JP4441614B2 - External sound perception device - Google Patents

External sound perception device Download PDF

Info

Publication number
JP4441614B2
JP4441614B2 JP2005124354A JP2005124354A JP4441614B2 JP 4441614 B2 JP4441614 B2 JP 4441614B2 JP 2005124354 A JP2005124354 A JP 2005124354A JP 2005124354 A JP2005124354 A JP 2005124354A JP 4441614 B2 JP4441614 B2 JP 4441614B2
Authority
JP
Japan
Prior art keywords
external sound
sound
modulation
input
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005124354A
Other languages
Japanese (ja)
Other versions
JP2006304020A (en
Inventor
誠司 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005124354A priority Critical patent/JP4441614B2/en
Publication of JP2006304020A publication Critical patent/JP2006304020A/en
Application granted granted Critical
Publication of JP4441614B2 publication Critical patent/JP4441614B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Circuit For Audible Band Transducer (AREA)

Description

本発明は、外部音を超音波振動により知覚するための外部音知覚装置に関する。   The present invention relates to an external sound perception apparatus for perceiving external sound by ultrasonic vibration.

外部音を知覚するための外部音知覚装置として、難聴者用の補聴器が知られている。補聴器には、音の振動が鼓膜を介して脳の聴覚器官に伝達される気導型の補聴器と、音の振動が鼓膜を介さずに頭蓋骨などから直接人体に伝わる骨導型の補聴器とがあり、振動子を人体の所定部位に取り付けて使用する。   Hearing aids for the hearing impaired are known as external sound perception devices for perceiving external sounds. Hearing aids include air-conducting hearing aids that transmit sound vibrations through the eardrum to the auditory organ of the brain, and bone-conducting hearing aids that transmit sound vibrations directly from the skull to the human body without passing through the eardrum. Yes, the vibrator is used by attaching it to a predetermined part of the human body.

最近では、振動子を介して超音波振動を脳の聴覚器官に伝達することにより、外部音を知覚可能にした構成が知られている。例えば、特許文献1には、マイクロフォンに入力された外部音に基づいて、複数の振動子から超音波信号が伝達されるように構成された外部音知覚装置が開示されている。
特開2004−343302号公報
Recently, a configuration in which external sound can be perceived by transmitting ultrasonic vibrations to the auditory organ of the brain via a vibrator is known. For example, Patent Literature 1 discloses an external sound perception device configured to transmit ultrasonic signals from a plurality of transducers based on external sound input to a microphone.
JP 2004-343302 A

骨導超音波の音像は、振動子の取り付け位置の微妙な違いによって大きく変化することがある。そこで、上記特許文献1に開示された装置は、振動子毎にそれぞれ異なる振動信号を生成できるように構成されており、これによって、生体への振動子の取り付け位置に拘わらず、感音状態(外部音の知覚状態)の最適化が図られている。
ところが、従来の外部音知覚装置は、良好な感音状態が得られたとしても音源の方向感が得られなかったため、この点において更に改良の余地があった。
The sound image of bone-conducted ultrasound may change greatly due to subtle differences in the attachment position of the transducer. Therefore, the device disclosed in Patent Document 1 is configured to be able to generate different vibration signals for each vibrator, and thus, the sound sensing state (independent of the attachment position of the vibrator to the living body) The optimization of the perceived state of the external sound is attempted.
However, the conventional external sound perception apparatus has no room for improvement in this respect because it cannot obtain the direction of the sound source even if a good sound sensing state is obtained.

そこで、本発明は、知覚音の方向感を向上させることができる外部音知覚装置の提供を目的とする。   Therefore, an object of the present invention is to provide an external sound perception apparatus that can improve the sense of direction of perceived sound.

本発明の前記目的は、外部音が入力される指向性マイクロフォンと、入力された音信号に基づいてキャリア信号を変調することにより振動信号を生成する振動信号生成手段と、前記振動信号に基づいて生体に超音波振動を伝達する振動子とを備え、前記指向性マイクロフォン及び振動子は、互いに対応付けられてそれぞれ複数設けられており、前記各指向性マイクロフォンに入力された外部音に基づいて、対応する前記各振動子からそれぞれ超音波振動が伝達され、前記振動信号生成手段は、前記各指向性マイクロフォンから入力された外部音毎に固有の変調を行うことができるように構成されている外部音知覚装置により達成される。   The object of the present invention is based on a directional microphone to which an external sound is input, a vibration signal generating means for generating a vibration signal by modulating a carrier signal based on the input sound signal, and the vibration signal. A vibrator that transmits ultrasonic vibrations to a living body, and the directional microphone and the vibrator are provided in a plurality in association with each other, based on external sound input to each directional microphone, Ultrasonic vibration is transmitted from each corresponding transducer, and the vibration signal generation means is configured to be able to perform inherent modulation for each external sound input from each directional microphone. Accomplished by a sound perception device.

この外部音知覚装置において、前記振動信号生成手段は、前記指向性マイクロフォン毎にキャリア信号の周波数を変えて振幅変調を行うことができるように構成することが好ましい。   In this external sound perception apparatus, it is preferable that the vibration signal generation unit is configured to perform amplitude modulation by changing the frequency of the carrier signal for each directional microphone.

また、前記振動信号生成手段は、前記指向性マイクロフォン毎に異なる変調方式による変調を行うことができるように構成することもできる。   Further, the vibration signal generation means can be configured to perform modulation by a different modulation method for each directional microphone.

また、これらの外部音知覚装置において、前記振動信号生成手段は、外部音毎に固有の変調を行うための変調条件を入力可能な入力部を備えることが好ましい。   In these external sound perception apparatuses, it is preferable that the vibration signal generating means includes an input unit capable of inputting a modulation condition for performing modulation specific to each external sound.

本発明によれば、知覚音の方向感を向上させることができる外部音知覚装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the external sound perception apparatus which can improve the sense of direction of a perceptual sound can be provided.

以下、本発明の実態形態について添付図面を参照して説明する。図1は、本発明の一実施形態に係る外部音知覚装置の概略構成を示す正面図であり、図2は、そのブロック図である。図1及び図2に示すように、この外部音知覚装置は、外部音が入力される複数の指向性マイクロフォン10,10と、入力された音信号に基づいて振動信号を生成する振動信号生成部20と、前記振動信号に基づく機械的振動を伝達する複数の振動伝達部30,30とを備える。   Hereinafter, actual forms of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a front view showing a schematic configuration of an external sound perception apparatus according to an embodiment of the present invention, and FIG. 2 is a block diagram thereof. As shown in FIGS. 1 and 2, the external sound perception apparatus includes a plurality of directional microphones 10 and 10 to which external sound is input, and a vibration signal generation unit that generates a vibration signal based on the input sound signal. 20 and a plurality of vibration transmission units 30 and 30 for transmitting mechanical vibration based on the vibration signal.

複数の指向性マイクロフォン10,10は、振動信号生成部20が収容されたケーシング20aにそれぞれ取り付けられている。指向性マイクロフォン10,10の取り付けは、本実施形態においてはそれぞれの指向性の主軸方向が相違するように固定しているが、各主軸方向を調整可能に取り付けてもよい。各指向性マイクロフォン10,10に入力された外部音は、増幅処理が行われた後、振動信号生成部20に入力される。   The plurality of directional microphones 10 and 10 are respectively attached to a casing 20a in which the vibration signal generation unit 20 is accommodated. The directional microphones 10 and 10 are fixed so that the main axis directions of the directivities are different in the present embodiment, but the main axis directions may be attached so as to be adjustable. The external sound input to each of the directional microphones 10 and 10 is input to the vibration signal generation unit 20 after being amplified.

振動信号生成部20は、キャリア信号を生成するキャリア信号発生部22,22と、キャリア信号の周波数、振幅、タイミング(位相)、変調方式を入力可能な入力部24,24と、指向性マイクロフォン10,10から入力された音信号に基づいてキャリア信号を変調することにより振動信号を生成するキャリア信号変調部26,26とを備えており、各指向性マイクロフォン10,10の入力音毎に個別に振動信号を生成する。   The vibration signal generation unit 20 includes carrier signal generation units 22 and 22 that generate carrier signals, input units 24 and 24 that can input the frequency, amplitude, timing (phase), and modulation method of the carrier signal, and the directional microphone 10. , 10 and carrier signal modulation units 26, 26 that generate vibration signals by modulating the carrier signal based on the sound signal input from the sound signal 10, and individually input sound of each directional microphone 10,10 Generate a vibration signal.

入力部24は、キャリア信号の周波数、振幅、位相をそれぞれ連続的に変化させることができるように、個別に調整可能なボリュームスイッチ24aを備え、更に、変調方式を選択するためのダイヤル式スイッチ24bを備えている。選択可能な変調方式としては、周波数変調、振幅変調、位相変調などが挙げられ、更に、振幅変調の種類として、例えば、両側波帯(DSB)、単側波帯(抑圧搬送波)(SSB)等を選択することができる。   The input unit 24 includes a volume switch 24a that can be individually adjusted so that the frequency, amplitude, and phase of the carrier signal can be continuously changed, and further, a dial switch 24b for selecting a modulation method. It has. Examples of selectable modulation methods include frequency modulation, amplitude modulation, phase modulation, and the like, and examples of amplitude modulation include double sideband (DSB), single sideband (suppressed carrier wave) (SSB), and the like. Can be selected.

キャリア信号の周波数は、高度の難聴者であっても良好な感音状態が得られるように、超音波領域である20〜100kHzであることが好ましく、20〜50kHzであることがより好ましい。したがって、入力部24は、上記周波数域の一部または全部を含む範囲でキャリア信号の周波数を調整可能であることが好ましい。   The frequency of the carrier signal is preferably from 20 to 100 kHz, more preferably from 20 to 50 kHz, so as to obtain a good sound sensing state even for a highly deaf person. Therefore, it is preferable that the input unit 24 can adjust the frequency of the carrier signal in a range including a part or all of the frequency range.

振動伝達部30,30は、振動信号を機械的な振動として外部に伝達する振動子をそれぞれ備え、各振動子が複数の指向性マイクロフォン10,10にそれぞれ対応付けられており、いずれかの指向性マイクロフォン10に入力された外部音は、対応する振動子から伝達される。   The vibration transmitting units 30 and 30 include vibrators that transmit vibration signals to the outside as mechanical vibrations, and each vibrator is associated with a plurality of directional microphones 10 and 10, respectively. The external sound input to the directional microphone 10 is transmitted from the corresponding vibrator.

図3に示すように、各振動伝達部30は、振動子31が収容された円筒状のケース32を備えており、ケース32の開口縁に吸盤34を取り付けて構成されている。   As shown in FIG. 3, each vibration transmission unit 30 includes a cylindrical case 32 in which a vibrator 31 is accommodated, and a suction cup 34 is attached to the opening edge of the case 32.

振動子31は、ジンバル機構により、互いに直交する2軸の回りに揺動可能に支持されている。即ち、振動子31は、振動面を露出させるように第1の枠体40に固定されており、第1の枠体40は、第1の支持軸42を介して第2の枠体44に揺動自在に支持されている。そして、第2の枠体44は、第1の支持軸42と直交する第2の支持軸46を介してケース32の内部に揺動自在に支持されている。振動子31の振動面は、ケース32の開口からわずかに突出しており、吸盤34を所定の取付部位に吸着させると、振動子31の振動面が被吸着面に接触して押圧するように構成されている。各ケース32の底部(
図の上部)中央には連通孔32aが形成されており、この連通孔32aに球状の袋状体48が結合されている。袋状体48はゴム材などの弾性材からなり、押圧により弾性変形可能に構成されている。袋状体48の内部空間は、連通孔32aを介してケース32の内部と連通している。
The vibrator 31 is supported by a gimbal mechanism so as to be swingable about two axes orthogonal to each other. That is, the vibrator 31 is fixed to the first frame body 40 so that the vibration surface is exposed, and the first frame body 40 is connected to the second frame body 44 via the first support shaft 42. It is swingably supported. The second frame body 44 is swingably supported inside the case 32 via a second support shaft 46 orthogonal to the first support shaft 42. The vibration surface of the vibrator 31 protrudes slightly from the opening of the case 32. When the suction cup 34 is attracted to a predetermined attachment site, the vibration surface of the vibrator 31 contacts and is pressed against the attracted surface. Has been. The bottom of each case 32 (
A communication hole 32a is formed at the center in the upper part of the figure, and a spherical bag 48 is coupled to the communication hole 32a. The bag-like body 48 is made of an elastic material such as a rubber material, and is configured to be elastically deformable by pressing. The internal space of the bag 48 communicates with the inside of the case 32 through the communication hole 32a.

次に、上記外部音知覚装置の作動について説明する。まず、複数の振動伝達部30,30を、人体の所定部位(例えば、左右の乳様突起の近傍)にそれぞれ取り付ける。各振動子31は、袋状体48を手で摘んだ状態で所定部位に吸盤34を押し付けることにより、ジンバル機構によって人体に確実に接触させることができる。この後、摘んでいた手を離すと、袋状体48の形状復元力によりケース32の内部が負圧になって吸着力が得られるので、振動子31の取り付けを確実にすることができる。   Next, the operation of the external sound perception apparatus will be described. First, the plurality of vibration transmission units 30 and 30 are respectively attached to predetermined parts of the human body (for example, in the vicinity of the left and right milky protrusions). Each vibrator 31 can be reliably brought into contact with the human body by the gimbal mechanism by pressing the suction cup 34 against a predetermined portion while the bag-like body 48 is picked by hand. Thereafter, when the hand that has been picked is released, the inside of the case 32 becomes a negative pressure due to the shape restoring force of the bag-like body 48 and an adsorption force is obtained, so the attachment of the vibrator 31 can be ensured.

この後、外部音知覚装置のスイッチをONにして、指向性マイクロフォン10,10に外部音が入力されると、各指向性マイクロフォン10,10から振動信号生成部20に音信号が入力される。各指向性マイクロフォン10,10は、指向性の主軸方向が互いに異なるため、同一の音源に対する入力感度が相違する。   Thereafter, when an external sound is input to the directional microphones 10 and 10 by turning on the switch of the external sound perception device, a sound signal is input from the directional microphones 10 and 10 to the vibration signal generation unit 20. Since the directional microphones 10 and 10 have different directivity main axis directions, input sensitivities to the same sound source are different.

振動信号生成部20は、キャリア信号発生部22,22が、所定の振幅及び周波数を有するキャリア信号を生成し、キャリア信号変調部26,26が、このキャリア信号を音信号に基づいて変調することにより、各指向性マイクロフォン10,10への入力音に対応した振動信号を生成する。このとき、キャリア信号変調部26,26において、各指向性マイクロフォン10,10への入力音毎にそれぞれ固有の変調が行われるように、入力部24を介して互いに異なる変調条件を入力しておく。例えば、キャリア信号の周波数を各指向性マイクロフォン10,10毎に異なるように設定し、変調方式は同じ両側波帯振幅変調として、それぞれ固有の変調を行うことができる。或いは、キャリア信号は同じ周波数とし、変調方式が互いに異なるようにして(例えば、一方を両側波帯振幅変調とし、他方を抑圧搬送波振幅変調として)、それぞれ固有の変調を行うようにしてもよい。こうして生成された振動信号は、対応する各振動伝達部30,30にそれぞれ出力される。   In the vibration signal generation unit 20, the carrier signal generation units 22 and 22 generate a carrier signal having a predetermined amplitude and frequency, and the carrier signal modulation units 26 and 26 modulate the carrier signal based on the sound signal. Thus, a vibration signal corresponding to the input sound to each directional microphone 10, 10 is generated. At this time, different modulation conditions are input via the input unit 24 so that the carrier signal modulation units 26 and 26 perform unique modulation for each input sound to the directional microphones 10 and 10, respectively. . For example, the carrier signal frequency is set to be different for each of the directional microphones 10, 10, and the modulation method is the same double sideband amplitude modulation, and each modulation can be performed. Alternatively, the carrier signals may have the same frequency, and the modulation methods may be different from each other (for example, one is a double sideband amplitude modulation and the other is a suppressed carrier wave amplitude modulation), and each may be subjected to a specific modulation. The vibration signal generated in this way is output to each of the corresponding vibration transmission units 30 and 30.

振動伝達部30,30は、入力された振動信号に基づいて振動子31,31を振動させる。この結果、各指向性マイクロフォン10,10に入力された外部音に基づいて、対応する各振動伝達部30,30からそれぞれ超音波振動が人体に伝達される。なお、キャリア信号変調部26は、音信号が入力されない期間は、振動信号を出力しないように制御する。   The vibration transmitting units 30 and 30 vibrate the vibrators 31 and 31 based on the input vibration signal. As a result, ultrasonic vibrations are transmitted from the corresponding vibration transmitting units 30 and 30 to the human body based on the external sound input to the directional microphones 10 and 10, respectively. The carrier signal modulation unit 26 performs control so as not to output a vibration signal during a period in which no sound signal is input.

本実施形態の外部音知覚装置によれば、振動信号生成部20において、各指向性マイクロフォン10,10から入力された外部音毎に固有の変調を行うことができるように構成されているので、各振動伝達部30,30から伝達される超音波振動の「聞こえ(音色)」の相違を認識できるように各変調条件を予め設定し、それぞれの「聞こえ」に対応する指向性マイクロフォン10,10を使用者が把握しておくことにより、知覚した超音波信号がどの指向性マイクロフォン10から入力されたものかを使用者が判別することができる。例えば、変調方式を両側波帯振幅変調とした場合は、キャリア波のピッチと復調された信号波のピッチの両方が同時に知覚される一方、変調方式を抑圧搬送波振幅変調とした場合は、キャリア波のピッチが知覚されず、もとの信号波の周波数の2倍に相当するピッチだけが知覚されるので、それぞれの「聞こえ」の違いを確実に判別することができる。この結果、音声や環境音などの音源の方向を使用者が確実に認識することが可能になり、例えば、災害現場や工事現場などにおける作業時や自動車などの車両運転時において、有効である。   According to the external sound perception apparatus of the present embodiment, the vibration signal generation unit 20 is configured to perform specific modulation for each external sound input from each directional microphone 10, 10. Each modulation condition is set in advance so that a difference in “audibility (tone color)” of ultrasonic vibrations transmitted from the vibration transmission units 30 and 30 can be recognized, and the directional microphones 10 and 10 corresponding to the respective “hearing”. , The user can determine from which directional microphone 10 the perceived ultrasonic signal is input. For example, if the modulation method is double-sideband amplitude modulation, both the carrier wave pitch and the demodulated signal wave pitch are perceived simultaneously, while if the modulation method is suppressed carrier amplitude modulation, the carrier wave Is not perceived, and only a pitch corresponding to twice the frequency of the original signal wave is perceived, so that the difference in “hearing” can be reliably determined. As a result, it becomes possible for the user to surely recognize the direction of the sound source such as voice or environmental sound, which is effective, for example, when working at a disaster site or construction site, or when driving a vehicle such as an automobile.

本実施形態においては、振動伝達部30の上記構成によって振動子31の経時的な位置
ずれを効果的に防止することができるが、頭部内の音圧分布は、各振動子31の取り付け位置の僅かな相違によって大きく変化するため、感音状態が最適となる部位に各振動子31を正確に取り付けることは困難である。そこで、各振動子31を取り付けた後、各振動子31に対応するキャリア信号の周波数、位相および振幅などを入力部24の操作により調整し、超音波の干渉によって生じる腹及び節の位置を制御したり、超音波の焦点を絞って局所的に音圧を高めたりすることで、感音状態を最適化することが好ましい。尚、変調条件として、キャリア信号の周波数が各指向性マイクロフォン10,10毎に異なるように設定した場合には、知覚音の方向感が失われないように、感音状態の調整においてキャリア信号の周波数は変更しないことが好ましい。
In the present embodiment, the above-described configuration of the vibration transmitting unit 30 can effectively prevent positional deviation of the vibrator 31 over time, but the sound pressure distribution in the head is determined by the attachment position of each vibrator 31. Therefore, it is difficult to accurately attach each vibrator 31 to a portion where the sound sensing state is optimal. Therefore, after attaching each transducer 31, the frequency, phase, amplitude, etc. of the carrier signal corresponding to each transducer 31 are adjusted by operating the input unit 24, and the positions of the abdomen and nodes caused by ultrasonic interference are controlled. It is preferable to optimize the sound sensing state by reducing the focal point of the ultrasonic wave and locally increasing the sound pressure. When the carrier signal frequency is set to be different for each of the directional microphones 10 and 10 as the modulation condition, the carrier signal is adjusted in the sound sensing state so as not to lose the sense of direction of the perceived sound. The frequency is preferably not changed.

感音状態を最適化するための具体的な方法は特に限定されるものではないが、例えば、以下の方法を挙げることができる。まず、複数の振動子31から発せられる超音波の振幅を小さめに設定し、感音状態が概ね良好となるようにそれぞれ乳様突起に対して適当に取り付けていくことで、各振動子31の位置決めを行う。そして、感音状態がより良好となるように、各振動子31の周波数及び位相を調整し、決定する。例えば振動子31を2個取り付けて使用する場合、各振動子31に対応するキャリア信号の周波数を同時に変化させて、感音状態が最も良好になる周波数をそれぞれ設定する。この後、各振動子31に対応するキャリア信号の位相についても同様の方法で設定することにより、キャリア信号の最適な周波数及び位相及を振動子31毎に個別に得ることができ、感音状態を最適化することができる。周波数及び位相の設定は、どちらが先であってもよい。最後に、所望の感音状態が得られるように、振幅を所望の大きさに設定する。   Although the specific method for optimizing a sound-sensitive state is not specifically limited, For example, the following method can be mentioned. First, the amplitude of the ultrasonic waves emitted from the plurality of vibrators 31 is set to be small, and each of the vibrators 31 is appropriately attached to each mastoid so that the sound-sensing state is generally good. Perform positioning. Then, the frequency and phase of each transducer 31 are adjusted and determined so that the sound sensing state becomes better. For example, when two vibrators 31 are attached and used, the frequency of the carrier signal corresponding to each vibrator 31 is simultaneously changed to set the frequency at which the sound sensing state is the best. Thereafter, by setting the phase of the carrier signal corresponding to each vibrator 31 in the same manner, the optimum frequency and phase of the carrier signal can be obtained individually for each vibrator 31, and the sound sensing state Can be optimized. Either the frequency or phase may be set first. Finally, the amplitude is set to a desired magnitude so that a desired sound sensing state can be obtained.

感音状態を最適化する方法としては、これ以外に、一方の振動子31に対応するキャリア信号の周波数、位相及び振幅をそれぞれ所定値に維持したまま、他方の振動子31に対応するキャリア信号の周波数、位相及び振幅を順次変化させて、感音状態を最適化することも可能である。この場合には、少なくとも1つの振動子31に対応するキャリア信号の周波数、位相及び振幅を入力部24において調整可能に構成されていればよい。   As another method for optimizing the sound sensing state, the carrier signal corresponding to the other transducer 31 while maintaining the frequency, phase and amplitude of the carrier signal corresponding to one transducer 31 at predetermined values. It is also possible to optimize the sound sensing state by sequentially changing the frequency, phase and amplitude. In this case, it is only necessary that the input unit 24 can adjust the frequency, phase, and amplitude of the carrier signal corresponding to at least one transducer 31.

いずれにしても、「聞こえ」の違いを確実に判別可能な状態で、キャリア信号の周波数、位相及び振幅を調整することで、良好な感音状態及び方向感の双方を得ることができる。   In any case, by adjusting the frequency, phase, and amplitude of the carrier signal in a state where the difference in “hearing” can be reliably determined, it is possible to obtain both a good sound feeling state and a sense of direction.

以上、本発明の一実施形態について詳述したが、本発明の具体的な態様は上記実施形態に限定されない。例えば、本実施形態においては、指向性マイクロフォン10,10を2つ使用し、それぞれの入力音に対して固有の変調を行うように構成しているが、指向性マイクロフォン及びこれに対応する振動伝達部の数は、複数であれば特に限定されない。例えば、この外部音知覚装置を自動車に設置する場合、4つの指向性マイクロフォンを、指向性の主軸がそれぞれ前方向、後方向、右方向、左方向となるように車両に固定し、それぞれの入力音に対して固有の変調を行った上で、対応する4つの振動伝達部を介して人体に伝達されるように構成してもよい。これによって、緊急車両のサイレンなど運転中に認識する必要がある音源の方向を確実に把握することが可能になる。   As mentioned above, although one Embodiment of this invention was explained in full detail, the specific aspect of this invention is not limited to the said embodiment. For example, in the present embodiment, two directional microphones 10 and 10 are used, and each input sound is configured to perform unique modulation. However, the directional microphone and vibration transmission corresponding to the directional microphone are used. The number of parts is not particularly limited as long as it is plural. For example, when this external sound perception device is installed in an automobile, four directional microphones are fixed to the vehicle so that the main axes of directivity are forward, backward, right, and left, respectively. The sound may be configured to be transmitted to the human body through four corresponding vibration transmission units after performing a specific modulation on the sound. This makes it possible to reliably grasp the direction of a sound source that needs to be recognized during driving, such as a siren of an emergency vehicle.

また、本実施形態においては、入力部24を介して変調条件を入力可能に構成しているが、予め使用者に適した変調条件を決定してそのデータをメモリ等に格納しておくことにより、入力部24を有しない構成にすることも可能である。また、入力部24からの変更条件の入力は、手動操作に限定されず、他の装置で測定、演算した結果が自動的に入力されるように構成してもよい。   In this embodiment, the modulation condition can be input via the input unit 24. However, by determining a modulation condition suitable for the user in advance and storing the data in a memory or the like. A configuration without the input unit 24 is also possible. Moreover, the input of the change condition from the input unit 24 is not limited to manual operation, and the result of measurement and calculation by another device may be automatically input.

まず、被験者が超音波骨導音の呈示部位を判別できるか否かを調べるため、左右の乳様
突起に骨導超音波刺激をオドボール課題に準拠して呈示したときの脳磁界(MEG)を計測した。骨導超音波刺激の付与は、周波数1kHzのトーンバースト(継続時間30ms、上昇及び下降時間各10ms)で振幅変調(変調率100%)した30kHzの超音波により行い、乳様突起の一方側及び他方側にそれぞれ低頻度刺激(呈示確率10%)及び高頻度刺激(呈示確率90%)が付与されたときの脳磁界を、右側が低頻度刺激(左側が高頻度刺激)の場合と、左側が低頻度刺激(右側が高頻度刺激)の場合とで比較した。
First, in order to examine whether or not the subject can discriminate the presentation site of the ultrasonic bone conduction sound, the brain magnetic field (MEG) when bone conduction ultrasonic stimulation is presented to the left and right mastoid processes according to the oddball task is shown. Measured. The application of bone-conducted ultrasonic stimulation is performed by 30 kHz ultrasonic waves that are amplitude-modulated (modulation rate 100%) with a tone burst with a frequency of 1 kHz (duration 30 ms, rise and fall times 10 ms each). The cerebral magnetic field when a low frequency stimulus (presentation probability 10%) and a high frequency stimulus (presentation probability 90%) are applied to the other side, the right side is a low frequency stimulus (left side is a high frequency stimulus), and the left side Was compared with the case of low frequency stimulation (high frequency stimulation on the right side).

図4(a)は、被験者の右側頭部で計測された脳磁界の波形を、低頻度刺激及び高頻度刺激のそれぞれについて示したものである。いずれの場合も、刺激の呈示から約100ms後にN1m反応が観察されているが、低頻度刺激の方がN1m反応の振幅が大きくなっており、ミスマッチ反応が観察された。比較のため、周波数2kHzの骨導可聴音で同様の計測を行ったところ、図4(b)に示すように、この場合も、同様の潜時においてミスマッチ反応が観察された。   FIG. 4A shows the waveform of the cerebral magnetic field measured at the right temporal region of the subject for each of the low-frequency stimulation and the high-frequency stimulation. In any case, the N1m response was observed about 100 ms after the presentation of the stimulus, but the amplitude of the N1m response was larger with the low frequency stimulus, and a mismatch response was observed. For comparison, when the same measurement was performed with a bone-conducted audible sound having a frequency of 2 kHz, a mismatch reaction was observed in the same latency as shown in FIG. 4B.

以上より、2つの骨導超音波刺激は、骨導可聴音の場合と同様に弁別可能であり、被験者が超音波骨導音の呈示部位(呈示側)を判別可能であることを、客観的に明らかにすることができた。   As described above, the two bone-conducted ultrasonic stimuli can be discriminated similarly to the case of bone-conducted audible sound, and it is objective that the subject can discriminate the presenting part (presentation side) of the ultrasonic bone-conducted sound. Could be revealed.

次に、乳様突起に呈示された入力音自体が判別可能か否かを調べるため、本発明の上記実施形態における変調条件として、キャリア信号の周波数を各指向性マイクロフォン10,10毎に異なるように設定し、変調方式は同じ両側波帯振幅変調とした場合における、正弦波骨導音の周波数とピッチ(主観的な音の高さ)との関係を、被験者(聴覚健常者)4名に対して測定した。   Next, in order to check whether or not the input sound itself presented on the mastoid can be discriminated, as a modulation condition in the above embodiment of the present invention, the frequency of the carrier signal is made different for each directional microphone 10, 10. The relationship between the frequency of the sinusoidal bone conduction sound and the pitch (subjective sound pitch) when the modulation method is the same double-sideband amplitude modulation is set to 4 subjects (normal hearing people). Was measured.

ピッチの測定は、無音響室内で行い、被験者の一方側の乳様突起に圧電セラミック振動子をヘッドバンドにより固定して骨導音を呈示する一方、他方側の耳にヘッドフォンを介して気導音を呈示し、16k、20k、24k、28k、32k、36kおよび40k(Hz)の各周波数の骨導音を呈示したときに、ピッチが等しくなる気導音の周波数を調整法(被験者自らがダイヤル調整などにより気導音の周波数を変化させる方法)により求めた。測定は、骨導音および気導音の呈示側を入れ替えて2回行い、これら2回の平均値を被験者毎に算出した。この結果を図5に示す。   The pitch is measured in a sound-free room, and a piezoelectric ceramic vibrator is fixed to the subject's milky process by a headband to present bone-conducted sound, while the other ear receives air conduction through headphones. When presenting sound and presenting bone-conducted sound of each frequency of 16k, 20k, 24k, 28k, 32k, 36k, and 40k (Hz), the frequency of the air-conducted sound with the same pitch is adjusted (subject himself / herself). It was obtained by a method of changing the frequency of the air conduction sound by adjusting the dial). The measurement was performed twice by switching the presentation side of the bone conduction sound and the air conduction sound, and the average value of these two times was calculated for each subject. The result is shown in FIG.

図5に示すように、超音波の周波数帯域においては、可聴音のように骨導音周波数とピッチとの間に単調増加の関係は存在せず、更に、被験者によって変動パターンにばらつきが見られるが、いずれの被験者の場合も、骨導音周波数の上昇に伴い、ピッチが上下に1〜2kHz変動している様子がわかる。この程度のピッチ変動があれば、被験者はその差を容易に判別することができるので、実際の製品においては、ピッチの差を判別しやすい骨導音周波数を予め選定しておき、選定した骨導音周波数をキャリア信号の周波数とすることで、複数の振動子からの入力を明確に区別することができる。   As shown in FIG. 5, in the ultrasonic frequency band, there is no monotonically increasing relationship between the bone conduction sound frequency and the pitch as in the case of an audible sound, and the variation pattern varies depending on the subject. However, in any subject, it can be seen that the pitch fluctuates up and down 1-2 kHz as the bone conduction sound frequency increases. If there is such a pitch fluctuation, the subject can easily discriminate the difference. Therefore, in an actual product, the bone conduction sound frequency that can easily distinguish the pitch difference is selected in advance, and the selected bone is selected. By making the sound guide frequency the frequency of the carrier signal, it is possible to clearly distinguish inputs from a plurality of vibrators.

本発明の一実施形態に係る外部音知覚装置の概略構成を示す正面図である。It is a front view which shows schematic structure of the external sound perception apparatus which concerns on one Embodiment of this invention. 前記外部音知覚装置のブロック図である。It is a block diagram of the external sound perception device. 前記外部音知覚装置における振動伝達部の断面図である。It is sectional drawing of the vibration transmission part in the said external sound perception apparatus. 図1に示す外部音知覚装置の効果を検証するための実験結果を示す図である。It is a figure which shows the experimental result for verifying the effect of the external sound perception apparatus shown in FIG. 図1に示す外部音知覚装置の効果を検証するための他の実験結果を示す図である。It is a figure which shows the other experimental result for verifying the effect of the external sound perception apparatus shown in FIG.

符号の説明Explanation of symbols

10 指向性マイクロフォン
20 振動信号生成部
22 キャリア信号発生部
24 入力部
26 キャリア信号変調部
30 振動伝達部
31 振動子
DESCRIPTION OF SYMBOLS 10 Directional microphone 20 Vibration signal generation part 22 Carrier signal generation part 24 Input part 26 Carrier signal modulation part 30 Vibration transmission part 31 Vibrator

Claims (4)

外部音を超音波振動により知覚するための外部音知覚装置であって、
外部音が入力される指向性マイクロフォンと、
入力された音信号に基づいてキャリア信号を変調することにより振動信号を生成する振動信号生成手段と、
前記振動信号に基づいて生体に超音波振動を伝達する振動子とを備え、
前記指向性マイクロフォン及び振動子は、互いに対応付けられてそれぞれ複数設けられており、前記各指向性マイクロフォンに入力された外部音に基づいて、対応する前記各振動子からそれぞれ超音波振動が伝達され、
前記振動信号生成手段は、前記各指向性マイクロフォンから入力された外部音毎に固有の変調を行うことができるように構成されている外部音知覚装置。
An external sound perception device for perceiving external sound by ultrasonic vibration,
A directional microphone to which external sound is input;
Vibration signal generating means for generating a vibration signal by modulating a carrier signal based on the input sound signal;
A vibrator that transmits ultrasonic vibrations to a living body based on the vibration signal;
A plurality of the directional microphones and the vibrators are provided in association with each other, and ultrasonic vibrations are transmitted from the corresponding vibrators based on external sound input to the directional microphones. ,
The external sound perception apparatus is configured such that the vibration signal generation means can perform modulation specific to each external sound input from each of the directional microphones.
前記振動信号生成手段は、前記指向性マイクロフォン毎にキャリア信号の周波数を変えて振幅変調を行うことができる請求項1に記載の外部音知覚装置。 The external sound perception apparatus according to claim 1, wherein the vibration signal generation unit can perform amplitude modulation by changing a frequency of a carrier signal for each directional microphone. 前記振動信号生成手段は、前記指向性マイクロフォン毎に異なる変調方式による変調を行うことができる請求項1に記載の外部音知覚装置。 The external sound perception apparatus according to claim 1, wherein the vibration signal generation unit can perform modulation by a different modulation method for each directional microphone. 前記振動信号生成手段は、外部音毎に固有の変調を行うための変調条件を入力可能な入力部を備える請求項1から3のいずれかに記載の外部音知覚装置。 The external sound perception apparatus according to claim 1, wherein the vibration signal generation unit includes an input unit capable of inputting a modulation condition for performing modulation specific to each external sound.
JP2005124354A 2005-04-22 2005-04-22 External sound perception device Expired - Fee Related JP4441614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005124354A JP4441614B2 (en) 2005-04-22 2005-04-22 External sound perception device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005124354A JP4441614B2 (en) 2005-04-22 2005-04-22 External sound perception device

Publications (2)

Publication Number Publication Date
JP2006304020A JP2006304020A (en) 2006-11-02
JP4441614B2 true JP4441614B2 (en) 2010-03-31

Family

ID=37471762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005124354A Expired - Fee Related JP4441614B2 (en) 2005-04-22 2005-04-22 External sound perception device

Country Status (1)

Country Link
JP (1) JP4441614B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4953081B2 (en) * 2007-08-23 2012-06-13 独立行政法人産業技術総合研究所 External sound perception device
JP7039192B2 (en) * 2017-06-23 2022-03-22 ニプロ株式会社 Signal wave generator for biological stimulation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4143832B2 (en) * 2003-05-14 2008-09-03 独立行政法人産業技術総合研究所 External sound perception device

Also Published As

Publication number Publication date
JP2006304020A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
US20240040323A1 (en) Sound awareness hearing prosthesis
JP3174324B2 (en) Ultrasonic bone conduction hearing aid and hearing aid method
KR20220113969A (en) sound output device
JP2008514053A (en) Bone conduction hearing aid device
JP7262850B2 (en) Bone conduction headset exclusively for tinnitus treatment that stimulates the mastoid process and auricle at the same time
JP4963035B2 (en) Auditory function training method and apparatus
CN113676823A (en) Hearing aid comprising a left and right position detector
KR20180045853A (en) Mr audio unit
JP2000197168A (en) Acoustic equipment
JP3172827B2 (en) Sound recognition method and apparatus for hearing impaired
JP4441614B2 (en) External sound perception device
JP4953081B2 (en) External sound perception device
CN114342416A (en) Apparatus for reproducing sound
JP4143832B2 (en) External sound perception device
JP4423398B2 (en) External sound perception device
JP2024527782A (en) Acoustic device and method for determining its transfer function
JPH11262480A (en) Sensitivity measuring device for ultrasonic wave signal and sensitivity measuring
JP7299787B2 (en) hearing test equipment
JP3422417B2 (en) Body conduction hearing device
JP3155231B2 (en) Audiological examination device
JP4078429B2 (en) Audio information transmission device
JPH10285697A (en) Audible sense device
JPH11104165A (en) Hearing aid
CN118056410A (en) Ear model unit for electroacoustic test and method for performing electroacoustic test of hearing device
JP2001095098A (en) Body-sensing hearing aid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091202

R150 Certificate of patent or registration of utility model

Ref document number: 4441614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees