JP4143961B2 - Laminated electronic components - Google Patents
Laminated electronic components Download PDFInfo
- Publication number
- JP4143961B2 JP4143961B2 JP2002288710A JP2002288710A JP4143961B2 JP 4143961 B2 JP4143961 B2 JP 4143961B2 JP 2002288710 A JP2002288710 A JP 2002288710A JP 2002288710 A JP2002288710 A JP 2002288710A JP 4143961 B2 JP4143961 B2 JP 4143961B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- firing
- electronic component
- ceramics
- multilayer electronic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Ceramic Capacitors (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、積層電子部品に関し、特に携帯電話用の積層電子部品における端子電極の密着強度向上に関するものである。
【0002】
【従来の技術】
銀や銅を主成分とする内部電極や外部電極を同時に焼成するセラミックス、いわゆる低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)が携帯電話用電子部品で盛んに用いられるようになってきた。
一般に、LTCCの焼成温度は、内部電極や外部電極に銀を採用する場合で約900℃、銅の場合で約1000℃である。このようにアルミナなど1400℃以上の焼成温度が必要なセラミックに比べて比較的低温で焼成し緻密化するセラミックスは、ガラスセラミックスと称せられるものが多い。
このガラスセラミックスは、焼成の前工程では、ガラス粉とアルミナなどのセラミック粉の混合粉であり、焼成時の700℃〜800℃の高温領域で、ガラスの流動性が増加し、この流動性により緻密化が行われる。更に、焼成温度にて保持することで、ガラスが結晶化し、強度、その他の特性(例えば高周波特性である高いQ値(tanδの逆数))を得られるようになる。
【0003】
前記、LTCCを使用した積層電子部品では、セラミックグリーンシートに、内部配線パターン(内部電極)及び外部電極を形成するため、共に銀ペーストや銅ペーストを用いて内部配線パターンや外部電極パターンを印刷して、積層圧着して、脱バインダー・焼成した後、外部電極表面にニッケルめっきおよび金めっき等を施すことにより端子電極を形成することで部品化が行われる。
ところで、LTCCを使用した積層電子部品では、同時焼成時、セラミックスの焼成収縮温度に比べて、銀粉や銅粉は、より低温で焼成収縮が進行する。いわゆる、焼成収縮挙動のミスマッチが生じる。このため、内部電極とセラミックス間でのミスマッチによる応力により、焼成後に内部に「クラック」が発生したり、クラックに到らなくとも部品に「反り」が発生する問題があった。その対策として、銀粉や銅粉の粒径の調整、または異なる粒径や、形状の異なる粉をブレンドしたり、更にはセラミック粉と同様または類似の組成の粉の添加、焼成抑制剤の添加、更に加えて、別組成のガラス成分を添加すること等で、収縮挙動の差を小さくすることで、前記問題点を解決してきた。
【0004】
外部電極においては、前記ミスマッチは「反り」に対してより影響が大きく、また、前述のように外部電極上にニッケルおよび金めっき等を施すことで端子電極を形成し部品となるため、耐めっき性があり、あるレベル以上の端子電極の密着強度が要求される。更には、高温放置や温度サイクルなどの信頼性試験を経た後でも密着強度の劣化が少ないことが求められている。従って、前記内部電極での検討と同様の検討が行われるが、評価項目数、要求基準は内部電極以上である。
近年、携帯電話が世界的に普及してきているが、携帯電話機の信頼性試験の一つとして、落下試験が行われるのが通常である。即ち、携帯電話機を1.5〜2mの高さからコンクリート面に落下させて、機能劣化が無いかどうかを確認する試験である。普及が進むにつれて、更なる携帯電話機の小型化、高機能化、軽量化のニーズが高まってきているため、部品の小型化や、従来複数の部品を一つにする複合化、軽量化のためのケースやプリント基板の薄肉化が進んでいる。
前述の動向より、携帯電話用の部品では、機能のみならず、機械的な信頼性、具体的には部品自体の機械強度や耐衝撃性が大きいこと、および部品をプリント基板に半田付け後、端子の密着強度がより大きいことへの要求が強くなっている。
部品自体については、内部配線の構造の変更による機械的強度の向上や、セラミックス材料自体の組成検討などにより強度向上が可能であり、検討が進められている。
例えば金属部分が体積比率で75%以上である外部電極をセラミック体の表面に形成し、外部電極とセラミック体の界面にガラス層を島状に配設し、外部電極とセラミック体との接着強度(密着強度)を向上させることが知られている。(特許文献1)
【0005】
【特許文献1】
特開平9−129479号
【0006】
【本発明が解決しようとする課題】
しかしながら接着強度の向上は上記の対策によっても未だ十分でなく、また、焼成収縮挙動のミスマッチが生じる場合があった。そもそも端子の密着強度については、密着のメカニズムについて未解明な部分も多いため、部品の強度向上に比べて改良がなかなか困難であるという課題があった。
そこで、本発明の目的は、特に携帯電話用の電子部品において、端子密着強度が大きく、信頼性が高い電子部品を提供することである。
【0007】
【課題を解決するための手段】
本発明は、セラミックスと同時焼成される表面電極を有する積層電子部品であって、表面電極の断面において、電極の粒径が、長手方向の平均で電極厚さの0.5倍以上5倍以下であり、短手方向の平均で電極厚さの0.6倍以上から1倍程度以下とした積層電子部品である。
また、表面電極の主成分が銀または銅であることを特徴とするものである。
本発明においては、前記主成分以外の焼成抑制材の添加量が、主成分に対して0.5wt%以下であることが好ましい。また、前記焼成抑制材として、白金、パラジウム、ロジウム、酸化ルテニウム、酸化マンガン、酸化銅、及び前記同時焼成されるセラミックスと実質的に同一な組成であるセラミックスの群から選ばれる少なくとも1種類以上からなる組成物であることを特徴とするのが好ましい。
更に、同時焼成後の表面電極上に、電解めっきにてニッケルおよびスズまたは半田めっきを施し、または無電解めっきにてニッケルおよび金めっきを施すことにより端子電極を形成しても良い。
【0008】
【作用】
本発明に先立ち、発明者らは複数のフィルタやスイッチ回路を積層体に複合した、アンテナスイッチモジュール(フロントエンドモジュールとも言う)のような、従来複数個の部品を一つにした部品用に信頼性高い端子電極の検討を行ってきた。
更なる複合化部品のために、端子電極密着強度向上の検討を開始したが、従来技術の項に記載したような、セラミックスとの焼成収縮ミスマッチングのための手法、即ち、通常は銀や銅等金属の方がセラミックスに対して、低温で収縮が始まるため、より高温で収縮が起こるように銀粉や銅粉の粒径をより大きくし、焼成収縮を抑制する効果がある白金粉やパラジウム粉を添加する手法で進めてきた。その結果、めっき前の外部電極に0.5φのコバールピンを短時間で半田付けし、引っ張り試験を行うと、30N/mm2以上(評価数20点)を得られる条件を見出すことができたが、めっきを行うと、10N/mm2以下に劣化してしまう現象がしばしば発生した。尚、他のガラスを添加するなどの手法においては、ガラスとセラミックスの反応により良い結果を得ることができなかった。
【0009】
本発明者らの研究の結果、前記劣化原因を鋭意研究した結果、前記のような銀や銅の収縮を高温側にシフトさせる方法では、銀や銅の焼成緻密化が十分では無いため、めっき時に、めっき液が銀や銅とセラミック界面に染み込み、密着強度が劣化することが分かった。銀や銅がセラミックスと界面で、どのようなメカニズムで接着・接合しているかは透過電子顕微鏡などによる解析も試みたが解明することはできなかった。しかし、銀や銅とセラミックス界面において、隙間やポア等の欠陥がほとんど無く、金属とセラミックスが共に緻密な焼結体を形成していると、めっき時においても、めっき液の染み込みが無いためと推測でき、その結果、めっき後の密着強度が劣化しないことを見出した。
このような知見をもとにして、表面電極を形成する金属を緻密化させ、同時焼成後の緻密なセラミックス表面に接する表面電極の粒径を所定の範囲とすることにより、セラミックスと前記金属界面に欠陥がほとんど無い表面電極を得ることが出来、その結果、めっき後も十分な密着強度を得る本発明に至った。
すなわち、表面電極の粒径が、長手方向の平均で電極厚さの5倍を超え、かつ短手方向の厚さが電極厚さに対して1倍を越える場合、金属単独での焼成が進み過ぎていることを意味し、金属とセラミックス界面での隙間、ポアが発生しやすくなり、密着強度の低下が発生しやすくなる。
また、電極表面の粒径が、長手方向の平均で電極厚さの0.5倍未満の場合は、電極の焼成・緻密化が不十分であることを意味し、大きな密着強度は得られない。好ましくは、表面電極の粒径として、長手方向の平均で電極厚さの0.8倍以上、3倍以下であり、かつ、短手方向で短手厚さの0.7倍以上である。
【0010】
【発明の実施の形態】
(実施例1)
本発明に係る実施例の説明を行う。
低温焼成材料としては、特開2000−272960に示されている組成である、重量%でAl2O3:50、SiO2:36、SrO:10、TiO2:4、Bi2O3:2.5、Na2O:2、K2O:0.5、CuO:0.3、Mn3O40.5に換算される誘電体材料を使用した。
以下、詳細に説明する。
前記、組成の材料を作製するため、Al2O3、SiO2、TiO2、Bi2O3、CuO、Mn3O4およびSrCO3、Na2CO3、K2CO3の原料粉を秤量し、純水と一緒に、ボールミルで混合し、混合スラリーを得た。前記スラリーにPVAをスラリー重量に対して1wt%添加した後、スプレードライヤーにて乾燥し、平均粒径が約0.1mmの顆粒状の乾燥粉を得た。前記顆粒粉を、連続炉にて最高温度800℃にて仮焼し、目的とする組成である仮焼粉を得た。
次に、仮焼粉を、エタノール中に分散させてボールミルで平均粒径1.2μmまで粉砕し、更に、シート成形用のバインダーであるPVB(ポリビニルブチラール)を仮焼粉重量に対して12wt%、および可塑剤であるBPBG(ブチルフタリルブチルグリコレート)7.5wt%を添加し、同一のボールミルにて、溶解・分散を行い、シート成形用のスラリーを得た。前期スラリーを減圧下で、脱泡および一部の溶剤の蒸発を行い、約10000mPa・sの粘度になるように調整した。粘度調整後、ドクターブレードにて、シート成形を行い、乾燥後約100μmの厚さのセラミックグリーンシートを得た。後工程のハンドリングのため、所定の大きさに裁断した。
【0011】
セラミック積層部品とするため、複数枚のセラミックグリーンシート表面に銀ペーストにて配線パターンを形成した。前記セラミックグリーンシートは各層間の配線パターンを接続するため、スルーホールもレーザー穴あけ装置により、必要に応じて形成した。前記印刷後のセラミックグリーンシートを、所定のパターンの画像処理による位置合わせを行って積層圧着した。前記積層圧着体で配線パターンが形成されていない第二の表面にも同様に位置合わせを行い、スクリーン印刷で配線パターン形成した。
尚、前述のように、第一および第二の表面に印刷する銀ペーストは、内部用の銀ペーストとは異なっており、主成分の銀に対して、0.2wt%の白金が添加されている。前記セラミック積層体をチップサイズに切断した後、焼成セッターに配置し、連続炉で脱バインダー及び焼成を行った。焼成は大気雰囲気で900℃で1.5時間保持した。焼成後、無電解めっきにて、焼成後の銀表面に、ニッケルめっきおよび金めっきを行い、第一、第二の表面にメタライズを形成し、部品を作製した。
【0012】
前述の焼成後の表面電極の断面をSIM(走査型イオン顕微鏡)で観察した結果を図1に示し、粒界を明確化した模式図を図2に示す。
ここで、SIMについて説明する。TEM(透過型電子顕微鏡)での観察のためには、試料をμmオーダーまで薄く加工する必要があるが、この試料作製用に、元々は半導体分野で薄膜配線の修復を目的に開発されたFIB(Fine-focused Ion Beam)が有効であることが判明し、多く利用されている。原理は、集束したGaイオンにより、目的とする部分を高エネルギーのイオンビームによりエッチングすることにより加工を行うものである。このFIB装置を用いて、低エネルギーイオンビームで観察したい試料の表面を走査させると、このGaイオンにより励起された2次電子が放出される。イオンビームの走査に同期して、この2次電子を検出することにより、得られる像がSIM像である。SEMに比べて、結晶の大きさ、粒界などが明確に観察することができる。但し、結晶の構造に依存することや、相晶によるコントラストが観察できることが分かっている。
なお、図2の模式図においては、斜線で示した部分はセラミックスであり、黒く塗りつぶしている部分は空孔である。
【0013】
図1及び図2より、外部電極の焼成後の厚さは約10μmであるが、セラミックスが緻密質であり、かつ、電極の粒径が、長手方向の平均で電極厚さと1倍程度であり、短手方向の平均も同様に、電極厚さの1倍であることが観察できた。めっき後、部品の端子に、0.5φのコバールピンを半田付けし、引っ張り試験を行った。部品1ヶ当たり4端子、5ヶで計20端子の評価したが、30〜60N/mm2の強度が得られた。
また、同様に半田付けした部品を、150℃の高温槽に放置し、1000時間経過後の、強度を評価したところ、平均値で5%の劣化のみで、強度のばらつきも同程度であった。
更に、前記と同様に半田付けした部品を、−55℃〜150℃の温度サイクルを1000サイクル行い、強度を評価した結果、平均値で7%の劣化のみで、強度のばらつきも同程度であった。
【0014】
(実施例2)
実施例1と同様に焼成までを行った後、電解めっきにて、焼成後の銀表面に、ニッケルめっきおよびスズめっきを行い、第一、第二の表面にメタライズを形成し、部品を作製した。作製した部品にて、実施例1と同様の評価を行い、同等の結果を得ることができた。
外部電極とセラミック界面においては、形態など有意差が発生しないため、同等の結果となったと考えられる。
【0015】
(実施例3)
実施例1と同一の材料を用いて、電極材料として銅100%を使用して、部品を作製した。電極が銅のため、銅を酸化させること無く、脱バインダー及び焼成を行うため、焼成雰囲気は窒素ガス中に酸素を10ppm添加したガスを使用し、焼成は1000℃で1時間保持して行った。他の工程については、実施例1と同様に行った。
作製した部品にて、実施例1と同様の評価を行った。観察結果は省略するが、セラミックスは緻密質であり、かつ、焼成後の外部電極厚さは約15μmであったが、電極の粒径が、長手方向の平均で電極厚さの2倍であり、かつ、短手方向の平均で0.8倍程度であることを確認できた。引っ張り試験の結果、40〜60N/mm2の強度が得られた。
【0016】
また、同様に半田付けした部品を、150℃の高温槽に放置し、1000時間経過後の、強度を評価したところ、平均値で−7%の劣化のみで、強度のばらつきも同程度であった。
更に、前記と同様に半田付けした部品を、−55℃〜150℃の温度サイクルを1000サイクル行い、強度を評価した結果、平均値で−5%の劣化のみで、強度のばらつきも同程度であった。
【0017】
(実施例4〜12)
他の実施例については、前記実施例1〜3と重複する条件も多く、説明の簡略化の為、諸条件と評価結果を表1、表2に纏めて示す。実施例4〜12においても前記実施例と同様に、強度を向上することが出来た。
【0018】
【表1】
【0019】
【表2】
【0020】
(比較例)
実施例1に記載した条件の内、第一および第二の表面に印刷する銀ペーストについて、主成分の銀に対して、1wt%白金を添加したものに変更して、焼成、めっき工程を経て、部品化まで同様の条件で行った。
焼成後の表面電極の断面をSIM(走査型イオン顕微鏡)で観察した結果を図3に示し、粒界を明確化した模式図を図4に示す図4の模式図においては、斜線で示した部分はセラミックスであり、黒く塗りつぶしている部分は空孔である。図3及び図4より、セラミックスは緻密質であるが、電極の粒径が、長手方向の平均で電極さの0.3倍程度であり、短手方向の平均で電極厚さの0.3倍程度であることが観察でき、またポアが多いことが観察できた。
作製した部品の端子に、0.5φのコバールピンを半田付けし、引っ張り試験を行ったが、部品1ヶ当たり4端子、5ヶで計20端子の評価したが、1〜15N/mm2の強度しか得ることができなかった。
【0021】
【発明の効果】
前記実施例に示したように、本発明によれば、密着強度が大きく、かつ信頼性の高い端子電極を備えた電子部品を提供することが可能となる。
【図面の簡単な説明】
【図1】 本発明の一実施例に係る積層電子部品の表面電極断面の組織写真である。
【図2】 本発明の一実施例に係る積層電子部品の表面電極断面の模式図である。
【図3】 従来の積層電子部品の表面電極断面の組織写真である。
【図4】 従来の積層電子部品の表面電極断面の模式図である。[0001]
[Industrial application fields]
The present invention relates to a multilayer electronic component, and more particularly to an improvement in adhesion strength of terminal electrodes in a multilayer electronic component for a mobile phone.
[0002]
[Prior art]
Ceramics that simultaneously fire internal and external electrodes composed mainly of silver and copper, so-called low temperature co-fired ceramics (LTCC), have been actively used in electronic parts for mobile phones. .
Generally, the firing temperature of LTCC is about 900 ° C. when silver is used for the internal electrode and the external electrode, and about 1000 ° C. for copper. As described above, ceramics that are fired and densified at a relatively low temperature compared to ceramics that require a firing temperature of 1400 ° C. or higher such as alumina are often referred to as glass ceramics.
This glass ceramic is a mixed powder of glass powder and ceramic powder such as alumina in the pre-firing process, and the flowability of the glass increases in the high temperature range of 700 ° C. to 800 ° C. during firing. Densification is performed. Furthermore, by holding at the firing temperature, the glass crystallizes, and strength and other characteristics (for example, a high Q value (reciprocal of tan δ) which is a high frequency characteristic) can be obtained.
[0003]
In the multilayer electronic component using LTCC, in order to form internal wiring patterns (internal electrodes) and external electrodes on the ceramic green sheet, both internal wiring patterns and external electrode patterns are printed using silver paste or copper paste. Then, after laminating and pressure bonding, debinding and firing, the external electrode surface is subjected to nickel plating, gold plating, and the like to form a terminal electrode, thereby forming a component.
By the way, in the multilayer electronic component using LTCC, the firing shrinkage of silver powder and copper powder proceeds at a lower temperature than the firing shrinkage temperature of ceramics during simultaneous firing. A so-called mismatch of firing shrinkage occurs. For this reason, due to the stress due to mismatch between the internal electrode and the ceramic, there is a problem that “crack” occurs inside after firing, or “warping” occurs in the part even if the crack does not reach. As countermeasures, adjusting the particle size of silver powder or copper powder, blending different particle sizes or powders with different shapes, adding powder of the same or similar composition as ceramic powder, adding a firing inhibitor, In addition, the above-described problems have been solved by reducing the difference in shrinkage behavior by adding a glass component having a different composition.
[0004]
In the external electrode, the mismatch has a greater influence on the “warp”, and the terminal electrode is formed by applying nickel and gold plating etc. on the external electrode as described above. The contact strength of the terminal electrode is required to be higher than a certain level. Furthermore, there is a demand for less deterioration in adhesion strength even after a reliability test such as high temperature standing or temperature cycling. Therefore, the same examination as the examination with the internal electrode is performed, but the number of evaluation items and the required standard are more than the internal electrode.
In recent years, mobile phones have become widespread worldwide, but a drop test is usually performed as one of the reliability tests of mobile phones. That is, it is a test for checking whether or not there is any functional deterioration by dropping a mobile phone from a height of 1.5 to 2 m onto a concrete surface. The need for further miniaturization, higher functionality, and weight reduction of mobile phones has been increasing as the spread of use has increased. Cases and printed circuit boards are becoming thinner.
From the aforementioned trends, parts for mobile phones have not only functions, but also mechanical reliability, specifically the mechanical strength and impact resistance of the parts themselves, and after soldering the parts to the printed circuit board, There is an increasing demand for greater adhesion strength of terminals.
With regard to the components themselves, the mechanical strength can be improved by changing the structure of the internal wiring, and the strength can be improved by examining the composition of the ceramic material itself, and studies are ongoing.
For example, an external electrode with a metal portion of 75% or more by volume is formed on the surface of the ceramic body, and a glass layer is disposed in an island shape at the interface between the external electrode and the ceramic body, and the adhesive strength between the external electrode and the ceramic body It is known to improve (adhesion strength). (Patent Document 1)
[0005]
[Patent Document 1]
JP-A-9-129479 [0006]
[Problems to be solved by the present invention]
However, the improvement of the adhesive strength is still not sufficient even by the above-mentioned measures, and there is a case where mismatch of firing shrinkage behavior occurs. In the first place, since there are many unexplained parts regarding the adhesion strength of the terminal, there is a problem that it is difficult to improve compared to the improvement of the strength of the parts.
Accordingly, an object of the present invention is to provide an electronic component having high terminal adhesion strength and high reliability, particularly in an electronic component for a mobile phone.
[0007]
[Means for Solving the Problems]
The present invention relates to a multilayer electronic component having a surface electrode that is co-fired with ceramics, and in the cross section of the surface electrode, the particle size of the electrode is 0.5 to 5 times the electrode thickness on the average in the longitudinal direction. It is a laminated electronic component having an average of 0.6 to 1 times the electrode thickness in the short direction.
The main component of the surface electrode is silver or copper.
In this invention, it is preferable that the addition amount of the baking suppression material other than the said main component is 0.5 wt% or less with respect to a main component. Further, as the firing inhibitor, platinum, palladium, rhodium, ruthenium oxide, manganese oxide, copper oxide, and at least one selected from the group of ceramics having substantially the same composition as the simultaneously fired ceramics It is preferable that it is the composition which becomes.
Further, the terminal electrode may be formed on the surface electrode after co-firing by performing nickel and tin or solder plating by electrolytic plating, or by performing nickel and gold plating by electroless plating.
[0008]
[Action]
Prior to the present invention, the inventors have relied on a conventional multi-component component such as an antenna switch module (also referred to as a front-end module) in which a plurality of filters and switch circuits are combined in a laminate. We have been studying highly functional terminal electrodes.
For further composite parts, we started to study improvement of terminal electrode adhesion strength, but as described in the section of the prior art, a technique for firing shrinkage mismatching with ceramics, ie usually silver or copper Platinum and palladium powders have the effect of suppressing firing shrinkage by increasing the particle size of silver powder and copper powder so that shrinkage occurs at higher temperatures because ceramics start shrinking at a lower temperature than ceramics. It has advanced by the method of adding. As a result, by soldering a 0.5φ Kovar pin to the external electrode before plating in a short time and conducting a tensile test, it was possible to find a condition for obtaining 30 N / mm 2 or more (evaluation number 20 points). When plating was performed, a phenomenon often deteriorated to 10 N / mm 2 or less. In addition, in the method of adding other glass etc., good results could not be obtained due to the reaction between glass and ceramics.
[0009]
As a result of the inventors' research, as a result of earnestly studying the cause of the deterioration, the method of shifting the shrinkage of silver or copper to the high temperature side as described above is not sufficient for firing densification of silver or copper, so that plating Occasionally, it was found that the plating solution soaked into the silver / copper / ceramic interface and the adhesion strength deteriorated. The mechanism by which silver and copper are bonded and bonded to the ceramics at the interface has also been analyzed by transmission electron microscopy, but could not be clarified. However, there are almost no defects such as gaps and pores at the silver / copper / ceramic interface, and if the metal and ceramic form a dense sintered body, the plating solution will not penetrate even during plating. As a result, it was found that the adhesion strength after plating does not deteriorate.
Based on this knowledge, the metal forming the surface electrode is densified, and the particle size of the surface electrode in contact with the dense ceramic surface after co-firing is set within a predetermined range, whereby the ceramic and the metal interface As a result, it was possible to obtain a surface electrode having almost no defects, and as a result, the present invention obtained sufficient adhesion strength after plating.
That is, when the particle diameter of the surface electrode exceeds 5 times the electrode thickness on the average in the longitudinal direction and the thickness in the short side direction exceeds 1 time with respect to the electrode thickness, firing with the metal alone proceeds. This means that gaps and pores at the metal / ceramic interface are likely to occur, and a decrease in adhesion strength is likely to occur.
Moreover, when the particle size of the electrode surface is less than 0.5 times the electrode thickness on the average in the longitudinal direction, it means that the electrode is not sufficiently fired and densified, and a high adhesion strength cannot be obtained. . Preferably, the particle diameter of the surface electrode is 0.8 times or more and 3 times or less of the electrode thickness on the average in the longitudinal direction, and 0.7 times or more of the short thickness in the short direction.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
(Example 1)
Examples of the present invention will be described.
As a low-temperature firing material, the composition shown in Japanese Patent Laid-Open No. 2000-272960 is Al2O3: 50, SiO2: 36, SrO: 10, TiO2: 4, Bi2O3: 2.5, Na2O: 2, K2O by weight%. : 0.5, CuO: 0.3, and a dielectric material converted to Mn3O40.5 was used.
Details will be described below.
In order to produce the material having the composition, Al2O3, SiO2, TiO2, Bi2O3, CuO, Mn3O4 and raw powders of SrCO3, Na2CO3, and K2CO3 were weighed and mixed with pure water by a ball mill to obtain a mixed slurry. . After adding 1 wt% of PVA to the slurry with respect to the weight of the slurry, the slurry was dried with a spray dryer to obtain a granular dry powder having an average particle size of about 0.1 mm. The granulated powder was calcined at a maximum temperature of 800 ° C. in a continuous furnace to obtain a calcined powder having a target composition.
Next, the calcined powder is dispersed in ethanol and pulverized with a ball mill to an average particle size of 1.2 μm. Further, PVB (polyvinyl butyral), which is a binder for sheet molding, is 12 wt% based on the weight of the calcined powder. , And 7.5 wt% of BPBG (butylphthalyl butyl glycolate) as a plasticizer were added, and dissolution and dispersion were performed in the same ball mill to obtain a sheet forming slurry. The slurry was adjusted to a viscosity of about 10,000 mPa · s by degassing and evaporating a part of the solvent under reduced pressure. After adjusting the viscosity, a sheet was formed with a doctor blade, and after drying, a ceramic green sheet having a thickness of about 100 μm was obtained. It cut | judged to the predetermined | prescribed magnitude | size for the handling of a post process.
[0011]
In order to obtain a ceramic laminated component, a wiring pattern was formed with silver paste on the surface of a plurality of ceramic green sheets. Since the ceramic green sheets connect the wiring patterns between the layers, through holes were also formed as necessary by a laser drilling device. The printed ceramic green sheet was subjected to alignment by image processing of a predetermined pattern and laminated and pressure-bonded. Position alignment was performed in the same manner on the second surface on which the wiring pattern was not formed by the laminated crimped body, and the wiring pattern was formed by screen printing.
As described above, the silver paste printed on the first and second surfaces is different from the silver paste for internal use, and 0.2 wt% platinum is added to the main component silver. Yes. The ceramic laminate was cut into chip sizes, placed on a firing setter, and debindered and fired in a continuous furnace. Firing was held at 900 ° C. for 1.5 hours in an air atmosphere. After firing, nickel plating and gold plating were performed on the fired silver surface by electroless plating, metallization was formed on the first and second surfaces, and parts were produced.
[0012]
FIG. 1 shows the result of observing the cross section of the surface electrode after firing with a SIM (scanning ion microscope), and FIG. 2 shows a schematic diagram clarifying the grain boundaries.
Here, the SIM will be described. For observation with a TEM (Transmission Electron Microscope), it is necessary to process the sample thinly down to the order of μm. The FIB was originally developed for the purpose of repairing thin-film wiring in the semiconductor field. (Fine-focused Ion Beam) proved to be effective and is widely used. The principle is that processing is performed by etching a target portion with a high-energy ion beam with focused Ga ions. When this FIB apparatus is used to scan the surface of a sample to be observed with a low energy ion beam, secondary electrons excited by the Ga ions are emitted. An image obtained by detecting the secondary electrons in synchronization with the scanning of the ion beam is a SIM image. Compared with SEM, crystal size, grain boundaries, etc. can be clearly observed. However, it is known that it depends on the crystal structure and the contrast due to the phase crystal can be observed.
In the schematic diagram of FIG. 2, the hatched portion is ceramic, and the blacked portion is a hole.
[0013]
From FIG. 1 and FIG. 2, the thickness of the external electrode after firing is about 10 μm, but the ceramic is dense, and the particle size of the electrode is about one time the electrode thickness on the average in the longitudinal direction. Similarly, it was observed that the average in the short direction was 1 times the electrode thickness. After plating, a 0.5φ Kovar pin was soldered to the component terminals, and a tensile test was performed. A total of 20 terminals were evaluated with 4 terminals and 5 parts per part, and a strength of 30 to 60 N / mm 2 was obtained.
Similarly, the soldered parts were left in a high-temperature bath at 150 ° C., and the strength was evaluated after 1000 hours. As a result, the average value showed only 5% deterioration, and the strength variation was similar. .
Further, the soldered parts as described above were subjected to 1000 cycles of a temperature cycle of −55 ° C. to 150 ° C., and the strength was evaluated. As a result, the average value showed only 7% deterioration, and the strength variation was similar. It was.
[0014]
(Example 2)
After carrying out to firing in the same manner as in Example 1, by electroplating, nickel plating and tin plating were performed on the silver surface after firing, metallization was formed on the first and second surfaces, and parts were produced. . Evaluation similar to Example 1 was performed on the manufactured parts, and equivalent results could be obtained.
There is no significant difference between the external electrode and the ceramic interface.
[0015]
(Example 3)
Using the same material as in Example 1, 100% copper was used as the electrode material to produce a part. Since the electrode is copper, in order to perform binder removal and firing without oxidizing copper, the firing atmosphere was a gas in which 10 ppm of oxygen was added to nitrogen gas, and firing was performed at 1000 ° C. for 1 hour. . Other steps were performed in the same manner as in Example 1.
Evaluation similar to Example 1 was performed by the produced components. Although the observation results are omitted, the ceramic is dense and the external electrode thickness after firing was about 15 μm, but the electrode particle size is twice the average electrode thickness in the longitudinal direction. And it has confirmed that it was about 0.8 times on the average of a transversal direction. As a result of the tensile test, a strength of 40 to 60 N / mm 2 was obtained.
[0016]
Similarly, the soldered parts were left in a high temperature bath at 150 ° C., and the strength was evaluated after 1000 hours. The average value showed only −7% deterioration, and the strength variation was similar. It was.
Furthermore, as a result of performing 1000 cycles of the temperature cycle of −55 ° C. to 150 ° C. for the parts soldered in the same manner as described above, the strength was evaluated. there were.
[0017]
(Examples 4 to 12)
Regarding the other examples, there are many conditions that overlap with the first to third examples, and various conditions and evaluation results are summarized in Tables 1 and 2 for the sake of simplicity of explanation. In Examples 4 to 12, the strength could be improved as in the above Examples.
[0018]
[Table 1]
[0019]
[Table 2]
[0020]
(Comparative example)
Among the conditions described in Example 1, the silver paste to be printed on the first and second surfaces is changed to one containing 1 wt% platinum with respect to the main component silver, followed by firing and plating steps. The same conditions were used until componentization.
The result of observing the cross section of the surface electrode after firing with a SIM (scanning ion microscope) is shown in FIG. 3, and the schematic diagram in which the grain boundary is clarified is shown by oblique lines in the schematic diagram of FIG. 4 shown in FIG. The part is made of ceramics, and the blacked out part is a hole. 3 and 4, the ceramic is dense, but the particle size of the electrode is about 0.3 times that of the electrode on the average in the longitudinal direction and 0.3 mm of the electrode thickness on the average in the short direction. It was observable that it was about double, and that there were many pores.
A 0.5φ Kovar pin was soldered to the terminal of the manufactured part and a tensile test was conducted. The evaluation was performed on 4 terminals and 5 terminals per part, for a total of 20 terminals, but only with a strength of 1 to 15 N / mm2. Couldn't get.
[0021]
【The invention's effect】
As shown in the above embodiments, according to the present invention, it is possible to provide an electronic component having a terminal electrode with high adhesion strength and high reliability.
[Brief description of the drawings]
FIG. 1 is a structural photograph of a cross section of a surface electrode of a multilayer electronic component according to an embodiment of the present invention.
FIG. 2 is a schematic view of a cross section of a surface electrode of a multilayer electronic component according to an embodiment of the present invention.
FIG. 3 is a structural photograph of a cross section of a surface electrode of a conventional multilayer electronic component.
FIG. 4 is a schematic view of a cross section of a surface electrode of a conventional multilayer electronic component.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002288710A JP4143961B2 (en) | 2002-10-01 | 2002-10-01 | Laminated electronic components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002288710A JP4143961B2 (en) | 2002-10-01 | 2002-10-01 | Laminated electronic components |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004128136A JP2004128136A (en) | 2004-04-22 |
JP4143961B2 true JP4143961B2 (en) | 2008-09-03 |
Family
ID=32281125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002288710A Expired - Lifetime JP4143961B2 (en) | 2002-10-01 | 2002-10-01 | Laminated electronic components |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4143961B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004031878B3 (en) * | 2004-07-01 | 2005-10-06 | Epcos Ag | Electrical multilayer component with reliable solder contact |
JP6054683B2 (en) * | 2012-08-29 | 2016-12-27 | 日本特殊陶業株式会社 | Method for producing hydrogen separator |
JP6714840B2 (en) * | 2015-07-17 | 2020-07-01 | 株式会社村田製作所 | Multilayer ceramic electronic component and manufacturing method thereof |
-
2002
- 2002-10-01 JP JP2002288710A patent/JP4143961B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004128136A (en) | 2004-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101834747B1 (en) | Laminated ceramic electronic component | |
CN102105954B (en) | Multilayer electronic component | |
JP5575231B2 (en) | Mullite sintered body, wiring board using the same, and probe card | |
CN115036136A (en) | Ceramic electronic component | |
CN111096090B (en) | Method for manufacturing ceramic substrate, and module | |
JP2012182355A (en) | Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor | |
JP5084668B2 (en) | Probe card wiring board and probe card using the same | |
CN109076709B (en) | Multilayer ceramic substrate | |
JP4143961B2 (en) | Laminated electronic components | |
JP4802039B2 (en) | Ceramic composition and multilayer ceramic circuit device | |
JP2010223849A (en) | Circuit board for probe card, and probe card using the same | |
EP1383361A2 (en) | Copper paste, wiring board using the same, and production method of wiring board | |
JP2012132823A (en) | Ceramic circuit board for probe card and probe card using the same | |
JP5495774B2 (en) | Ceramic circuit board for probe card and probe card using the same | |
JPH11354370A (en) | Layered ceramic electronic parts | |
JP3630372B2 (en) | Multilayer ceramic substrate and manufacturing method thereof | |
JP4528502B2 (en) | Wiring board | |
JP4496529B2 (en) | Multilayer ceramic substrate manufacturing method and multilayer ceramic substrate | |
JP4693284B2 (en) | Multilayer wiring board and manufacturing method thereof | |
JP2006093484A (en) | Glass ceramic multilayer wiring board with built-in capacitor | |
JP3330817B2 (en) | Multilayer ceramic parts | |
JP2010177383A (en) | Multilayer ceramic substrate, method of manufacturing the same, and probe card | |
JP2010278117A (en) | Method of manufacturing wiring board | |
JP2004055557A (en) | Copper paste, wiring board using the same and manufacturing method of wiring board | |
JP5773625B2 (en) | Glass ceramic wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050920 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070907 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080523 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080605 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4143961 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110627 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120627 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130627 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |