JP4145371B2 - 静電チャック、静電チャックの上表面に熱移動流体を供給するための構造を形成する方法、静電チャックの上表面に熱移動流動体の流動を与える構造体、及びアーク発生低減方法 - Google Patents

静電チャック、静電チャックの上表面に熱移動流体を供給するための構造を形成する方法、静電チャックの上表面に熱移動流動体の流動を与える構造体、及びアーク発生低減方法 Download PDF

Info

Publication number
JP4145371B2
JP4145371B2 JP25679996A JP25679996A JP4145371B2 JP 4145371 B2 JP4145371 B2 JP 4145371B2 JP 25679996 A JP25679996 A JP 25679996A JP 25679996 A JP25679996 A JP 25679996A JP 4145371 B2 JP4145371 B2 JP 4145371B2
Authority
JP
Japan
Prior art keywords
electrostatic chuck
opening
conductive layer
dielectric layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25679996A
Other languages
English (en)
Other versions
JPH09129717A (ja
Inventor
ジェイ. ステガー ロバート
ルー ブライアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JPH09129717A publication Critical patent/JPH09129717A/ja
Application granted granted Critical
Publication of JP4145371B2 publication Critical patent/JP4145371B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks

Description

【0001】
【発明の属する技術分野】
本発明は、静電チャックの表面に熱移動流体の流れを与える静電チャック構造体に関する。この構造体は、ガスフローチャンネルを含む導電性の下層と、誘電材料の上層とを備えている。この構造体は、静電チャック上に載置されたシリコンウエハ等のワークピースの底面を冷却するための、静電チャックの中を通ってこの表面に送られる熱移動流体の絶縁破壊を防止することに有用である。この構造体は更に、半導体処理用のプラズマが、静電チャックの熱移動流体開口に侵入することを防止することに有用である。
【0002】
【従来の技術】
1994年9月27日に発行されたCollinsらの米国特許第5,350,479号には、プラズマ反応チャンバ内で処理される目的物を保持するための静電チャックが開示されている。この静電チャックは、誘電材料の層でコーティングされた金属ペデスタルを備えており、この金属ペデスタルは、静電チャックの上表面とこの表面上に支持された目的物との間に冷却用ガスを通過させ分配するための、冷却ガス分配システムを有している。このガス分配システムは、静電チャックの上面全面にわたって形成された複数の交差するグルーブを備えており、グルーブの交差部を通る小さなガス分配ホール(穴)が設けられている。
【0003】
静電チャックの寿命は、熱移動ガスの流動を促進するために用いられるガス分配穴の存在に影響される。特に、静電チャックが、ワークピースのすぐ上方の高出力のRF電界及び高密度のプラズマに曝露されれば、アーク発生(アーキング)やグロー放電により、冷却ガスが絶縁破壊する可能性がある。更に、静電チャックの上側の誘電体表面上に支持された目的物(代表的には半導体基板である)と静電チャックのペデスタルを形成する下側導電層(アルミニウム等)との間には、照準線があるので、穴を通過する冷却ガスの絶縁破壊を引き起こすような電界内の不連続性を最小限にするようにガス分配穴のサイズを選択しても、前記の照準線に沿ってアーキングが生ずる場合がある。半導体基板の表面でのアーキング、もしくはグロー放電により基板が損失することがある。ガス分配穴内でのアーキングやグロー放電により、静電チャック自身の誘電層やアルミニウム層が劣化する。
【0004】
Collinsらは、半導体基板からアルミニウム層への照準線にわたるアーキングの可能性を低くするために、誘電層の下のアルミニウム層をガス分配穴に密接した誘電層の下で破断(切削)することを推奨している。
【0005】
1994年5月24日に発行されたCollinsらの米国特許第5,315,473号には、静電チャックの締付け力を高める方法が、その他の特徴と共に開示されている。特に、誘電材料の組成と、誘電層の厚さは重要な要件の一つである。一般に、その他の全ての要因が一定であるとすると、誘電層が薄い程、クランプ力は大きくなる。しかし、誘電層の厚さの減少を制限するような実質的な制約がある。厚さが約1mil(約25.4μm)未満の誘電層の場合、処理中の目的物とその下のプラットフォームとの間のエアギャップに打ち克つに要する電圧を印加すれば、誘電材料の絶縁が破壊しその絶縁特性が失われてしまうことが見出された。
【0006】
1994年6月14日に公開されたCollins らの欧州特許出願第93309608.3号には、上述の米国特許第5,350,479号に開示されている種類の静電チャックの構造体が記載されている。ここで静電チャックの製造は、アルミニウムのペデスタルにビードブラスト法による処理を行い、その後、ビードブラストされた表面に噴射処理(例えばアルミナやアルミナ/チタン等の誘電材料のプラズマ噴射など)を行う工程を有している。代表的には、噴射された厚さは、最終的に希望する厚さよりも厚くなっており、例えば15〜20mil(380〜508ミクロン)となっている。誘電材料の吹付け後、最終的に希望する厚さ、例えば7mil(180ミクロン)の厚さの層へと再研磨される。次に、誘電層の上面を加工して、この層の表面にわたる冷却ガス分配グルーブのパターンと、下側のアルミニウムペデスタル内の冷却ガス分配キャビティに接続する誘電層貫通孔とを設ける。場合によっては、誘電層を形成する前に、下側のアルミニウムペデスタル内にガス分配用キャビティを設け、別の場合には、誘電層貫通孔と同時に、アルミニウムペデスタル内にガス分配用キャビティを設ける。代表的には、冷却ガス分配グルーブはレーザーを用いて形成する。この誘電層貫通孔は、機械式ドリルやレーザーを用いドリルを行って形成する。貫通穴用の好ましいレーザーは、比較的低い時間平均電力レベルで動作するエキサイマーUV(紫外線)レーザー(すなわち波長が短く、高エネルギのレーザー)である。これによって、下側薄層からのドリルされたアルミニウムが、貫通孔の壁や誘電体の表面に再堆積することが低減される。このようなアルミニウムがあると、誘電層にアーキングが生ずる場合がある。貫通孔は静電チャックの表面の外周の回りに設けられる場合が多い。8インチのシリコンウエハ用静電チャックの場合、約180個の上記の孔が設けられ、これらが静電チャックの外周の回りにリング状の構造を形成する。各孔の直径は約0.007±0.001インチ(0.175±0.025mm)である。
【0007】
【発明が解決しようとする課題】
アルミニウムペデスタルの上側のコンポジット誘電体にマイクロドリルを行って前述の貫通孔を設ければ満足できるガス流路が得られるものの、これは、誘電アルミナ被覆とアルミニウム基板との間の界面を捜すRFプラズマ環境に対処するものではない。その上、レーザーによるドリルのプロセスは、ドリルの進展とともに誘電層の下のアルミニウムを磨耗させてしまい、その磨耗粉が凝固し、または内孔の中に堆積し、穴のセラミック表面を覆ってしまう。このようなメカニズムがあるため、ガス流路用にアスペクト比(深さ/直径)を高くしても、穴の少なくとも下部は金属の導体(アルミニウム)になってしまう。機械加工にともなう微細なチップ粉を分配穴から除去することは困難な作業であり、ドリル中に誘電性のガス分配穴を通って移動するアルミニウム粒子と複合体を形成してしまう。機械加工による微細チップ粉が存在することにより、超微細エレクトロニクス環境の汚染源となる。
【0008】
【課題を解決するための手段】
本発明は、冷却ガスその他の熱移動流体の静電チャックの表面への流れを促進する基本的な構造体と、この構造体を製作する好ましい方法とを提供する。この基本構造体は、静電チャックの誘電表面層とその下側の導電層との間の界面を捜すRFプラズマ環境の課題に対処するものである。
【0009】
基本的な流体流動導管構造体は、少なくとも一種類の流体(代表的にはガス)の通路を収容する下側の導電層と、下側の導電層内の流体流動通路に接続する誘電層の中を通る開口又は通路を少なくとも1つ有する少なくとも1つの上側誘電層とを有しており、構造体全体に流体流動通路を与えている。この下側の導電層の構造では、誘電層の厚さが、誘電層の中から下側の導電層のガス流体流動通路へと至る開口又流体流動通通路で著しく増加する(ガス流動通路を有しない静電チャックの上側表面領域の誘電層の厚さと比較して)。導電層は、アルミニウムと、銅と、真ちゅうと、モリブデンと、ニオブとから成る群から選択されてもよい。誘電層は、セラミックとポリイミドとから成る群より選択されてもよい。
【0010】
より具体的には、(a)少なくとも1つの流体流動通路を有する導電層であって、導電層は導電層の上面に第1の開口を少なくとも1つ有し、導電層の上面と前記静電チャックの上面との間の距離は、少なくとも1つの第1の開口の近傍の領域でより大きくなる、導電層と、(b)前記導電層の上側にある誘電層であって、誘電層は、導電層の中の第1の開口と接続する誘電層の表面からの第2の開口を少なくとも1つ有して、流体流動通路から誘電層の表面までの流体の流体流動通路を形成する、誘電層とを備えていてもよい。また、第1の開口の上側にある誘電層の厚さが、5milないし約0.13mmよりも大きいことを特徴としてもよい。また、第1の開口の上側にある誘電層の厚さが、少なくとも8milないし0.20mmであってもよく、約50milないし約1.3mmよりも小さくてもよい。また、誘電層の側にあり且つ第1の開口の近傍にある導電層の厚さが、約50milないし約1.3mmよりも小さくてもよく、約5mil〜約50milの範囲ないし約0.13mm〜約1.3mmの範囲にあってもよい。また、この誘電層の側にあり且つ第1の開口の近傍にある導電層の厚さが、約12mil〜約25milの範囲ないし約0.30mm〜約0.64mmの範囲にあってもよい。
【0011】
基本構造体を形成する好ましい方法は次の通りである。即ち、流体流動通路を有する少なくとも1つの導電層を与え;少なくとも1つのグルーブ又は窪みを、流体流動通路の上に位置するように、導電層の表面に形成し;導電層の表面上に誘電材料の層を形成し;静電チャックの上面全体を平坦(フラット)且つ平滑にすることが必要な場合は、誘電材料層を処理し;下側の導電層内の流体流動通路と接続するように誘電層に開口又は流体流動通路を形成する。
【0012】
代表的には、導電層は静電チャックのアルミニウムペデスタルであり、上側の誘電層はアルミニウムペデスタルの表面上にアルミナ、またはアルミナ/チタンをスプレーコーティングすることによって形成される。しかし、電気的な事項に関する要求が満たされ、且つ、予定するプラズマ処理環境の中で複数のサイクル経た後に相対的熱膨張率が静電チャックの状態に問題を生じさせない限り、その他の材料の構造体を用いてもよい。
【0013】
【発明の実施の形態】
本発明は静電チャックの表面に冷却ガスを分配する基本構造体と、この構造体を形成する方法に関するものである。この基本構造体は静電チャックの誘電表面とその下側の導電層との間の界面を捜すRFプラズマ環境の問題に対処するものである。特に、本発明は、熱移動流体分配チャンネルを有する下側の導電層の構造的な構成を、熱移動(冷却)流体分配チャンネルへと導きこれに接続される開口を有する上側の誘電層と組合わせて、改良することに関するものである。本発明の改良により、静電チャックの表面の表面とワークピースとの間のアーキングもしくはグロー放電により冷却ガスが絶縁破壊する可能性が著しく減少する。従って、静電チャックの作動寿命は延長され、一方、グローアーキングによる半導体基板の損失は減少される。
【0014】
図1を参照すると、プラズマ処理チャンバ100は、処理中にワークピース104(代表的には半導体ウエハ)をチャンバ100内の所定位置に静電により固定する静電チャック102を有している。静電チャック102は、リフトフィンガ117を有するリフトフィンガ開口106を備えており、リフトフィンガは、電力をオフ(切)にしてクランプ力がなくなったとき、半導体ウエハを、静電チャック102の上表面から持ち上げて離すことができる。静電チャック102はまた、静電チャック102のペデスタル204の表面に機械加工されたチャンネル116内に着座した静電チャック102の周辺部近くにある環状の金属インサート110を含んでいる。インサート110はペデスタル204の表面のチャンネル116と連係して(図2B参照)、図2Aに示すように静電チャック102の周囲全体に亘ってガスチャンネル112を形成している。ガスチャンネル112は、環状の金属インサート110をその底部からその上表面に密接した近傍まで横切るため、図3(a)に示した金属薄層118が誘電層114をガスチャンネル112から分離する状態を留める。
【0015】
静電チャック102の上面図である図2(a)に示されているように、静電チャック102の上表面は、誘電層114によって覆われている。冷却ガスがチャンネル112を通って静電チャック102の上表面へと流れることができるためには、上側の誘電層114と金属薄層118とを通る開口ないし流路202を形成することが必要である。
【0016】
静電チャック102内のガスチャンネル112の概略的な拡大横断面図が図3(a)に示されており、ここでは上層の誘電層114と通路202は省かれている。ガスチャンネル112は、従来技術で知られているように、インサート110をペデスタル204内に溶接、またはブレージングすることにより形成することができる。静電チャックペデスタル204の表面302上に誘電層114(図示せず)を形成した後、図2(a)および2(b)に示した流路202を形成する必要がある。Collins らの欧州特許出願第93309608.3号を参照して従来の技術で記載したように、このような流路はエキサイマ紫外線レーザーを使用して形成することが推奨されるが、通路は機械式ドリルによって形成してもよい。
【0017】
通路202の形成プロセスで、誘電層114を通る通路202の形成中に金属材料(代表的にはアルミニウムである)の薄層118が通路の側壁まで流れ込むことが稀ではないことが判明している。通路202の側壁にこの導電層が存在することにより、静電チャック102のペデスタル202の表面と上側のワークピース104との間にアーキングの経路が生じてしまう。更に、ワークピース104のチャック102の表面への接着がいずれかの部位で弱くなった場合、プロセス用プラズマがワークピース104の表面の下にプラズマ経路を形成し、冷却ガス通路がグロー放電を開始して、双方ともに高圧直流バイアスがかけられ、RF電力が給電されているワークピース104から静電チャック102までRF電流の低インピーダンス経路が生ずる。通常はRF電流は、誘電層114を静電チャック102のペデスタル204からワークピース104へと流れる変位電流である。しかし、ヘリウムなどの冷却ガスが通路202内で絶縁破壊し始め、グロー放電路が生ずると、大きい電流が通路202の周囲に引き込まれる。このような事態が生じた後は、誘電層114内で誘電材料の融解が認められている。静電チャックのコストは5,000〜10,000米ドルのオーダーであり、ワークピースの価値は一般に4倍にも達するので、処理中に静電チャックまたはワークピースが損失することは経済的に重大な打撃である。
【0018】
通路202内のインピーダンスを高めるために誘電層114の厚さを厚くすると、静電チャックのクランプ力が低下する結果になる。誘電層114内の厚さの増大を相殺するために高圧直流電流を高めると、通路202内で冷却ガスが絶縁破壊する可能性が高くなる。
【0019】
前節で述べた問題点を克服するため、本発明は、通路202の中間領域で誘電層114の厚さを増す一方、静電チャック102の残りの表面領域の厚さを標準の厚さに留めるような、誘電層の新規の構造体を提供するものである。更に、静電チャック102に必要な、平坦な表面全体が保持される。一般的なルールとして、静電チャック102の表面の平坦さの変動はワークピース104の表面形状の高さの変動よりも大きくてはならない。代表的には静電チャックの表面は少なくとも1.0mil(0.025mm)以内の平坦さである必要がある。1.0milの平坦さとは、表面上の全ての部位が0.001インチ(0.025mm)の間隔を隔てた平行面内にあることを意味する。平坦さは、数(約2−5)ミクロン(約0.1mil−0.2mil)であることが好ましい。
【0020】
図3(b)は金属薄層118内に環状グルーブ又は窪み304を形成した後の、図3(a)に示したような静電チャック102の金属ペデスタル204の概略図である。グルーブ又は窪み304の形状は重要であるとは考えられておらず、図示した実施例は本発明の例示であるにすぎない。グルーブ又は窪み304を設けることによって、通路202がそこを通って形成される領域にある誘電層114の厚さを増すことが可能になる。図3(c)は、表面302上に誘電層114を被覆した金属ペデスタル204の概略的な横断面図である。
【0021】
ペデスタル204の表面にグルーブ又は窪み304が存在することで静電チャック102の表面の平坦性が許容されなくなり、また、誘電層214を被覆する工程が数mil以内でしか制御できないので、誘電層114を(代表的には研磨またはその他の削磨技術で)図3(d)に示すような平坦な表面になるように加工する必要がある。誘電層114の加工の後、誘電層114を通る厚さt1 と、金属薄層118を通る厚さt2 を有する通路202が形成される。厚さt1 は、グルーブ又は窪み304がない場合の厚さよりも大幅に厚いので、誘電層114の中の通路202の側壁を上に移動する、層118からの導電性金属は、通路202の下部305に閉じ込められ、通路202の下部305に存在するこのようなあらゆる金属の上にある誘電層114の付加的な厚さを与えることとなる。
【0022】
本発明の構造体に付加されるオプションとして、図3(f)に示すように通路202の上にある誘電層114の上表面に浅いチャンネル306が形成される。この浅いチャンネルは代表的には、エキサイマレーザーを使用して形成され、通路202の上部t3 を構成する誘電層114の下部305まで通路202の側壁を上昇してきた層118から発する金属の除去を補助する。
【0023】
本発明の構造体を有する静電チャックの累積故障の調査が、層の厚さt3 に関して遂行された。図4は厚さt1 又はt3に関する累積故障のグラフを示しており、データは最も厚い被覆層から最も薄い被覆層の順に配列してある。t1 又はt3 が約8〜8.5mil(0.20mm〜0.216mm)未満の場合には、累積故障は予想以上に増大する。t1 が約5.5mil(0.14mm)またはそれ未満の場合は、累積故障は100%に達した。
【0024】
この調査は、プラズマ作用環境での故障を正確に予測するために開発された方法を用いて、ベンチスケールで行われた。真ちゅうの平坦片の形態の高圧プローブがガス流開口に置かれ、プローブに500Vの試験電圧が印加された(他方の電極は、静電チャックペデスタルである)。プローブとペデスタルとの間にアーク放電が生じた場合に故障であると見なされた。600個以上のガス流開口200が検査された。
【0025】
このデータは、図2および図3に示した種類の直径6インチ(150mm)の静電チャックのデータである。グルーブ304の加工後の金属薄層118の厚さt2 は約20milであった。浅い環状グルーブ304は約0.005インチ(5mil、0.13mm)から約0.09インチ(9mil、0.23mm)の範囲の深さに加工された。
【0026】
99.5質量%のアルミナの誘電層114が、ペデスタル204の表面302上にプラズマスプレーされた(この試験はアルミナの誘電層を有する静電チャックで実施されたが、アルミナと二酸化チタンの混合物を備える誘電層が動作の信頼性が高いことが判明している。代表的には、二酸化チタンの含有率は約0.5質量%〜約5.0質量%であり、好ましくは、二酸化チタンの含有率は約2質量%である)。アルミナをプラズマスプレーで被覆することは従来技術で知られている。明らかに問題を生ずることがある金属の片のような介在物が誘電金属に含まれていないことが重要である。形成された誘電層114は、ペデスタル204の表面302上に共形にコーティングされたものである。代表的には、コーティングは希望の厚さよりも約10mil(0.010インチ、0.25mm)だけ厚く被覆され、セラミック研磨方法および公知の装置を使用して所望の厚さに再研磨された。そして、浅いグルーブ304の上側の誘電層114の厚さt1 は、約11〜13mil(0.011〜0.013インチ、0.28mm〜0.50mm)となり、ペデスタル204の表面302の上層の誘電層114の厚さは約4〜8mil(0.004〜0.008インチ、0.10mm〜0.20mm)の範囲となった。表面は前述したように0.001インチの平坦さまで平坦化された。
【0027】
次に、ガスチャンネル112へと接続する約180個の等間隔を隔てたガス通路(穴)202が、静電チャックのペデスタルの環状のキャビティ内に嵌合する環状インサート110に沿ってt1 およびt2 を貫いて形成された。前述のような静電チャックのベンチスケール試験が行われた。
【0028】
ベンチスケールの試験の結果、高密度プラズマ作用条件下での静電チャックの動作と正確に相関することが判明した。高密度プラズマ(すなわち密度1011cm-3より大きい)は従来の容量性RIE(反応性イオンエッチング)機械のプラズマよりも、静電チャックの動作に対して困難であることが判明した。それは、非常に低いプラズマインピーダンスとプラズマ内の非常に薄いシースとの組合わせであり、このため、アーキングが生じた場合は。プラズマが微細(サブミリメートル)な構造体に容易に浸透しそして高いRF電流が支持される。
【0029】
印加されたRFバイアス電流は、アーキングの可能性に大きく影響する。アーキングを低減するために本発明の構造体と方法を用いることによって、アーキングを生じずにRF電力を約1400W〜3kWを越えるように上昇させることが可能であった。代表的には、プラズマは数ミリトルの圧力でのSiH4 /O2 のプラズマであるが、Ar/O2 のプラズマもアーキングに関しては同様の作用を示す。ワークピースは代表的にはシリコンウエハであり、その温度は重要ではなく、室温〜約400℃までのどの温度でもよい。冷却ガスは約4トールのヘリウムである(静圧であることが不可欠である。約1sccm未満の漏れがあるが、これはアーキングの要因ではない。)。ヘリウムは絶縁破壊電圧が低いので、冷却ガスとしては特に問題がある。しかし、ヘリウムの熱伝導率は、可燃性でプラズマ化学反応を妨害する水素を除いて、ガスの中では最良である。高圧直流電圧は代表的には、−1200Vまたは+800Vである。直流バイアス電圧は約300Vから400Vであると思われる(アースに対して負)。正の高圧直流電圧はチャックの信頼性がやや高く、それはアルミニウムvsシリコンからの電子の電界放射が容易であるからであると考えられるが、そのメカニズムは未だ実証されていない。
【0030】
上記の実施例は本発明の範囲を限定することを意図したものではなく、専門家は上述の開示内容から特許請求の範囲の案件と対応して本発明を拡大して実施できる。
【0031】
【発明の効果】
以上詳細に説明してきたように、本発明によれば、静電チャック上に載置されたシリコンウエハ等のワークピースの底面を冷却するための、静電チャックの中を通ってこの表面に送られる熱移動流体の絶縁破壊が防止される。
【図面の簡単な説明】
【図1】処理チャンバ内の所定位置に置かれた静電チャックを備えた代表的なプラズマエッチング処理チャンバを示す断面図である。
【図2】(a)は、静電チャックの周囲縁部の周囲に配列されたガス分配穴または孔を設けた代表的な静電チャックの概略図であり、(b)は、冷却ガスの通路を含む導電性インサートを含む、(a)に示した静電チャックの概略的な横断面図である。
【図3】(a)は、図2(b)に示した冷却ガスの通路の一部の概略的な拡大横断面図であり、(b)は、冷却ガス通路インサートの表面に冷却ガス通路の上に位置するグルーブ又は窪みを形成した後の図3(a)に示した概略的な横断面図であり、(c)は、前述のグルーブ又は窪みを含む静電チャックの表面上に誘電材料を施した後の、図3(b)に示した概略的な横断面図であり、(d)は、平滑な静電チャック上表面を得るために誘電材料層を加工した後の、図3(c)に示した概略的な横断面図であり、(e)は、静電チャックの上表面から静電チャックのペデスタルに設けられたガス通路までの通路を形成するため、上層の誘電材料層と、下側の導電材料層の双方を貫通して通路を形成した後の、図3(d)に示した概略的な横断面図であり、(f)は、ガス通路の上層に位置する誘電層表面に誘電層を貫いて浅いチャンネルを形成した後の、図3(e)に示した概略的な横断面図である。
【図4】データは0.008インチ(8mil、0.20mm)以上の厚さの誘電層の劇的な向上を示すために、最も厚い被覆層から最も薄い被覆層の順に示す、ガス通路の領域内の誘電層の厚さとガス流開口のベンチスケール試験中の累積故障との相関を示したグラフである。
【符号の説明】
100…プラズマ処理チャンバ、102…静電チャック、104…ワークピース、106…リフトフィンガ開口、110…環状金属インサート、112…ガスチャンネル、114…誘電層、116…チャンネル、118…金属薄層、202…通路、204…ペデスタル、302…静電チャック表面、304…窪み、305…通路下部。

Claims (21)

  1. プラズマ処理チャンバ内において、熱移動流体がその中を通って静電チャックの上面に流れるのを許容する流体流動導管構造を含む静電チャックであって、
    (a)流体流動通路を少なくとも1つ備える導電層を含む静電チャックと
    (b)前記導電層を覆う少なくとも1つの誘電層であって、前記誘電層を貫通する少なくとも1つの開口を含み、前記開口はその下の導電層の前記少なくとも1つの流体流動通路と連絡している、前記誘電層とを含み、
    前記下にある導電層は、前記導電層を覆う前記誘電層の厚さが、前記誘電層をその下の導電層中の流体流動通路に向けて貫通する開口の周縁を囲む領域において、前記開口の周縁を囲む領域以外の領域におけると比較して、より大きくなるように構成されている、
    プラズマ処理チャンバ内の静電チャック。
  2. 前記導電層が、前記静電チャックのペデスタルの環状のキャビティ内に嵌合する環状インサートを含む請求項1に記載のプラズマ処理チャンバ内の静電チャック。
  3. 前記導電層が、アルミニウムと、銅と、真ちゅうと、モリブデンと、ニオブとから成る群から選択される請求項1に記載のプラズマ処理チャンバ内の静電チャック。
  4. 前記導電層がアルミニウムである請求項3に記載のプラズマ処理チャンバ内の静電チャック。
  5. 前記誘電層が、セラミックとポリイミドとから成る群より選択される請求項1に記載のプラズマ処理チャンバ内の静電チャック。
  6. 前記セラミックが、99.5質量%のアルミナと、アルミナと二酸化チタンの混合物とから選択される請求項5に記載のプラズマ処理チャンバ内の静電チャック。
  7. 前記アルミナと二酸化チタンの混合物における二酸化チタンの質量パーセンテージが、0.5質量%〜5.0質量%である請求項6に記載のプラズマ処理チャンバ内の静電チャック。
  8. 前記開口の周縁を囲む前記誘電層の厚さが、0.13mm〜1.3mmの範囲にある請求項1に記載のプラズマ処理チャンバ内の静電チャック。
  9. 前記開口の周縁を囲む前記誘電層の厚さが、少なくとも0.20mmである請求項8に記載のプラズマ処理チャンバ内の静電チャック。
  10. 前記誘電層の下側にある前記導電層の厚さが、前記誘電層を貫通する前記開口の周縁を囲む領域において、0.13mm〜1.3mmの範囲にある請求項8に記載のプラズマ処理チャンバ内の静電チャック。
  11. 前記誘電層の下側にある前記導電層の厚さが、前記誘電層を貫通する前記開口の周縁を囲む領域において、0.30mm〜0.64mmの範囲にある請求項10に記載のプラズマ処理チャンバ内の静電チャック。
  12. 静電チャックの上表面に熱移動流体を供給するための構造を形成する方法であって、前記方法は、
    (a)導電層の上表面に第1の開口を少なくとも1つ有する流体流動通路を少なくとも1つ含む導電層を含む静電チャックペデスタルを与えるステップであって、前記導電層の上表面と前記静電チャックの上表面との間の距離を、前記第1の開口の周縁を囲む領域においてより大きくする、前記ステップと
    (b)前記導電層の上表面に誘電材料の層を適用して、前記誘電材料の層が平坦な誘電層を与えるようにするステップと
    (c)前記第1の開口を覆う前記誘電材料を貫通する第2の開口を形成して、前記第2の開口を前記第1の開口と前記誘電材料を貫通して連絡させ、前記導電層内の流体流動通路へと導くようにするステップを含む、
    静電チャックの上表面に熱移動流体を供給するための構造を形成する方法。
  13. 静電チャックの上表面に熱移動流体を供給するための構造を形成する方法であって、前記方法は、
    (a)流体流動通路を少なくとも1つ含む導電層を与えるステップであって、前記通路を覆う導電層の厚さは、後のステップで前記導電層に形成される開口の周縁を囲む領域においてより小さくする、前記ステップと
    (b)前記静電チャックの上表面上に誘電材料の層を適用して前記誘電材料の層が平坦な誘電上表面を与えるステップと
    (c)前記流体流動通路にアクセスするための、前記誘電材料の層と前記導電層を貫通する開口を形成するステップを含む、
    静電チャックの上表面に熱移動流体を供給するための構造を形成する方法。
  14. 前記ステップ(C)を実施する前に、前記誘電層の表面を平坦にする処理を行う、請求項12に記載のプラズマ処理チャンバ内で用いることができる静電チャックを形成する方法。
  15. 前記ステップ(C)を実施する前に、前記誘電層の表面を平坦にする処理を行う、請求項13に記載のプラズマ処理チャンバ内で用いることができる静電チャックを形成する方法。
  16. 静電チャックの上表面に熱移動流体の流動を与える構造体であって、少なくとも1つの流体流動通路を有する導電層を備え、前記通路は前記導電層の上表面に少なくとも1つの開口を有し、前記導電層の上表面と前記静電チャックの上表面との間の距離は、前記少なくとも1つの開口を囲む周縁の領域でより大きくなり、かつ前記導電層の厚さは前記開口を囲む周縁領域においてより小さくなる、
    静電チャックの上表面に熱移動流体の流動を与える構造体。
  17. 前記導電層の前記上表面を誘電層が覆い、前記誘電層は、前記誘電層を貫通して前記少なくとも1つの導電層開口と前記導電層の上表面において連絡する誘電層開口を少なくとも1つ含み、前記導電層の上表面と前記誘電層の上表面との間の距離は、前記誘電層の上表面における前記誘電層開口の周縁でより大きくなる、請求項16に記載の静電チャックの上表面に熱移動流体の流動を与える構造体。
  18. 基板表面とその下の静電チャック表面との間のアーク発生、又は静電チャック内部のアーク発生を低減する方法であって、前記方法は、
    (a)流体流動通路を少なくとも1つ備える導電層を与えるステップであって、前記流体流動通路は、前記導電層の上表面に少なくとも1つの開口を有する、前記ステップと、
    (b)前記導電層の上表面と前記静電チャックの上表面との間の距離が、前記少なくとも1つの開口の周縁の領域でより大きくなり、且つ前記導電層の厚さが前記開口の周縁の領域でより小さくなるように、前記導電層を構成するステップ、とを有する
    アーク発生低減方法。
  19. 基板表面とその下の静電チャック表面との間のアーク発生、又は静電チャック内部のアーク発生を低減する方法であって、
    (a)流体流動通路を少なくとも1つ備える導電層を与えるステップであって、前記流体流動通路は、前記導電層の上表面に開口を少なくとも1つ有する、前記ステップと、
    (b)前記導電層の前記上表面を覆う誘電層を形成するステップであって、前記誘電層は、前記誘電層を貫通して前記導電層の上表面の開口と連絡する開口を少なくとも1つ含む、前記ステップと、
    (c)前記導電層又は誘電層を、前記導電層の前記上表面と前記誘電層の前記上表面との間の距離が、前記誘電層の前記上表面の前記少なくとも1つの開口の周縁の領域でより大きくなり、且つ前記導電層の厚さが前記開口の周縁を囲む領域でより小さくなるように構成するステップ、とを含む
    アーク発生低減方法。
  20. プラズマ環境下で用いる静電チャックであって、前記静電チャックは、熱移動流体がその中を通って静電チャックの上表面に流れるのを許容する流体流動導管構造を含み、前記静電チャックは、
    (a)複数の流体流動通路を含む導電インサートであって、各通路は前記導電インサートの上表面に開口を少なくとも1つ有し、導電インサートは前記静電チャックの下部を構成する導電ペデスタルの上表面上に存在するリセスに挿入され、前記導電インサートは、導電インサート上に適用された誘電層の厚さがその下にある導電インサート中の開口の周縁を囲む領域において、前記導電層を覆う誘電層の前記開口の周縁を囲む領域以外の領域における厚さと比較して、より大きくなるように構成されている、前記導電インサートと
    (b)前記導電インサートを含んで、導電ペデスタルを覆う少なくとも1つの誘電層であって、前記誘電層は、前記誘電層を貫通する少なくとも1つの開口を有し、前記少なくとも一つの開口はその下にある導電インサート中の対応する前記少なくとも1つの開口と連絡している前記誘電層、を含む
    プラズマ環境下で用いる静電チャック。
  21. プラズマ処理チャンバ内において、処理中の基板とその下の静電チャックの表面との間のプラズマアーキングを減少させるか、又は前記静電チャック内の流体流動通路内のプラズマアーキングを減少させる方法であって、前記方法は
    (a)複数の流体流動通路を有する導電インサートを与えるステップであって、各通路は前記導電インサートの上表面に流体流動通路開口を少なくとも1つ有し、前記導電インサートは静電チャックの下部を構成する導電ペデスタルの上表面にあるリセスに挿入される、前記ステップと
    (b)前記導電ペデスタルの上表面を前記導電インサートを含んで覆って適用された少なくとも1つの誘電層が、誘電層を貫通して前記その下にある導電インサート中の流体流動通路に導く誘電開口の周縁を囲む領域において、流体流動通路開口に導く誘電開口の周縁を囲んでいない領域における前記誘電層の厚さと較べて、より厚くなるように前記導電インサートを構成するステップを含む
    プラズマ処理チャンバ内においてプラズマアーキングを減少させる方法。
JP25679996A 1995-09-28 1996-09-27 静電チャック、静電チャックの上表面に熱移動流体を供給するための構造を形成する方法、静電チャックの上表面に熱移動流動体の流動を与える構造体、及びアーク発生低減方法 Expired - Fee Related JP4145371B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/535422 1995-09-28
US08/535,422 US5644467A (en) 1995-09-28 1995-09-28 Method and structure for improving gas breakdown resistance and reducing the potential of arcing in a electrostatic chuck

Publications (2)

Publication Number Publication Date
JPH09129717A JPH09129717A (ja) 1997-05-16
JP4145371B2 true JP4145371B2 (ja) 2008-09-03

Family

ID=24134142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25679996A Expired - Fee Related JP4145371B2 (ja) 1995-09-28 1996-09-27 静電チャック、静電チャックの上表面に熱移動流体を供給するための構造を形成する方法、静電チャックの上表面に熱移動流動体の流動を与える構造体、及びアーク発生低減方法

Country Status (6)

Country Link
US (2) US5644467A (ja)
EP (1) EP0766300B1 (ja)
JP (1) JP4145371B2 (ja)
KR (1) KR100284832B1 (ja)
AT (1) ATE232015T1 (ja)
DE (1) DE69625974T2 (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644467A (en) * 1995-09-28 1997-07-01 Applied Materials, Inc. Method and structure for improving gas breakdown resistance and reducing the potential of arcing in a electrostatic chuck
JP4236292B2 (ja) 1997-03-06 2009-03-11 日本碍子株式会社 ウエハー吸着装置およびその製造方法
US5969934A (en) * 1998-04-10 1999-10-19 Varian Semiconductor Equipment Associats, Inc. Electrostatic wafer clamp having low particulate contamination of wafers
US6080272A (en) * 1998-05-08 2000-06-27 Micron Technology, Inc. Method and apparatus for plasma etching a wafer
US6639783B1 (en) 1998-09-08 2003-10-28 Applied Materials, Inc. Multi-layer ceramic electrostatic chuck with integrated channel
US6572814B2 (en) 1998-09-08 2003-06-03 Applied Materials Inc. Method of fabricating a semiconductor wafer support chuck apparatus having small diameter gas distribution ports for distributing a heat transfer gas
US6195246B1 (en) * 1999-03-30 2001-02-27 Electron Vision Corporation Electrostatic chuck having replaceable dielectric cover
US6373679B1 (en) 1999-07-02 2002-04-16 Cypress Semiconductor Corp. Electrostatic or mechanical chuck assembly conferring improved temperature uniformity onto workpieces held thereby, workpiece processing technology and/or apparatus containing the same, and method(s) for holding and/or processing a workpiece with the same
US6839217B1 (en) 1999-10-01 2005-01-04 Varian Semiconductor Equipment Associates, Inc. Surface structure and method of making, and electrostatic wafer clamp incorporating surface structure
US6362946B1 (en) 1999-11-02 2002-03-26 Varian Semiconductor Equipment Associates, Inc. Electrostatic wafer clamp having electrostatic seal for retaining gas
US6538873B1 (en) 1999-11-02 2003-03-25 Varian Semiconductor Equipment Associates, Inc. Active electrostatic seal and electrostatic vacuum pump
US6581275B2 (en) 2001-01-22 2003-06-24 Applied Materials Inc. Fabricating an electrostatic chuck having plasma resistant gas conduits
JP4493251B2 (ja) * 2001-12-04 2010-06-30 Toto株式会社 静電チャックモジュールおよび基板処理装置
DE10216786C5 (de) * 2002-04-15 2009-10-15 Ers Electronic Gmbh Verfahren und Vorrichtung zur Konditionierung von Halbleiterwafern und/oder Hybriden
US7156951B1 (en) 2002-06-21 2007-01-02 Lam Research Corporation Multiple zone gas distribution apparatus for thermal control of semiconductor wafer
KR100505035B1 (ko) * 2003-11-17 2005-07-29 삼성전자주식회사 기판을 지지하기 위한 정전척
US7480974B2 (en) * 2005-02-15 2009-01-27 Lam Research Corporation Methods of making gas distribution members for plasma processing apparatuses
US20060238954A1 (en) * 2005-04-21 2006-10-26 Applied Materials, Inc., A Delaware Corporation Electrostatic chuck for track thermal plates
US9202736B2 (en) * 2007-07-31 2015-12-01 Applied Materials, Inc. Method for refurbishing an electrostatic chuck with reduced plasma penetration and arcing
US8108981B2 (en) * 2007-07-31 2012-02-07 Applied Materials, Inc. Method of making an electrostatic chuck with reduced plasma penetration and arcing
US7848076B2 (en) * 2007-07-31 2010-12-07 Applied Materials, Inc. Method and apparatus for providing an electrostatic chuck with reduced plasma penetration and arcing
KR101125885B1 (ko) * 2007-07-31 2012-03-22 어플라이드 머티어리얼스, 인코포레이티드 감소된 플라즈마 침투 및 아킹을 갖는 정전척을 제공하는 방법 및 장치
KR101384585B1 (ko) * 2007-09-06 2014-04-11 가부시키가이샤 크리에이티브 테크놀러지 정전 척 장치에서의 가스공급구조의 제조방법 및 정전 척 장치 가스공급구조 및 정전 척 장치
US8336891B2 (en) * 2008-03-11 2012-12-25 Ngk Insulators, Ltd. Electrostatic chuck
US8064185B2 (en) * 2008-09-05 2011-11-22 Applied Materials, Inc. Electrostatic chuck electrical balancing circuit repair
US9218997B2 (en) * 2008-11-06 2015-12-22 Applied Materials, Inc. Electrostatic chuck having reduced arcing
US8363378B2 (en) * 2009-02-17 2013-01-29 Intevac, Inc. Method for optimized removal of wafer from electrostatic chuck
US20100326602A1 (en) * 2009-06-30 2010-12-30 Intevac, Inc. Electrostatic chuck
US20110024049A1 (en) * 2009-07-30 2011-02-03 c/o Lam Research Corporation Light-up prevention in electrostatic chucks
US8916793B2 (en) * 2010-06-08 2014-12-23 Applied Materials, Inc. Temperature control in plasma processing apparatus using pulsed heat transfer fluid flow
US9338871B2 (en) 2010-01-29 2016-05-10 Applied Materials, Inc. Feedforward temperature control for plasma processing apparatus
US8880227B2 (en) 2010-05-27 2014-11-04 Applied Materials, Inc. Component temperature control by coolant flow control and heater duty cycle control
US8608852B2 (en) 2010-06-11 2013-12-17 Applied Materials, Inc. Temperature controlled plasma processing chamber component with zone dependent thermal efficiencies
US8906164B2 (en) 2010-08-05 2014-12-09 Lam Research Corporation Methods for stabilizing contact surfaces of electrostatic chucks
US10274270B2 (en) 2011-10-27 2019-04-30 Applied Materials, Inc. Dual zone common catch heat exchanger/chiller
US9608550B2 (en) * 2015-05-29 2017-03-28 Lam Research Corporation Lightup prevention using multi-layer ceramic fabrication techniques
JP6509139B2 (ja) * 2016-01-29 2019-05-08 日本特殊陶業株式会社 基板支持装置及びその製造方法
DE112018005933B4 (de) 2017-11-21 2021-11-18 Watlow Electric Manufacturing Company Keramiksockelanordnung und Verfahren zur Bildung einer Keramiksockelanordnung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3238925B2 (ja) * 1990-11-17 2001-12-17 株式会社東芝 静電チャック
EP0506537A1 (en) * 1991-03-28 1992-09-30 Shin-Etsu Chemical Co., Ltd. Electrostatic chuck
US5539609A (en) * 1992-12-02 1996-07-23 Applied Materials, Inc. Electrostatic chuck usable in high density plasma
JPH05166757A (ja) * 1991-12-13 1993-07-02 Tokyo Electron Ltd 被処理体の温調装置
US5315473A (en) * 1992-01-21 1994-05-24 Applied Materials, Inc. Isolated electrostatic chuck and excitation method
US5350479A (en) * 1992-12-02 1994-09-27 Applied Materials, Inc. Electrostatic chuck for high power plasma processing
US5542559A (en) * 1993-02-16 1996-08-06 Tokyo Electron Kabushiki Kaisha Plasma treatment apparatus
US5474614A (en) * 1994-06-10 1995-12-12 Texas Instruments Incorporated Method and apparatus for releasing a semiconductor wafer from an electrostatic clamp
US5515167A (en) * 1994-09-13 1996-05-07 Hughes Aircraft Company Transparent optical chuck incorporating optical monitoring
US5644467A (en) * 1995-09-28 1997-07-01 Applied Materials, Inc. Method and structure for improving gas breakdown resistance and reducing the potential of arcing in a electrostatic chuck
US5609720A (en) * 1995-09-29 1997-03-11 Lam Research Corporation Thermal control of semiconductor wafer during reactive ion etching

Also Published As

Publication number Publication date
US5644467A (en) 1997-07-01
EP0766300A1 (en) 1997-04-02
US5715132A (en) 1998-02-03
DE69625974D1 (de) 2003-03-06
KR100284832B1 (ko) 2001-04-02
JPH09129717A (ja) 1997-05-16
ATE232015T1 (de) 2003-02-15
EP0766300B1 (en) 2003-01-29
DE69625974T2 (de) 2004-01-22

Similar Documents

Publication Publication Date Title
JP4145371B2 (ja) 静電チャック、静電チャックの上表面に熱移動流体を供給するための構造を形成する方法、静電チャックの上表面に熱移動流動体の流動を与える構造体、及びアーク発生低減方法
US9437402B2 (en) Plasma processor and plasma processing method
EP2479782B1 (en) Plasma processing apparatus and method
JP4672456B2 (ja) プラズマ処理装置
JP5166591B2 (ja) プラズマエッチング反応器の構成部品、プラズマエッチング反応器及び半導体基板を処理する方法
US10916442B2 (en) Etching method
US20050189068A1 (en) Plasma processing apparatus and method of plasma processing
US20070187363A1 (en) Substrate processing apparatus and substrate processing method
EP1586116A1 (en) Method of manufacturing semiconductor device and cutting apparatus for cutting semiconductor wafer
US6074519A (en) Plasma etching apparatus having a sealing member coupling an upper electrode to an etching chamber
JP2002527908A (ja) ガス‐アシストfibエッチングを利用した集積回路再配線
JP4388645B2 (ja) プラズマエッチング方法
KR100962210B1 (ko) 정전척
US6468603B1 (en) Plasma film forming method utilizing varying bias electric power
US20230143049A1 (en) Substrate processing apparatus and method of manufacturing semiconductor device using the same
JPH1140545A (ja) 半導体装置の製造方法
US20230367339A1 (en) Methods for preparing void-free coatings for plasma treatment components
JPH04162624A (ja) 半導体装置の製造方法
JPH09209138A (ja) スパッタリング方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060808

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070725

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees