」の状態となる。図22CのC3及びC4は膨張排出行程を示し、このときの炭酸ガスは「連鎖膨張」の状態となる。図22CのC5は大気圧保持行程を示し、このときの作動室115、116は大気圧(1気圧)となる。これによりロータ105が1回転し他の面(b面)が作動面となる。
Next, the operating principle of a rotary carbon dioxide engine with a seven-sided rotor will be described with reference to FIGS. 22A to 22C. 22A to 22C are diagrams schematically illustrating the position when the
炭酸ガス35aは初期タンク31又は循環タンク73よりパイプ33を経て高圧状態のまま炭酸ガスエンジン1に供給されるのであるが、この炭酸ガス35aが炭酸ガスエンジン1の内室103に流入されるときの様子を図22A乃至図22Cに基づいて説明してみる。
The
まず始動を図示しないセルスターターにより行ない、ロータ105を強制回転させる。ロータ105が図22AのA1の位置即ち供給口107aが「開」のときは、高圧状態の炭酸ガス35aが第1室111に流入してくる。この炭酸ガス35aは第1室111に流入するとすぐに膨張を開始するが、この膨張はロータ105が図22AのA2に示すように排出口109aの位置にくると一旦終了する。これは炭酸ガス35aの膨張が第1室111の容積の限度内で行われる「亜膨張」のためである。亜膨張時にロータ105が受ける圧力エネルギーは、ガソリンエンジンにおける場合と同様、a面全体で圧力を受けることになる。つまり図22AのA1及びA2の吸入膨張行程において、炭酸ガス35aは亜膨張エネルギーのストレスを溜め保持した状態で次の膨張排出行程に移行することになる。
First, starting is performed by a cell starter (not shown), and the
図22AのA3及びA4の膨張排出行程において、ロータ105の回転により排出口109aが「開」となった瞬間、即ち排出口109aがピンホール状態となると炭酸ガス35aは大気圧となるため爆発的に膨張する。このとき炭酸ガス35aの動きを中心にみると、膨張した炭酸ガス35aはロータ105の表面に沿って動き「開」となった排出口109aに向かって急激に移動する。このときの炭酸ガス35aの膨張圧力は吸入膨張行程における場合とは異なり、ロータ105のa面全体に均等にかかるのではなく、ロータ105の排出口109a側の半面にだけ集中してかかる。よって排出口109aは益々大きく開口し、これにより炭酸ガス35aが益々排出口109aに向かって急激に移動するため、炭酸ガス35aの膨張による力(膨張力)は一層ロータ105の排出口109a側の半面にだけ集中する。この状態は「連鎖膨張」の状態と呼ぶことができ、こうなると炭酸ガス35aは十分に膨張しきり、このためロータ105の排出口109a側の半面には十分な回転モーメントを得ることができ、これによりロータ105は回転する。詳細については五面ロータで述べた通りであるので省略する。
In the expansion and discharge strokes of A3 and A4 in FIG. 22A, when the
なお、ロータ105の回転に伴ない各室の区画が変化しているから、五面ロータで述べたように正確に言えば、図22Aの行程A3以降の行程において「111」で示す区画は第1室ではないかもしれないが、便宜上図22Aの行程A3乃至行程A5、図22Bの行程B1乃至行程B5及び図22Cの行程C1乃至行程C5のいずれも図22Aの行程A1で示した各室の符号を用いることとする。
Since the compartments of the respective chambers change with the rotation of the
次いで図22AのA4に示す膨張排出行程の終了時から図22AのA5に示す大気圧保持行程においてロータ105は慣性力により回転し、a面が大気圧の第2室112に移行し、さらに、図22BのB1に示す位置まで回転する。これにより、a面における2回目の膨張エネルギー取出工程となる。
Next, from the end of the expansion / discharge process shown in A4 of FIG. 22A, in the atmospheric pressure holding process shown in A5 of FIG. 22A, the
即ち、ロータ105が慣性モーメントにより回転しa面が図22BのB1に示す位置のときは供給口107bが「開」であり、高圧状態の炭酸ガス35aが第3室113に流入してくる。この炭酸ガス35aは第3室113に流入するとすぐに膨張を開始するが、この膨張はロータ105が図22BのB2に示すように排出口109bの位置にくると一旦終了する。これは炭酸ガス35aの膨張が第3室113の容積の限度内で行われる「亜膨張」のためである。亜膨張時にロータ105が受ける圧力エネルギーは、ガソリンエンジンにおける場合と同様、a面全体で圧力を受けることになる。つまり図22BのB1及びB2の吸入膨張行程において、炭酸ガス35aは亜膨張エネルギーのストレスを溜め保持した状態で次の膨張排出行程に移行することになる。
That is, when the
図22BのB3及びB4の膨張排出行程において、ロータ105の回転により排出口109bが「開」となった瞬間、即ち排出口109bがピンホール状態となると炭酸ガス35aは大気圧となるため爆発的に膨張する。このとき炭酸ガス35aの動きを中心にみると、膨張した炭酸ガス35aはロータ105の表面に沿って動き「開」となった排出口109bに向かって急激に移動する。このときの炭酸ガス35aの膨張圧力は吸入膨張行程における場合とは異なり、ロータ105のa面全体に均等にかかるのではなく、ロータ105の排出口109b側の半面にだけ集中してかかる。よって排出口109bは益々大きく開口し、これにより炭酸ガス35aが益々排出口109bに向かって急激に移動するため、炭酸ガス35aの膨張による力(膨張力)は一層ロータ105の排出口109b側の半面にだけ集中する。この状態は「連鎖膨張」の状態と呼ぶことができ、こうなると炭酸ガス35aは十分に膨張しきり、このためロータ105の排出口109b側の半面には十分な回転モーメントを得ることができ、これによりロータ105は回転する。この点についての詳細も前述の通りであるので省略する。
In the expansion / discharge process of B3 and B4 in FIG. 22B, when the
次いで図22BのB4に示す膨張排出行程の終了時から図22BのB5に示す大気圧保持行程においてロータ105は慣性力により回転し、a面が大気圧の第4室114に移行し、さらに、図22CのC1に示す位置まで回転する。これにより、a面における3回目の膨張エネルギー取出工程となる。
Next, from the end of the expansion / discharge stroke shown in B4 of FIG. 22B, in the atmospheric pressure holding stroke shown in B5 of FIG. 22B, the
即ち、ロータ105が慣性モーメントにより回転しa面が図22CのC1に示す位置のときは供給口107cが「開」であり、高圧状態の炭酸ガス35aが第3室113に流入してくる。この炭酸ガス35aは第5室115に流入するとすぐに膨張を開始するが、この膨張はロータ105が図22CのC2に示すように排出口109cの位置にくると一旦終了する。これは炭酸ガス35aの膨張が第5室115の容積の限度内で行われる「亜膨張」のためである。亜膨張時にロータ105が受ける圧力エネルギーは、ガソリンエンジンにおける場合と同様、a面全体で圧力を受けることになる。つまり図22CのC1及びC2の吸入膨張行程において、炭酸ガス35aは亜膨張エネルギーのストレスを溜め保持した状態で次の膨張排出行程に移行することになる。
That is, when the
図22CのC3及びC4の膨張排出行程において、ロータ105の回転により排出口109cが「開」となった瞬間、即ち排出口109cがピンホール状態となると炭酸ガス35aは大気圧となるため爆発的に膨張する。このとき炭酸ガス35aの動きを中心にみると、膨張した炭酸ガス35aはロータ105の表面に沿って動き「開」となった排出口109cに向かって急激に移動する。このときの炭酸ガス35aの膨張圧力は吸入膨張行程における場合とは異なり、ロータ105のa面全体に均等にかかるのではなく、ロータ105の排出口109c側の半面にだけ集中してかかる。よって排出口109cは益々大きく開口し、これにより炭酸ガス35aが益々排出口109cに向かって急激に移動するため、炭酸ガス35aの膨張による力(膨張力)は一層ロータ105の排出口109c側の半面にだけ集中する。この状態は「連鎖膨張」の状態と呼ぶことができ、こうなると炭酸ガス35aは十分に膨張しきり、このためロータ105の排出口109c側の半面には十分な回転モーメントを得ることができ、これによりロータ105は回転する。この点についての詳細も上記と同様であるので省略する。
In the expansion and discharge strokes of C3 and C4 in FIG. 22C, when the
次いで図22CのC4に示す膨張排出行程の終了時から図22CのC5に示す大気圧保持行程においてロータ105は慣性力により回転し、a面が大気圧の第6室116に移行する。これにより、他面(b面)が第1供給口107a「開」の位置となり作動面となるので、今度はロータ105のb面において上記した一連の行程が繰り返されることになる。
Next, from the end of the expansion / discharge process shown at C4 in FIG. 22C, the
その後は上記した一連の行程が連続的に繰り返されることにより炭酸ガスエンジンが作動することになるのである。 After that, the carbon dioxide engine is operated by continuously repeating the series of steps described above.
そしてb面においても上記したと同様の行程を経て炭酸ガスによる3回の膨張エネルギーを取り出す。さらにロータ105が回転し、c面乃至g面においても上記したと同様の行程を経て炭酸ガスによる3回の膨張エネルギーを取り出す。また本実施例においてはロータ105は位相をずらせて2個連接されているため、作動面a〜gにおける上記行程はロータ105Aの作動面a〜gとロータ105Bの作動面a〜gがそれぞれ連続して行われる。よってエンジン出力が増大するとともに、出力の円滑性が確保される。
And also in b surface, the expansion energy by carbon dioxide gas is taken out through the same process as described above. Further, the
図17に示すレシプロ型炭酸ガスエンジンの場合の作動原理も上記と同様であり、炭酸ガス35aの膨張は吸入膨張行程、膨張排出行程及び大気圧保持行程をとり、各行程において上記と同様に作用する。ピストン7の下降により吸入膨張行程となり、内室9内は「亜膨張」となる。続いて排出口11の「開」の開始から図17(C)に示す「全開」を経て排出口11の「開」の終了まで膨張排出行程が続き、高圧状態の炭酸ガス35aが大気圧に曝され爆発的に膨張する「連鎖膨張」となる。続いてピストンの上昇による排出口11の「閉」となるまで大気圧保持行程となる。この連鎖膨張の膨張力によりピストン7が作動する。
The operating principle in the case of the reciprocating carbon dioxide engine shown in FIG. 17 is also the same as described above, and the expansion of the
図17に基づき炭酸ガスエンジン1の動きを詳しくみてみる。まず、図示しないスタータモータにより、カム21を回転させる。するとカム21に連動してピストン7が図17(A)に示すように下降するとともに、カム21により供給弁15が押圧される。すると図17(B)に示すように、スプリング19の付勢力に抗して供給弁15が「開」となる。このときピストン7は上死点Uに位置している。次いでカム21がさらに回転すると、回転後すぐに供給弁15の押圧が解除されるから、供給弁15はスプリング19の付勢力により「閉」となる。図17(C)はピストン7が下死点Dまで下降した状態を示す。
The movement of the
この上死点Uから下死点Dに移行する過程を詳しくみる。供給弁15が「閉」となると、密室内では高圧状態(例えば40気圧)で供給された炭酸ガス35a(気体)は、内室9という限られた空間内において1気圧の大気圧下に曝されるからその体積を膨張させる。この膨張は「亜膨張」である。この体積膨張による力はピストン7に伝動され、ピストン7を下降させるとともに、この力はクランクシャフト25の一端に固着されているフライホイール27にも伝動する。ピストン7が下死点Dに達すると、フライホイール27に伝動している上記力に起因する慣性力によりピストン7は上昇過程に移行する。
The process of shifting from the top dead center U to the bottom dead center D will be described in detail. When the
図17(C)に示すように下死点D時において内室9の排出口11は「開」となるので、ピストン7の押下げに与った炭酸ガス35aは、大気圧となるとき爆発的に膨張する「連鎖膨張」となり、排出口11より噴出する。この連鎖膨張の膨張力によりピストン7が作動する。次いで上昇過程に移行したピストン7の上死点U時においては大気圧となったすべての炭酸ガス35bが排気される。
As shown in FIG. 17C, the
かくして、炭酸ガス35aの体積膨張力と上記慣性力とにより、ピストン7は上記した下降過程及び上昇過程を連続的に繰り返す。よって、炭酸ガスエンジンのピストン7は連続的に往復動するから、これによるエネルギを適宜手段により取り出す。
Thus, the
ここで従来のガソリンエンジンと原理の対比をしてみる。
従来のガソリンエンジンは〈1〉吸入行程、〈2〉圧縮行程、〈3〉燃焼行程及び排気行程の4行程が必要であるが、本願発明による炭酸ガスエンジンは上記〈3〉燃焼行程が不要であり、〈2〉圧縮行程についてはあってもなくてもよいのである。本願発明による炭酸ガスエンジンの行程は、〈a〉吸入膨張行程、〈b〉膨張排出行程及び〈c〉大気圧保持行程である。またエンジン特性についてみれば、従来のガソリンエンジン(内燃機関)の燃焼膨張は一過性エネルギーであるのに対し、本願発明による炭酸ガスエンジン(内圧機関)は連続膨張エネルギーである。このようなエネルギー特性の違いにより、従来のガソリンエンジンでは各行程が明瞭に区別できるのであるが、本願発明による炭酸ガスエンジンの各行程は連続している。
よって従来のガソリンエンジンと本願発明による炭酸ガスエンジンとは原理が全然異なり、ガソリンエンジンに適用される理論をそのまま本願発明による炭酸ガスエンジンに適用することはできないのである。
Let's compare the principle with a conventional gasoline engine.
