JP4146691B2 - Optical thin film filter - Google Patents

Optical thin film filter Download PDF

Info

Publication number
JP4146691B2
JP4146691B2 JP2002250787A JP2002250787A JP4146691B2 JP 4146691 B2 JP4146691 B2 JP 4146691B2 JP 2002250787 A JP2002250787 A JP 2002250787A JP 2002250787 A JP2002250787 A JP 2002250787A JP 4146691 B2 JP4146691 B2 JP 4146691B2
Authority
JP
Japan
Prior art keywords
polynomial
optical thin
thin film
film filter
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002250787A
Other languages
Japanese (ja)
Other versions
JP2004093620A (en
Inventor
重喜 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002250787A priority Critical patent/JP4146691B2/en
Publication of JP2004093620A publication Critical patent/JP2004093620A/en
Application granted granted Critical
Publication of JP4146691B2 publication Critical patent/JP4146691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は波長多重(WDM)方式の光ファイバー通信網等に用いるフィルタに関し、特に反射される信号に対し直線歪みを軽減した光学薄膜フィルタに関する。
【0002】
【従来の技術】
波長多重方式(WDM)の光ファイバー通信網では、それぞれの波長の光信号を分離抽出あるいは合波するため光学的な挿入分岐器(ADM:add/drop multiplexer)が用いられ、その機能を実現するために波長分離用光学フィルタが用いられる。
【0003】
従来、その為のフィルタとしては、主に図10に示すFBG(Fiber Bragg Grating)、図11に示すAWG(Arrayed, Waveguide Grating)、図12示す光学薄膜フィルタの3種類の光学フィルタが用いられている。
【0004】
図10に示すFBGにおいては、フィルタ端面14からの入射光はグレイティング部15で波長選択されて反射して反射光としてフィルタ端面14より取り出される。図11に示すAWGにおいては、入射波は分波部16で分波されて移相部17を通り、波長選択部18で波長分離されて取り出される。図12に示す光学薄膜フィルタにおいては、多層の薄膜からなる反射鏡19、スペーサ14、反射鏡20を積層して構成され、各層に垂直に光が入射、透過する。
【0005】
【発明が解決しようとする課題】
これらのフィルタを使用した場合、透過する光信号の伝送速度が上がった場合、おもに群遅延の偏差により透過信号の波形歪みを受けることが問題にされ始めている。このため、本発明者は透過特性の群遅延の偏差が少ない帯域通過特性の光学薄膜フィルタを提案している(特願2001−53837参照)。
【0006】
従来例の図10、11に示すFBGやAWGでは、透過特性の群遅延の偏差までは考慮されておらず、もっぱら透過の振幅特性のみを考慮するか、あるいは一部のAWGでは透過の振幅特性をあまり考慮せずに、透過位相の単純な傾斜の位相補正に利用するのみであった。また図12に示す光学薄膜フィルタや上記本発明者が提案した光学薄膜フィルタでも反射特性の群遅延までは考慮されていない。
【0007】
一方、最近のD−WDMシステムに用いるADMなどの波長選択部では、ある波長の信号を通過させて取り出し、残りの信号をいったん反射させて保持し、又新たに別の波長の信号を取り出し、この操作を繰り返して全ての波長の信号を分離取り出す操作処理が行われる。この際、反射される信号も反射される際、反射特性の群遅延により波形歪みを受ける。特にD−WDMではあるチャネルの信号に対し、隣接チャネルの信号の周波数、あるいは波長間隔が非常に少ない為、この反射による隣接チャネルの波形歪が大きな問題となる。しかし従来フィルタにおいては、反射特性の群遅延の改善までは考慮されておらず、またその設計法も知られていない。
【0008】
本発明はこれに鑑みなされたものであり、透過特性の群遅延特性の偏差を抑えた光学薄膜フィルタの設計、製造技術に僅かの修正を加えるだけで、反射特性の群遅延特性の偏差も大幅に抑えた光学薄膜フィルタを実現するものである。このフィルタにより、透過信号に対しても、又反射信号に対しても波形歪の少ない波長選択機能を実現し、さらにアドドロップモジュールを実現できる。
【0009】
【課題を解決するための手段】
そこで本発明は、屈折率の異なる複数の光学薄膜を多層化した反射鏡層とスペーサ層からキャビティ層を形成し、複数のキャビティー層を連絡層を介して多段化した帯域通過型光学薄膜フィルタであって、複素周波数sのフルビッツ多項式における透過特性を表す分母多項式と分子多項式、及び反射特性を表す分母多項式と分子多項式から、求める透過特性及び反射特性に応じて層構成を定めるとともに、上記反射特性を表す分子多項式の零点が、全て複素平面の原点を含み左半面上のみに存在することを特徴とする。
【0010】
【作用】
本発明の光学薄膜フィルタにより、通過帯域内の透過特性の群遅延のみならず、阻止域の反射特性の群遅延偏差を抑えることができ、透過信号に対してもまた隣接チャネルの反射信号に対しても、波形歪をおさえた光学薄膜フィルタとすることができる。この結果、全てのチャネルの信号に対し波形歪みを抑えたADMなどの波長選択機能を実現できる。
【0011】
【発明の実施の形態】
以下、図面に基づいて本発明を詳細に説明する。なお、本発明は以下の例に限定されるものではなく以下、本発明の主旨を逸脱しない範囲で変更・改良を施すことは何ら差し支えない。
【0012】
まず、図1に本発明の光学薄膜フィルタの具体例を示す。ガラス基板1上に反射鏡層2、3、4、5、6、7、8とスペーサ層9からなる複数のキャビティ層10、11、12、13を連絡層14を介して多重化してある。上記反射鏡層2、3、4、5、6、7、8、スペーサ層9、連絡層14はそれぞれ屈折率の異なる複数の光学薄膜を多層化して形成したものである。
【0013】
ここで、電気回路のフィルタ理論における複素周波数sのフルビッツ多項式より、求めるフィルターの透過特性及び反射特性が定まるものとすると、このフルビッツ多項式より基準化低域通過型フィルタの素子値が定まり、該基準化低域通過型フィルタを周波数変換、等価変換することにより、図1に示す本発明の多重薄膜光学フィルタの層構成を定めることができる(詳細は特願2001−53837参照)。
【0014】
即ち、光学薄膜フィルタの特性は数1に示されるSパラメータにより表現できる。数2に示すように、透過特性を表すs21の分母多項式のg(s)はフルビッツの多項式を示し、分子多項式のf(s)は数3に示すように、この場合1である。透過特性はこのフルビッツの多項式のみで決まることから、群遅延偏差の少ないフルビッツの多項式を選ぶことで目的の透過特性のフィルタを実現することができる。この段階ではまだ反射特性の群遅延特性までは考慮されていない。
【0015】
【数1】

Figure 0004146691
【0016】
【数2】
Figure 0004146691
【0017】
【数3】
Figure 0004146691
【0018】
光学薄膜フィルタの反射特性は数4のようにs11の分母多項式g(s)と分子多項式h(s)とで定まる。分母多項式g(s)はs21の分母多項式と同じである。一方、分子多項式はユニタリ条件の数5よりg(s)とf(s)が与えられればそれに伴い決められる。
【0019】
【数4】
Figure 0004146691
【0020】
【数5】
Figure 0004146691
【0021】
g(s)が4次の多項式の場合、ユニタリ条件は8次の多項式となり、その零点は図2に示すように、1組の±の実根51、58、原点の重根54、55、2組の共役根52、53、56、57となる。これらの零点から4次の多項式h(s)を得るための零点の組合せは、共役根の1組の選び方で2通り、±の実根の選び方で2通り、原点の選び方は1通りであり、その組合せで全部で4通りある。
【0022】
数1より明らかなように、このいずれの組合せを選んでも透過特性特性s21には違いはなく全く同じ透過特性となる。しかし、同じく数1より明らかなように、反射特性は零点の選び方で特性が異なる。フルビッツの多項式の位相特性は直接s21、数4の位相推移を表す。この例では、透過特性s21はこのフルビッツの多項式のみで決まるので、この位相推移、さらに数6に示す周波数の微分である群遅延特性が決められる。
【0023】
【数6】
Figure 0004146691
【0024】
しかし、反射特性は分子多項式h(s)の位相推移が加算されるので、この位相推移が分母のフルビッツの多項式による位相推移と同じ符号であれば位相がより大きく推移し、同様に数7に示す、その微分である群遅延時間も増加する。反対にh(s)による位相推移が分母多項式のフルビッツの多項式による位相推移と逆の符号であれば全体の位相推移は少なくなり、群遅延時間も減少する。
【0025】
【数7】
Figure 0004146691
【0026】
図3に示すように、フルビッツの多項式g(s)の零点61、62、63、64は複素平面の左半面のみに存在するので、反射特性を表す分子多項式h(s)の零点が左半面にあれば全体の位相推移は打ち消して減少し、群遅延時間も減少する。反対にh(s)の零点が右半面にあれば全体の位相推移は強めあう方向で全体の位相推移は増加し、群遅延時間も増加する。
【0027】
そこで、本発明では、反射特性の位相推移を少なくして、群遅延時間を抑える目的で、反射特性を表す分子多項式h(s)の零点として、複素平面の原点を含む左半面の零点のみ55、56、57、58を採用することを特徴とする。
【0028】
本発明によりh(s)に左半面の零点のみを採用した場合、ポート1から見た反射の位相推移、群遅延時間はは最小になる。しかし、数8より明らかなように、ポート1の反射特性を表す分子多項式の零点を左半面に選ぶことは、ポート2の反射係数の分子多項式の零点を右半面のみに選ぶことになり、ポート2から見た反射係数の位相推移と群遅延時間は最大になる。
【0029】
【数8】
Figure 0004146691
【0030】
以上の説明の条件を満たした数1に示される回路網関数から導かれた等価回路を図9に示す。終端抵抗80、81の間に、キャビティ67、68、69が虚ジャイレータ66を介して接続されている。それぞれのキャビティは共振器76、77、78とその前後に接続された理想トランス70、71、72、73、74、75から成り立つ。図1の実施例の各部と図9の等価回路の各部は連絡層14が虚ジャイレータ66に、反射鏡層2〜8が理想トランス70〜75に、スペーサ層9が共振器76〜78にキャビティ層10〜13がキャビティ67〜69に対応する。
【0031】
図4に本発明による実施例の透過の振幅特性を、図5に反射の振幅特性を示す。この例では従来の本発明者の発明と何ら変わるところはない。図6に本発明による実施例の透過の群遅延特性を示す。図7はh(s)の零点を左半面のみを採用した場合であり、本発明による反射の群遅延特性を示す。図8は従来の反射の群遅延特性の例であり、h(s)の零点を右半面のみ、あるいは右半面と左半面を組み合わせた場合である。透過特性の群遅延特性は従来例と変わるところは無いが、図7と図8を比較すれば明らかに、本発明実施例では、射の群遅延特性の偏差が大幅に少なくなっていることがわかる。
【0032】
【発明の効果】
本発明によれば、屈折率の異なる複数の光学薄膜を多層化した反射鏡層とスペーサ層からキャビティ層を形成し、複数のキャビティー層を連絡層を介して多段化した帯域通過型光学薄膜フィルタであって、複素周波数sのフルビッツ多項式における透過特性を表す分母多項式と分子多項式、及び反射特性を表す分母多項式と分子多項式から、求める透過特性及び反射特性に応じて層構成を定めるとともに、上記反射特性を表す分子多項式の零点が、全て複素平面の原点を含み左半面上のみに存在することによって、通過帯域内の透過特性の群遅延のみならず、阻止域の反射特性の群遅延偏差を抑えることができ、透過信号に対してもまた隣接チャネルの反射信号に対しても、波形歪をおさえた光学薄膜フィルタとすることがでる。この結果、全てのチャネルの信号に対し波形歪みを抑えたADMなどの波長選択機能を実現できる。
【図面の簡単な説明】
【図1】本発明の光学薄膜フィルタの構成を示す図である。
【図2】本発明の光学薄膜フィルタにおけるh(s)・h(s)の零点を示す複素平面図である。
【図3】本発明の光学薄膜におけるg(s)の零点を示す複素平面図である。
【図4】本発明の光学薄膜フィルタの透過振幅特性を示す図である。
【図5】本発明の光学薄膜フィルタの反射振幅特性を示す図である。
【図6】本発明の光学薄膜フィルタの透過群遅延特性を示す図である。
【図7】本発明の光学薄膜フィルタの反射群遅延特性を示す図である。
【図8】従来の光学薄膜フィルタの反射群遅延特性を示す図である。
【図9】光学薄膜フィルタの等価回路を示す図である。
【図10】従来のFBGを示す図である。
【図11】従来のAWGを示す図である。
【図12】従来の光学薄膜のフィルタを示す図である。
【符号の説明】
1:ガラス基板
2、3、4、5、6、7、8:反射鏡層
9:スペーサ層
10、11、12、13:キャビティ層
14:連絡層
15:グレーティング部
16:分波部
17:移相部
18:波長選択部
51、52、53、54、55、56、57、58: h・h*の零点
61、62、63、64:g(s)の零点
66:虚ジャイレータ
67、68、69:キャビティ
70、71、72、73、74、75:理想トランス
76、77、78:共振器
80、81:終端抵抗[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a filter used for a wavelength division multiplexing (WDM) optical fiber communication network or the like, and more particularly to an optical thin film filter that reduces linear distortion with respect to a reflected signal.
[0002]
[Prior art]
In a wavelength division multiplexing (WDM) optical fiber communication network, an optical add / drop multiplexer (ADM) is used to separate, extract or multiplex optical signals of respective wavelengths in order to realize their functions. In addition, an optical filter for wavelength separation is used.
[0003]
Conventionally, three types of optical filters, FBG (Fiber Bragg Grating) shown in FIG. 10, AWG (Arrayed, Waveguide Grating) shown in FIG. 11, and optical thin film filter shown in FIG. Yes.
[0004]
In the FBG shown in FIG. 10, incident light from the filter end face 14 is wavelength-selected by the grating section 15 and reflected to be extracted from the filter end face 14 as reflected light. In the AWG shown in FIG. 11, the incident wave is demultiplexed by the demultiplexing unit 16, passes through the phase shift unit 17, and is separated by the wavelength selection unit 18 and extracted. The optical thin film filter shown in FIG. 12 is configured by laminating a reflecting mirror 19, a spacer 14, and a reflecting mirror 20 made of a multilayer thin film, and light is incident and transmitted perpendicularly to each layer.
[0005]
[Problems to be solved by the invention]
When these filters are used, when the transmission speed of the transmitted optical signal is increased, it is beginning to be a problem that the waveform distortion of the transmitted signal is mainly caused by the deviation of the group delay. For this reason, the present inventor has proposed an optical thin film filter having a bandpass characteristic with a small deviation in group delay of the transmission characteristic (see Japanese Patent Application No. 2001-53837).
[0006]
In the conventional FBG and AWG shown in FIGS. 10 and 11, the deviation of the transmission characteristic group delay is not taken into account, but only the transmission amplitude characteristic is considered, or in some AWGs, the transmission amplitude characteristic is considered. This is only used for phase correction of a simple inclination of the transmission phase without much consideration. Further, even the optical thin film filter shown in FIG. 12 and the optical thin film filter proposed by the present inventor do not consider the group delay of the reflection characteristics.
[0007]
On the other hand, in a wavelength selection unit such as ADM used in recent D-WDM systems, a signal of a certain wavelength is passed and taken out, the remaining signal is reflected and held once, and a signal of another wavelength is taken out newly. By repeating this operation, an operation process for separating and extracting signals of all wavelengths is performed. At this time, when the reflected signal is also reflected, the waveform is distorted by the group delay of the reflection characteristic. In particular, in D-WDM, the frequency or wavelength interval of the signal of the adjacent channel is very small with respect to the signal of a certain channel. However, in the conventional filter, the improvement of the group delay of the reflection characteristics is not taken into consideration, and the design method is not known.
[0008]
The present invention has been made in view of this, and the deviation of the group delay characteristic of the reflection characteristic is greatly increased by making a slight modification to the design and manufacturing technology of the optical thin film filter that suppresses the deviation of the group delay characteristic of the transmission characteristic. The optical thin film filter suppressed to be realized. With this filter, it is possible to realize a wavelength selection function with little waveform distortion for a transmitted signal and a reflected signal, and further, an add / drop module can be realized.
[0009]
[Means for Solving the Problems]
Accordingly, the present invention provides a band-pass optical thin film filter in which a cavity layer is formed from a reflector layer and a spacer layer in which a plurality of optical thin films having different refractive indexes are multilayered, and the plurality of cavity layers are multi-staged via a connecting layer. The layer structure is determined according to the required transmission characteristics and reflection characteristics from the denominator polynomial and numerator polynomial representing the transmission characteristics in the Hurwitz polynomial of complex frequency s, and the denominator polynomial and numerator polynomial representing the reflection characteristics. All zeros of the numerator polynomial representing the characteristics are present only on the left half plane including the origin of the complex plane.
[0010]
[Action]
The optical thin film filter of the present invention can suppress not only the group delay of the transmission characteristic in the pass band but also the group delay deviation of the reflection characteristic of the stop band, and also for the transmission signal and the reflection signal of the adjacent channel. However, an optical thin film filter with suppressed waveform distortion can be obtained. As a result, it is possible to realize a wavelength selection function such as ADM that suppresses waveform distortion for signals of all channels.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. It should be noted that the present invention is not limited to the following examples, and modifications and improvements can be made without departing from the spirit of the present invention.
[0012]
First, FIG. 1 shows a specific example of the optical thin film filter of the present invention. On the glass substrate 1, a plurality of cavity layers 10, 11, 12, 13 composed of reflecting mirror layers 2, 3, 4, 5, 6, 7, 8 and a spacer layer 9 are multiplexed via a connecting layer 14. The reflecting mirror layers 2, 3, 4, 5, 6, 7, 8, the spacer layer 9, and the connecting layer 14 are each formed by multilayering a plurality of optical thin films having different refractive indexes.
[0013]
Here, if the transmission characteristics and reflection characteristics of the filter to be obtained are determined from the Hurwitz polynomial of the complex frequency s in the filter theory of the electric circuit, the element value of the standardized low-pass filter is determined from the Hurwitz polynomial. The layer structure of the multiple thin film optical filter of the present invention shown in FIG. 1 can be determined by frequency conversion and equivalent conversion of the low pass filter (see Japanese Patent Application No. 2001-53837 for details).
[0014]
That is, the characteristics of the optical thin film filter can be expressed by the S parameter shown in Equation 1. As shown in Equation 2, g (s) of the denominator polynomial of s21 representing the transmission characteristic indicates a Hurwitz polynomial, and f (s) of the numerator polynomial is 1 in this case as shown in Equation 3. Since the transmission characteristic is determined only by the Fluwitz polynomial, a filter having a desired transmission characteristic can be realized by selecting a Furwitz polynomial with a small group delay deviation. At this stage, the group delay characteristic of the reflection characteristic is not yet considered.
[0015]
[Expression 1]
Figure 0004146691
[0016]
[Expression 2]
Figure 0004146691
[0017]
[Equation 3]
Figure 0004146691
[0018]
The reflection characteristic of the optical thin film filter is determined by the denominator polynomial g (s) of s11 and the numerator polynomial h (s) as shown in Equation 4. The denominator polynomial g (s) is the same as the denominator polynomial of s21. On the other hand, the numerator polynomial is determined along with g (s) and f (s) given by unitary condition number 5.
[0019]
[Expression 4]
Figure 0004146691
[0020]
[Equation 5]
Figure 0004146691
[0021]
When g (s) is a fourth-order polynomial, the unitary condition is an eighth-order polynomial, and its zeros are one set of ± real roots 51 and 58, and double roots 54 and 55 of the origin, as shown in FIG. The conjugate roots 52, 53, 56 and 57 of There are two combinations of zeros for obtaining a fourth-order polynomial h (s) from these zeros, one for selecting one set of conjugate roots, two for selecting ± real roots, and one for selecting an origin. There are four combinations in total.
[0022]
As apparent from Equation 1, there is no difference in the transmission characteristic s21 regardless of which combination is selected, and the transmission characteristics are exactly the same. However, as apparent from Equation 1, the reflection characteristics differ depending on how the zero point is selected. The phase characteristic of the Hurwitz polynomial directly represents the phase transition of s21 and Equation 4. In this example, since the transmission characteristic s21 is determined only by this Fulwitz polynomial, this phase transition and the group delay characteristic which is the differential of the frequency shown in Equation 6 are determined.
[0023]
[Formula 6]
Figure 0004146691
[0024]
However, since the phase transition of the numerator polynomial h (s) is added to the reflection characteristic, if this phase transition has the same sign as the phase transition of the denominator Hurwitz polynomial, the phase shifts larger, and similarly, The group delay time, which is the derivative, is also increased. On the other hand, if the phase transition by h (s) is opposite in sign to the phase transition by the denominator polynomial Hurwitz polynomial, the overall phase transition decreases and the group delay time also decreases.
[0025]
[Expression 7]
Figure 0004146691
[0026]
As shown in FIG. 3, since the zeros 61, 62, 63, 64 of the Hurwitz polynomial g (s) exist only on the left half of the complex plane, the zero of the numerator polynomial h (s) representing the reflection characteristic is the left half. If it is, the total phase shift will be canceled out and the group delay time will be reduced. On the other hand, if the zero of h (s) is on the right half, the overall phase transition increases in a direction that strengthens the overall phase transition, and the group delay time also increases.
[0027]
Therefore, in the present invention, for the purpose of reducing the phase transition of the reflection characteristic and suppressing the group delay time, only the zero of the left half surface including the origin of the complex plane is used as the zero of the numerator polynomial h (s) representing the reflection characteristic. , 56, 57, and 58 are employed.
[0028]
When only the left half plane zero is employed for h (s) according to the present invention, the phase transition of reflection and the group delay time viewed from port 1 are minimized. However, as is clear from Equation 8, selecting the zero of the numerator polynomial representing the reflection characteristic of port 1 on the left half plane selects the zero of the numerator polynomial of the reflection coefficient of port 2 only on the right half plane. The phase transition of the reflection coefficient and the group delay time viewed from 2 are maximized.
[0029]
[Equation 8]
Figure 0004146691
[0030]
FIG. 9 shows an equivalent circuit derived from the network function shown in Equation 1 that satisfies the conditions described above. Cavities 67, 68, and 69 are connected between the terminating resistors 80 and 81 via the imaginary gyrator 66. Each cavity consists of resonators 76, 77, 78 and ideal transformers 70, 71, 72, 73, 74, 75 connected to the front and rear thereof. 1 and the equivalent circuit shown in FIG. 9 are such that the connecting layer 14 is a cavity in the virtual gyrator 66, the mirror layers 2-8 are in the ideal transformers 70-75, and the spacer layer 9 is in the resonators 76-78. Layers 10-13 correspond to cavities 67-69.
[0031]
FIG. 4 shows the transmission amplitude characteristic of the embodiment according to the present invention, and FIG. 5 shows the reflection amplitude characteristic. In this example, there is no difference from the conventional inventor's invention. FIG. 6 shows the transmission group delay characteristics of the embodiment according to the present invention. FIG. 7 shows a case where only the left half surface is adopted as the zero of h (s), and shows the group delay characteristic of reflection according to the present invention. FIG. 8 shows an example of a conventional group delay characteristic of reflection, in which the zero point of h (s) is only the right half or a combination of the right half and the left half. The group delay characteristic of the transmission characteristic is not different from that of the conventional example, but it is clear from the comparison between FIG. 7 and FIG. Recognize.
[0032]
【The invention's effect】
According to the present invention, a band-pass optical thin film in which a plurality of optical thin films having different refractive indexes are formed into a multilayer from a reflecting mirror layer and a spacer layer, and the plurality of cavity layers are multi-staged via a connecting layer. The filter is configured to determine a layer configuration according to a transmission characteristic and a reflection characteristic to be obtained from a denominator polynomial and a numerator polynomial representing a transmission characteristic in a Hurwitz polynomial of a complex frequency s, and a denominator polynomial and a numerator polynomial representing a reflection characteristic. Since the zeros of the numerator polynomial representing the reflection characteristics are all on the left half plane including the origin of the complex plane, not only the group delay of the transmission characteristics within the passband but also the group delay deviation of the reflection characteristics of the stopband The optical thin film filter can suppress the waveform distortion with respect to the transmission signal and the reflection signal of the adjacent channel. As a result, it is possible to realize a wavelength selection function such as ADM that suppresses waveform distortion for signals of all channels.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an optical thin film filter of the present invention.
FIG. 2 is a complex plan view showing zeros of h (s) · h (s) in the optical thin film filter of the present invention.
FIG. 3 is a complex plan view showing a zero point of g (s) in the optical thin film of the present invention.
FIG. 4 is a graph showing transmission amplitude characteristics of the optical thin film filter of the present invention.
FIG. 5 is a diagram showing reflection amplitude characteristics of the optical thin film filter of the present invention.
FIG. 6 is a graph showing transmission group delay characteristics of the optical thin film filter of the present invention.
FIG. 7 is a diagram showing reflection group delay characteristics of the optical thin film filter of the present invention.
FIG. 8 is a diagram showing reflection group delay characteristics of a conventional optical thin film filter.
FIG. 9 is a diagram showing an equivalent circuit of the optical thin film filter.
FIG. 10 is a diagram showing a conventional FBG.
FIG. 11 is a diagram showing a conventional AWG.
FIG. 12 is a diagram showing a conventional optical thin film filter.
[Explanation of symbols]
1: Glass substrate 2, 3, 4, 5, 6, 7, 8: Reflector layer 9: Spacer layers 10, 11, 12, 13: Cavity layer 14: Communication layer 15: Grating part 16: Demultiplexing part 17: Phase shift unit 18: Wavelength selection units 51, 52, 53, 54, 55, 56, 57, 58: Zero points 61, 62, 63, 64 of h · h * 66: Zero point 66 of g (s): Virtual gyrator 67, 68, 69: Cavities 70, 71, 72, 73, 74, 75: Ideal transformers 76, 77, 78: Resonators 80, 81: Termination resistors

Claims (1)

屈折率の異なる複数の光学薄膜を多層化した反射鏡層とスペーサ層からキャビティ層を形成し、複数のキャビティー層を連絡層を介して多段化した帯域通過型光学薄膜フィルタであって、
複素周波数sのフルビッツ多項式における透過特性を表す分母多項式と分子多項式、及び反射特性を表す分母多項式と分子多項式から、求める透過特性及び反射特性に応じて層構成を定めるとともに、上記反射特性を表す分子多項式の零点が、全て複素平面の原点を含み左半面上のみに存在することを特徴とする光学薄膜フィルタ。
A band-pass optical thin film filter in which a plurality of optical thin films having different refractive indexes are formed into a multilayer from a reflecting mirror layer and a spacer layer, and the plurality of cavity layers are multi-staged via a connecting layer,
Based on the denominator polynomial and numerator polynomial representing the transmission characteristics in the Hurwitz polynomial of complex frequency s, and the denominator polynomial and numerator polynomial representing the reflection characteristics, the layer structure is determined according to the transmission characteristics and reflection characteristics to be obtained, and the numerator representing the reflection characteristics. An optical thin film filter characterized in that all zeros of a polynomial are present only on the left half surface including the origin of a complex plane.
JP2002250787A 2002-08-29 2002-08-29 Optical thin film filter Expired - Fee Related JP4146691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002250787A JP4146691B2 (en) 2002-08-29 2002-08-29 Optical thin film filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002250787A JP4146691B2 (en) 2002-08-29 2002-08-29 Optical thin film filter

Publications (2)

Publication Number Publication Date
JP2004093620A JP2004093620A (en) 2004-03-25
JP4146691B2 true JP4146691B2 (en) 2008-09-10

Family

ID=32057526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002250787A Expired - Fee Related JP4146691B2 (en) 2002-08-29 2002-08-29 Optical thin film filter

Country Status (1)

Country Link
JP (1) JP4146691B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4336759B2 (en) 2002-12-17 2009-09-30 日本電気株式会社 Light dispersion filter

Also Published As

Publication number Publication date
JP2004093620A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
US6754411B2 (en) Mach-zehnder based filter demultiplexers and method
WO2021232731A1 (en) Wdm1r combiner for pon
JPH11337765A (en) Optical demultiplexing method, its optical filter arrangement system, and optical filter
JP5210079B2 (en) In-channel equalization optical interleaver
EP1231490B1 (en) Optical multiplexer and optical demultiplexer
CN101806938B (en) One-dimensional membrane cavity structure-based different-bandwidth optical interleaver
JP4146691B2 (en) Optical thin film filter
CN100446449C (en) Comb type wave filter
US6546166B1 (en) Multi-stage optical DWDM channel group interleaver
JP4344514B2 (en) Optical thin film filter design method
CN106054318B (en) The design method of one-dimensional membrane cavity type unequal band width optical interleaver
US7418168B2 (en) Optical add/drop module
JP4071996B2 (en) Optical thin film filter
JP2003066253A (en) Wavelength branching filter
JP4295524B2 (en) Optical thin film filter
US7561766B2 (en) Thin film interleaver
CN1601949B (en) Dielectric-Layer type dense wavelength division multi plexer filter
JP3857906B2 (en) Optical wavelength multiplexer / demultiplexer
CN102109640B (en) Structure of interleaver based on cascaded optical fiber circulator and design method thereof
JP2003131039A (en) Optical filter module
JP2004205646A (en) Optical thin film filter
JP2004177715A (en) Optical thin-film light filter system
JP2007529024A (en) Optical filter, optical interleaver and related manufacturing method
JP2002258036A (en) Multilayer thin film optical filter
JPH0868916A (en) Wide band optical multiplexer/demultiplexer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees