JP4146369B2 - Multipurpose deaerator - Google Patents

Multipurpose deaerator Download PDF

Info

Publication number
JP4146369B2
JP4146369B2 JP2004047698A JP2004047698A JP4146369B2 JP 4146369 B2 JP4146369 B2 JP 4146369B2 JP 2004047698 A JP2004047698 A JP 2004047698A JP 2004047698 A JP2004047698 A JP 2004047698A JP 4146369 B2 JP4146369 B2 JP 4146369B2
Authority
JP
Japan
Prior art keywords
water
treated
deaeration
chamber
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004047698A
Other languages
Japanese (ja)
Other versions
JP2005238010A (en
Inventor
秀幸 田淵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004047698A priority Critical patent/JP4146369B2/en
Publication of JP2005238010A publication Critical patent/JP2005238010A/en
Application granted granted Critical
Publication of JP4146369B2 publication Critical patent/JP4146369B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、工場排水、廃棄物埋立地の浸出水、土壌、地下水等から、揮発性物質を除去することにより、汚染ガス成分を脱気した水溶液に置換するシステム装置に関するものであり、例えば、水中の重炭酸の分解による炭酸ガス除去効果に起因するアルカリ化、ヒドロキシラジカルの生成に起因する殺菌、及び、有機無機化合物の分解、脱臭除去効果によって得られる環境保全などを目的とした汎用型の多目的脱気装置に関するものである。   The present invention relates to a system device for replacing polluted gas components with a degassed aqueous solution by removing volatile substances from industrial wastewater, leachate of waste landfill, soil, groundwater, etc. General-purpose type for the purpose of alkalinization due to carbon dioxide removal effect by decomposition of bicarbonate in water, sterilization due to generation of hydroxy radical, and environmental conservation obtained by decomposition and deodorization removal effect of organic inorganic compounds The present invention relates to a multipurpose deaerator.

従来、排水、用水の処理には、化学的処理による方法が一般的に用いられており、その単位的操作は、pHの調整、薬品による凝集、酸化、還元、イオン交換、電解、抽出等による方法で、処理対象物により取捨選択して利用されている。   Conventionally, chemical treatment methods are generally used for the treatment of waste water and water, and the unit operations are based on pH adjustment, chemical aggregation, oxidation, reduction, ion exchange, electrolysis, extraction, etc. The method is selected and used according to the processing object.

一般に、浮遊物の処理には、凝集沈殿、ろ過、マイクロスクリーニング、遠心分離、浮上分離等が主として利用されているが、処理に、時間と多量の薬品と動力とが費やされている。   In general, coagulation sedimentation, filtration, microscreening, centrifugation, flotation separation and the like are mainly used for the treatment of suspended matter, but time, a large amount of chemicals and power are consumed for the treatment.

有機物の処理には、活性汚泥法、瀑気ラグーン法がよく知られているが、安定した高度な浄化技術による汚泥の減量の追求が必要であり、また、細菌・藻類の共生の利用を必要とするために、設備に広大な用地が必要になるという問題がある。   For the treatment of organic matter, the activated sludge method and the aerated lagoon method are well known, but it is necessary to pursue sludge reduction with a stable and advanced purification technology, and the use of symbiotic bacteria and algae is necessary. Therefore, there is a problem that a vast site is required for the equipment.

さらに、無機物の処理には、蒸留法、電気透析法、イオン交換法、逆浸透法等が広く利用されているが、それらの処理法は排熱の利用可能な場所とか、含有イオンの多量に含まれた排水の場合等に有効であることが多いが、例えば、活性汚泥法では、多量の薬品と長時間の瀑気処理に労力と費用とを必要とし、また、イオン交換樹脂の場合には、樹脂の再生と交換とに費用を必要とし、さらに、中空糸膜による場合には、膜の汚染により早期の交換を余儀なくされるため、多量の産業廃棄物を発生するという問題を有している。   In addition, distillation methods, electrodialysis methods, ion exchange methods, reverse osmosis methods, etc. are widely used for the treatment of inorganic substances, but these treatment methods can be used in places where exhaust heat can be used, or in large quantities of contained ions. It is often effective in the case of wastewater contained, but for example, the activated sludge method requires labor and cost for a large amount of chemicals and long-term aeration treatment, and in the case of ion exchange resin Has a problem of generating a large amount of industrial waste because it requires cost for the regeneration and replacement of the resin, and in addition, in the case of a hollow fiber membrane, the membrane must be replaced early due to contamination of the membrane. ing.

現在、上記のような処理方法を工夫することで、排水、放流水等を厳しく規制し、環境の保全に努めているが、この処理のなかに、難分解性有機塩素化合物の処理であるとか、重金属汚染物の処理を必要とする場合が多く、これらの処理については、特別な処理が必要となるため、多額の費用を必要とするという問題を有している。   Currently, by devising treatment methods as described above, wastewater and effluent water are strictly regulated and efforts are being made to preserve the environment. Among these treatments, the treatment of persistent organic chlorine compounds, etc. In many cases, treatment of heavy metal contaminants is required, and special treatment is required for these treatments.

この他、真空状態に減圧したタンク内で被処理水中の溶存ガスを脱気する処理と、被処理水中の未電解金属塩を振動電磁界によりイオン解離する処理とを組合せることによって、被処理水中のミネラル成分を非付着スケールとして析出除去する方法であるとか、超音波エネルギーの付与された被処理水を真空脱気装置で脱気処理するとともに、脱気された脱気水を加圧して減圧容器内で断熱膨張させることで脱気処理が付加されるようにした真空脱気方式も知られている。   In addition, by combining the process of degassing the dissolved gas in the water to be treated in a tank whose pressure has been reduced to a vacuum state, and the process of ion dissociation of the electroless metal salt in the water to be treated by an oscillating electromagnetic field It is a method of precipitating and removing mineral components in the water as a non-adhesive scale, or deaeration treatment of water to be treated with ultrasonic energy using a vacuum deaerator and pressurizing the deaerated water There is also known a vacuum deaeration system in which a deaeration process is added by adiabatic expansion in a decompression vessel.

特公平2−11319JP 11-11319 特公平2−12640JP 12-12640 特公平6−38959JP 6-38959 特開平9−299709JP-A-9-299709 特開2000−325702JP 2000-325702 A 特開2001−246363JP 2001-246363 A 特開2003−181447JP 2003-181447 A

近年における都市への人口集中化に起因する終末処理場の高負荷化、産業の急速な発達に起因する工場周辺地下水の環境汚染化、また、都市周辺の牛豚等畜産業による排水に起因する地下水の汚染化等の対策についての、これらの複雑な問題を解決する手段としては、汚染発生源において簡単に設置できる小規模で、しかも各種の汚染問題に対処できるような高精度な処理を期待できる脱気装置の開発が緊急な課題とされている。   Due to the high load of sewage treatment plants due to population concentration in cities in recent years, environmental pollution of groundwater around factories due to rapid industrial development, and drainage by livestock industry such as cattle and pigs around cities As a means to solve these complex problems regarding measures such as contamination of groundwater, we expect small-scale, easy-to-install, high-precision treatment that can deal with various pollution problems. The development of a deaerator that can be used is an urgent issue.

このような高精度な処理装置に要求される事項をまとめると、
1.通性嫌気性菌や、全く酸素の無い状態で生育する偏性嫌気性菌等によって生ずる蛋白、含水炭素、脂肪等を低分子化できるように分解する完全腐敗機構の提供。
2.各工場にて排出される有機性廃棄物を簡単に気化し、BOD、CODを低減できる処理機構の提供。
3.水域の富栄養化を防止でき、食品工場・畜産豚舎等の排水及びその周辺の地下水の窒素化合物を簡単に分解できる高精度処理機構の提供。
To summarize the requirements for such a high-precision processing device,
1. Providing a complete rotting mechanism that degrades proteins, hydrous carbon, fats, etc. produced by facultative anaerobic bacteria or obligate anaerobic bacteria that grow without oxygen.
2. Providing a treatment mechanism that can easily vaporize organic waste discharged at each factory and reduce BOD and COD.
3. Providing a high-precision treatment mechanism that can prevent eutrophication of water areas and easily decompose nitrogen compounds in wastewater from food factories, livestock piggeries, and the surrounding groundwater.

これらの要求事項を総合すると、その要求は、単一の処理機構で複合的な処理機能を発揮でき、しかも、汚染の発生源において最小時間内に処理できる小規模で高精度の処理を期待でき、かつ、産業廃棄物を排出せず、設備費及び稼働費も低廉で、環境保全の面からも有効であるということである。しかしながら、現在では、こような要求を満たすことのできる装置はいまだ実現されていない。   When these requirements are summed up, the requirements can be combined with a single processing mechanism to provide multiple processing functions, and can be expected to be small and highly accurate processing that can be processed within a minimum amount of time at the source of contamination. In addition, industrial waste is not discharged, equipment costs and operation costs are low, and it is effective from the viewpoint of environmental conservation. However, at present, an apparatus that can satisfy such a demand has not yet been realized.

このように広範な種々の分野において要求される多目的の脱気処理作業については、前記の特許文献に例示されたような各種の脱気処理技術が有効であるが、これらの脱気処理装置にも、未だに解決されなければならない幾つかの課題が指摘される。   As described above, various degassing treatment techniques exemplified in the above-mentioned patent documents are effective for the multipurpose degassing treatment work required in various fields. However, some problems still need to be solved.

これらの課題の一例として、脱気処理装置で処理される前と処理された後の給排水系の問題がある。一般的にこれらの脱気処理装置では、被処理水が真空脱気装置で脱気処理された後、この処理水は、脱気処理装置の外部に設けられた貯水タンクへ送られて貯留され、この貯水タンクからボイラー等のような各種の用途に順次使用されていく。   As an example of these problems, there is a problem of the water supply / drainage system before and after being processed by the degassing apparatus. Generally, in these deaeration treatment apparatuses, after the water to be treated has been deaerated by a vacuum deaeration apparatus, the treated water is sent to a water storage tank provided outside the deaeration treatment apparatus and stored. These water storage tanks will be used sequentially for various purposes such as boilers.

そのため、脱気処理装置には外部から新たな被処理水を補充して継続的に脱気処理を進めることになる。しかし、これらの新たな被処理水は脱気処理装置によって適切な脱気処理が行われてから外部の貯水タンクへ送られればよいが、完全に脱気処理されていない状態で被処理水が送り出されると、貯水タンク内で処理水と被処理水とが混ざり合ってしまい、不適切な処理水が供給されてしまうという問題がある。   For this reason, the degassing apparatus is replenished with new water to be treated from the outside, and the degassing process is continuously performed. However, these new to-be-treated water may be sent to an external water storage tank after being appropriately degassed by a degassing device, but the to-be-treated water is not completely degassed. When it is sent out, there is a problem that treated water and treated water are mixed in the water storage tank, and inappropriate treated water is supplied.

また、別の例として、真空脱気装置における高真空に減圧された脱気室内で、被処理水を室内の壁に向けて噴射衝突させる噴流処理の問題がある。従来のこの種の噴流処理では、円筒状の噴射室から複数個の噴射ノズルを放射状に突設して、これらの噴射ノズルから被処理水を脱気室内の壁に向けて噴射衝突させる。すると、水中に溶存する気泡が衝突による衝撃力と瞬間的な断熱膨張によって瞬時に破壊され、気体となって脱気室の上方に配置された真空ポンプにより捕集除去される。   Further, as another example, there is a problem of jet treatment in which water to be treated is jetted and collided toward a wall in the deaeration chamber decompressed to a high vacuum in the vacuum deaeration device. In this type of conventional jet treatment, a plurality of jet nozzles project radially from a cylindrical jet chamber, and water to be treated is jetted and collided from these jet nozzles toward the wall of the deaeration chamber. Then, bubbles dissolved in water are instantaneously destroyed by the impact force and instantaneous adiabatic expansion caused by the collision, and are collected and removed as a gas by a vacuum pump disposed above the deaeration chamber.

この噴射ノズルから被処理水を室内の壁に向けて噴射衝突させるということを考慮した場合、確かに、水中に溶存する気泡が衝突による衝撃力と瞬間的な断熱膨張によって瞬時に破壊されるものと思われる。しかしながら、実際には、衝突した水の全てから、気泡が破壊されているとはいえない、という疑問が考えられる。そこで、脱気室内の壁面に衝突した水の流れを分析すると、まず、衝突した水は、壁面に沿って上下方向に分かれ、下方へ流れる水は壁面に沿って薄膜状に流れるが、上方へ流れた水は脱気室内の天井に沿って天井の中央部方向へ流れた後に、脱気室内中央部を滝にように流れ下ることが判明した。   When considering that the water to be treated is jetted and collided from the jet nozzle toward the wall of the room, the bubbles dissolved in the water are surely destroyed instantly by the impact force and instantaneous adiabatic expansion caused by the collision. I think that the. However, in reality, it can be considered that the bubbles are not destroyed from all of the collided water. Therefore, when analyzing the flow of water that collided with the wall surface in the deaeration chamber, first, the collided water is divided in the vertical direction along the wall surface, and the water flowing downward flows in a thin film shape along the wall surface. It turned out that the flowing water flows along the ceiling in the deaeration chamber toward the center of the ceiling and then flows down like a waterfall in the center of the deaeration chamber.

この場合、衝突面から下方へ流れる水は、室内の壁面に沿って薄い膜を形成しながら流れることと、衝突の衝撃力による断熱膨張と低温沸騰によって気泡が的確に分離し易い状態となっている。これに対して、衝突面から上方へ流れた水は、室内の天井に沿って天井の中央部方向へ流れた後は、伝わって流れ下るような壁面がないので、水だけで滝のような状態で室内下方へて落下することになり、水中の気泡が表面に浮き上がりにくい状態となっている。このような理由から、衝突面から下方へ流れる水は有効な脱気処理を行えるが、衝突面から上方へ流れる水については有効な脱気処理が行われていないという事実が判明した。   In this case, the water flowing downward from the collision surface flows while forming a thin film along the wall surface of the room, and the bubbles are easily separated accurately by adiabatic expansion and low temperature boiling due to the impact force of the collision. Yes. On the other hand, the water that flows upward from the collision surface does not have a wall that flows down after flowing along the indoor ceiling toward the center of the ceiling. It will fall down indoors in the state, and it will be in the state where the bubble in water is hard to float on the surface. For these reasons, it has been found that the water flowing downward from the collision surface can be effectively degassed, but the water flowing upward from the collision surface has not been effectively degassed.

本発明は、従来における上記のような脱気装置の問題点に鑑み、単一の処理機構で複合的な処理機能を発揮でき、しかも、汚染の発生源において最小時間内に処理できる小規模で高精度の処理を期待でき、かつ、産業廃棄物を排出せず、設備費及び稼働費も低廉で、環境保全の面からも有効であるような脱気装置の提供を目的としたものである。   In view of the problems of the conventional deaeration apparatus as described above, the present invention is a small scale capable of performing a complex processing function with a single processing mechanism and capable of processing within a minimum time at the source of contamination. The purpose is to provide a deaeration device that can be expected to provide high-precision processing, does not discharge industrial waste, has low equipment and operating costs, and is also effective in terms of environmental conservation. .

本発明は、そのための具体的手段として、送水ポンプの両側に設けた一対の方向制御弁の間に、両制御弁の操作によって切り換わる主循環路と副循環路とを有し、前記主循環路には、電気エネルギーを付与することで被処理水を電気分解して、アルカリに傾ける高周波電解装置と、真空装置により減圧された脱気室内で被処理水を壁面に噴射衝突させて、被処理水を壁面から剥離することなく流下させる脱気処理装置と、前記脱気処理装置内で超音波エネルギーの付与された被処理水に誘起される蒸気性キャビテイを圧縮して破壊する超音波照射装置とを備え、前記副循環路には、主循環路で脱気処理された処理水を貯水し、主循環路へ送水するためのタンクを備えていることを特徴とする。   The present invention has, as a specific means for that purpose, a main circulation path and a secondary circulation path that are switched by operation of both control valves between a pair of directional control valves provided on both sides of the water pump. The road is electrolyzed by applying electric energy, and the water to be treated is injected and collided against the wall surface in a high-frequency electrolysis apparatus that inclines to alkali and a deaeration chamber decompressed by a vacuum apparatus. Deaeration treatment device that allows the treated water to flow down without peeling from the wall surface, and ultrasonic irradiation that compresses and destroys the vapor cavities induced in the treated water to which ultrasonic energy is applied in the deaeration treatment device And a tank for storing the treated water degassed in the main circulation path and feeding the treated water to the main circulation path.

主循環路における脱気処理は、加圧された高圧の被処理水へ、高周波電解装置により電気的エネルギーを与えてから、この被処理水を高真空に減圧された円筒状の脱気処理装置内へ供給して、脱気処理装置底部に設けられた超音波照射装置により超音波エネルギーを付与するとともに、この被処理水を脱気処理装置内中央部から脱気処理装置の内壁に向け噴射して、衝突によって上方へ流れる水を壁面から剥離することなく流下させることにより、水中の揮発性物質を分離する脱気処理を、循環して連続的に繰返すことのできる構成を備えていることが好ましい。   The deaeration treatment in the main circulation path is a cylindrical deaeration treatment device in which electrical energy is applied to the pressurized high-pressure water to be treated by a high-frequency electrolyzer and then the water to be treated is decompressed to a high vacuum. Is supplied to the inside, and ultrasonic energy is applied by an ultrasonic irradiation device provided at the bottom of the deaeration treatment device, and this treated water is sprayed from the central portion of the deaeration treatment device toward the inner wall of the deaeration treatment device. In addition, the degassing process for separating the volatile substances in the water can be circulated and repeated continuously by causing the water flowing upward due to the collision to flow down without peeling from the wall surface. Is preferred.

また、主循環路は、送水ポンプの両側に、給水/循環、の一次側方向制御弁と、循環/排水、の二次側方向制御弁を備え、始動時は一次側方向制御弁を、給水、二次側方向制御弁を、循環、として、原水タンクからの被処理水を、高周波電解装置を通して脱気処理装置へ所定量供給して噴流処理を行う一次処理と、前記一次処理を終えた後、一次側方向制御弁を、循環、二次側方向制御弁を、循環、として、脱気処理装置による循環噴流処理を所定時間継続する二次処理とを行い、次に、一次側方向制御弁を、循環、二次側方向制御弁を、排水、として、副循環路により前記の脱気処理された処理水をバッファータンクへ移送し、このタンクからの溢流水を原水槽へ戻すための三次処理とを行えるような構成とすることが好ましい。   In addition, the main circuit is equipped with a water supply / circulation primary directional control valve and a circulation / drainage secondary directional control valve on both sides of the water supply pump. The primary treatment is completed, the secondary side direction control valve is circulated, and the water to be treated from the raw water tank is supplied to the deaeration treatment device through a high-frequency electrolysis device to perform a jet treatment. Then, the primary side directional control valve is circulated, the secondary side directional control valve is circulated, and the secondary jet process for continuing the circulating jet process by the degassing apparatus for a predetermined time is performed, and then the primary side directional control is performed. The valve is used for circulation, the secondary direction control valve is used for drainage, and the degassed treated water is transferred to the buffer tank by the auxiliary circuit, and the overflow water from this tank is returned to the raw water tank. It is preferable to adopt a configuration capable of performing tertiary processing.

主循環路に設けられる高周波電解装置としては、金属を高級誘電体で被覆した駆動極と、この駆動極と所定の間隔を保持して同軸状に覆設した金属管状の裸電極とを対極とし、これらの電極の間に被処理水を通水している二極間に、交播電流を印加して構成する交流コンデンサー型の装置であることが好ましい。   As a high-frequency electrolysis apparatus provided in the main circuit, a drive electrode in which a metal is coated with a high-grade dielectric and a metal tubular bare electrode that is coaxially covered with the drive electrode while maintaining a predetermined distance are used as a counter electrode. It is preferable that the device is an AC capacitor type device configured by applying a cross seeding current between two electrodes through which water to be treated passes between these electrodes.

主循環路に設けられ脱気処理装置は、円筒状の脱気室と、主循環路路と接続されるようにして脱気処理装置内中央部に同軸状に設けられた円筒状の噴射室と、前記脱気室と噴射室との間に同軸状に設けられた内筒と、前記噴射室から放射状に突設された複数個の噴射ノズルとからなり、脱気室と、噴射室と、内筒の各上端は共通の上蓋により閉じられ、内筒は下端が貯留水面付近まで延びているような長さを有し、噴射ノズルが内筒を貫通して被処理水を脱気室内周面に噴射させるように構成されていることが好ましい。   The deaeration treatment device provided in the main circulation path includes a cylindrical deaeration chamber and a cylindrical injection chamber provided coaxially in the central portion of the deaeration treatment device so as to be connected to the main circulation path. And an inner cylinder provided coaxially between the deaeration chamber and the injection chamber, and a plurality of injection nozzles projecting radially from the injection chamber, the deaeration chamber, the injection chamber, The upper end of the inner cylinder is closed by a common upper lid, the inner cylinder has a length such that the lower end extends to the vicinity of the water storage surface, and the spray nozzle penetrates the inner cylinder to remove the water to be treated. It is preferable to be configured to inject onto the peripheral surface.

なお、脱気装置の噴射室と、内筒とを、いずれも下端が貯留水面付近まで延びているような長さとして、噴射室から突出する長い噴射ノズルが内筒を貫通して被処理水を脱気室内周面へ噴射し、噴射室から突出する短い噴射ノズルが被処理水を内筒内周面へ噴射するような構成とすることが好ましい。   The injection chamber and the inner cylinder of the deaeration device are both set such that the lower ends extend to the vicinity of the water storage surface, and a long injection nozzle protruding from the injection chamber penetrates the inner cylinder and is treated with water. It is preferable that a short injection nozzle protruding from the injection chamber injects water to be treated onto the inner peripheral surface of the inner cylinder.

本発明では、脱気装置により脱気処理された処理水は、副循環路によって、バッファタンク内に貯留され、満水になると、その一部が溢流して原水槽に戻るので、原水槽内の水は処理水と未処理水の混合されたものとなるが、この原水槽内の水は、再び脱気処理装置により循環脱気処理されてバッファタンクへ送られるので、バッファタンク内に未処理の水が送り込まれて、処理水と未処理水とが混ざり合うことがなく、適正な脱気処理を期待できる。   In the present invention, the treated water degassed by the degassing device is stored in the buffer tank by the sub-circulation path, and when it becomes full, a part of it overflows and returns to the raw water tank. The water is a mixture of treated water and untreated water, but the water in this raw water tank is circulated and degassed again by the degassing device and sent to the buffer tank. Therefore, the treated water and the untreated water are not mixed with each other, and an appropriate deaeration treatment can be expected.

また、脱気処理装置では、脱気室内で被処理水を壁面に噴射衝突させると、衝突した水のうち、衝突部の下方へ流れる水は壁面に沿って薄膜状に流れるので、水面に気泡が浮き上がって水中から除去し易い状態となる。一方、衝突部の上方へ流れた水は、勢いで壁面に沿って天井まで流れたのち、脱気室壁面と噴射室との間に設けられた内筒の外周面を伝わって、膜面の状態を維持しながら下方へ流下させることができるので、衝突部の上方へ流れた水からも水中から気泡を的確に除去することができ、脱気処理を効率よく行うことができる。   Further, in the deaeration treatment apparatus, when the water to be treated is jetted and collided with the wall surface in the deaeration chamber, the water that flows below the collision part out of the collided water flows in a thin film shape along the wall surface. Will float and be easily removed from the water. On the other hand, the water that has flowed upward from the collision part flows along the wall surface to the ceiling, and then travels along the outer peripheral surface of the inner cylinder provided between the deaeration chamber wall surface and the injection chamber. Since it can be made to flow downward while maintaining the state, air bubbles can be accurately removed from the water that has flowed above the collision portion, and the deaeration process can be performed efficiently.

高周波電解装置は、2極間に交播電流を印加すると、裸電極の近傍では、溶存酸素が真空負圧によりガス化されているため、容易に励起されてスーパーオキサイドイオンに変わり、駆動極の近傍では静電反応により水素イオンは還元されるために、結果として、水中の水素イオンは減少し、水はアルカリに傾く。   When a cross-seeding current is applied between two electrodes, the high-frequency electrolysis apparatus is easily excited and converted into superoxide ions in the vicinity of the bare electrode because the dissolved oxygen is gasified by vacuum negative pressure. In the vicinity, hydrogen ions are reduced by an electrostatic reaction. As a result, hydrogen ions in water are reduced and water is inclined to alkali.

さらに、超音波照射装置は、超音波の蒸気キャビテイションの気泡を、真空中で水中に誘発させるために、例えば、槽内の水深を、超音波の波長の整数倍+3/4程度の波長に調整すると、水中の蒸気性気泡は、粗密波のそれぞれの圧縮点で圧縮され、その時気泡は、断熱圧縮状態になるために、気泡内は、高温高圧となって、遂には押し潰される。その押し潰される瞬間に周囲の水が一斉に気泡の中心に向かって突入し、水の衝突が、強い衝撃性の音波を水中に発射する。
Furthermore, ultrasonic irradiation apparatus, the bubbles vaporous cavitation ultrasound, in order to induce the water in vacuum, for example, the water depth in the tank, the wavelength of integer times Tasu3/4 the wavelength of the ultrasonic wave When adjusted to, the vapor bubbles in the water are compressed at the compression points of the dense waves, and at that time, the bubbles are in an adiabatic compression state. At the moment of being crushed, the surrounding water rushes toward the center of the bubble all at once, and the collision of water launches a strong impact sound wave into the water.

その際に生ずる高熱エネルギーは、また、前記の高周波電解装置により形成された多量の水酸イオンを不対電子状態の・OHラジカルに励起する反応を結果的に与えることとなり、その・OHラジカルの強力な酸化力が殺菌力となって、少ないエネルギーにより水を浄化する。   The high thermal energy generated at that time also results in a reaction that excites a large amount of the hydroxide ions formed by the high-frequency electrolysis apparatus into the unpaired electronic state of the OH radical. The powerful oxidizing power becomes sterilizing power and purifies water with less energy.

また、超音波照射装置における槽内の水深を、例えば、超音波の波長の整数倍+1/2程度の波長に調整すると、気体性キャビテイションの造る気泡に水中の揮発性気体は捕捉され、気泡は水面で壊れるため、揮発性気体は真空空間に拡散する。この反応は、水温を高めることなしに脱気するための手段として好適である。つまり、水深を処理目的に応じて調整する手段は、処理装置を加熱型とすべきか、あるいは低温型とすべきかという選択を可能とするもので、例えば、生牛乳の殺菌処理等として、新商品の開発に繋がる有効な手段を提供する。   In addition, when the water depth in the tank in the ultrasonic irradiation device is adjusted to a wavelength that is, for example, an integral multiple of the wavelength of the ultrasonic wave + about 1/2, volatile gas in water is trapped in the bubbles created by the gaseous cavitation, and the bubbles Since it breaks at the water surface, the volatile gas diffuses into the vacuum space. This reaction is suitable as a means for deaeration without increasing the water temperature. In other words, the means for adjusting the water depth according to the purpose of treatment enables selection of whether the treatment apparatus should be a heating type or a low temperature type. For example, as a sterilization treatment of raw milk, a new product Provide effective means for development of

本発明の多目的脱気装置によると、嫌気性発酵の前処理段階で、例えば、脱酸素処理工程を取り入れることは、嫌気性発酵を熟成させて、汚泥を減量化することに役立つ。また、気相のアンモニアの「結合・解離」のエネルギーは、NH
→3H,N・・・・・18.4kj/molであり、液相の水の解離エネルギーは14.2kj/molであることから、水の解離エネルギー以上のエネルギーになるように電解エネルギーを目的物の濃度に合わせて調整して、その分解エネルギー以上のエネルギーを供給すれば、目的とする無機・有機化合物を直接分解して、その分解で酸素が生成される結果、酸素の補充を必要としない経済価値の高い手段を提供することができる。
According to the multipurpose degassing apparatus of the present invention, incorporating a deoxygenation process, for example, in the pretreatment stage of anaerobic fermentation is useful for aging anaerobic fermentation and reducing sludge. The energy of “bonding / dissociation” of ammonia in the gas phase is NH 3.
→ 3H, N ... 18.4 kj / mol and the dissociation energy of liquid phase water is 14.2 kj / mol. If it is adjusted according to the concentration of the substance and energy higher than its decomposition energy is supplied, the target inorganic and organic compounds are decomposed directly, and oxygen is generated by the decomposition. Can provide a means of high economic value.

また、本発明の多目的脱気装置によると、高周波電解装置と超音波の蒸気性
キャビテイションの破壊に伴う高圧高熱のエネルギーにより生成された・OHラジカルの強力な酸化力を得られるので、この酸化力により窒素酸化物から直接水素を分離脱気して窒素化することができ、処理工程の短縮と悪臭を最小限に抑え、薬物不要の経済効果の高い脱気システムを提供することができる。
Further, according to the multipurpose degassing apparatus of the present invention, a strong oxidizing power of OH radicals generated by high-pressure and high-temperature energy accompanying destruction of the high-frequency electrolysis apparatus and ultrasonic vapor cavitation can be obtained. Hydrogen can be separated and degassed directly from nitrogen oxides by force, so that it can be nitrogenized by shortening the processing steps and minimizing bad odors, and providing a degassing system with a high economic effect that does not require drugs.

さらに、従来では、地下水の汚染物質として、工場周辺における浸出水中のトリハロメタン(THM)やテトラクロロエチレンなどの有機塩素化合物の分解、また、都市周辺地下水に混入して感染症の脅威となったクリプトスポリジュウム等の原虫耐塩素性菌(家畜糞尿等が排出源とされている)等の処理が問題とされているが、本発明の脱気装置によれば、超音波の蒸気性キャビテイを水中で圧縮破壊して誘発する衝撃波の高圧と高熱の衝撃力と・OHラジカルの強力な酸化力によってトリハロメタンやテトラクロロエチレンを炭酸ガスに分解することができる。   Furthermore, Cryptosporidium which has been a threat of infectious diseases by the decomposition of organochlorine compounds such as trihalomethane (THM) and tetrachloroethylene in leachate around the factory as a contaminant of groundwater, and contamination in groundwater around the city. However, according to the degassing apparatus of the present invention, ultrasonic steam cavities are compressed in water. Trihalomethane and tetrachloroethylene can be decomposed into carbon dioxide gas by the high pressure of shock wave induced by destruction, the impact force of high heat, and the strong oxidizing power of OH radicals.

主循環路に設けられ脱気処理装置は、噴射室から噴射ノズルが放射状に突設されるが、これらの噴射ノズルとしては、噴射室から長い噴射ノズルと短い噴射ノズルとを突設して、長い噴射ノズルは内筒を貫通して被処理水を脱気室内周面に向けて噴射し、また、短いノズルは被処理水を内筒の内周面に向けて噴射するように構成し、長短いずれのノズルから噴射されて、壁面に衝突したのち上方へ流れる水が、下方へ流下し終えるまで、内筒や噴射室の壁面に沿って膜の状態を維持しながら流れて、気泡がよく分離できるようにすることが好ましい。   In the deaeration treatment device provided in the main circulation path, the injection nozzles protrude radially from the injection chamber, but as these injection nozzles, a long injection nozzle and a short injection nozzle protrude from the injection chamber, The long injection nozzle penetrates the inner cylinder and injects the water to be treated toward the inner peripheral surface of the deaeration chamber, and the short nozzle is configured to inject the water to be processed toward the inner peripheral surface of the inner cylinder, The water that is jetted from either the long or short nozzle and collides with the wall surface and then flows upwards flows while maintaining the state of the film along the inner cylinder and the wall surface of the injection chamber until it finishes flowing downward, and the bubbles are good. It is preferable that separation is possible.

図1は、本発明に係る多目的脱気装置の好適な実施形態を主循環路Aと副循環路Bに示すフロー、図2は、形態を模式的に示した図であって、この多目的脱気装置は、管路2に配置した送水ポンプ1の両側に、一次側方向制御弁3と二次側方向制御弁4とを設けて、これらの方向制御弁3,4の操作によって切り換わる主循環路Aと副循環路Bとを形成し、前記主循環路Aには、高周波電解装置5と、水位レベル装置7を備えた脱気処理装置6と、真空ポンプ8と、超音波照射装置9とが設けられ、また、副循環路Bには、バッファータンク10と、原水槽11とが配置され、さらに、これらの装置を総括して制御する図示しない制御装置が設けられることにより構成されている。   FIG. 1 is a flowchart showing a preferred embodiment of the multipurpose deaerator according to the present invention in the main circuit A and the sub circuit B, and FIG. 2 is a diagram schematically showing the form. The air device is provided with a primary directional control valve 3 and a secondary directional control valve 4 on both sides of a water supply pump 1 arranged in a pipe 2, and is switched by operation of these directional control valves 3, 4. A circulation path A and a secondary circulation path B are formed, and the main circulation path A includes a high-frequency electrolysis device 5, a deaeration treatment device 6 having a water level device 7, a vacuum pump 8, and an ultrasonic irradiation device. 9 is provided, and a buffer tank 10 and a raw water tank 11 are arranged in the sub-circulation path B, and a control device (not shown) that controls these devices collectively is provided. ing.

主循環路Aに設けられる脱気処理装置6は、内部に所定の量の被処理水13を貯留できるとともに、上端が上蓋14により閉じられていて、外部の真空ポンプ8によって内部が減圧されるようになっている脱気室12と、上蓋14の下面から脱気室12内の中央部に突設された円筒状の噴射室15と、この噴射室15から脱気室12の内周面に向けて噴射室15内の水を噴射する、複数本のいずれも噴射口を扁平とした長い噴射ノズル16a及び短い噴射ノズル16bと、脱気室12の底部に設けられた超音波照射装置9とから構成されている。   The deaeration treatment device 6 provided in the main circulation path A can store a predetermined amount of water to be treated 13 inside, and has an upper end closed by an upper lid 14, and the inside is depressurized by an external vacuum pump 8. The deaeration chamber 12 configured as described above, a cylindrical injection chamber 15 projecting from the lower surface of the upper lid 14 to the center of the deaeration chamber 12, and the inner peripheral surface of the deaeration chamber 12 from the injection chamber 15 A long jet nozzle 16 a and a short jet nozzle 16 b each having a flat jet port, and an ultrasonic irradiation device 9 provided at the bottom of the deaeration chamber 12. It consists of and.

この脱気処理装置6では、脱気室12と、この脱気室12内の噴射室15との間に、上端を上蓋14に接続した内筒17が設けられていて、この内筒17と噴射室15の下端は、脱気室12内に貯留される被処理水13の所定量水面近くにまで延びている。また、噴射室15から突出する長い噴射ノズル16aは、内筒17を貫通して内筒の外側へ延び、水を脱気室12の内周面に向けて噴射するようになっており、一方、短い噴射ノズル16bは水を内筒17の内周面に向けて噴射するようになっている。   In the deaeration processing device 6, an inner cylinder 17 having an upper end connected to the upper lid 14 is provided between the deaeration chamber 12 and the injection chamber 15 in the deaeration chamber 12. The lower end of the injection chamber 15 extends to the vicinity of a predetermined amount of the surface of the treated water 13 stored in the deaeration chamber 12. The long injection nozzle 16a protruding from the injection chamber 15 extends through the inner cylinder 17 to the outside of the inner cylinder, and injects water toward the inner peripheral surface of the deaeration chamber 12, The short injection nozzle 16 b is configured to inject water toward the inner peripheral surface of the inner cylinder 17.

脱気室12内には、吸気孔が室内上部に位置するような排気管18が設けられて、この排気管18が脱気室12の外部に設けられた真空ポンプ8と接続され、この真空ポンプ8により脱気室12内が高真空の負圧状態におかれている。   In the deaeration chamber 12, an exhaust pipe 18 having an intake hole located in the upper part of the room is provided, and the exhaust pipe 18 is connected to a vacuum pump 8 provided outside the deaeration chamber 12. The inside of the deaeration chamber 12 is put into a high vacuum negative pressure state by the pump 8.

送水ポンプ1から送られる被処理水13を主循環路Aへ流して、脱気室12内筒に所定量の被処理水13を貯留するための一次処理について説明すると、一次側方向制御弁3を給水ポート、二次側方向制御弁4を循環ポートに切り換えて、原水槽11からの被処理水13を、主循環路Aにおける高周波電解装置5へ送り込んで電気分解処理しながら、脱気室12内に所定水位レベルに達するまで貯水する。   The primary treatment for flowing the treated water 13 sent from the water pump 1 to the main circulation path A and storing a predetermined amount of treated water 13 in the inner cylinder of the deaeration chamber 12 will be described. Is switched to the water supply port, and the secondary direction control valve 4 is switched to the circulation port, and the water 13 to be treated from the raw water tank 11 is fed into the high-frequency electrolysis apparatus 5 in the main circulation path A and electrolyzed, and the deaeration chamber The water is stored in 12 until a predetermined water level is reached.

この高周波電解装置5は、図3に示すように、電気分解を必要とする目的物の分解電圧を設定するための参照電極19が入力端子20から十分離した位置に設けるように配置されており、入力端子20とリード線21を通じて交播電流の印加されるテフロン(登録商標)系の誘電体22により銅板23が被覆される駆動極24の表面と、この駆動極24と所定の間隔を保持して同軸状に配列されたSUS304または銅金属からなる対極26の表面との間に、入口28と出口29とを有する水路27が形成された交流コンデンサー型の装置からなっている。   As shown in FIG. 3, the high-frequency electrolysis apparatus 5 is arranged such that a reference electrode 19 for setting a decomposition voltage of a target object that requires electrolysis is provided at a position sufficiently separated from an input terminal 20. The surface of the drive electrode 24 covered with the copper plate 23 by a Teflon (registered trademark) dielectric 22 to which a crossing current is applied through the input terminal 20 and the lead wire 21 and a predetermined distance from the drive electrode 24 are maintained. Thus, it is composed of an AC condenser type device in which a water channel 27 having an inlet 28 and an outlet 29 is formed between the surface of the counter electrode 26 made of SUS304 or copper metal arranged coaxially.

上記の高周波電解装置5は、脱気処理装置6のような高真空負圧の系の中に設けられているため、装置内を通過する水は、水中の揮発性気体成分が概ね気体になって循環する。ここで、駆動極の印加電圧を標準電位2.07V以上にすると、水は電解し、次のように反応することが知られている。

(g)+2H +2e ⇔ O(g)+HO ・・・ +2.07V
Since the high-frequency electrolysis apparatus 5 is provided in a high vacuum negative pressure system such as the degassing apparatus 6, the volatile gas component in the water is almost gas in the water passing through the apparatus. Circulate. Here, it is known that when the applied voltage of the drive electrode is set to a standard potential of 2.07 V or more, water is electrolyzed and reacts as follows.

O 3 (g) + 2H + + 2e - ⇔ O 2 (g) + H 2 O ··· + 2.07V

従って、上式の反応を左に進ませるために、電極制御電位をE>2.07以上に制御し、かつ、脱気室内を高真空に保ち、水の循環する系全体を高度の真空負圧に維持し、水中の気体成分、例えば、溶存酸素成分を水中でガス化する必要がある。その上で上式の反応を左に進行させると、水中にスーパーオキサイドイオンが生成し、最終的には、オゾンガスを紫外線の照射なしに生成することができる。   Therefore, in order to advance the above reaction to the left, the electrode control potential is controlled to E> 2.07 or higher, the inside of the deaeration chamber is kept at a high vacuum, and the entire system in which water is circulated is subjected to a high vacuum negative pressure. It is necessary to gasify a gaseous component in water, for example, a dissolved oxygen component, in water. Then, when the reaction of the above formula is allowed to proceed to the left, superoxide ions are generated in water, and finally, ozone gas can be generated without irradiation with ultraviolet rays.

このとき、真空ポンプの排気量が大きくなるように制御すると、水中の酸素濃度は下がり、それを少なくするように制御すると、酸素の濃度を多くすることができる。このことから、上の式の反応が左に進みやすい酸素濃度を維持するように真空度を調整する必要があるが、本装置では、真空ポンプ8の排気弁の開度調整により、容易に調整することができる。   At this time, when the exhaust amount of the vacuum pump is controlled to be increased, the oxygen concentration in the water is decreased, and when it is controlled to be reduced, the oxygen concentration can be increased. For this reason, it is necessary to adjust the degree of vacuum so that the reaction of the above equation tends to proceed to the left, but in this device, it is easily adjusted by adjusting the opening of the exhaust valve of the vacuum pump 8 can do.

高周波電解装置5で処理された被処理水は、管路30を通って脱気処理装置6の噴射室15内へ送られ、噴射ノズル16a,16bから脱気室12内へ高圧噴射される。図4に示すように、噴射ノズルによる水の噴射のうち、長い噴射ノズル16aから噴射される水は、脱気室12の内周面に衝突してから、衝突部の下方へ流れる水と、上方へ流れる水とに分かれる。   The water to be treated that has been treated by the high-frequency electrolysis device 5 is sent into the injection chamber 15 of the deaeration treatment device 6 through the pipe line 30 and is injected at high pressure into the deaeration chamber 12 from the injection nozzles 16a and 16b. As shown in FIG. 4, the water sprayed from the long spray nozzle 16 a out of the water spray by the spray nozzle collides with the inner peripheral surface of the deaeration chamber 12, and then flows below the collision portion; Divided into water flowing upward.

下方へ流れた水は、脱気室12の内周面に沿って薄い膜状に流れて脱気室12の底部に落下する。一方、上方へ流れた水は、脱気室12の内周面に沿って上方へ流れてから、いったん上蓋14に沿って噴射室15の方向へ向きを変えた後、次に内筒17の外周面に沿って下方へ薄い膜面を維持しながら流下する。   The water flowing downward flows in a thin film along the inner peripheral surface of the deaeration chamber 12 and falls to the bottom of the deaeration chamber 12. On the other hand, the water that has flowed upward flows upward along the inner peripheral surface of the deaeration chamber 12, and then once changes the direction along the upper lid 14 toward the injection chamber 15, then It flows down while maintaining a thin film surface downward along the outer peripheral surface.

また、短い噴射ノズル16bから噴射される水は、内筒17の内周面に衝突してから、衝突部の下方へ流れる水と、上方へ流れる水とに分かれ、下方へ流れた水は、内筒17の内周面に沿って薄い膜状に流れて脱気室12の底部に落下し、上方へ流れた水は、内筒17の内周面に沿って上方へ流れてから、いったん上蓋14に沿って噴射室15の方向へ向きを変えた後、次に、噴射室15の外周面に沿って下方へ薄い膜面を維持しながら流下する。   Further, the water jetted from the short jet nozzle 16b collides with the inner peripheral surface of the inner cylinder 17, and then is divided into water that flows downward from the collision portion and water that flows upward. The water that flows in the form of a thin film along the inner peripheral surface of the inner cylinder 17, falls to the bottom of the deaeration chamber 12, and flows upward along the inner peripheral surface of the inner cylinder 17. After changing the direction along the upper lid 14 toward the injection chamber 15, the flow then flows downward along the outer peripheral surface of the injection chamber 15 while maintaining a thin film surface.

つまり、この噴射ノズルによる処理では、脱気室12の内周面と内筒17の内周内で、衝突した水のうち、衝突部の下方へ流れる水はいずれも壁面に沿って的確に薄膜状に流下させることができ、衝突部の上方へ流れた水でさえも、勢いで壁面に沿って上蓋14の下面から内筒17の外周面と噴射室15の外周面を伝わって、膜面の状態を維持しながら下方へ流下させることができる。その結果、噴射ノズル16a,16bから噴射した全ての被処理水を無駄なく薄膜状に拡張して、水中の気体成分を気圧の低い脱気室12内で容易に水から分離拡散し、真空ポンプ8を通して排気される。   In other words, in the treatment by the spray nozzle, all of the water that collides with the inner peripheral surface of the deaeration chamber 12 and the inner periphery of the inner cylinder 17 flows below the collision portion is a thin film exactly along the wall surface. Even water that has flowed upward from the impingement part is transmitted along the wall surface from the lower surface of the upper lid 14 through the outer peripheral surface of the inner cylinder 17 and the outer peripheral surface of the injection chamber 15 with force. It is possible to flow downward while maintaining the state. As a result, all the water to be treated sprayed from the spray nozzles 16a and 16b is expanded into a thin film without waste, and the gas components in the water are easily separated and diffused from the water in the deaeration chamber 12 having a low atmospheric pressure. 8 is exhausted.

脱気室12内に所定量の被処理水13が貯留された後は、図示外の制御装置が作動して、一次側方向制御弁3を循環ポートに切り換え、原水槽11からの被処理水13の供給を止め、脱気室12内の被処理水13を配管30を通して送水ポンプ1から、主循環路Aに送り込んで循環を繰り返するための二次処理を行う。   After a predetermined amount of treated water 13 is stored in the deaeration chamber 12, a control device (not shown) is operated to switch the primary side directional control valve 3 to the circulation port, and the treated water from the raw water tank 11. 13 is stopped, and the water 13 to be treated in the deaeration chamber 12 is sent from the water pump 1 through the pipe 30 to the main circulation path A to repeat the circulation.

脱気室12内の所定量の被処理水13が、循環により所定の脱気工程を終えたのちは、図示外の制御装置が作動して、一次側方向制御弁3は循環ポート、二次側方向制御弁4を排水ポートに切り換え、主循環路Aにより処理された被処理水13を副循環路Bのバッファータンク10へ移送し、さらに、このタンクからの溢流水を配管31により原水槽11へ戻すための三次処理を行う。   After a predetermined amount of water to be treated 13 in the deaeration chamber 12 has finished a predetermined deaeration process by circulation, a control device (not shown) is operated, and the primary direction control valve 3 is a circulation port, a secondary The side direction control valve 4 is switched to the drainage port, the treated water 13 treated by the main circuit A is transferred to the buffer tank 10 of the sub circuit B, and the overflow water from this tank is supplied to the raw water tank through the pipe 31. A tertiary process for returning to 11 is performed.

本発明の多目的脱気装置では、上記のように、高真空負圧の系の中で作動する高周波電解装置と超音波の振動波を、蒸気性キャビテイションが水中に誘起されるように調整することによって、それらの相乗効果により、水中に多数の・OHラジカルを生成させ、その強力な酸化力を利用して殺菌することができる。また、水中に混入している無機・有機塩素化合物などを電気分解によりガス化して、汚泥等の排出物の発生を最小にし、かつ、無薬品で排出水中のBOD,CODを最小に低減する高度で小規模な装置を提供することができる。   In the multipurpose degassing apparatus of the present invention, as described above, the high-frequency electrolysis apparatus operating in a high vacuum negative pressure system and the ultrasonic vibration wave are adjusted so that vapor cavitation is induced in water. Thus, by their synergistic effect, a large number of .OH radicals can be generated in water and sterilized using their strong oxidizing power. In addition, the inorganic and organic chlorine compounds mixed in water are gasified by electrolysis, minimizing the generation of sludge and other waste, and reducing the BOD and COD in the discharged water to a minimum without chemicals. Can provide a small-scale device.

また、本発明の多目的脱気装置では、超音波の付与方法を気体性キャビテイション誘起型に調整することにより、水中の気泡の破壊を少なくすることができ、その結果、あまり水温を上昇することなしに、水中の有害な揮発性気体成分を脱気することができ、化学工場、食品工場等のプロセス水からの脱気を可能とすることができる。   Further, in the multipurpose degassing apparatus of the present invention, by adjusting the ultrasonic wave application method to the gaseous cavitation induction type, it is possible to reduce the destruction of bubbles in the water, and as a result, the water temperature rises too much. Without being able to degas harmful volatile gas components in water, it is possible to degas from process water of chemical factories, food factories and the like.

さらに、嫌気性発酵の前処理として脱酸素工程を組み入れることは、発酵の完熟を成功させる効果があり、また、好気性発酵の後処理では、水の分解により酸素の補充にメタノール等の添加を省くことができるので、多大な省エネをもたらす効果がある。   Furthermore, the incorporation of a deoxygenation step as a pretreatment for anaerobic fermentation has the effect of successfully completing the fermentation, and in post-treatment of aerobic fermentation, addition of methanol or the like to supplement oxygen by decomposition of water. Since it can be omitted, there is an effect of saving a great deal of energy.

この脱気処理装置では、長い噴射ノズルと短い噴射ノズルから噴射した被処理水を全て無駄なく薄膜状に拡張して、水中の気体成分を気圧の低い脱気室12内で容易に水から分離拡散できることと、脱気処理装置で脱気処理された処理水は、副循環路Bによって、バッファタンクに貯留した時の溢流を原水槽に貯留して、この原水槽内の既に脱気処理された水を循環脱気処理するので、バッファタンク内には常に確実に脱気処理された水を送り込むことができ、バッファタンクに未処理の水が送り込まれて、処理水と未処理水とが混ざり合うという弊害を生じないという点で利用性の高いものである。   In this deaeration processing device, all the water to be treated sprayed from the long jet nozzle and the short jet nozzle is expanded into a thin film without waste, and the gas components in the water are easily separated from the water in the deaeration chamber 12 having a low atmospheric pressure. The treated water deaerated by the deaeration treatment apparatus is stored in the raw water tank in the raw water tank by the sub-circulation path B, and already deaerated in the raw water tank. Since the degassed water is circulated and degassed, the degassed water can always be reliably sent into the buffer tank, and the untreated water is fed into the buffer tank. It is highly useful in that it does not cause the harmful effect of mixing.

本発明に係る多目的脱気装置の構成を示すフロー図。The flowchart which shows the structure of the multipurpose deaeration apparatus which concerns on this invention. 本発明に係る多目的脱気装置の好適な実施形態の系統説明図。The system | strain explanatory drawing of suitable embodiment of the multipurpose deaeration apparatus which concerns on this invention. この多目的脱気装置に使用される高周波電解装置の説明図。Explanatory drawing of the high frequency electrolysis apparatus used for this multipurpose deaeration apparatus. 脱気室内で噴射された水の流れの状態を説明する部分断面図。The fragmentary sectional view explaining the state of the flow of the water injected in the deaeration chamber.

符号の説明Explanation of symbols

1:送水ポンプ、
2:管路、
3:一次側方向制御弁、
4:二次側方向制御弁、
5:高周波電解装置、
6:脱気処理装置、
7:水位レベル装置、
8:真空ポンプ、
9:超音波照射装置、
10:バッファタンク、
11:原水槽、
12:脱気室、
13:被処理水、
14:上蓋、
15:噴射室、
16a:長い噴射ノズル、
16b:短い噴射ノズル、
17:内筒、
18:排気管、
19:参照電極、
20:入力端子、
21:リード線、
22:誘電体、
23:銅板、
24:駆動極、
26:対極、
27:水路、
28:入口、
29:出口、
30,31:配管、
1: water pump,
2: pipeline,
3: Primary side directional control valve,
4: Secondary side directional control valve,
5: high frequency electrolysis device,
6: Deaeration device
7: Water level device,
8: Vacuum pump,
9: Ultrasonic irradiation device,
10: Buffer tank,
11: Raw water tank,
12: Degassing chamber
13: treated water,
14: upper lid,
15: Injection chamber
16a: long injection nozzle,
16b: short injection nozzle,
17: Inner cylinder,
18: exhaust pipe,
19: Reference electrode,
20: input terminal,
21: Lead wire,
22: dielectric,
23: Copper plate
24: Drive pole,
26: counter electrode,
27: Waterway,
28: Entrance,
29: Exit,
30, 31: piping,

Claims (5)

送水ポンプの両側に一対の方向制御弁を設けて、前記送水ポンプと一対の方向制御弁とにより被処理水を脱気処理するための主循環路と、前記一対の方向制御弁を切り換えることで、前記主循環路で脱気処理された処理水を前記主循環路へ送水するための副循環路とを有し、
前記主循環路には、金属を高級誘電体で被覆した駆動極と、この駆動極と所定の間隔を保持して同軸状に覆設した金属管状の裸電極とを対極とし、これらの電極の間に被処理水を通水している二極間に、交播電流を印加して構成する高周波電解装置と、
真空装置により減圧された脱気室内で被処理水を壁面に噴射衝突させて、衝突した被処理水の上方へ流れる水を、壁面から剥離することなく膜状に維持して流下させる脱気処理装置とを備え、
この脱気処理装置内には被処理水に超音波エネルギーを付与するとともに、この超音波エネルギーの付与された被処理水に誘起される蒸気性キャビティを圧縮して破壊する超音波照射装置が設けられており、
前記副循環路には、主循環路で脱気処理された処理水を貯水し、主循環路へ送水するためのタンクを備えていることを特徴とする多目的脱気装置。
And a pair of directional control valves on each side of the water pump, the water pump and a pair of directional control valve and the main circulating path for deaerating the water to be treated by, by switching the pair of directional control valves A sub-circulation path for supplying treated water degassed in the main circulation path to the main circulation path ,
The main circulation path has a drive electrode in which a metal is coated with a high-grade dielectric, and a metal tubular bare electrode that is coaxially covered with the drive electrode while maintaining a predetermined distance. A high-frequency electrolysis apparatus configured by applying a cross-seeding current between two electrodes through which water to be treated is passed ,
A deaeration process in which water to be treated is jetted and collided with a wall surface in a deaeration chamber depressurized by a vacuum apparatus, and the water flowing upward from the collided water to be treated is maintained in a film state without being separated from the wall surface. With the device ,
The degassing treatment in the apparatus, with applying ultrasonic energy to the water to be treated, ultrasonic irradiation device to destroy by compressing vaporous cavity induced in the treated water that has been granted the ultrasonic energy Provided,
The multi-purpose deaerator according to claim 1, wherein the sub circuit includes a tank for storing treated water deaerated in the main circuit and feeding the treated water to the main circuit.
主循環路における脱気処理が、加圧された高圧の被処理水へ高周波電解装置により電気的エネルギーを与えてから、この被処理水を高真空に減圧された円筒状の脱気処理装置内へ供給して、脱気処理装置底部に設けられた超音波照射装置により超音波エネルギーを付与するとともに、この被処理水を脱気処理装置内中央部から脱気処理装置の内壁に向け噴射して、衝突によって上方へ流れる水を壁面から剥離することなく膜状に流下させることで、水中の揮発性物質を分離する脱気処理を、循環して連続的に繰返すことのできる構成を備えている請求項1に記載の多目的脱気装置。   In the degassing treatment in the main circulation path, electrical energy is applied to the pressurized high-pressure water to be treated by a high-frequency electrolyzer, and then the water to be treated is depressurized to a high vacuum in the cylindrical degassing equipment. The ultrasonic energy is applied by the ultrasonic irradiation device provided at the bottom of the deaeration treatment device, and the water to be treated is sprayed from the central portion of the deaeration treatment device toward the inner wall of the deaeration treatment device. The deaeration process for separating the volatile substances in the water can be circulated and repeated continuously by causing the water flowing upward due to the collision to flow down into a film without peeling off from the wall surface. The multipurpose deaerator according to claim 1. 主循環路が、送水ポンプの両側に、給水/循環、の一次側方向制御弁と、循環/排水、の二次側方向制御弁を備え、始動時は、一次側方向制御弁を、給水、二次側方向制御弁を、循環、として、原水槽からの被処理水を、高周波電解装置を通して脱気処理装置へ所定量供給して噴流処理を行う一次処理と、前記一次処理を終えた後、一次側方向制御弁を、循環、二次側方向制御弁を、循環、として、脱気処理装置による循環噴流処理を所定時間継続する二次処理とを行い、次に、一次側方向制御弁を、循環、二次側方向制御弁を、排水、として、副循環路により前記の脱気処理された処理水をバッファータンクへ移送し、このタンクからの溢流水を原水槽へ戻すための三次処理とを行える構成を備えている請求項1または2に記載の多目的脱気装置。   The main circuit is equipped with a water supply / circulation primary directional control valve and a circulation / drainage secondary directional control valve on both sides of the water supply pump. After finishing the primary treatment, the secondary side direction control valve is circulated, and the water to be treated from the raw water tank is supplied to the deaeration treatment device through a high-frequency electrolyzer to perform a jet treatment. The secondary side directional control valve is circulated, the secondary side directional control valve is circulated, and the secondary jet process for continuing the circulating jet process by the degassing apparatus for a predetermined time is performed, and then the primary directional control valve The secondary side direction control valve is drained, and the treated water deaerated by the secondary circulation path is transferred to the buffer tank, and the tertiary for returning the overflow water from this tank to the raw water tank. The multipurpose desorption according to claim 1 or 2, comprising a configuration capable of performing processing. Apparatus. 主循環路路に設けられ脱気処理装置が、円筒状の脱気室と、主循環路と接続されるようにして脱気処理装置内中央部に同軸状に設けられた円筒状の噴射室と
、前記脱気室と噴射室との間に同軸状に設けられた内筒と、前記噴射室から放射状に突設された複数個の噴射ノズルとからなり、脱気室と、噴射室と、内筒の各上端は共通の上蓋により閉じられ、内筒は下端が貯留水面付近まで延びているような長さを有し、噴射ノズルが内筒を貫通して被処理水を脱気室内周面に噴射させるように構成されている請求項1乃至3のいずれかに記載の多目的脱気装置。
That provided in the main circulation path path deaeration apparatus, cylindrical and degassing chamber, the main circulating path and connected to the way degassing device within the central portion coaxially provided a cylindrical injection to A degassing chamber, an injection chamber, and an inner cylinder provided coaxially between the deaeration chamber and the injection chamber, and a plurality of injection nozzles projecting radially from the injection chamber The upper end of the inner cylinder is closed by a common upper lid, the inner cylinder has such a length that the lower end extends to the vicinity of the water storage surface, and the spray nozzle passes through the inner cylinder to degas the water to be treated. The multipurpose deaeration device according to any one of claims 1 to 3, wherein the multipurpose deaeration device is configured to be jetted to an indoor peripheral surface.
脱気装置が、噴室と、内筒とを、下端が貯留水面付近まで延びているような長さとして、噴射室から突出する長い噴射ノズルが内筒を貫通して被処理水を脱気室内周面へ噴射し、噴射室から突出する短い噴射ノズルが被処理水を内筒内周面へ噴射するように構成されている請求項1乃至4のいずれかに記載の多目的脱気装置。 De deaeration apparatus, and the jetting chamber, an inner tube, as long as the lower end extends to the vicinity of the reservoir water level, the water to be treated through the inner cylinder is long injection nozzle protruding from the injection chamber The multipurpose deaerator according to any one of claims 1 to 4, wherein a short injection nozzle that injects into the inner peripheral surface of the air chamber and a short injection nozzle protruding from the injection chamber injects water to be treated into the inner peripheral surface of the inner cylinder. .
JP2004047698A 2004-02-24 2004-02-24 Multipurpose deaerator Expired - Lifetime JP4146369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004047698A JP4146369B2 (en) 2004-02-24 2004-02-24 Multipurpose deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004047698A JP4146369B2 (en) 2004-02-24 2004-02-24 Multipurpose deaerator

Publications (2)

Publication Number Publication Date
JP2005238010A JP2005238010A (en) 2005-09-08
JP4146369B2 true JP4146369B2 (en) 2008-09-10

Family

ID=35020310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004047698A Expired - Lifetime JP4146369B2 (en) 2004-02-24 2004-02-24 Multipurpose deaerator

Country Status (1)

Country Link
JP (1) JP4146369B2 (en)

Also Published As

Publication number Publication date
JP2005238010A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
US9034180B2 (en) Reactor tank
JP4453052B2 (en) Water treatment equipment
JP4041224B2 (en) Liquid processing method and liquid processing apparatus
Hafeez et al. Solar powered decentralized water systems: a cleaner solution of the industrial wastewater treatment and clean drinking water supply challenges
JP4813443B2 (en) Water treatment equipment
JP2004268003A (en) Underwater discharge plasma method and liquid treatment apparatus
JP2006272232A (en) Method for forming superfine bubble, its device and sterilizing or disinfecting facility using it
Afsharnia et al. Sono-electrocoagulation of fresh leachate from municipal solid waste; simultaneous applying of iron and copper electrodes
WO2017079672A1 (en) Electronic water pre-treatment equipment and methods
JP2009106910A (en) Fluid treatment apparatus
CN109081499B (en) Wastewater treatment system and wastewater treatment method
KR20010037551A (en) Ultrasonic wave method and its device for waste water treatment using hollow fiber filter
KR101062388B1 (en) Water system of toilet
KR101051798B1 (en) Waste water treatment apparatus using microbubbles
JP4146369B2 (en) Multipurpose deaerator
JP4842895B2 (en) Fluid processing apparatus and fluid processing method
KR101418385B1 (en) Purification processing system of waste-water using high voltage dischare and minuteness bubble
RU2152359C1 (en) Device for cleaning and decontamination of water by high-voltage electrical discharges
JP2000325702A (en) Device for sterilizing and degassing
Korniluk et al. Application of hydrodynamic cavitation for leachate of municipal landfill site
KR101671410B1 (en) Water treatement apparatus for reusing rainwater and waste water
KR970002617B1 (en) Waste water treatment method and apparatus
KR101444788B1 (en) Apparatus for Treating Wastewater and Method therefor
KR100754843B1 (en) Industrial waste water traement system
JP2006334529A (en) Sludge treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

R150 Certificate of patent or registration of utility model

Ref document number: 4146369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term