The conventional gasoline engine requires four strokes of <1> intake stroke, <2> compression stroke, <3> combustion stroke and exhaust stroke, but the carbon dioxide engine according to the present invention does not require the above <3> combustion stroke. Yes, <2> The compression stroke may or may not be present. The strokes of the carbon dioxide engine according to the present invention are <a> intake expansion stroke, <b> expansion / discharge stroke, and <c> atmospheric pressure maintaining stroke. Regarding engine characteristics, combustion expansion of a conventional gasoline engine (internal combustion engine) is transient energy, whereas a carbon dioxide engine (internal pressure engine) according to the present invention has continuous expansion energy. Due to the difference in energy characteristics, each stroke of the conventional gasoline engine can be clearly distinguished, but each stroke of the carbon dioxide engine according to the present invention is continuous.
Therefore, the principle is completely different between the conventional gasoline engine and the carbon dioxide engine according to the present invention, and the theory applied to the gasoline engine cannot be directly applied to the carbon dioxide engine according to the present invention.
上記の点をもう少し具体的に見てみる。ガソリンエンジンは爆発燃焼時の瞬間エネルギを利用するため、ロータ面にかかる均等圧力をロータの結合部分を中心軸より偏心させて楕円に回転方向性を与えている。空気と燃料の圧縮行程は必ず必要であり、ロータを偏心させ内室の容積変化を起こさせるためにシリンダを楕円構成とするのである。
これに対し、本願発明による炭酸ガスエンジンにおいては圧縮行程は必ずしも必要でなく、図示実施例に示すようになくてもよいのである。これは、本願発明においてはガソリンエンジンのように燃焼のための空気と燃料との圧縮行程が不要であるので、大気圧保持行程より吸入膨張行程に移行するとすぐに「亜膨張」となり、ロータの先端が排出口を切った瞬間高圧状態の炭酸ガスが爆発的に膨張する「連鎖膨張」を起こすからである。この結果、排出口119、109側のロータの半面に膨張圧力が集中し、これによりロータが回転するのである。このように、従来のガソリンエンジンと本願発明による炭酸ガスエンジンとは原理が全然相違するのである。
Let's take a closer look at the above points. Since the gasoline engine uses instantaneous energy at the time of explosion combustion, the equal pressure applied to the rotor surface is decentered from the coupling portion of the rotor from the central axis to give the ellipse rotational directionality. The compression stroke of air and fuel is indispensable, and the cylinder has an elliptical configuration in order to cause the rotor to be eccentric and to change the volume of the inner chamber.
On the other hand, in the carbon dioxide gas engine according to the present invention, the compression stroke is not necessarily required, and may not be as shown in the illustrated embodiment. This is because, in the present invention, unlike the gasoline engine, the compression stroke of air and fuel for combustion is not necessary, so that the sub-expansion is immediately performed when the intake pressure expansion stroke is shifted from the atmospheric pressure holding stroke. This is because the high-pressure carbon dioxide gas causes a “chain expansion” that explosively expands at the moment when the tip cuts off the discharge port. As a result, the expansion pressure concentrates on the half surface of the rotor on the
このように原理が相違する結果、炭酸ガスエンジンの態様も次のように相違することになる。まず、三面ロータについては、従来のガソリンエンジンはシリンダが楕円構成でなければならず、正円構成のシリンダとすることができない。また二面ロータについても、従来のガソリンエンジンはシリンダが楕円構成でなければならず、正円構成のシリンダとすることができない。その理由は前述したように、ガソリンエンジンは爆発燃焼時の瞬間エネルギを利用するため、ロータ面にかかる均等圧力を偏心させて回転方向性を与える必要があるからであり、また吸入、圧縮時の作動室の容積変化が必要だからである。
これに対し、本願発明においては、圧縮行程が不要であるから、三面ロータ、二面ロータともにシリンダは楕円構成であっても正円構成であってもよく、いずれでもロータは回転するのである。
As a result of the difference in principle, the aspect of the carbon dioxide engine is also different as follows. First, regarding the three-sided rotor, the conventional gasoline engine must have an elliptical cylinder, and cannot be a circular cylinder. As for the two-sided rotor, the conventional gasoline engine must have an elliptical cylinder, and cannot be a circular cylinder. The reason for this is that, as described above, the gasoline engine uses instantaneous energy at the time of explosion combustion, and therefore it is necessary to decenter the uniform pressure applied to the rotor surface to provide rotational directionality. This is because it is necessary to change the volume of the working chamber.
On the other hand, in the present invention, since the compression stroke is not necessary, the cylinder may be an elliptical configuration or a perfect circular configuration for both the three-surface rotor and the two-surface rotor, and the rotor rotates in either case.
本願発明による発電システムは上記した循環式内圧機関により発電機を作動し発電するシステムである。この場合、炭酸ガスエンジン1は出力の大なる大規模のものが用いられる。また炭酸ガス圧縮部も大量の炭酸ガスを容易迅速に処理できるよう3段以上の多段にするのが望ましい。
The power generation system according to the present invention is a system that generates power by operating a generator by the above-described circulating internal pressure engine. In this case, a large-scale
ここで炭酸ガス35について詳しく説明する。炭酸ガス(二酸化炭素 CO2)は次のような物理的性状を有する。
空気との比重 1.529
毒性 無
臭 無臭
性状 不燃性
分子量 44.01
三重点(0.53MPa) −56.6℃
沸点(昇華) −78.5℃
臨界温度 31.1℃
臨界圧 7.38MPa
熱力学的性質 図23の通り
Here, the
Specific gravity with air 1.529
Toxicity Odorless Odorless Property Nonflammability Molecular weight 44.01
Triple point (0.53 MPa) -56.6 ° C
Boiling point (sublimation) -78.5 ° C
Critical temperature 31.1 ℃
Critical pressure 7.38 MPa
Thermodynamic properties As shown in FIG.
また炭酸ガスは物の燃焼や動物の呼吸、有機物の腐敗、発酵等に伴って発生し、空気中に普通に存在する。一方で植物は炭酸ガスを吸収し炭素同化作用を営む。 Carbon dioxide is generated with burning of animals, respiration of animals, decay of organic substances, fermentation, etc., and is normally present in the air. On the other hand, plants absorb carbon dioxide and perform carbon assimilation.
本願発明はこのような物理的性状を有する炭酸ガスの不活性、常温液化性及び高度の体積膨張性に着目し、これを最大限に活用する。 The present invention pays attention to the inertness of carbon dioxide gas having such physical properties, room temperature liquefaction property, and high volume expansion property, and makes maximum use of this.
ここで炭酸ガス35aの膨張率、即ち炭酸ガス35aにより取り出されるエネルギの大きさについてみる。密室たる内室9、1次作動室111、121内に供給される炭酸ガス35aが常温(25℃)の場合、該炭酸ガス35aの圧力は図23より6.432MPa(64.32気圧)であるから、大気圧(1気圧)の内室9、1次作動室111、121内にあるピストン7、ロータ105、155には64.32倍の圧力がかかる。よって理論上約64倍の運動エネルギを取り出すことが可能となる。
Here, the expansion rate of the
このエネルギと従来の内燃機関の代表としてガソリンエンジンから取り出されるエネルギとを比較する。 This energy is compared with the energy extracted from a gasoline engine as a representative of a conventional internal combustion engine.
(オープン条件化でのガソリン燃焼)
ガソリンの分子表記は難しいため、ガソリンの平均分子量に比較的近い炭化水素であるオクタン(C8H18)をガソリンの組成と見なして計算する。オクタンの物理的性状は次の通りである。
化学式 C8H18
比重 d=0.7
分子量 M=114.0
燃焼熱 10200kcal/kg=10200×114/1000×4.186≒4868kJ/mol
(Gasoline combustion under open conditions)
Since the molecular notation of gasoline is difficult, octane (C 8 H 18 ), which is a hydrocarbon relatively close to the average molecular weight of gasoline, is calculated as the gasoline composition. The physical properties of octane are as follows.
Chemical formula C 8 H 18
Specific gravity d = 0.7
Molecular weight M = 114.0
Combustion heat 10200kcal / kg = 10200 × 114/1000 × 4.186 ≒ 4868kJ / mol
オクタンの燃焼反応式は(1)式の通りである。
(ガス比容V0の計算)
生成ガスを理想気体として仮定しているので、標準状態で1molの占める容積は22.4lとなる。従って、ガス比容V0は(1)式から
Since the product gas is assumed to be an ideal gas, the volume occupied by 1 mol in the standard state is 22.4 l. Therefore, the gas specific volume V 0 is obtained from the equation (1).
(燃焼温度T1の計算)
爆発温度T1を求めるには、生成ガスのモル数、発熱量、生成ガスの定容比熱が必要となる。ここでは、定容比熱のみ不明であるが、TNTのような火薬類と同じとしてみる。
(Calculation of the combustion temperature T 1)
In order to obtain the explosion temperature T 1 , the number of moles of the product gas, the calorific value, and the constant volume specific heat of the product gas are required. Here, only constant volume specific heat is unknown, but it is assumed that it is the same as explosives such as TNT.
爆発温度T1は(2)式によって求めることができる。
(2)式より爆発温度T1は
つまり、1kgのオクタンは、爆発すると7430(K)(約7100℃)で、90900(l)を占める。反応前の容積は1000/0.7=1430(ml)であるから、反応前の温度を0℃とした場合の膨張率は
しかしながら上記値は、火薬と同じ爆発状態を想定しているため現実以上に爆発温度が高くなっている。現実的には、爆発温度が1500K程度であり、また燃焼に空気が十分ないと反応が進まない。よって、現実には酸素が不足するためTNT火薬のようには反応が起きないのである。 However, since the above value assumes the same explosion state as the explosive, the explosion temperature is higher than actual. Actually, the reaction does not proceed unless the explosion temperature is about 1500K and there is not enough air for combustion. Therefore, in reality, since oxygen is insufficient, the reaction does not occur like TNT explosives.
(空気を考慮したガス比容)
そこで空気を考慮したオクタンの燃焼反応式を考える。(1)式で必要な酸素は12.5molであり、空気の組成を酸素21%、窒素79%とすると、それに伴う窒素は
12.5mol×(79/21)=47.0mol
となる。したがって、燃焼反応式は
Therefore, let us consider the combustion reaction formula of octane considering air. The necessary oxygen in the formula (1) is 12.5 mol. If the composition of air is 21% oxygen and 79% nitrogen, the accompanying nitrogen is 12.5 mol × (79/21) = 47.0 mol.
It becomes. Therefore, the combustion reaction equation is
オクタン1molが燃焼すると空気中の酸素を取り込みながら合計17molのガスが発生し、燃焼に与らない窒素47.0molが存在する。 When 1 mol of octane burns, a total of 17 mol of gas is generated while taking in oxygen in the air, and there is 47.0 mol of nitrogen that does not affect combustion.
生成ガスを理想気体と仮定しているので、標準状態で1molの占める容積は22.4lとなる。したがって、ガス比容V0は(3)式から、
(空気を考慮した燃焼温度T1の計算)
燃焼温度T1を求めるには、生成ガスのモル数、発熱量、生成ガスの定容比熱が必要となる。ここでは、定容比熱のみ不明であるが、TNTのような火薬類と同じとしてみる。燃焼温度T1は次式によって求めることができる。
In order to obtain the combustion temperature T 1 , the number of moles of the product gas, the calorific value, and the constant volume specific heat of the product gas are required. Here, only constant volume specific heat is unknown, but it is assumed that it is the same as explosives such as TNT. The combustion temperature T 1 can be obtained by the following equation.
(4)式より爆発温度T1は
つまり1kgのオクタンは空気の初期体積を考慮すると、瞬間的に燃焼したとして、2175(K)(約1900℃)で100185(l)を占める。反応前の容積は
(12.5+47)×22.4+1/0.7=1334(l)であるから、反応前の温度を0℃とした場合の膨張率は100185/1334≒75倍となる。ただし上記値は実際上は燃焼中に熱が周囲に逸散するので、燃焼温度はさらに低くなる筈である。
That is, considering the initial volume of air, 1 kg of octane occupies 100185 (l) at 2175 (K) (about 1900 ° C.), assuming that it burned instantaneously. Since the volume before the reaction is (12.5 + 47) × 22.4 + 1 / 0.7 = 1334 (l), the expansion rate when the temperature before the reaction is 0 ° C. is 100185 / 1334≈75 times. However, the above values should actually further reduce the combustion temperature because heat is dissipated to the surroundings during combustion.
(ガソリンエンジン内の燃焼)
燃費10km/l、排気量2000cc、平均速度40km/h、平均回転数2000rpm/minの自動車のガソリンエンジンを考える。上記ガソリンエンジンは1時間あたりでは4(l)のガソリンを消費する。また、上記ガソリンエンジンは2000rpm/minであるので、2000×2×60(ストローク/h)となる。また、上記エンジンのボアストロークが直径86mm、ストローク86mmよりシリンダ室内の容積は
S=(8.6)×(4.3)2×π=500(cm3)
となる。
(Combustion in gasoline engine)
Consider an automobile gasoline engine with a fuel consumption of 10km / l, displacement of 2000cc, average speed of 40km / h, and average speed of 2000rpm / min. The gasoline engine consumes 4 (l) of gasoline per hour. Further, since the gasoline engine is 2000 rpm / min, it becomes 2000 × 2 × 60 (stroke / h). Further, since the bore stroke of the engine is 86 mm in diameter and the stroke is 86 mm, the volume in the cylinder chamber is S = (8.6) × (4.3) 2 × π = 500 (cm 3 )
It becomes.
これは1ストロークあたりでは
4000(ml)/(2000×2×60)=1/60(ml)
のガソリンを消費し、そのときの燃焼ガスは500(cm3)になる。
This is 4000 (ml) / (2000 x 2 x 60) = 1/60 (ml) per stroke
Of gasoline is consumed, and the combustion gas at that time becomes 500 (cm 3 ).
次に、圧縮比からこのエンジンの行程を解析してみる。
圧縮比は一般的な乗用車エンジンでは「9」前後である。燃焼室容積をVb(ml)とすると、圧縮比=(Vb+500)/Vbであるので、9Vb=Vb+500となり、これを解くと
Vb=62.5(ml)となる。
Next, let's analyze the stroke of this engine from the compression ratio.
The compression ratio is around “9” in a general passenger car engine. If the combustion chamber volume is Vb (ml), the compression ratio = (Vb + 500) / Vb, so 9Vb = Vb + 500, and when this is solved, Vb = 62.5 (ml).
以上を詳細を省いて簡単にまとめると、
62.5(ml)の燃焼室と500(ml)のシリンダ室に1/60(ml)(=16.7×10-3(ml)=1.025×10-4(mol)のガソリンが空気約560(ml)(酸素5.25×10-3(mol)と窒素19.75×10-3(mol))と一緒に吸い込まれ(1気圧)、9倍に圧縮されたガソリンと空気(9気圧)に点火される。(3)式から消費される酸素は
1.025×10-4×12.5=1.281×10-3
である。したがって、残りの酸素と窒素は、それぞれ
(5.25−1.28)×10-3=1.97×10-3(mol)、19.75×10-3(mol)
となる。
Summarizing the above without the details,
Gasoline of 1/60 (ml) (= 16.7 x 10 -3 (ml) = 1.025 x 10 -4 (mol) of gasoline in the combustion chamber of 62.5 (ml) and the cylinder chamber of 500 (ml) About 560 (ml) of air (oxygen 5.25 × 10 −3 (mol) and nitrogen 19.75 × 10 −3 (mol)) inhaled together (1 atm), compressed gasoline and
1.025 × 10 -4 × 12.5 = 1.281 × 10 -3
It is. Therefore, the remaining oxygen and nitrogen are (5.25-1.28) × 10 −3 = 1.97 × 10 −3 (mol) and 19.75 × 10 −3 (mol), respectively.
It becomes.
また、発生するガスと熱量は、
H2O:1.025×10-4×9=9.225×10-4(mol)
CO2:1.025×10-4×8=8.200×10-4(mol)
Q=1.025×10-4×4868=0.499kJ
である。
The generated gas and heat quantity are
H 2 O: 1.025 × 10 −4 × 9 = 9.225 × 10 −4 (mol)
CO 2 : 1.025 × 10 −4 × 8 = 8.200 × 10 −4 (mol)
Q = 1.025 x 10 -4 x 4868 = 0.499 kJ
It is.
燃焼温度T1を求めるには、前記のように生成ガスのモル数、発熱量、生成ガスの定容比熱が必要となる。ここでは、定容比熱のみ不明であるが、TNTのような火薬類と同じとしてみる。燃焼温度T1は前記のように次式によって求めることができる。
(4’)より燃焼温度T1は
つまり、2000ccのエンジンでは瞬間的に燃焼したとして、805(K)(約532℃)で23.5×10-3(mol)(=9.225×10-4+8.200×10-4+19.7×10-4+197.5×10-4)のガスが、62.5(ml)を占める。 In other words, it is assumed that the 2000 cc engine burned instantaneously, and at 805 (K) (about 532 ° C.), 23.5 × 10 −3 (mol) (= 9.225 × 10 −4 + 8.200 × 10 −4 +19) 7 × 10 −4 + 197.5 × 10 −4 ) gas occupies 62.5 (ml).
このときの、圧力P1を計算してみると、理想気体として状態方程式から
最後に、この高温高圧のガスがシリンダを押し下げる膨張行程で9倍に膨張すると、
P1V0=一定であるから、9倍に膨張したときの圧力P2は
P2=P1/9=24.8/9=2.7(atm)
となる。
Finally, when this high temperature and high pressure gas expands 9 times in the expansion stroke that pushes down the cylinder,
Since P 1 V 0 = constant, the pressure P 2 when expanded 9 times is P 2 = P 1 /9=24.8/9=2.7 (atm)
It becomes.
このように従来のガソリンエンジンより取り出すエネルギの大きさは、この場合約25倍程度である。 In this case, the amount of energy extracted from the conventional gasoline engine is about 25 times in this case.
よって本願発明による炭酸ガスエンジンから取り出されるエネルギは従来の内燃機関から取り出されるエネルギと比較し、同程度以上である。とくに、上記実施例(25℃のとき64倍の例)及び上記比較例(25倍の例)に限って言えば、従来に比し2.5倍のエネルギを得ることができる。 Therefore, the energy extracted from the carbon dioxide engine according to the present invention is equal to or higher than the energy extracted from the conventional internal combustion engine. In particular, 2.5 times the energy can be obtained as compared with the conventional example (64 times at 25 ° C.) and the comparative example (25 times example).
このように本願発明によるエネルギの発生は燃料の燃焼を伴わないから、燃料資源に起因する資源の枯渇や排気ガスによる公害問題を惹起することがなく安全であり、完全なクリーンエネルギを得ることができる。また、炭酸ガスを生じることがないので、炭酸ガスの増加を防止することができ、温暖化現象の防止に寄与することができる。しかも取り出されるエネルギは上記のようにガソリンエンジンと同等程度以上であるから、エネルギの実行性も担保される。 Thus, since the generation of energy according to the present invention does not involve combustion of fuel, it is safe without causing depletion of resources caused by fuel resources and pollution problems due to exhaust gas, and it is possible to obtain complete clean energy. it can. Further, since no carbon dioxide is generated, an increase in carbon dioxide can be prevented, which can contribute to prevention of a warming phenomenon. Moreover, since the extracted energy is equal to or higher than that of the gasoline engine as described above, the energy executability is also ensured.
本願発明による循環式内圧機関によれば、密室(内室9、103、123)の圧縮比に影響されず、供給される炭酸ガス35aの圧力は一定(例えば常温(25℃)の場合約64倍)である。またタンク乃至ボンベに収納される炭酸ガス35aは最後の1molまで有効に使用可能である。よって、エネルギの取出効率が大変よい。
According to the circulating internal pressure engine according to the present invention, the pressure of the supplied
上記エネルギの取出しにおいて、循環回路を構成することにより排出された炭酸ガスを回収して再利用するから、エネルギ効率を非常に増大することができる。 In the extraction of the energy, the carbon dioxide gas discharged by configuring the circulation circuit is recovered and reused, so that the energy efficiency can be greatly increased.
また、炭酸ガス35aの常温液化性及び高度の体積膨張性により、密室(内室9、103、123)の設計が容易となる。さらに炭酸ガス35aの不活性により、例えば水素ガスや酸素ガスより遙かに扱い易く、制御性が大である。よって高度の実用性を有する。
Moreover, the design of the closed chamber (
炭酸ガス35の体積膨張率と温度とは相関関係にあり、内室9、103、123、1次作動室111、121内に供給されている高圧状態の炭酸ガス35aは上記加熱部56による加熱により一層体積が膨張するから、炭酸ガスエンジンの仕事率は一層向上する。
The volume expansion coefficient of the
この点につき、図23及びボイル・シャルルの法則により内室9、103、123、1次作動室111、121内に供給される炭酸ガス35aの圧力を具体的に算出してみる。
In this regard, the pressure of the
ボイル・シャルルの法則は一定量の気体ではPV/Tは常に一定の値となるという法則で、
また内室9、103、123、1次作動室111、121が100℃に加熱される場合、内室9、103、123、1次作動室111、121の内圧は次の算出値となる。
よって内室9、103、123、1次作動室111、121が加熱部56により加熱されると炭酸ガスエンジン1の仕事率は一層向上する。
Therefore, when the
本願発明は上記した実施例に限定されない。例えば、「膨張力」を得るために炭酸ガスを常圧化する手段として前記のように種々あり、第1実施例のような軸受部からの大気接触による、いわばエンジンの内部からの常圧化タイプ、第2乃至第4実施例のようないわばエンジンの外部からの常圧化タイプがある。さらにはこれら実施例の組み合わせ、例えば図9示のような実施例等がある。本願発明に係る炭酸ガスエンジンは高圧状態で供給される炭酸ガスが「亜膨張」、「連鎖膨張」及び「大気圧保持」の3行程を連続的に経ることにより炭酸ガスの膨張エネルギを取り出し、排出される大気圧の炭酸ガスを回収する循環回路を有することに特徴があるのであり、いわば従来のガソリンエンジンで用いられる燃料に相当する圧料(炭酸ガス)の再生利用が可能であればよいからである。 The present invention is not limited to the embodiments described above. For example, as described above, there are various means for normalizing carbon dioxide gas in order to obtain “expansion force”, and so-called normal pressure from the inside of the engine by atmospheric contact from the bearing portion as in the first embodiment. There is a so-called normal pressure type from the outside of the engine as in the second to fourth embodiments. Further, there are combinations of these embodiments, for example, an embodiment as shown in FIG. The carbon dioxide gas engine according to the present invention takes out the expansion energy of the carbon dioxide gas by continuously passing through the three steps of “sub-expansion”, “chain expansion” and “maintain atmospheric pressure” when the carbon dioxide gas supplied in a high pressure state is It is characterized by having a circulation circuit that collects carbon dioxide gas discharged at atmospheric pressure, so to speak, it is only necessary to be able to recycle the pressure material (carbon dioxide gas) corresponding to the fuel used in conventional gasoline engines. Because.
また、炭酸ガスエンジン1から排出される炭酸ガス35bの回収経路34B内での送出は第1実施例のように炭酸ガス自体の噴出力を利用するタイプ、第3実施例のようにポンプ61を利用するタイプ、第4実施例のように両者の併用タイプがある。
Further, the
加熱部(56)の設置は任意であるが、設置する場合その設置部位は、高圧状態の炭酸ガス35aが炭酸ガスエンジン1に供給される前に加熱される部位であれば、必ずしも供給系経路34Aのパイプ接続の中に設けられなくてもよい。例えば、炭酸ガスエンジン1自体に加熱部(137)を設けてもよい。図24はそのような場合を例示したものである。
The installation of the heating unit (56) is optional, but when it is installed, if the installation site is a site that is heated before the high-pressure
図24において、ハウジング101はアルミニウム合金製のハウジングカバー139にて一体に被覆され、シリンダ本体の側壁の外側に中空体からなる加熱部137を設ける。上記ハウジングカバー139の側壁には熱風供給口141及び熱風排出口143が開口され、夫々、加熱部137を加熱するための熱風40aを供給する熱風供給パイプ145、加熱部137の加熱を終了した熱風40bを排出するための熱風排出パイプ147が連結される。上記熱風供給パイプ145、上記熱風排出パイプ147は別に設ける圧縮機149に循環可能に連結される。
In FIG. 24, the
また、図1の回路において炭酸ガスエンジン1を図24に示すような加熱部137を有するエンジン1に置換することも可能である。かかる場合、エンジンシリンダを構成する金属製の各部やエンジンオイルへの低温による悪影響を排除する利益がある。
In the circuit of FIG. 1, the
炭酸ガス圧縮部の多段化は、前機による吸引と後機による圧送とのセットとし、両者の相乗作用により炭酸ガスの圧縮処理能力を炭酸ガスの量に応じて容易に増大させる趣旨であるから、所望の出力に応じて、例えば図25(A)、(B)に示すように炭酸ガス圧縮部69a、69b、69cを3個以上の多段にすることができる。もちろん所望の大出力を得られるのであれば、単一機であることを妨げない。
The multi-stage carbon dioxide gas compression unit is a set of suction by the front machine and pressure feed by the rear machine, and the purpose is to easily increase the compression processing capacity of the carbon dioxide gas according to the amount of carbon dioxide gas by the synergistic action of both. Depending on the desired output, for example, as shown in FIGS. 25A and 25B, the carbon dioxide
また複数個の炭酸ガス圧縮部の相互の接続は、例えば図25(A)に示すように直列接続はもとより、例えば図25(B)に示すように並列接続にすることもできる。 Further, the plurality of carbon dioxide compression units can be connected not only in series as shown in FIG. 25 (A), but also in parallel as shown in FIG. 25 (B), for example.
また1次炭酸ガス圧縮部69a及び2次炭酸ガス圧縮部69bの駆動力は、その1として、上記実施例で述べた大気圧に曝され連鎖膨張し排出される炭酸ガスの噴出力及びベルト58a、58bにより伝動される炭酸ガスエンジン1からの駆動力、その2として前者(炭酸ガスの噴出力)のみの駆動力、その3として後者(ベルト58a、58bにより伝動される炭酸ガスエンジン1からの駆動力)のみの駆動力の3パターンがある。つまり、ベルト58a、58bにより伝動される炭酸ガスエンジン1からの駆動力は場合によりあってもなくてもよい。
The driving force of the primary carbon
炭酸ガス圧縮部69bと循環タンク73の間に他の循環タンク(図示せず)を設け、循環タンクを1次と2次に分けると、炭酸ガスエンジン1制御のための炭酸ガス35aの流量調整が円滑になることが期待され望ましい。
If another circulation tank (not shown) is provided between the carbon
初期始動を循環タンク73の残溜分より取り出し、初期タンク31を設けないこととしてもよい。
The initial start may be taken out from the remaining amount of the
炭酸ガス圧縮部による加圧は、温度等の外部環境によって適宜に選択され、必ずしも常温で液化しない程度の圧力、例えば20気圧位乃至40気圧位でも可能である。ちなみに、例えば水素ガスの場合、常温液化性を有しないから、この程度の冷却では液化しない。 The pressurization by the carbon dioxide compression unit is appropriately selected depending on the external environment such as temperature, and can be performed at a pressure that does not necessarily liquefy at room temperature, for example, about 20 to 40 atmospheres. Incidentally, hydrogen gas, for example, does not have liquefiability at room temperature, so it does not liquefy with this degree of cooling.
供給系のパイプの中を流れる炭酸ガスは、気体と粉体としてのドライアイスの混合又は液体の状態での送給もあり得る。どの相をとるかは現場の気圧、温度等の条件による。 Carbon dioxide flowing through the pipe of the supply system may be mixed with dry ice as a gas and powder or supplied in a liquid state. Which phase is taken depends on conditions such as atmospheric pressure and temperature at the site.
循環式内圧機関及び発電システムを構成する炭酸ガスエンジン1の種類は任意である。また炭酸ガスエンジン1を構成する素材も鉄その他適宜に選択することができる。
The type of the
レシプロ型炭酸ガスエンジンの場合、内室9に設ける供給弁15は、図示例とは反対に、内室9を外側から供給弁15の弁蓋により閉塞または開放するようにしてもよい。また供給弁15の設置はシリンダ本体5の側壁であってもよい。さらにカム機構は他の公知のものも適用可能であり、例えばスプリングを要しないカム機構も考えられる。
In the case of a reciprocating carbon dioxide engine, the
回収経路34B中の冷却部57の構成は任意であり、図1のような構成であっても図3のような構成であってもよい。
The configuration of the cooling
ポンプ61の設置は任意的である。
Installation of the
取り出したエネルギの適用は任意であり、発電機の駆動乃至発電はもちろん、例えば自動車、電車、航空機、船舶等の駆動、モータの駆動等をすることができる。 Application of the extracted energy is arbitrary, and driving of a generator or power generation, as well as driving of an automobile, train, aircraft, ship, etc., driving of a motor, etc. can be performed.
本願発明において「高圧」とは、炭酸ガスエンジンを作動せしめるに十分な圧力の程度を指称し、常温で液化する70気圧位はもちろん、それより低い例えば20気圧程度乃至40気圧程度とか60気圧程度も含む。また「大気圧」と「常圧」とは同義で用いている。 In the present invention, “high pressure” refers to the level of pressure sufficient to operate the carbon dioxide engine, and is of course about 70 atmospheres, which is liquefied at room temperature, of course, for example, about 20 to 40 atmospheres or about 60 atmospheres. Including. “Atmospheric pressure” and “normal pressure” are used interchangeably.
本願発明は例えば、発電、自動車、電車、航空機、船舶等の駆動、モータの駆動、発電機の駆動に活用することができる。 The present invention can be used for, for example, power generation, driving of automobiles, trains, airplanes, ships, etc., driving of motors, driving of generators.
1 炭酸ガスエンジン
2 シリンダ
3 シリンダヘッド
5 シリンダ本体
7 ピストン
9 内室
11 排出口
13 供給口
15 供給弁
17 弁軸
19 スプリング
20 スプリングカバー
21 カム
23 コネクティングロッド
25 クランクシャフト
26 バランスウェイト
27 フライホイール
29a 圧力リング
29b オイルリング
31 初期タンク
33 パイプ
34 循環回路
34A 供給経路
34B 回収経路
35 炭酸ガス
35a 炭酸ガス
35b 炭酸ガス
37 加熱部
39 シリンダカバー
40 熱風
41 熱風供給口
43 熱風排出口
45 熱風供給パイプ
47 熱風排出パイプ
49 圧縮機
51 切替弁
53 センサ
54 三方切替弁
55 流量制御弁
56 加熱部
57 冷却部
58a ベルト
58b ベルト
58c ベルト
59 炭酸ガス圧縮機
61 ポンプ
63 逆止弁
65 大気乾燥部
67 回収タンク
68 分離部
69 混合タンク
69a 1次炭酸ガス圧縮部
69b 2次炭酸ガス圧縮部
71 単離部
73 循環タンク
75 逆止弁
77 逆止弁
101 ハウジング
102 ロータ軸
103 内室
105 ロータ
105a オイルシール兼用圧力シール
106 ロータ軸
107 供給口
107a 第1供給口
107b 第2供給口
107c 第3供給口
109 排出口
109a 第1排出口
109b 第2排出口
109c 第3排出口
110 フライホイール
111 1次作動室(第1室)
112 2次作動室(第2室)
113 3次作動室(第3室)
114 第4室
115 第5室
115a オイルシール兼用圧力シール
117 供給口
119 排出口
121 1次作動室
122 2次作動室
123 内室
123a 1次作動室
123b 2次作動室
123c 3次作動室
124 バルブ室
125 供給弁
126 ロータ
126a ロータ孔
126b ロータ軸
127 弁軸
129 スプリング
130 スプリングカバー
131 カム
137 加熱部
139 ハウジングカバー
141 熱風供給口
143 熱風排出口
145 熱風供給パイプ
147 熱風排出パイプ
149 圧縮機
155 ロータ
a 作動面
b 作動面
c 作動面
d 作動面
e 作動面
G 常圧炭酸ガス
DESCRIPTION OF
45 Hot
112 Secondary working chamber (second chamber)
113 Tertiary working chamber (third chamber)
114
131 Cam 137
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007144080A JP4147563B1 (en) | 2007-05-30 | 2007-05-30 | Circulating internal pressure engine and power generation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007144080A JP4147563B1 (en) | 2007-05-30 | 2007-05-30 | Circulating internal pressure engine and power generation system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4147563B1 true JP4147563B1 (en) | 2008-09-10 |
JP2008297959A JP2008297959A (en) | 2008-12-11 |
Family
ID=39787850
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007144080A Expired - Fee Related JP4147563B1 (en) | 2007-05-30 | 2007-05-30 | Circulating internal pressure engine and power generation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4147563B1 (en) |
-
2007
- 2007-05-30 JP JP2007144080A patent/JP4147563B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008297959A (en) | 2008-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7726114B2 (en) | Integrated combustor-heat exchanger and systems for power generation using the same | |
CA2482336A1 (en) | Liquid piston internal combustion power system | |
JP2019534979A (en) | Internal combustion steam engine | |
JP4147562B1 (en) | Power generation system | |
EP3580435A1 (en) | Semi-closed cycle internal combustion prime mover and semi-closed thermodynamic process for the production of power | |
JPH10220301A (en) | Internal combustion engine having injection system for fuel and method for feeding fuel to internal combustion engine | |
CN102844544B (en) | Heat engine | |
JP4016291B1 (en) | Circulating internal pressure engine and power generation system | |
WO2018203498A1 (en) | Implosion-type engine | |
JP3929477B1 (en) | Circulating internal pressure engine | |
JP4042824B1 (en) | Power generation system | |
JP4042823B1 (en) | Circulating internal pressure engine and power generation system | |
JP4147563B1 (en) | Circulating internal pressure engine and power generation system | |
JP4147561B1 (en) | Circulating internal pressure engine and power generation system | |
JP4016292B1 (en) | Circulating internal pressure engine and power generation system | |
JP4096321B1 (en) | Circulating internal pressure engine and power generation system | |
JP4042822B1 (en) | Power generation system | |
JP2008297955A (en) | Dual carbon dioxide gas engine | |
TR201802811T4 (en) | Fuel System for a Moving Machine. | |
JP2003239809A (en) | Gas engine provided with fuel reforming device | |
WO2008015818A1 (en) | Carbon dioxide engine | |
CA2987343A1 (en) | Natural gas engine | |
JP2012002191A (en) | Hybrid engine using the same cylinder | |
JP2007270622A (en) | Internal combustion engine system | |
JP2007270621A (en) | Internal combustion engine system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080613 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110704 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |