JP4142934B2 - Wiring board manufacturing method - Google Patents

Wiring board manufacturing method Download PDF

Info

Publication number
JP4142934B2
JP4142934B2 JP2002304718A JP2002304718A JP4142934B2 JP 4142934 B2 JP4142934 B2 JP 4142934B2 JP 2002304718 A JP2002304718 A JP 2002304718A JP 2002304718 A JP2002304718 A JP 2002304718A JP 4142934 B2 JP4142934 B2 JP 4142934B2
Authority
JP
Japan
Prior art keywords
plating layer
electrolytic
copper plating
solder
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002304718A
Other languages
Japanese (ja)
Other versions
JP2004140245A (en
Inventor
理 明石
達海 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002304718A priority Critical patent/JP4142934B2/en
Publication of JP2004140245A publication Critical patent/JP2004140245A/en
Application granted granted Critical
Publication of JP4142934B2 publication Critical patent/JP4142934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、絶縁基板の表面に電子部品の電極が半田を介して接続される半田接合パッドを形成して成る配線基板の製造方法に関するものである。
【0002】
【従来の技術】
従来、半導体集積回路素子等の電子部品を搭載するために用いられる配線基板として、例えばガラス−エポキシ樹脂等の有機材料系の絶縁層と銅箔等の銅から成る配線導体とを交互に複数層積層して成る絶縁基板上に、電子部品の電極が半田を介して電気的に接続される銅めっき層から成る半田接合パッドを形成した配線基板が知られている。この配線基板においては、半田接合パッドに電子部品の電極を半田を介して接続する際に絶縁基板を熱から保護するとともに半田接合パッド同士の電気的な短絡を防止するためにエポキシ樹脂等の耐熱樹脂から成る耐半田樹脂層を絶縁基板上に半田接合パッドの外周部を覆うようにして被着させている。なお、半田接合パッドは、耐半田樹脂層との密着を強固なものとするために、耐半田樹脂層により被覆された外周部表面に黒化処理により黒化膜が形成されており、さらに、その酸化腐食を防止するとともに半田接合パッドと電子部品の電極との半田を介した電気的接続を良好かつ強固なものとする目的で、半田接合パッドの露出する表面には通常、無電解ニッケルめっき層および無電解金めっき層が順次被着されている。
【0003】
このような配線基板は、先ず有機材料系の絶縁層と銅から成る配線導体とを積層した絶縁基板上に直径が250〜600μmの銅めっき層から成る半田接合パッドを形成し、次に絶縁基板上に形成した半田接合パッドの露出表面の全面に黒化処理を施して黒化膜を形成し、次に絶縁基板上および半田接合パッド上に半田接合パッドの外周部を覆うとともに中央部を露出させる耐半田樹脂層を形成した後、半田接合パッドの露出した中央部表面の黒化膜を酸洗浄やマイクロエッチングによる化学研磨にて除去し、最後に黒化膜が除去された半田接合パッドの露出表面に無電解ニッケルめっき層および無電解金めっき層を順次被着させることにより製造されている。なお、無電解ニッケルめっき層上に被着された無電解金めっき層は、電子部品の電極と半田接合パッドとを半田を介して接続する際に半田中に拡散して消滅する。
【0004】
【特許文献1】
特開2001−110939号公報
【0005】
【発明が解決しようとする課題】
しかしながら、近年、環境への配慮から、電子部品の電極と配線基板の半田接合パッドとを接続する半田として鉛を含まない鉛フリー半田が使用されるようになってきている。このような鉛フリー半田は、従来の鉛を含んだ半田よりもその融点が一般的に10〜20℃程度高く、そのためこの鉛フリー半田を使用して電子部品の電極と配線基板の半田接合パッドとを接続する場合、従来よりも10〜20℃程度高い温度で半田を溶融させる必要がある。そして、このように高い温度を配線基板に印加すると、無電解ニッケルめっき層はその結晶が疎であるため半田接合パッド上に被着された無電解ニッケルめっき層と半田との界面に脆弱な金属間化合物が多量に形成され、そのため電子部品の電極を半田接合パッドに接続する半田に熱や外力による応力が印加されると、半田がめっき金属層との間で剥離しやすくなり、その結果、電子部品の電極と半田接合パッドとを半田を介して強固に接続することができなくなってしまうという問題点を有していた。そこで、半田接合パッド上に被着させるめっき金属層を緻密な電解ニッケルめっき層およびその上に被着させた電解金めっき層とすることで半田接合パッドに被着されたニッケルめっき層と半田との間に脆弱な金属間化合物が形成されにくくすることが考えられる。しかしながら、電気的に独立した各半田接合パッドに電解ニッケルめっき層および電解金めっき層を被着させるには、各半田接合パッドに電荷を供給するためのめっき導通用の配線を接続させる必要があり、そのようなめっき導通用の配線により半田接合パッドに不要な静電容量やインダクタンスが形成されてしまい、特に高周波で作動する電子部品を搭載する場合にはそのような不要な静電容量やインダクタンスにより電子部品を正常に作動させることができなくなってしまうという問題点を誘発してしまう。
【0006】
また、従来の配線基板では、黒化処理された半田接合パッドの耐半田樹脂層から露出した中央部の黒化膜を除去する際に、半田接合パッドの中央部に黒化処理の残渣が残りやすく、そのような残渣が残ると、黒化膜が除去された半田接合パッドの中央部とその上の無電解ニッケルめっき層との間に半田接合パッドの中央部に残る黒化処理の残渣に起因して剥離が発生しやすいという問題点を有していた。
【0007】
本発明は、かかる従来の問題点に鑑み完成されたものであり、その目的は、電解ニッケルめっき層および電解金めっき層が被着された半田接合パッドの中央部に黒化処理の残渣を発生させることがないとともに半田接合パッドの表面に電解めっきによる緻密なめっき金属層をめっき導通用の配線を残すことなく良好に被着して、電子部品の電極を半田接合パッドに半田を介して強固に接続することができるとともに電子部品を正常に作動させることが可能な配線基板を提供することにある。
【0008】
【課題を解決するための手段】
本発明の配線基板の製造方法は、内部および/または表面に配線導体を有し、上面に半田接合パッドが形成される絶縁基板を準備する工程と、該絶縁基板の上面に無電解銅めっき層を被着させる工程と、該無電解銅めっき層上に前記半田接合パッドが形成される部位の前記無電解銅めっき層を露出させる第一の開口部を有する第一のめっきレジスト層を被着させる工程と、前記第一の開口部内に露出した前記無電解銅めっき層の上に電解銅めっき層を被着させる工程と、前記第一のめっきレジスト層を剥離した後、前記無電解銅めっき層および電解銅めっき層上に前記半田接合パッドが形成される部位の前記電解銅めっき層の外周部を覆うとともに該電解銅めっき層の中央部を露出させる第二の開口部を有する第二のめっきレジスト層を被着させる工程と、前記第二の開口部内に露出した前記電解銅めっき層上に電解ニッケルめっき層および電解金めっき層を順次被着させる工程と、前記第二のめっきレジスト層を剥離した後、前記電解銅めっき層から露出する部位の前記無電解銅めっき層をエッチング除去するとともに前記電解ニッケルめっき層および前記金めっき層から露出する部位の前記電解銅めっき層の表面をエッチングし、前記絶縁基板上に無電解銅めっき層とその上の電解銅めっき層とから成り、その上面の中央部に電解ニッケルめっき層と電解金めっき層とが順次被着されているとともに該中央部と外周部との間に段差が形成された半田接合パッドを形成する工程と、前記半田接合パッドの前記電解ニッケルめっきおよび電解金めっきから露出する前記無電解銅めっき層および電解銅めっき層の表面を黒化処理する工程と、前記絶縁基板の上面に、前記半田接合パッドの外周部を覆うとともに該半田接合パッドの中央部を露出させる耐半田樹脂層を形成する工程とを順次行なうことを特徴とするものである。
【0009】
本発明の配線基板の製造方法によれば、内部および/または表面に配線導体を有し、上面に半田接合パッドが形成される絶縁基板を準備し、次にその絶縁基板の上面に無電解銅めっき層を被着させ、次にその無電解銅めっき層上に半田接合パッドが形成される部位の無電解銅めっき層を露出させる第一の開口部を有する第一のめっきレジスト層を被着させ、次に第一のめっきレジスト層の第一の開口部内に露出した無電解銅めっき層の上に電解銅めっき層を被着させ、次に第一のめっきレジスト層を剥離した後、無電解銅めっき層および電解銅めっき層上に半田接合パッドが形成される部位の電解銅めっき層の外周部を覆うとともにその電解銅めっき層の中央部を露出させる第二の開口部を有する第二のめっきレジスト層を被着させ、次に第二のめっきレジスト層の第二の開口部内に露出した電解銅めっき層上に電解ニッケルめっき層および電解金めっき層を順次被着させ、次に第二のめっきレジスト層を剥離した後、電解銅めっき層から露出する部位の無電解銅めっき層をエッチング除去して絶縁基板上に無電解銅めっき層とその上の電解銅めっき層とから成り、その上面の中央部に電解ニッケルめっき層と電解金めっき層とが順次被着された半田接合パッドを形成し、次に半田接合パッドの電解ニッケルめっきおよび電解金めっきから露出する無電解銅めっき層および電解銅めっき層の表面を黒化処理し、次に絶縁基板の上面に、半田接合パッドの外周部を覆うとともに半田接合パッドの中央部を露出させる耐半田樹脂層を形成することから、電解ニッケルめっき層および電解金めっき層が被着された半田接合パッドの中央部に黒化処理の残渣を発生させることがないとともに、半田接合パッドに接続されためっき導通用の配線を残すことなく耐半田樹脂層から露出する表面に緻密な電解ニッケルめっき層および電解金めっき層を被着させることができる。
【0010】
【発明の実施の形態】
次に本発明の配線基板の製造方法を添付の図面に基づき詳細に説明する。
【0011】
図1は、本発明の製造方法により製造される配線基板の実施の形態の一例を示す要部断面図であり、図中、1は絶縁基板、2は配線導体、3は半田接合パッド、4は耐半田樹脂層であり、主としてこれらで本発明による配線基板が構成されている。
【0012】
絶縁基板1は、例えばガラス繊維を縦横に編んで形成されたガラスクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂を含浸させた絶縁板1a上にエポキシ樹脂や変性ポリフェニレンエーテル樹脂等の熱硬化性樹脂から成る絶縁層1bを積層して成り、その内部や表面には銅箔や銅めっき層等の銅から成る複数の配線導体2が配設されている。
【0013】
また、絶縁基板1の表面には、配線導体2に電気的に接続された銅めっき層から成る複数の半田接合パッド3が形成されており、この半田接合パッド3には図示しない電子部品の電極が半田を介して電気的に接続される。
【0014】
なお、半田接合パッド3の露出する上面には半田接合パッド3の酸化腐蝕を防止するとともに半田接合パッド3と半田との接合を良好とするために電解ニッケルめっき層5と電解金めっき層6とが順次被着されている。そして半田接合パッド3に半田を溶着させると電解金めっき層6は半田中に拡散して消滅するとともに電解ニッケルめっき層5と半田とが接合する。このとき、半田接合パッド3の上面に被着された電解ニッケルめっき層5はその結晶が緻密であることから、電解ニッケルめっき層5と半田との間に脆弱な金属間化合物が多量に形成されにくく、そのため電子部品の電極を半田接合パッド3に半田を介して強固に接続することができる。
【0015】
さらに、絶縁基板1および半田接合パッド3上には、半田接合パッド3の外周部を覆うとともに中央部を露出させるエポキシ樹脂等の耐熱樹脂から成る耐半田樹脂層4が被着されている。耐半田樹脂層4は、半田接合パッド3に電子部品の電極を半田を介して接続する際に、その熱から絶縁基板1を保護するとともに半田接合パッド3同士が半田を介して電気的に短絡するのを防止するためのダムとして機能する。
【0016】
また、耐半田樹脂層4で覆われた半田接合パッド3の表面には黒化処理により黒化膜7が形成されており、この黒化膜7により半田接合パッド3と耐半田樹脂層4との密着が強固なものとなっている。
【0017】
なお、ここで黒化処理とは、銅から成る半田接合パッド3の表面をアルカリ性酸化処理液により酸化して亜酸化銅および酸化銅により構成される針状結晶を生成させ、この針状結晶に基づく微細な凹凸を生じさせる表面粗化処理を意味する。
また、処理後に表面が黒くなることからこの表面粗化処理を黒化処理と呼び、表面の黒く変色した層を黒化膜と呼んでいる。
【0018】
次に、上述した配線基板を本発明により製造する方法を図2に基づいて詳細に説明する。図2(a)〜(j)は、本発明の配線基板の製造方法を説明するための各工程毎の要部断面図である。
【0019】
まず、図2(a)に示すように、ガラスクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂を含浸させた絶縁板1a上にエポキシ樹脂や変性ポリフェニレンエーテル樹脂等の熱硬化性樹脂から成る絶縁層1bを積層して成るとともに内部および/または表面に銅箔や銅めっき層から成る配線導体2を有する絶縁基板1を準備する。絶縁板1aは、ガラス繊維を縦横に織り込んだガラスクロスにエポキシ樹脂やビスマレイミドトリアジン樹脂等の熱硬化性樹脂を含浸させて硬化させることにより形成され、絶縁層1bは、未硬化のエポキシ樹脂や変性ポリフェニレンエーテル樹脂等の熱硬化性樹脂から成る厚みが10〜70μmの樹脂シートを絶縁板1aの上面に貼着するとともにその樹脂シートにレーザ加工により配線導体2を露出させる開口部1cを形成した後、上下から加圧しながら加熱して熱硬化させることにより絶縁板1a上に積層される。また、配線導体2は絶縁板1aの上面に予め銅箔を貼着しておくとともにその銅箔を所定のパターンにエッチング加工することにより形成される。
【0020】
次に図2(b)に示すように、開口部1c内の配線導体2上を含む絶縁基板1の上面の全面に厚みが1〜2μm程度の無電解銅めっき層3aを被着させる。絶縁基板1の上面の全面に無電解銅めっき層3aを被着させるには、まず、絶縁層1bの表面を約50℃の過マンガン酸塩類水溶液等の粗化液に浸漬することにより粗化し、次に、絶縁層1bの表面が粗化された絶縁基板1の上面を約30℃の無電解めっき用のパラジウム触媒水溶液中に浸漬して絶縁層1bの表面および開口部1c内の配線導体2上にパラジウム触媒を付着させ、次にその絶縁基板1の上面を硫酸銅、ロッセル塩、ホルマリン、EDTAナトリウム塩、安定剤等を含有する無電解銅めっき液に浸漬して絶縁層1bの表面および開口部1c内の配線導体2上に1〜2m程度の厚みの無電解銅めっき層3aを析出させる方法が採用される。
【0021】
次に、図2(c)に示すように、絶縁基板1の上面に被着させた無電解銅めっき層3a上に、半田接合パッド3が形成される部位を露出させる第一の開口部11aを有する第一のめっきレジスト層11を被着させる。第一のめっきレジスト層11は、例えば厚みが10〜50μm程度の未硬化の紫外線硬化性樹脂および熱硬化性樹脂を含有する感光性樹脂フィルムを無電解銅めっき層3aが被着された絶縁基板1上に貼着するとともに、これをフォトリソグラフィー技術を採用して露光および現像することにより形成される。
【0022】
次に、図2(d)に示すように、第一のめっきレジスト層11の第一の開口部11aから露出した無電解銅めっき層3a上に電解銅めっき層3bを被着させる。電解銅めっき層3bを被着させるには、硫酸、硫酸銅5水和物、塩素、光沢剤等を含有する電解銅めっき液を用い、無電解銅めっき層3aから数A/dm2の電流を印加しながら電解銅めっきを施すことにより、5〜30μm程度の厚みの電解銅めっき層3bを析出させる方法が採用される。
【0023】
次に、図2(e)に示すように、第一のめっきレジスト層11を水酸化ナトリウム水溶液等の剥離液を用いて剥離した後、無電解銅めっき層3aおよび電解銅めっき層3b上に、半田接合パッド3が形成される部位に被着された電解銅めっき層3bの中央部を露出させる第二の開口部12aを有するとともに外周部を覆う第二のめっきレジスト層12を被着させる。第二のめっきレジスト層12は、例えば厚みが10〜50μm程度の未硬化の紫外線硬化性樹脂および熱硬化性樹脂を含有する感光性樹脂フィルムを無電解銅めっき層3aおよび電解銅めっき層3bが被着された絶縁基板1上に貼着するとともに、これをフォトリソグラフィー技術を採用して露光および現像することにより形成される。
【0024】
次に、図2(f)に示すように、第二のめっきレジスト層12の開口部12aから露出した電解銅めっき層3b上に電解ニッケルめっき層5と電解金めっき層6とを順次被着させる。電解ニッケルめっき層5を被着させるには、スルファミン浴やワット浴を用い、無電解銅めっき層3aから数A/dm2の電流を印加しながら電解ニッケルめっきを施すことにより1〜5μm程度の厚みの電解ニッケルめっき層5を析出させる方法が採用される。このとき、電解めっきは緻密な結晶のめっき層を形成することができるので、電解ニッケルめっき層5の結晶は緻密なものとなる。さらに電解金めっき層6を被着させるには、中性シアン化金めっき浴を使用し、無電解銅めっき層3aから0.1〜1A/dm2の電流密度で電解金めっきを施すことにより0.1〜1μm程度の厚みの電解金めっき層6を被着させる方法が採用される。
【0025】
次に、図2(g)に示すように、第二のめっきレジスト層を水酸化ナトリウム水溶液等の剥離液を用いて剥離した後、図2(h)に示すように、電解銅めっき層3bから露出する部位の無電解銅めっき層3aを硫酸および過酸化水素水あるいは硫酸銅等の硫酸系水溶液によりエッチング除去することによって、絶縁基板1の上面に無電解銅めっき層3aとその上の電解銅めっき層3bとから成り、その上面の中央部に電解ニッケルめっき層5と電解金めっき層6とが順次被着された半田接合パッド3を形成する。このとき、電解銅めっき層3bから露出する部位の無電解銅めっき層3aは除去されるので、めっき導通用の配線が残ることはなく、したがって半田接合パッド3に不要な静電容量やインダクタンスが形成されることはない。また、電解銅めっき層3bの露出部も多少エッチングされるので電解銅めっき層3bの上面に段差が形成される。
【0026】
次に、図2(i)に示すように、半田接合パッド3を形成した絶縁基板1を水酸化ナトリウム、亜塩素酸ナトリウム、安定剤等から成る黒化処理液に数分間浸漬して半田接合パッド3の電解ニッケルめっき層5および電解金メッキ層6から露出する無電解銅めっき層3aおよび電解銅めっき層3bの表面に黒化膜7を形成する。このとき、黒化膜7は電解ニッケルめっき層5および電解金めっき層6から露出する無電解銅めっき層3aおよび電解銅めっき層3bの表面に選択的に形成されるので、電解ニッケルめっき層5および電解金めっき層6が被着された半田接合パッド3の中央部に黒化処理の残渣が発生することはない。
【0027】
そして最後に、図2(j)に示すように、絶縁基板1上に、半田接合パッド3の外周部を覆うとともに中央部を露出させる耐半田樹脂層4を被着形成することによって本発明による配線基板が完成する。なお、耐半田樹脂層4を被着形成するには、半田接合パッド3が形成された絶縁基板1の上面に例えばアクリル変性エポキシ樹脂等の感光性樹脂と光開始剤等とからなる混合物に30〜70質量%のシリカやタルク等の無機粉末フィラーを含有させた未硬化の耐半田樹脂を、スクリーン印刷やロールコート法により10〜80μm程度の厚みに塗布し、しかる後、半田接合パッド3の中央部を露出させる開口部を有するように露光、現像した後、それを紫外線硬化および熱硬化させる方法が採用される。このとき、半田接合パッド3の外周部には黒化膜7が形成されていることから、耐半田樹脂層4と半田接合パッド3とが強固に密着する。また、半田接合パッド3を構成する電解銅めっき層3bの上面に形成された段差により耐半田樹脂層4の樹脂が半田接合パッド3の中央部に流れ出すことが有効に防止される。
【0028】
このように、本発明の配線基板の製造方法によれば、電解ニッケルめっき層5および電解金めっき層6が被着された半田接合パッド3の中央部に黒化処理の残渣を発生させることがないとともに、半田接合パッド3の表面に緻密な結晶の電解ニッケルめっき層5および電解金めっき層6をめっき導通用の配線を残すことなく良好に被着して、電子部品の電極を半田を介して半田接合パッド3に強固に接続することができるとともに電子部品を正常に作動させることが可能な配線基板を提供することができる。
【0029】
なお、本発明は、上述の実施の形態の一例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば、種々の変更や改良を施すことは何ら差し支えない。
【0030】
【発明の効果】
本発明の配線基板の製造方法によれば、内部および/または表面に配線導体を有し、上面に半田接合パッドが形成される絶縁基板を準備し、次にその絶縁基板の上面に無電解銅めっき層を被着させ、次にその無電解銅めっき層上に半田接合パッドが形成される部位の無電解銅めっき層を露出させる第一の開口部を有する第一のめっきレジスト層を被着させ、次に第一のめっきレジスト層の第一の開口部内に露出した無電解銅めっき層の上に電解銅めっき層を被着させ、次に第一のめっきレジスト層を剥離した後、無電解銅めっき層および電解銅めっき層上に半田接合パッドが形成される部位の電解銅めっき層の外周部を覆うとともにその電解銅めっき層の中央部を露出させる第二の開口部を有する第二のめっきレジスト層を被着させ、次に第二のめっきレジスト層の第二の開口部内に露出した電解銅めっき層上に電解ニッケルめっき層および電解金めっき層を順次被着させ、次に第二のめっきレジスト層を剥離した後、電解銅めっき層から露出する部位の無電解銅めっき層をエッチング除去して絶縁基板上に無電解銅めっき層とその上の電解銅めっき層とから成り、その上面の中央部に電解ニッケルめっき層と電解金めっき層とが順次被着された半田接合パッドを形成し、次に半田接合パッドの電解ニッケルめっきおよび電解金めっきから露出する無電解銅めっき層および電解銅めっき層の表面を黒化処理し、次に絶縁基板の上面に、半田接合パッドの外周部を覆うとともに半田接合パッドの中央部を露出させる耐半田樹脂層を形成することから、電解ニッケルめっき層および電解金めっき層が被着された半田接合パッドの中央部に黒化処理の残渣を発生させることがないとともに、半田接合パッドの半田接合パッドに接続されためっき導通用の配線を残すことなく耐半田樹脂層から露出する表面に緻密な電解ニッケルめっき層および電解金めっき層を被着させることができる。したがって、電子部品の電極を半田接合パッドに半田を介して強固に接続することができるとともに電子部品を正常に作動させることが可能な配線基板を提供することができる。
【図面の簡単な説明】
【図1】本発明により製造される配線基板の実施の形態の一例を示す要部断面図である。
【図2】(a)〜(j)は本発明の配線基板の製造方法を説明するための各工程毎の要部断面図である。
【符号の説明】
1・・・・絶縁基板
2・・・・配線導体
3・・・・半田接合パッド
3a・・・無電解銅めっき層
3b・・・電解銅めっき層
4・・・・耐半田樹脂層
5・・・・電解ニッケルめっき層
6・・・・電解金めっき層
7・・・・黒化膜
11・・・第一のめっきレジスト層
11a・・第一の開口部
12・・・第二のめっきレジスト層
12a・・第二の開口部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a wiring board formed by forming a solder joint pad on the surface of an insulating substrate to which an electrode of an electronic component is connected via solder.
[0002]
[Prior art]
Conventionally, as a wiring board used for mounting electronic components such as semiconductor integrated circuit elements, a plurality of layers of, for example, an insulating layer made of an organic material such as glass-epoxy resin and a wiring conductor made of copper such as copper foil alternately. 2. Description of the Related Art A wiring board is known in which a solder joint pad made of a copper plating layer to which electrodes of electronic components are electrically connected via solder is formed on a laminated insulating board. In this wiring board, when connecting the electrode of the electronic component to the solder bonding pad via solder, the insulating substrate is protected from heat and heat resistance such as epoxy resin is used to prevent an electrical short circuit between the solder bonding pads. A solder-resistant resin layer made of resin is deposited on the insulating substrate so as to cover the outer periphery of the solder bonding pad. The solder bonding pad has a blackening film formed by blackening treatment on the outer peripheral surface covered with the solder-resistant resin layer in order to strengthen the adhesion with the solder-resistant resin layer. In order to prevent the oxidative corrosion and to make the electrical connection between the solder bonding pad and the electrode of the electronic component through the solder good and strong, the exposed surface of the solder bonding pad is usually electroless nickel plated. A layer and an electroless gold plating layer are sequentially deposited.
[0003]
In such a wiring board, first, a solder bonding pad made of a copper plating layer having a diameter of 250 to 600 μm is formed on an insulating board in which an organic material insulating layer and a wiring conductor made of copper are laminated, and then the insulating board. A blackening film is formed on the entire exposed surface of the solder bonding pad formed above to form a blackening film. Next, the outer periphery of the solder bonding pad is covered on the insulating substrate and the solder bonding pad, and the central portion is exposed. After forming the solder-resistant resin layer to be removed, the blackened film on the exposed central surface of the solder joint pad is removed by acid cleaning or chemical polishing by microetching, and finally the solder joint pad from which the blackened film has been removed is removed. It is manufactured by sequentially depositing an electroless nickel plating layer and an electroless gold plating layer on the exposed surface. The electroless gold plating layer deposited on the electroless nickel plating layer diffuses into the solder and disappears when the electrode of the electronic component and the solder joint pad are connected via solder.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-110939
[Problems to be solved by the invention]
However, in recent years, in consideration of the environment, lead-free solder containing no lead has been used as a solder for connecting an electrode of an electronic component and a solder joint pad of a wiring board. Such a lead-free solder generally has a melting point higher than that of conventional lead-containing solder by about 10 to 20 ° C. Therefore, the lead-free solder is used to connect the electrodes of electronic components and the solder joint pads of the wiring board. When connecting to the solder, it is necessary to melt the solder at a temperature about 10 to 20 ° C. higher than the conventional temperature. When such a high temperature is applied to the wiring board, the electroless nickel plating layer has a sparse crystal, so that a fragile metal is present at the interface between the electroless nickel plating layer deposited on the solder bonding pad and the solder. A large amount of intermetallic compound is formed, so when stress due to heat or external force is applied to the solder connecting the electrode of the electronic component to the solder joint pad, the solder is easily peeled from the plated metal layer, and as a result, There has been a problem that it becomes impossible to firmly connect the electrode of the electronic component and the solder bonding pad via the solder. Therefore, the plated metal layer to be deposited on the solder bonding pad is a dense electrolytic nickel plating layer and the electrolytic gold plating layer deposited thereon, so that the nickel plating layer and the solder deposited on the solder bonding pad It is conceivable that a fragile intermetallic compound is hardly formed during this period. However, in order to deposit the electrolytic nickel plating layer and the electrolytic gold plating layer on each electrically independent solder bonding pad, it is necessary to connect a wiring for plating conduction for supplying electric charge to each solder bonding pad. Such an unnecessary capacitance or inductance is formed on the solder bonding pad by the wiring for plating conduction, and particularly when an electronic component that operates at a high frequency is mounted. This causes the problem that the electronic component cannot be operated normally.
[0006]
Also, in the conventional wiring board, when removing the blackening film in the central part exposed from the solder-resistant resin layer of the blackened solder joint pad, the blackening residue remains in the central part of the solder joint pad. Easily, if such a residue remains, the blackening treatment residue remaining in the center of the solder bonding pad between the central portion of the solder bonding pad from which the blackened film has been removed and the electroless nickel plating layer thereon is formed. Due to this, there was a problem that peeling was likely to occur.
[0007]
The present invention has been completed in view of such conventional problems, and its purpose is to generate a blackening residue at the center of the solder joint pad to which the electrolytic nickel plating layer and the electrolytic gold plating layer are applied. In addition, a fine plated metal layer by electrolytic plating is satisfactorily deposited on the surface of the solder bonding pad without leaving a wiring for plating conduction, and the electrode of the electronic component is firmly attached to the solder bonding pad via solder. Another object of the present invention is to provide a wiring board that can be connected to a circuit board and that can normally operate an electronic component.
[0008]
[Means for Solving the Problems]
The method for manufacturing a wiring board according to the present invention includes a step of preparing an insulating substrate having wiring conductors inside and / or on the surface and having solder bonding pads formed on the upper surface, and an electroless copper plating layer on the upper surface of the insulating substrate. And depositing a first plating resist layer having a first opening that exposes the electroless copper plating layer where the solder joint pad is to be formed on the electroless copper plating layer And a step of depositing an electrolytic copper plating layer on the electroless copper plating layer exposed in the first opening, and after removing the first plating resist layer, the electroless copper plating A second opening having a second opening that covers an outer peripheral portion of the electrolytic copper plating layer at a portion where the solder joint pad is formed on the layer and the electrolytic copper plating layer and exposes a central portion of the electrolytic copper plating layer Deposit plating resist layer A step of sequentially depositing an electrolytic nickel plating layer and an electrolytic gold plating layer on the electrolytic copper plating layer exposed in the second opening, and after peeling the second plating resist layer, Etching and removing the electroless copper plating layer exposed from the electrolytic copper plating layer and etching the surface of the electrolytic copper plating layer exposed from the electrolytic nickel plating layer and the gold plating layer on the insulating substrate An electroless copper plating layer and an electrolytic copper plating layer thereon, and an electrolytic nickel plating layer and an electrolytic gold plating layer are sequentially deposited on the central portion of the upper surface, and the central portion and the outer peripheral portion forming a solder joint pads step is formed between the electroless copper plating exposed from the electrolytic nickel plating and electrolytic gold plating of the solder bonding pad A step of blackening the surface of the layer and the electrolytic copper plating layer, and forming a solder-resistant resin layer on the upper surface of the insulating substrate so as to cover an outer peripheral portion of the solder bonding pad and expose a central portion of the solder bonding pad The processes are sequentially performed.
[0009]
According to the method for manufacturing a wiring board of the present invention, an insulating substrate having wiring conductors inside and / or on the surface and having solder bonding pads formed on the upper surface is prepared, and then an electroless copper is formed on the upper surface of the insulating substrate. A plating layer is deposited, and then a first plating resist layer having a first opening that exposes the electroless copper plating layer where solder joint pads are to be formed on the electroless copper plating layer is deposited Next, an electrolytic copper plating layer is deposited on the electroless copper plating layer exposed in the first opening of the first plating resist layer, and then the first plating resist layer is peeled off, The electrolytic copper plating layer and a second opening having a second opening that covers the outer peripheral portion of the electrolytic copper plating layer where the solder joint pad is formed on the electrolytic copper plating layer and exposes the central portion of the electrolytic copper plating layer Next, apply a plating resist layer. An electrolytic nickel plating layer and an electrolytic gold plating layer are sequentially deposited on the electrolytic copper plating layer exposed in the second opening of the plating resist layer, and then the second plating resist layer is peeled off, followed by electrolytic copper plating. The electroless copper plating layer exposed from the layer is etched away to form an electroless copper plating layer and an electrolytic copper plating layer on the insulating substrate, and an electrolytic nickel plating layer and electrolytic gold are formed in the center of the upper surface. Forming a solder joint pad on which the plating layer is sequentially deposited, and then blackening the surface of the electroless copper plating layer and the electrolytic copper plating layer exposed from the electrolytic nickel plating and the electrolytic gold plating of the solder joint pad; Next, a solder-resistant resin layer is formed on the upper surface of the insulating substrate so as to cover the outer periphery of the solder bonding pad and expose the central portion of the solder bonding pad. It does not generate a blackening residue at the center of the solder bonding pad to which the plating layer is applied, and is exposed from the solder-resistant resin layer without leaving the plating conduction wiring connected to the solder bonding pad. A dense electrolytic nickel plating layer and electrolytic gold plating layer can be deposited on the surface.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, a method for manufacturing a wiring board according to the present invention will be described in detail with reference to the accompanying drawings.
[0011]
FIG. 1 is a cross-sectional view of an essential part showing an example of an embodiment of a wiring board manufactured by the manufacturing method of the present invention, in which 1 is an insulating substrate, 2 is a wiring conductor, 3 is a solder bonding pad, 4 Is a solder-resistant resin layer, which mainly constitutes the wiring board according to the present invention.
[0012]
The insulating substrate 1 is made of, for example, an epoxy resin or a modified polyphenylene ether resin on an insulating plate 1a in which a glass cloth formed by knitting glass fibers vertically and horizontally is impregnated with a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin. A plurality of wiring conductors 2 made of copper, such as a copper foil and a copper plating layer, are disposed inside and on the surface of the insulating layer 1b made of a thermosetting resin.
[0013]
A plurality of solder bonding pads 3 made of a copper plating layer electrically connected to the wiring conductor 2 are formed on the surface of the insulating substrate 1, and electrodes of electronic components (not shown) are formed on the solder bonding pads 3. Are electrically connected via solder.
[0014]
It should be noted that an electrolytic nickel plating layer 5 and an electrolytic gold plating layer 6 are provided on the exposed upper surface of the solder bonding pad 3 in order to prevent oxidative corrosion of the solder bonding pad 3 and to improve the bonding between the solder bonding pad 3 and the solder. Are sequentially deposited. When solder is welded to the solder bonding pad 3, the electrolytic gold plating layer 6 diffuses into the solder and disappears, and the electrolytic nickel plating layer 5 and the solder are bonded. At this time, since the electrolytic nickel plating layer 5 deposited on the upper surface of the solder bonding pad 3 has a dense crystal, a large amount of brittle intermetallic compound is formed between the electrolytic nickel plating layer 5 and the solder. Therefore, the electrode of the electronic component can be firmly connected to the solder bonding pad 3 via the solder.
[0015]
Further, a solder-resistant resin layer 4 made of a heat-resistant resin such as an epoxy resin that covers the outer peripheral portion of the solder-bonding pad 3 and exposes the central portion is deposited on the insulating substrate 1 and the solder-bonding pad 3. The solder-resistant resin layer 4 protects the insulating substrate 1 from the heat when the electrodes of the electronic component are connected to the solder bonding pads 3 via solder, and the solder bonding pads 3 are electrically short-circuited via the solder. It functions as a dam to prevent it.
[0016]
Further, a blackening film 7 is formed by a blackening process on the surface of the solder bonding pad 3 covered with the solder-resistant resin layer 4. The blackening film 7 allows the solder bonding pad 3, the solder-resistant resin layer 4, and The adhesion of is strong.
[0017]
Here, the blackening treatment means that the surface of the solder bonding pad 3 made of copper is oxidized with an alkaline oxidation treatment solution to generate needle crystals composed of cuprous oxide and copper oxide. It means a surface roughening treatment that produces fine irregularities based on the surface.
In addition, since the surface becomes black after the treatment, this surface roughening treatment is called a blackening treatment, and the surface-discolored layer is called a blackening film.
[0018]
Next, a method for manufacturing the above-described wiring board according to the present invention will be described in detail with reference to FIG. 2A to 2J are cross-sectional views of main parts for each step for explaining the method of manufacturing a wiring board according to the present invention.
[0019]
First, as shown in FIG. 2A, a thermosetting resin such as an epoxy resin or a modified polyphenylene ether resin is formed on an insulating plate 1a in which a glass cloth is impregnated with a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin. An insulating substrate 1 having a wiring conductor 2 made of a copper foil or a copper plating layer is prepared inside and / or on the surface. The insulating plate 1a is formed by impregnating and curing a glass cloth in which glass fibers are woven vertically and horizontally with a thermosetting resin such as an epoxy resin or a bismaleimide triazine resin, and the insulating layer 1b includes an uncured epoxy resin, A resin sheet having a thickness of 10 to 70 μm made of a thermosetting resin such as a modified polyphenylene ether resin was attached to the upper surface of the insulating plate 1a, and an opening 1c for exposing the wiring conductor 2 was formed on the resin sheet by laser processing. Then, it is laminated | stacked on the insulating board 1a by heating and thermosetting, pressing from the upper and lower sides. Further, the wiring conductor 2 is formed by pasting a copper foil on the upper surface of the insulating plate 1a in advance and etching the copper foil into a predetermined pattern.
[0020]
Next, as shown in FIG. 2B, an electroless copper plating layer 3a having a thickness of about 1 to 2 [mu] m is deposited on the entire upper surface of the insulating substrate 1 including the wiring conductor 2 in the opening 1c. In order to deposit the electroless copper plating layer 3a on the entire upper surface of the insulating substrate 1, first, the surface of the insulating layer 1b is roughened by being immersed in a roughening solution such as a permanganate aqueous solution at about 50 ° C. Next, the upper surface of the insulating substrate 1 whose surface of the insulating layer 1b is roughened is immersed in an aqueous solution of palladium catalyst for electroless plating at about 30 ° C. to immerse the surface of the insulating layer 1b and the wiring conductor in the opening 1c. The surface of the insulating layer 1b is immersed in an electroless copper plating solution containing copper sulfate, Rossell salt, formalin, EDTA sodium salt, stabilizer, etc. And the method of depositing the electroless copper plating layer 3a about 1-2 m thick on the wiring conductor 2 in the opening part 1c is employ | adopted.
[0021]
Next, as shown in FIG. 2C, a first opening 11a that exposes a portion where the solder bonding pad 3 is formed on the electroless copper plating layer 3a deposited on the upper surface of the insulating substrate 1. The 1st plating resist layer 11 which has is attached. The first plating resist layer 11 is, for example, an insulating substrate on which an electroless copper plating layer 3a is applied to a photosensitive resin film containing an uncured ultraviolet curable resin and a thermosetting resin having a thickness of about 10 to 50 μm. It is formed by sticking on 1 and exposing and developing this by employing a photolithographic technique.
[0022]
Next, as shown in FIG. 2 (d), an electrolytic copper plating layer 3 b is deposited on the electroless copper plating layer 3 a exposed from the first opening 11 a of the first plating resist layer 11. In order to deposit the electrolytic copper plating layer 3b, an electrolytic copper plating solution containing sulfuric acid, copper sulfate pentahydrate, chlorine, brightener, etc. is used, and a current of several A / dm 2 from the electroless copper plating layer 3a. A method of depositing an electrolytic copper plating layer 3b having a thickness of about 5 to 30 μm by applying electrolytic copper plating while applying is adopted.
[0023]
Next, as shown in FIG. 2 (e), after the first plating resist layer 11 is peeled off using a stripping solution such as an aqueous sodium hydroxide solution, on the electroless copper plating layer 3a and the electrolytic copper plating layer 3b. The second plating resist layer 12 that has the second opening 12a that exposes the central portion of the electrolytic copper plating layer 3b that is applied to the portion where the solder bonding pad 3 is formed and that covers the outer peripheral portion is applied. . The second plating resist layer 12 is made of, for example, an electroless copper plating layer 3a and an electrolytic copper plating layer 3b made of a photosensitive resin film containing an uncured ultraviolet curable resin and a thermosetting resin having a thickness of about 10 to 50 μm. It is formed by adhering onto the deposited insulating substrate 1 and exposing and developing it using a photolithography technique.
[0024]
Next, as shown in FIG. 2 (f), the electrolytic nickel plating layer 5 and the electrolytic gold plating layer 6 are sequentially deposited on the electrolytic copper plating layer 3 b exposed from the opening 12 a of the second plating resist layer 12. Let In order to deposit the electrolytic nickel plating layer 5, a sulfamine bath or a watt bath is used, and by applying an electrolytic nickel plating while applying a current of several A / dm 2 from the electroless copper plating layer 3a, about 1 to 5 μm is applied. A method of depositing a thick electrolytic nickel plating layer 5 is employed. At this time, since the electrolytic plating can form a dense crystal plating layer, the crystal of the electrolytic nickel plating layer 5 becomes dense. Further, in order to deposit the electrolytic gold plating layer 6, a neutral gold cyanide plating bath is used, and electrolytic gold plating is performed from the electroless copper plating layer 3a at a current density of 0.1 to 1 A / dm 2. A method of applying the electrolytic gold plating layer 6 having a thickness of about 0.1 to 1 μm is employed.
[0025]
Next, as shown in FIG. 2 (g), the second plating resist layer is peeled off using a peeling solution such as an aqueous sodium hydroxide solution, and then, as shown in FIG. 2 (h), the electrolytic copper plating layer 3b. The electroless copper plating layer 3a exposed from the surface is etched away with sulfuric acid and aqueous solution of sulfuric acid such as hydrogen peroxide or copper sulfate, so that the electroless copper plating layer 3a and the electrolysis thereon are formed on the upper surface of the insulating substrate 1. A solder joint pad 3 is formed which is composed of a copper plating layer 3b, and in which an electrolytic nickel plating layer 5 and an electrolytic gold plating layer 6 are sequentially deposited at the center of the upper surface thereof. At this time, since the electroless copper plating layer 3a exposed from the electrolytic copper plating layer 3b is removed, wiring for plating conduction does not remain, and therefore an unnecessary capacitance and inductance are not applied to the solder bonding pad 3. Never formed. Moreover, since the exposed part of the electrolytic copper plating layer 3b is also slightly etched, a step is formed on the upper surface of the electrolytic copper plating layer 3b.
[0026]
Next, as shown in FIG. 2 (i), the insulating substrate 1 on which the solder bonding pads 3 are formed is dipped in a blackening treatment solution made of sodium hydroxide, sodium chlorite, a stabilizer, etc. for several minutes for solder bonding. Blackening film 7 is formed on the surfaces of electroless copper plating layer 3a and electrolytic copper plating layer 3b exposed from electrolytic nickel plating layer 5 and electrolytic gold plating layer 6 of pad 3. At this time, the blackening film 7 is selectively formed on the surfaces of the electroless copper plating layer 3 a and the electrolytic copper plating layer 3 b exposed from the electrolytic nickel plating layer 5 and the electrolytic gold plating layer 6. In addition, a blackening residue does not occur in the central portion of the solder joint pad 3 to which the electrolytic gold plating layer 6 is applied.
[0027]
Finally, as shown in FIG. 2 (j), a solder-resistant resin layer 4 that covers the outer peripheral portion of the solder bonding pad 3 and exposes the central portion is deposited on the insulating substrate 1 according to the present invention. The wiring board is completed. In order to deposit and form the solder-resistant resin layer 4, a mixture of a photosensitive resin such as an acrylic-modified epoxy resin and a photoinitiator is formed on the upper surface of the insulating substrate 1 on which the solder bonding pads 3 are formed. An uncured solder-resistant resin containing an inorganic powder filler such as silica or talc of ~ 70% by mass is applied to a thickness of about 10 to 80 μm by screen printing or a roll coating method. A method of exposing and developing so as to have an opening that exposes the central portion and then curing it with ultraviolet rays and heat curing is adopted. At this time, since the blackening film 7 is formed on the outer peripheral portion of the solder bonding pad 3, the solder-resistant resin layer 4 and the solder bonding pad 3 are firmly adhered to each other. Further, the step formed on the upper surface of the electrolytic copper plating layer 3 b constituting the solder bonding pad 3 effectively prevents the resin of the solder-resistant resin layer 4 from flowing out to the central portion of the solder bonding pad 3.
[0028]
Thus, according to the method for manufacturing a wiring board of the present invention, a blackening residue can be generated at the center of the solder joint pad 3 to which the electrolytic nickel plating layer 5 and the electrolytic gold plating layer 6 are applied. In addition, the electrolytic nickel plating layer 5 and the electrolytic gold plating layer 6 of fine crystals are satisfactorily deposited on the surface of the solder bonding pad 3 without leaving the wiring for plating conduction, and the electrodes of the electronic component are interposed via the solder. Thus, it is possible to provide a wiring board that can be firmly connected to the solder bonding pad 3 and can normally operate the electronic component.
[0029]
Note that the present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the scope of the present invention.
[0030]
【The invention's effect】
According to the method for manufacturing a wiring board of the present invention, an insulating substrate having wiring conductors inside and / or on the surface and having solder bonding pads formed on the upper surface is prepared, and then an electroless copper is formed on the upper surface of the insulating substrate. A plating layer is deposited, and then a first plating resist layer having a first opening is exposed to expose the electroless copper plating layer where solder joint pads are to be formed on the electroless copper plating layer. Next, an electrolytic copper plating layer is deposited on the electroless copper plating layer exposed in the first opening of the first plating resist layer, and then the first plating resist layer is peeled off, The electrolytic copper plating layer and a second opening having a second opening that covers the outer peripheral portion of the electrolytic copper plating layer where the solder joint pad is formed on the electrolytic copper plating layer and exposes the central portion of the electrolytic copper plating layer Next, apply a plating resist layer. An electrolytic nickel plating layer and an electrolytic gold plating layer are sequentially deposited on the electrolytic copper plating layer exposed in the second opening of the plating resist layer, and then the second plating resist layer is peeled off, followed by electrolytic copper plating. The electroless copper plating layer exposed from the layer is etched away to form an electroless copper plating layer and an electrolytic copper plating layer on the insulating substrate, and an electrolytic nickel plating layer and electrolytic gold are formed in the center of the upper surface. Forming a solder joint pad on which the plating layer is sequentially deposited, and then blackening the surface of the electroless copper plating layer and the electrolytic copper plating layer exposed from the electrolytic nickel plating and the electrolytic gold plating of the solder joint pad; Next, a solder-resistant resin layer is formed on the upper surface of the insulating substrate so as to cover the outer periphery of the solder bonding pad and expose the central portion of the solder bonding pad. Solder-resistant resin that does not generate blackening residue in the center of the solder bonding pad with the plating layer applied, and does not leave plating conductive wiring connected to the solder bonding pad. A dense electrolytic nickel plating layer and an electrolytic gold plating layer can be deposited on the surface exposed from the layer. Therefore, it is possible to provide a wiring board that can firmly connect the electrode of the electronic component to the solder bonding pad via the solder and can operate the electronic component normally.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an essential part showing an example of an embodiment of a wiring board manufactured according to the present invention.
FIGS. 2A to 2J are cross-sectional views of relevant parts for respective steps for explaining a method of manufacturing a wiring board according to the present invention. FIGS.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Insulating substrate 2 ... Wiring conductor 3 ... Solder joint pad 3a ... Electroless copper plating layer 3b ... Electrolytic copper plating layer 4 ... Solder resistant resin layer 5 ... Electrolytic nickel plating layer 6 ... Electrolytic gold plating layer 7 ... Blackening film 11 ... First plating resist layer 11a ... First opening 12 ... Second plating Resist layer 12a ... second opening

Claims (1)

内部および/または表面に配線導体を有し、上面に半田接合パッドが形成される絶縁基板を準備する工程と、該絶縁基板の上面に無電解銅めっき層を被着させる工程と、該無電解銅めっき層上に前記半田接合パッドが形成される部位の前記無電解銅めっき層を露出させる第一の開口部を有する第一のめっきレジスト層を被着させる工程と、前記第一の開口部内に露出した前記無電解銅めっき層の上に電解銅めっき層を被着させる工程と、前記第一のめっきレジスト層を剥離した後、前記無電解銅めっき層および電解銅めっき層上に前記半田接合パッドが形成される部位の前記電解銅めっき層の外周部を覆うとともに該電解銅めっき層の中央部を露出させる第二の開口部を有する第二のめっきレジスト層を被着させる工程と、前記第二の開口部内に露出した前記電解銅めっき層上に電解ニッケルめっき層および電解金めっき層を順次被着させる工程と、前記第二のめっきレジスト層を剥離した後、前記電解銅めっき層から露出する部位の前記無電解銅めっき層をエッチング除去するとともに前記電解ニッケルめっき層および前記金めっき層から露出する部位の前記電解銅めっき層の表面をエッチングし、前記絶縁基板上に無電解銅めっき層とその上の電解銅めっき層とから成り、その上面の中央部に電解ニッケルめっき層と電解金めっき層とが順次被着されているとともに該中央部と外周部との間に段差が形成された半田接合パッドを形成する工程と、前記半田接合パッドの前記電解ニッケルめっきおよび電解金めっきから露出する前記無電解銅めっき層および電解銅めっき層の表面を黒化処理する工程と、前記絶縁基板の上面に、前記半田接合パッドの外周部を覆うとともに該半田接合パッドの中央部を露出させる耐半田樹脂層を形成する工程とを順次行なうことを特徴とする配線基板の製造方法。A step of preparing an insulating substrate having a wiring conductor inside and / or on the surface and having a solder bonding pad formed on the upper surface; a step of depositing an electroless copper plating layer on the upper surface of the insulating substrate; Depositing a first plating resist layer having a first opening for exposing the electroless copper plating layer at a portion where the solder bonding pad is formed on the copper plating layer; and in the first opening A step of depositing an electrolytic copper plating layer on the electroless copper plating layer exposed to the surface, and after peeling off the first plating resist layer, the solder on the electroless copper plating layer and the electrolytic copper plating layer Depositing a second plating resist layer having a second opening that covers an outer periphery of the electrolytic copper plating layer at a portion where a bonding pad is formed and exposes a central portion of the electrolytic copper plating layer; Said second opening A step of sequentially depositing an electrolytic nickel plating layer and an electrolytic gold plating layer on the electrolytic copper plating layer exposed to the surface, and after removing the second plating resist layer, the portion exposed from the electrolytic copper plating layer Etching away the electroless copper plating layer and etching the surface of the electrolytic copper plating layer exposed from the electrolytic nickel plating layer and the gold plating layer . A solder bonding pad comprising an electrolytic copper plating layer, wherein an electrolytic nickel plating layer and an electrolytic gold plating layer are sequentially deposited on the central portion of the upper surface, and a step is formed between the central portion and the outer peripheral portion And surfaces of the electroless copper plating layer and the electrolytic copper plating layer exposed from the electrolytic nickel plating and electrolytic gold plating of the solder joint pad A step of performing a blackening process and a step of forming a solder-resistant resin layer on the upper surface of the insulating substrate so as to cover an outer peripheral portion of the solder bonding pad and expose a central portion of the solder bonding pad are sequentially performed. A method of manufacturing a wiring board.
JP2002304718A 2002-10-18 2002-10-18 Wiring board manufacturing method Expired - Fee Related JP4142934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002304718A JP4142934B2 (en) 2002-10-18 2002-10-18 Wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304718A JP4142934B2 (en) 2002-10-18 2002-10-18 Wiring board manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005193242A Division JP4238235B2 (en) 2005-07-01 2005-07-01 Wiring board

Publications (2)

Publication Number Publication Date
JP2004140245A JP2004140245A (en) 2004-05-13
JP4142934B2 true JP4142934B2 (en) 2008-09-03

Family

ID=32452060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304718A Expired - Fee Related JP4142934B2 (en) 2002-10-18 2002-10-18 Wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP4142934B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287034A (en) * 2005-04-01 2006-10-19 Shinko Electric Ind Co Ltd Manufacturing method of wiring substrate utilizing electrolytic plating
KR101009110B1 (en) 2008-11-12 2011-01-18 삼성전기주식회사 A printed circuit board having buried solder bump and a manufacturing method of the same

Also Published As

Publication number Publication date
JP2004140245A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP2005229138A (en) Wiring substrate
JP2004200412A (en) Wiring board with solder bump, and manufacturing method thereof
JP4142934B2 (en) Wiring board manufacturing method
JP4238242B2 (en) Wiring board
JP4238235B2 (en) Wiring board
JP4891578B2 (en) Wiring board and manufacturing method thereof
JP4142933B2 (en) Wiring board manufacturing method
JP4139185B2 (en) Wiring board manufacturing method
JP2004172415A (en) Method of manufacturing wiring board
JP2004207338A (en) Wiring board
JP2004140248A (en) Wiring board with bump and its manufacturing method
JP2004165575A (en) Method of manufacturing wiring board
JP2004165573A (en) Method of manufacturing wiring board
JP2004165325A (en) Method of manufacturing wiring board
JP4349882B2 (en) Wiring board and semiconductor device
JP2004165577A (en) Method of manufacturing wiring board
JP2004140109A (en) Method of manufacturing wiring board
JP2004140246A (en) Method of manufacturing wiring board
JP2004172303A (en) Method of manufacturing wiring board
JP2004140190A (en) Method of manufacturing wiring board
JP2005223365A (en) Wiring substrate
JP2004165327A (en) Method of manufacturing wiring board
JP2004165576A (en) Method of manufacturing wiring board
JP2004140191A (en) Method of manufacturing wiring board
JP2004172413A (en) Method of manufacturing wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees