JP4143832B2 - External sound perception device - Google Patents

External sound perception device Download PDF

Info

Publication number
JP4143832B2
JP4143832B2 JP2003135746A JP2003135746A JP4143832B2 JP 4143832 B2 JP4143832 B2 JP 4143832B2 JP 2003135746 A JP2003135746 A JP 2003135746A JP 2003135746 A JP2003135746 A JP 2003135746A JP 4143832 B2 JP4143832 B2 JP 4143832B2
Authority
JP
Japan
Prior art keywords
sound
vibration
vibrator
vibrators
sound pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003135746A
Other languages
Japanese (ja)
Other versions
JP2004343302A (en
Inventor
誠司 中川
剛史 阪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003135746A priority Critical patent/JP4143832B2/en
Priority to PCT/JP2004/006703 priority patent/WO2004103021A1/en
Publication of JP2004343302A publication Critical patent/JP2004343302A/en
Application granted granted Critical
Publication of JP4143832B2 publication Critical patent/JP4143832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F11/00Methods or devices for treatment of the ears or hearing sense; Non-electric hearing aids; Methods or devices for enabling ear patients to achieve auditory perception through physiological senses other than hearing sense; Protective devices for the ears, carried on the body or in the hand
    • A61F11/04Methods or devices for enabling ear patients to achieve auditory perception through physiological senses other than hearing sense, e.g. through the touch sense
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2217/00Details of magnetostrictive, piezoelectric, or electrostrictive transducers covered by H04R15/00 or H04R17/00 but not provided for in any of their subgroups
    • H04R2217/03Parametric transducers where sound is generated or captured by the acoustic demodulation of amplitude modulated ultrasonic waves

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Otolaryngology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Psychology (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Neurology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Neurosurgery (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、外部音を超音波振動により知覚するための外部音知覚装置に関する。
【0002】
【従来の技術】
外部音を知覚するための外部音知覚装置として、難聴者用の補聴器が知られている。補聴器には、音の振動が鼓膜を介して脳の聴覚器官に伝達される気導型の補聴器と、音の振動が鼓膜を介さずに頭蓋骨などから直接人体に伝わる骨導型の補聴器とがあり、振動子を人体の所定部位に取り付けて使用する。
【0003】
最近では、振動子を介して超音波振動を脳の聴覚器官に伝達することにより、外部音を知覚可能にした構成も知られている(特許文献1及び2)。特許文献2には、1つの変調部から出力された超音波信号が、直列又は並列に接続された複数の超音波振動子にそれぞれ入力されるように構成し、これら複数の超音波振動子を頭部の所定部位に配置することが示されている。
【0004】
【特許文献1】
特開2001−320799号公報(第1頁、第9図)
【0005】
【特許文献2】
特開2002−300700号公報(第1,5頁、第6〜10図)
【0006】
【発明が解決しようとする課題】
複数の超音波振動子を使用する場合は、単一の超音波振動子を使用する場合に比べて感音状態(外部音の知覚状態)を良好にすることができるが、振動子の取り付け位置によって感音状態が変化する。このため従来は、感音状態を確認しながら各振動子を徐々に移動させて取り付け位置を決定するようにしていたが、このような方法では感音状態の微調整が困難であり、各振動子を最適位置に取り付けるのに時間を要していた。
【0007】
本発明は、このような点に鑑みなされたものであって、感音状態の最適化を容易且つ迅速に行うことができる外部音知覚装置の提供を目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、頭部モデルを用いた実測及び数値シミュレーションを行うことにより、後述するように、複数の振動子を用いた場合の頭部内の音圧分布を調べた。この結果、超音波刺激の場合には、可聴音刺激に比べて生体内における音圧分布が複雑なものとなり、各振動子の取り付け位置によって音圧分布が大きく変化することが明らかになった。本発明者らは、種々の条件下で頭部内の音圧分布を解析することにより、以下の知見を得た。
【0009】
即ち、本発明の前記目的は、外部音を超音波振動により知覚するための外部音知覚装置であって、入力された外部音に基づいて音信号を生成する音信号生成手段と、前記音信号に基づいてキャリア信号を変調することにより、振動信号を生成する振動信号生成手段と、前記振動信号に基づいて生体に超音波振動を伝達する振動伝達手段とを備え、前記振動伝達手段は、生体の所定位置に当接させた状態で固定可能な複数の振動子を備えており、前記振動信号生成手段は、少なくとも1つの前記振動子に対応する前記キャリア信号の位相を調節可能な入力部を備え、前記振動子毎にそれぞれ異なる前記振動信号を生成可能に構成されている外部音知覚装置により達成される。
【0010】
この外部音知覚装置において、前記入力部は、少なくとも1つの前記振動子に対応する前記キャリア信号の周波数及び位相を調節可能であることが好ましい。
【0011】
【発明の実施の形態】
以下、本発明の実態形態について添付図面を参照して説明する。図1は、本発明の一実施形態に係る外部音知覚装置の概略構成を示す正面図であり、図2は、そのブロック図である。図1及び図2に示すように、この外部音知覚装置は、入力された外部音に基づいて音信号を生成する音信号生成部10と、得られた音信号に基づいて振動信号を生成する振動信号生成部20と、前記振動信号に基づく機械的振動を伝達する振動伝達部30とを備える。
【0012】
音信号生成部10は、マイクロホンなどから構成されており、外部からの音を検出して増幅することにより音信号を生成する。
【0013】
振動信号生成部20は、キャリア信号を生成するキャリア信号発生部22と、キャリア信号の周波数、振幅およびタイミング(位相)を調整可能な入力部24と、音信号生成部10において生成された音信号に基づいてキャリア信号を変調することにより振動信号を生成するキャリア信号変調部26とを備えている。キャリア信号の周波数は、高度の難聴者であっても良好な感音状態が得られるように、超音波領域である20〜100kHzであることが好ましく、20〜50kHzであることがより好ましい。したがって、入力部24は、上記周波数域の一部または全部を含む範囲でキャリア信号の周波数を調整可能であることが好ましい。入力部24は、例えば、周波数、振幅、位相をそれぞれ連続的に変化させることができるように、個別に調整可能なボリュームスイッチから構成することができる。
【0014】
振動伝達部30は、振動信号を機械的な振動として外部に伝達する振動子を複数備えている。図3に示すように、振動伝達部30は、振動子31が収容された円筒状のケース32を複数備えており、各ケース32の開口縁に吸盤34を取り付けて構成されている。各ケース32は、可撓性を有する連結部材等により結合してもよい。
【0015】
振動子31は、ジンバル機構により、互いに直交する2軸の回りに揺動可能に支持されている。即ち、振動子31は、振動面を露出させるように第1の枠体40に固定されており、第1の枠体40は、第1の支持軸42を介して第2の枠体44に揺動自在に支持されている。そして、第2の枠体44は、第1の支持軸42と直交する第2の支持軸46を介してケース32の内部に揺動自在に支持されている。振動子31の振動面は、ケース32の開口からわずかに突出しており、吸盤34を所定の取付部位に吸着させると、振動子31の振動面が被吸着面に接触して押圧するように構成されている。各ケース32の底部(図の上部)中央には連通孔32aが形成されており、この連通孔32aに球状の袋状体48が結合されている。袋状体48はゴム材などの弾性材からなり、押圧により弾性変形可能に構成されている。袋状体48の内部空間は、連通孔32aを介してケース32の内部と連通している。
【0016】
以上の構成を備えた外部音知覚装置において、振動信号生成部20は、複数の振動子31に対応して複数設けられており、各振動子31に対してそれぞれ異なるキャリア信号に基づく振動信号を出力できるように構成されている。
【0017】
次に、上記外部音知覚装置の作動について説明する。まず、複数の振動子31を、人体の所定部位(例えば、乳様突起の近傍)にそれぞれ取り付ける。各振動子31は、袋状体48を手で摘んだ状態で所定部位に吸盤34を押し付けることにより、ジンバル機構によって人体に確実に接触させることができる。この後、摘んでいた手を離すと、袋状体48の形状復元力によりケース32の内部が負圧になって吸着力が得られるので、振動子31の取り付けを確実にすることができる。
【0018】
この後、外部音知覚装置のスイッチをONにして、外部音が入力されると、音信号生成部10は、外部音を電気信号に変換して音信号を生成し、所定のレベルまで増幅した後に、振動信号生成部20に向けて出力する。
【0019】
振動信号生成部20は、キャリア信号発生部22が、所定の振幅及び周波数を有するキャリア信号を生成し、キャリア信号変調部26が、このキャリア信号を音信号に基づいて変調することにより、振動信号を生成する。振動信号生成部20は、振動子31毎に対応する振動信号を個別に生成し、振動伝達部30に出力する。振動伝達部30は、入力された振動信号に基づいて各振動子31を振動させる。この結果、外部音に対応する超音波振動が人体に伝達される。なお、キャリア信号変調部26は、音信号が入力されない期間は、振動信号を出力しないように制御する。
【0020】
振動伝達部30からの超音波振動によって、頭部内に音圧分布が生じる。本実施形態においては、振動伝達部30の上記構成によって振動子31の経時的な位置ずれを効果的に防止することができるが、頭部内の音圧分布は、各振動子31の取り付け位置の僅かな相違によって大きく変化するため、感音状態が最適となる部位に各振動子31を正確に取り付けることは困難である。そこで、本実施形態においては、各振動子31に対応するキャリア信号の周波数、位相および振幅を入力部24において個別に調整可能に構成しており、任意の振動子31に対応する周波数、位相および振幅のいずれかを徐々に変化させることで、頭部内における音圧分布の微調整を可能にしている。この結果、超音波の干渉によって生じる腹及び節の位置を制御したり、超音波の焦点を絞って局所的に音圧を高めたりすることが可能になり、感音状態を容易且つ迅速に最適化することができる。
【0021】
感音状態を最適化するための具体的な方法は特に限定されるものではないが、例えば、以下の方法を挙げることができる。まず、複数の振動31から発せられる超音波の振幅を小さめに設定し、感音状態が概ね良好となるようにそれぞれ乳様突起に対して適当に取り付けていくことで、各振動子31の位置決めを行う。そして、感音状態がより良好となるように、各振動子31の周波数及び位相を調整し、決定する。例えば振動子31を2個取り付けて使用する場合、各振動子31に対応するキャリア信号の周波数を同時に変化させて、感音状態が最も良好になる周波数をそれぞれ設定する。この後、各振動子31に対応するキャリア信号の位相についても同様の方法で設定することにより、キャリア信号の最適な周波数及び位相及を振動子31毎に個別に得ることができ、感音状態を最適化することができる。周波数及び位相の設定は、どちらが先であってもよい。最後に、所望の感音状態が得られるように、振幅を所望の大きさに設定する。
【0022】
感音状態を最適化する方法としては、これ以外に、一方の振動子31に対応するキャリア信号の周波数、位相及び振幅をそれぞれ所定値に維持したまま、他方の振動子31に対応するキャリア信号の周波数、位相及び振幅を順次変化させて、感音状態を最適化することも可能である。この場合には、少なくとも1つの振動子31に対応するキャリア信号の周波数、位相及び振幅を入力部24において調整可能に構成されていればよい。
【0023】
【実施例】
流体中の音場解析に用いられる時間領域有限差分法(FDTD法:Finite- Difference Time-Domain Method)を用いて、振動子により頭部内に形成される音場を計算により求め、各振動子に対応するキャリア信号の周波数及び位相の相違による音圧分布の変化を調べた。
【0024】
具体的には、まず、標準的な日本人男性の頭部解剖図を参考に人体頭部モデルを作成し、この頭部モデルの左耳付近に半径5mmの円形振動板を複数配置して、それが一様振動するものとして骨導音呈示を模擬した。蝸牛を含むxy平面の頭部モデルの断面図を図4(a)に示す。図4における「I」、「II」及び「III」は、それぞれ振動子I、振動子II及び振動子IIIの取り付け位置を示しており、「I」が耳の前、「II」が耳の後ろ、「III」が耳の更に後ろである。音源に与える励振波形は、立ち上がり波にランプ関数をかけた連続正弦波とした。一例として、30kHzの励振波形を図4(b)に示す。
【0025】
(条件1) 周波数の相違による音圧分布の変化
上記頭部モデルにおいて振動子I及び振動子IIを使用し、振動子Iの周波数を
30kHzに維持した状態で振動子IIの周波数を変化させ、頭部内の音圧分布を調べた。
振動子I及び振動子IIの位相は同じ(位相差0)に設定した。図5及び図6は、図4に示す頭部断面における音圧分布を濃淡で示したものであり、縦軸及び横軸の単位はmmである。図5(a)〜(d)は、振動子IIの周波数が15kHz、20kHz、30kHz及び30.001kHzの場合にそれぞれ対応しており、図6(a)〜(d)は、振動子IIの周波数が30.01kHz、30.1kHz、31kHz及び32kHzの場合にそれぞれ対応している。また、図7及び図8は、それぞれ図5及び図6に対応する周波数条件下での左の蝸牛における音圧(縦軸)の時間(横軸)変化を示している。
【0026】
図5〜図8から明らかなように、振動子の励振周波数を徐々に変化させることにより、頭部内の音圧分布及び所定部位における感音レベルも徐々に変化する。このように、一方の振動子に対応するキャリア信号の周波数を調節することにより、感音状態を制御可能である。
【0027】
(条件2) 位相の相違による音圧分布の変化
上記頭部モデルにおいて振動子I及び振動子IIを使用し、振動子I及び振動子IIの周波数を30kHzに維持した状態で振動子Iと振動子IIとの位相差を生じさせ、頭部内の音圧分布を調べた。図9〜図12は、図4に示す断面での音圧分布を濃淡で示したものであり、縦軸及び横軸の単位はmmである。図9(a)〜(c)は、振動子Iの位相に対する振動子IIの位相の遅れが、それぞれ180゜,150゜及び120゜の場合にそれぞれ対応しており、図10(a)〜(c)は、振動子Iの位相に対する振動子IIの位相の遅れが、それぞれ90゜,60゜及び30゜の場合にそれぞれ対応している。また、図11(a)〜(c)は、振動子Iの位相に対する振動子IIの位相の進みが、それぞれ180゜,150゜及び120゜の場合にそれぞれ対応しており、図12(a)〜(c)は、振動子Iの位相に対する振動子IIの位相の進みが、それぞれ90゜,60゜及び30゜の場合にそれぞれ対応している。また、図13〜図16は、それぞれ図9〜図12に対応する周波数条件下での左の蝸牛における音圧(縦軸)の時間(横軸)変化を示している。
【0028】
図9〜図16から明らかなように、複数の振動子における励振波形間の位相差を徐々に変化させることにより、頭部内の音圧分布及び所定部位における感音レベルも徐々に変化する。このように、一方の振動子に対応するキャリア信号の位相を調節することにより、感音状態を制御可能である。
【0029】
(条件3) 取付位置の相違による音圧分布の変化
上記頭部モデルにおいて、3つの振動子(振動子I、振動子II及び振動子III)から使用する2以上の振動子の組み合わせを変えて、頭部内の音圧分布を調べた。図17は、図4に示す断面での音圧分布を濃淡で示したものであり、縦軸及び横軸の単位はmmである。図17(a)〜(d)は、振動子I・II、振動子II・III、振動子I・III及び振動子I・II・IIIの各組み合わせに対応している。また、図18は、図17に対応する各条件下での左の蝸牛における音圧(縦軸)の時間(横軸)変化を示している。各振動子の周波数は30kHzであり、位相差は0とした。
【0030】
図17及び図18から明らかなように、振動子の取り付け位置が僅かに異なるだけで、音圧分布及び所定部位における音圧レベルが大きく変化している。このように、振動子の取り付け位置を変えることにより感音状態を最適化することは困難である。
【0031】
(条件4) 可聴音による音圧分布
上記条件3において、各振動子の周波数を3kHzとする他は同様の条件下で頭部内の音圧分布を調べた。図19(a)〜(d)は、振動子I・II、振動子II・III、振動子I・III及び振動子I・II・IIIの各組み合わせに対応している。また、図20は、図19に対応する各条件下での左の蝸牛における音圧(縦軸)の時間(横軸)変化を示している。
【0032】
図19及び図20から明らかなように、振動子の取り付け位置が変化しても、音圧分布及び所定部位における音圧レベルはほとんど変化しない。このように、可聴音の場合には、振動子の取り付け位置が感音状態に与える影響は少ない。
【0033】
【発明の効果】
以上の説明から明らかなように、本発明によれば、感音状態の最適化を容易且つ迅速に行うことができる外部音知覚装置を提供することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係る外部音知覚装置の概略構成を示す正面図である。
【図2】 前記外部音知覚装置のブロック図である。
【図3】 前記外部音知覚装置における振動伝達部の断面図である。
【図4】 人体の頭部内における音圧分布の解析に用いる(a)頭部モデル及び(b)励振波形を示す図である。
【図5】 頭部内音圧分布の解析結果の一例を示す図である。
【図6】 頭部内音圧分布の解析結果の他の例を示す図である。
【図7】 図5に対応する所定部位における音圧の時間変化を示す図である。
【図8】 図6に対応する所定部位における音圧の時間変化を示す図である。
【図9】 頭部内音圧分布の解析結果の一例を示す図である。
【図10】 頭部内音圧分布の解析結果の他の例を示す図である。
【図11】 頭部内音圧分布の解析結果の更に他の例を示す図である。
【図12】 頭部内音圧分布の解析結果の更に他の例を示す図である。
【図13】 図9に対応する所定部位における音圧の時間変化を示す図である。
【図14】 図10に対応する所定部位における音圧の時間変化を示す図である。
【図15】 図11に対応する所定部位における音圧の時間変化を示す図である。
【図16】 図12に対応する所定部位における音圧の時間変化を示す図である。
【図17】 頭部内音圧分布の解析結果の一例を示す図である。
【図18】 図17に対応する所定部位における音圧の時間変化を示す図である。
【図19】 頭部内音圧分布の解析結果の一例を示す図である。
【図20】 図19に対応する所定部位における音圧の時間変化を示す図である。
【符号の説明】
10 音信号生成部
20 振動信号生成部
22 キャリア信号発生部
24 入力部
26 キャリア信号変調部
30 振動伝達部
31 振動子
32 ケース
34 吸盤
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an external sound perception apparatus for perceiving external sound by ultrasonic vibration.
[0002]
[Prior art]
Hearing aids for the hearing impaired are known as external sound perception devices for perceiving external sounds. Hearing aids include air-conducting hearing aids in which sound vibration is transmitted to the auditory organ of the brain through the eardrum, and bone-conducting hearing aids in which sound vibration is transmitted directly from the skull to the human body without going through the eardrum. Yes, the vibrator is used by attaching it to a predetermined part of the human body.
[0003]
Recently, a configuration is also known in which external sound can be perceived by transmitting ultrasonic vibrations to the auditory organ of the brain via a vibrator (Patent Documents 1 and 2). In Patent Document 2, an ultrasonic signal output from one modulation unit is configured to be input to a plurality of ultrasonic transducers connected in series or in parallel, and the plurality of ultrasonic transducers are It is shown that it is arranged at a predetermined part of the head.
[0004]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 2001-320799 (first page, FIG. 9)
[0005]
[Patent Document 2]
Japanese Patent Laid-Open No. 2002-300700 (pages 1, 5 and 6 to 10)
[0006]
[Problems to be solved by the invention]
When multiple ultrasonic transducers are used, the sound sensing state (perceived state of external sound) can be made better than when a single ultrasonic transducer is used. The sensory state changes. For this reason, in the past, each vibrator was gradually moved while determining the sound sensing state to determine the mounting position. However, with this method, it is difficult to finely adjust the sound sensing state. It took time to install the child in the optimal position.
[0007]
The present invention has been made in view of these points, and an object of the present invention is to provide an external sound perception device that can easily and quickly optimize a sound sensing state.
[0008]
[Means for Solving the Problems]
The present inventors investigated the sound pressure distribution in the head when using a plurality of transducers, as will be described later, by performing actual measurement and numerical simulation using the head model. As a result, in the case of ultrasonic stimulation, it became clear that the sound pressure distribution in the living body is more complex than that of the audible sound stimulation, and the sound pressure distribution varies greatly depending on the attachment position of each transducer. The present inventors have obtained the following knowledge by analyzing the sound pressure distribution in the head under various conditions.
[0009]
That is, the object of the present invention is an external sound perception device for perceiving an external sound by ultrasonic vibration, a sound signal generating means for generating a sound signal based on the input external sound, and the sound signal A vibration signal generating unit that generates a vibration signal by modulating a carrier signal based on the vibration signal, and a vibration transmission unit that transmits ultrasonic vibration to the living body based on the vibration signal. A plurality of vibrators that can be fixed in contact with the predetermined position, and the vibration signal generating means includes an input unit capable of adjusting a phase of the carrier signal corresponding to at least one of the vibrators. And an external sound perception device configured to generate different vibration signals for each of the vibrators.
[0010]
In this external sound perception apparatus, it is preferable that the input unit is capable of adjusting the frequency and phase of the carrier signal corresponding to at least one of the vibrators.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, actual forms of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a front view showing a schematic configuration of an external sound perception apparatus according to an embodiment of the present invention, and FIG. 2 is a block diagram thereof. As shown in FIGS. 1 and 2, the external sound perception apparatus generates a sound signal based on an input external sound, and generates a vibration signal based on the obtained sound signal. A vibration signal generation unit 20 and a vibration transmission unit 30 that transmits mechanical vibration based on the vibration signal are provided.
[0012]
The sound signal generation unit 10 includes a microphone or the like, and generates a sound signal by detecting and amplifying sound from the outside.
[0013]
The vibration signal generation unit 20 includes a carrier signal generation unit 22 that generates a carrier signal, an input unit 24 that can adjust the frequency, amplitude, and timing (phase) of the carrier signal, and the sound signal generated by the sound signal generation unit 10. And a carrier signal modulation unit 26 that generates a vibration signal by modulating the carrier signal based on the above. The frequency of the carrier signal is preferably from 20 to 100 kHz, more preferably from 20 to 50 kHz, so as to obtain a good sound sensing state even for a highly deaf person. Therefore, it is preferable that the input unit 24 can adjust the frequency of the carrier signal in a range including a part or all of the frequency range. For example, the input unit 24 can be configured by individually adjustable volume switches so that the frequency, amplitude, and phase can be continuously changed.
[0014]
The vibration transmission unit 30 includes a plurality of vibrators that transmit vibration signals to the outside as mechanical vibrations. As shown in FIG. 3, the vibration transmitting unit 30 includes a plurality of cylindrical cases 32 in which the vibrators 31 are accommodated, and a suction cup 34 is attached to the opening edge of each case 32. Each case 32 may be coupled by a flexible connecting member or the like.
[0015]
The vibrator 31 is supported by a gimbal mechanism so as to be swingable about two axes orthogonal to each other. That is, the vibrator 31 is fixed to the first frame body 40 so that the vibration surface is exposed, and the first frame body 40 is attached to the second frame body 44 via the first support shaft 42. It is swingably supported. The second frame body 44 is swingably supported inside the case 32 via a second support shaft 46 orthogonal to the first support shaft 42. The vibration surface of the vibrator 31 protrudes slightly from the opening of the case 32. When the suction cup 34 is attracted to a predetermined attachment site, the vibration surface of the vibrator 31 is in contact with and pressed against the attracted surface. Has been. A communication hole 32a is formed at the center of the bottom (upper part of the figure) of each case 32, and a spherical bag-like body 48 is coupled to the communication hole 32a. The bag-like body 48 is made of an elastic material such as a rubber material, and is configured to be elastically deformable by pressing. The internal space of the bag 48 communicates with the inside of the case 32 through the communication hole 32a.
[0016]
In the external sound perception apparatus having the above-described configuration, a plurality of vibration signal generation units 20 are provided corresponding to the plurality of transducers 31, and vibration signals based on different carrier signals are provided to the respective transducers 31. It is configured to output.
[0017]
Next, the operation of the external sound perception apparatus will be described. First, the plurality of vibrators 31 are respectively attached to predetermined parts of the human body (for example, in the vicinity of milky protrusions). Each vibrator 31 can be reliably brought into contact with the human body by the gimbal mechanism by pressing the suction cup 34 against a predetermined portion while the bag-like body 48 is picked by hand. Thereafter, when the hand that has been picked is released, the inside of the case 32 becomes a negative pressure due to the shape restoring force of the bag-like body 48 and an adsorption force is obtained, so the attachment of the vibrator 31 can be ensured.
[0018]
After that, when an external sound is input by turning on the switch of the external sound perception device, the sound signal generation unit 10 converts the external sound into an electric signal to generate a sound signal, and amplifies it to a predetermined level. Later, the signal is output toward the vibration signal generator 20.
[0019]
In the vibration signal generation unit 20, the carrier signal generation unit 22 generates a carrier signal having a predetermined amplitude and frequency, and the carrier signal modulation unit 26 modulates the carrier signal based on the sound signal. Is generated. The vibration signal generation unit 20 individually generates a vibration signal corresponding to each vibrator 31 and outputs the vibration signal to the vibration transmission unit 30. The vibration transmitting unit 30 vibrates each vibrator 31 based on the inputted vibration signal. As a result, ultrasonic vibration corresponding to the external sound is transmitted to the human body. The carrier signal modulation unit 26 performs control so as not to output a vibration signal during a period in which no sound signal is input.
[0020]
A sound pressure distribution is generated in the head by the ultrasonic vibration from the vibration transmitting unit 30. In the present embodiment, the above-described configuration of the vibration transmitting unit 30 can effectively prevent positional displacement of the transducer 31 over time, but the sound pressure distribution in the head is determined by the mounting position of each transducer 31. Therefore, it is difficult to accurately attach each vibrator 31 to a portion where the sound sensing state is optimal. Therefore, in the present embodiment, the frequency, phase and amplitude of the carrier signal corresponding to each transducer 31 are configured to be individually adjustable at the input unit 24, and the frequency, phase and amplitude corresponding to any transducer 31 are configured. By gradually changing one of the amplitudes, the sound pressure distribution in the head can be finely adjusted. As a result, it is possible to control the position of the abdomen and nodes caused by the interference of ultrasonic waves, or to focus the ultrasonic waves and increase the sound pressure locally, so that the sound sensing state can be optimized easily and quickly. Can be
[0021]
Although the specific method for optimizing a sound-sensitive state is not specifically limited, For example, the following method can be mentioned. First, the amplitude of the ultrasonic waves emitted from the plurality of vibrations 31 is set to be small, and each of the vibrators 31 is positioned by appropriately attaching to each mastoid so that the sound-sensing state is generally good. I do. Then, the frequency and phase of each transducer 31 are adjusted and determined so that the sound sensing state becomes better. For example, when two vibrators 31 are attached and used, the frequency of the carrier signal corresponding to each vibrator 31 is simultaneously changed to set the frequency at which the sound sensing state is the best. Thereafter, by setting the phase of the carrier signal corresponding to each vibrator 31 in the same manner, the optimum frequency and phase of the carrier signal can be obtained individually for each vibrator 31, and the sound sensing state Can be optimized. Either the frequency or phase may be set first. Finally, the amplitude is set to a desired magnitude so that a desired sound sensing state can be obtained.
[0022]
As another method for optimizing the sound sensing state, the carrier signal corresponding to the other transducer 31 while maintaining the frequency, phase and amplitude of the carrier signal corresponding to one transducer 31 at predetermined values. It is also possible to optimize the sound sensing state by sequentially changing the frequency, phase and amplitude. In this case, it is only necessary that the input unit 24 can adjust the frequency, phase, and amplitude of the carrier signal corresponding to at least one transducer 31.
[0023]
【Example】
Using the time-domain finite difference method (FDTD method) used for analysis of sound fields in fluids, the sound field formed in the head by the transducer is obtained by calculation. The change of the sound pressure distribution due to the difference in the frequency and phase of the carrier signal corresponding to the.
[0024]
Specifically, first, a human head model is created with reference to a standard Japanese male head anatomy, and a plurality of circular diaphragms having a radius of 5 mm are arranged near the left ear of the head model. The bone conduction sound presentation was simulated as that it vibrates uniformly. A cross-sectional view of the xy plane head model including the cochlea is shown in FIG. In FIG. 4, “I”, “II”, and “III” indicate attachment positions of the transducer I, the transducer II, and the transducer III, respectively. “I” is in front of the ear and “II” is in the ear. Back, “III” is behind the ear. The excitation waveform applied to the sound source was a continuous sine wave obtained by multiplying the rising wave by a ramp function. As an example, an excitation waveform of 30 kHz is shown in FIG.
[0025]
(Condition 1) Change in sound pressure distribution due to frequency difference Using the vibrator I and the vibrator II in the head model, changing the frequency of the vibrator II while maintaining the frequency of the vibrator I at 30 kHz, The sound pressure distribution in the head was examined.
The phases of the vibrator I and the vibrator II were set to be the same (phase difference 0). 5 and 6 show the sound pressure distribution in the head cross section shown in FIG. 4 in shades, and the unit of the vertical axis and the horizontal axis is mm. FIGS. 5A to 5D correspond to cases where the frequency of the vibrator II is 15 kHz, 20 kHz, 30 kHz, and 30.001 kHz, respectively, and FIGS. 6A to 6D are diagrams of the vibrator II. This corresponds to the case where the frequencies are 30.01 kHz, 30.1 kHz, 31 kHz, and 32 kHz, respectively. 7 and 8 show changes in sound pressure (vertical axis) over time (horizontal axis) in the left cochlea under frequency conditions corresponding to FIGS. 5 and 6, respectively.
[0026]
As apparent from FIGS. 5 to 8, by gradually changing the excitation frequency of the vibrator, the sound pressure distribution in the head and the sound sensitivity level at a predetermined portion also change gradually. In this way, the sound sensing state can be controlled by adjusting the frequency of the carrier signal corresponding to one of the vibrators.
[0027]
(Condition 2) Change in sound pressure distribution due to phase difference In the above head model, vibrator I and vibrator II are used, and vibrator I and vibrator II are vibrated with the frequency of vibrator I and vibrator II maintained at 30 kHz. A phase difference with child II was generated, and the sound pressure distribution in the head was examined. 9 to 12 show the sound pressure distribution in the cross section shown in FIG. 4 in shades, and the unit of the vertical axis and the horizontal axis is mm. 9A to 9C correspond to cases where the phase delay of the vibrator II with respect to the phase of the vibrator I is 180 °, 150 °, and 120 °, respectively. (C) corresponds to the case where the phase delay of the vibrator II with respect to the phase of the vibrator I is 90 °, 60 °, and 30 °, respectively. 11 (a) to 11 (c) correspond to cases where the phase advance of the vibrator II with respect to the phase of the vibrator I is 180 °, 150 °, and 120 °, respectively. ) To (c) correspond to cases where the phase advance of the vibrator II with respect to the phase of the vibrator I is 90 °, 60 ° and 30 °, respectively. Moreover, FIGS. 13-16 has shown the time (horizontal axis) change of the sound pressure (vertical axis) in the left cochlea under the frequency conditions corresponding to FIGS. 9-12, respectively.
[0028]
As is apparent from FIGS. 9 to 16, by gradually changing the phase difference between the excitation waveforms in the plurality of vibrators, the sound pressure distribution in the head and the sound sensitivity level at the predetermined portion also change gradually. In this way, the sound sensing state can be controlled by adjusting the phase of the carrier signal corresponding to one of the vibrators.
[0029]
(Condition 3) Change in sound pressure distribution due to difference in mounting position In the above head model, the combination of two or more vibrators used from three vibrators (vibrator I, vibrator II and vibrator III) is changed. The sound pressure distribution in the head was examined. FIG. 17 shows the sound pressure distribution in the cross section shown in FIG. 4 in shades, and the unit of the vertical axis and the horizontal axis is mm. 17A to 17D correspond to the combinations of the vibrators I and II, the vibrators II and III, the vibrators I and III, and the vibrators I, II, and III. FIG. 18 shows the time (horizontal axis) change of the sound pressure (vertical axis) in the left cochlea under each condition corresponding to FIG. The frequency of each vibrator was 30 kHz and the phase difference was zero.
[0030]
As apparent from FIGS. 17 and 18, the sound pressure distribution and the sound pressure level at a predetermined portion are greatly changed only by slightly different attachment positions of the vibrators. Thus, it is difficult to optimize the sound sensing state by changing the attachment position of the vibrator.
[0031]
(Condition 4) Sound pressure distribution by audible sound In the above condition 3, the sound pressure distribution in the head was examined under the same conditions except that the frequency of each transducer was 3 kHz. 19A to 19D correspond to the combinations of the vibrators I and II, the vibrators II and III, the vibrators I and III, and the vibrators I, II, and III. FIG. 20 shows the time (horizontal axis) change of the sound pressure (vertical axis) in the left cochlea under each condition corresponding to FIG.
[0032]
As is apparent from FIGS. 19 and 20, even if the attachment position of the vibrator changes, the sound pressure distribution and the sound pressure level at the predetermined portion hardly change. Thus, in the case of audible sound, the influence of the attachment position of the vibrator on the sound sensing state is small.
[0033]
【The invention's effect】
As is clear from the above description, according to the present invention, it is possible to provide an external sound perception device that can easily and quickly optimize a sound sensing state.
[Brief description of the drawings]
FIG. 1 is a front view showing a schematic configuration of an external sound perception device according to an embodiment of the present invention.
FIG. 2 is a block diagram of the external sound perception device.
FIG. 3 is a cross-sectional view of a vibration transmission unit in the external sound perception device.
FIGS. 4A and 4B are diagrams showing (a) a head model and (b) an excitation waveform used for analyzing a sound pressure distribution in the head of a human body.
FIG. 5 is a diagram illustrating an example of an analysis result of a sound pressure distribution in the head.
FIG. 6 is a diagram illustrating another example of the analysis result of the intra-head sound pressure distribution.
FIG. 7 is a diagram showing a temporal change in sound pressure at a predetermined portion corresponding to FIG.
FIG. 8 is a diagram showing a temporal change in sound pressure at a predetermined portion corresponding to FIG.
FIG. 9 is a diagram showing an example of the analysis result of the intra-head sound pressure distribution.
FIG. 10 is a diagram illustrating another example of the analysis result of the intra-head sound pressure distribution.
FIG. 11 is a diagram showing still another example of the analysis result of the sound pressure distribution in the head.
FIG. 12 is a diagram showing still another example of the analysis result of the sound pressure distribution in the head.
13 is a diagram showing a temporal change in sound pressure at a predetermined portion corresponding to FIG. 9. FIG.
FIG. 14 is a diagram showing a temporal change in sound pressure at a predetermined portion corresponding to FIG.
FIG. 15 is a diagram showing a temporal change in sound pressure at a predetermined portion corresponding to FIG.
FIG. 16 is a diagram showing a temporal change in sound pressure at a predetermined portion corresponding to FIG.
FIG. 17 is a diagram showing an example of the analysis result of the intra-head sound pressure distribution.
FIG. 18 is a diagram showing a temporal change in sound pressure at a predetermined portion corresponding to FIG.
FIG. 19 is a diagram showing an example of the analysis result of the intra-head sound pressure distribution.
20 is a diagram showing a temporal change in sound pressure at a predetermined portion corresponding to FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Sound signal generation part 20 Vibration signal generation part 22 Carrier signal generation part 24 Input part 26 Carrier signal modulation part 30 Vibration transmission part 31 Vibrator 32 Case 34 Suction cup

Claims (2)

外部音を超音波振動により知覚するための外部音知覚装置であって、
入力された外部音に基づいて音信号を生成する音信号生成手段と、
前記音信号に基づいてキャリア信号を変調することにより、振動信号を生成する振動信号生成手段と、
前記振動信号に基づいて生体に超音波振動を伝達する振動伝達手段とを備え、
前記振動伝達手段は、生体の所定位置に当接させた状態で固定可能な複数の振動子を備えており、
前記振動信号生成手段は、少なくとも1つの前記振動子に対応する前記キャリア信号の位相を調節可能な入力部を備え、前記振動子毎にそれぞれ異なる前記振動信号を生成可能に構成されている外部音知覚装置。
An external sound perception device for perceiving external sound by ultrasonic vibration,
Sound signal generating means for generating a sound signal based on the input external sound;
Vibration signal generating means for generating a vibration signal by modulating a carrier signal based on the sound signal;
Vibration transmitting means for transmitting ultrasonic vibration to the living body based on the vibration signal,
The vibration transmission means includes a plurality of vibrators that can be fixed in contact with a predetermined position of a living body,
The vibration signal generating means includes an input unit capable of adjusting the phase of the carrier signal corresponding to at least one of the vibrators, and is configured to generate the different vibration signals for each vibrator. Perceptual device.
前記入力部は、少なくとも1つの前記振動子に対応する前記キャリア信号の周波数及び位相を調節可能である請求項1に記載の外部音知覚装置。The external sound perception apparatus according to claim 1, wherein the input unit is capable of adjusting a frequency and a phase of the carrier signal corresponding to at least one of the vibrators.
JP2003135746A 2003-05-14 2003-05-14 External sound perception device Expired - Lifetime JP4143832B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003135746A JP4143832B2 (en) 2003-05-14 2003-05-14 External sound perception device
PCT/JP2004/006703 WO2004103021A1 (en) 2003-05-14 2004-05-12 Ultrasonic hearing aid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003135746A JP4143832B2 (en) 2003-05-14 2003-05-14 External sound perception device

Publications (2)

Publication Number Publication Date
JP2004343302A JP2004343302A (en) 2004-12-02
JP4143832B2 true JP4143832B2 (en) 2008-09-03

Family

ID=33447192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003135746A Expired - Lifetime JP4143832B2 (en) 2003-05-14 2003-05-14 External sound perception device

Country Status (2)

Country Link
JP (1) JP4143832B2 (en)
WO (1) WO2004103021A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4441614B2 (en) * 2005-04-22 2010-03-31 独立行政法人産業技術総合研究所 External sound perception device
JP4963035B2 (en) * 2006-04-17 2012-06-27 独立行政法人産業技術総合研究所 Auditory function training method and apparatus
KR100963888B1 (en) * 2007-12-10 2010-06-17 [주]이어로직코리아 Method and Apparatus of the Hair Cell Stimulation using Acoustic Signal
JP2018046525A (en) * 2016-09-16 2018-03-22 カシオ計算機株式会社 Bone conduction wave generating device, bone conduction wave generation method, program for bone conduction wave generating device, and bone conduction wave output machine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048175U (en) * 1983-09-12 1985-04-04 株式会社光電製作所 Multi-frequency/variable beam width transducer
US4982434A (en) * 1989-05-30 1991-01-01 Center For Innovative Technology Supersonic bone conduction hearing aid and method
US6173062B1 (en) * 1994-03-16 2001-01-09 Hearing Innovations Incorporated Frequency transpositional hearing aid with digital and single sideband modulation
JP3155231B2 (en) * 1997-01-23 2001-04-09 協和電子工業株式会社 Audiological examination device
JPH10285697A (en) * 1997-02-05 1998-10-23 Kyowa Denshi Kogyo Kk Audible sense device
JP2990273B1 (en) * 1998-11-20 1999-12-13 工業技術院長 Ultrasonic non-contact micromanipulation method and apparatus using multiple sound sources
JP2001033552A (en) * 1999-07-21 2001-02-09 Daizen:Kk Portable walking support tool for blind person
JP3422417B2 (en) * 2000-05-12 2003-06-30 独立行政法人産業技術総合研究所 Body conduction hearing device
JP3497833B2 (en) * 2001-03-29 2004-02-16 独立行政法人産業技術総合研究所 Ultrasonic body conduction hearing machine

Also Published As

Publication number Publication date
JP2004343302A (en) 2004-12-02
WO2004103021A1 (en) 2004-11-25
WO2004103021A8 (en) 2005-07-14

Similar Documents

Publication Publication Date Title
JP3174324B2 (en) Ultrasonic bone conduction hearing aid and hearing aid method
JP7228214B2 (en) Systems and methods for elastography and viscoelastography imaging
US6997864B2 (en) Method for obtaining diagnostic information relating to a patient having an implanted transducer
US8858420B2 (en) Vibration sensor for bone conduction hearing prosthesis
CN103239236A (en) Hearing test and auditory sense assessment device
JP4963035B2 (en) Auditory function training method and apparatus
JP4310477B2 (en) Noise reduction device
JP4143832B2 (en) External sound perception device
KR20160021770A (en) Method and device for measurement of propagation delay characteristic in multipath propagation environment, and external audio perception device
JP4953081B2 (en) External sound perception device
CN114342416A (en) Apparatus for reproducing sound
JP4441614B2 (en) External sound perception device
US9786204B2 (en) Visualizing sound with an electro-optical eardrum
WO2019220336A1 (en) System for programming cochlear implants and hearing aids based on the detection of the stapedial reflex
JP4423398B2 (en) External sound perception device
JPH11262480A (en) Sensitivity measuring device for ultrasonic wave signal and sensitivity measuring
JP3955950B2 (en) Audio information transmitting apparatus and method
JP3155231B2 (en) Audiological examination device
CN118056410A (en) Ear model unit for electroacoustic test and method for performing electroacoustic test of hearing device
Irwansyah et al. 1P5-16 Exploring the Impact of Pinna Hardness and Vibrator Placement on Bone Conduction Through the Pinna
JPS6212516B2 (en)
JP4900740B2 (en) Noise reduction device
CN116508330A (en) Bone conduction sounding device
JPH10285697A (en) Audible sense device
JPH0244723Y2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Ref document number: 4143832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term