JP4142635B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP4142635B2
JP4142635B2 JP2004363283A JP2004363283A JP4142635B2 JP 4142635 B2 JP4142635 B2 JP 4142635B2 JP 2004363283 A JP2004363283 A JP 2004363283A JP 2004363283 A JP2004363283 A JP 2004363283A JP 4142635 B2 JP4142635 B2 JP 4142635B2
Authority
JP
Japan
Prior art keywords
circuit
output
sense amplifier
bit line
address
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004363283A
Other languages
English (en)
Other versions
JP2005116173A (ja
Inventor
一彦 島川
裕之 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004363283A priority Critical patent/JP4142635B2/ja
Publication of JP2005116173A publication Critical patent/JP2005116173A/ja
Application granted granted Critical
Publication of JP4142635B2 publication Critical patent/JP4142635B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dram (AREA)

Description

本発明は、ダイナミック型RAM(以下、「DRAM」という。)を用いた半導体装置に関する。特に、適用されるシステムに応じて最適なデータ入出力幅を容易に設定する手段を特徴とし、DRAMの低電力化や高速化に有効な技術に関する。
近年、DRAMをマクロセル化しマイクロプロセッサやASIC(Application Specific IC:以下「ロジック」という。)と一つの半導体基盤上に形成する混載化が盛んである。
DRAMを混載化することで、外付けでDRAMを使用する場合に比べ、DRAMのピン数に起因する制約が無くなるのでデータ入出力のデータ幅を拡張することができ、DRAMとロジックの間のデータ転送速度を飛躍的に拡大できること、また混載化によってDRAMとロジックの間はメタル配線を用いて短距離の結線で行うことができるので入出力配線の寄生容量を著しく低減でき、低消費電力化が実現できるという利点が良く知られている。
一方DRAMの基本動作は、第1の動作期間(以下、「RASサイクル」という。)として所定領域のメモリセルのデータを一旦センスアンプを活性化して読み出しそのデータを保持する動作と、第2の動作期間(以下、「CASサイクル」という。)としてこのセンスアンプに保持されたデータを所定単位に分割し時系列的に外部に出力または外部から入力されたデータをセンスアンプに書き込む動作と、第3の動作期間(以下、「プリチャージサイクル」という。)として次の動作サイクルに備えてプリチャージ状態に設定する動作で構成される。
実用化されている単体のDRAM製品において、高速ページ方式、EDO方式、シンクロナス方式等の各種仕様のDRAMが一般的であるが、全てこのような基本動作に基づいて構成されており、混載化されるDRAMマクロセルの仕様も、これらの何れかの仕様に基づいて構成される。
さらに混載化されるDRAMマクロセルでは、適用される半導体装置の仕様に応じて記憶容量や入出力のデータ幅を所定の単位で製品用途に応じて変更することが行われている。
ところで、DRAMが混載される半導体装置が使用される分野は多種多様にわたり、DRAMに要求される性能も用途に応じて異なる。例えば、グラフィックス系の画像データを処理する様なシステムに適用される場合、100MHz以上の高速クロックを用いデータ転送速度の高速化が要求される。このため、ページモードまたはそれに相当するようなモードで、広いページ長と高速のデータ転送速度が必要となる。(例えば、特許文献1〜3を参照)
また、携帯機器や民生機器等のシステムに適用される場合、数10MHz程度のクロック周波数によるランダムアクセスモードまたは数ページ程度の比較的短いページ長によるアクセスモードでの使用が主体で、データ転送速度の高速化より低消費電力化が要求される。
DRAMのページ動作は、第1の動作期間で活性化されるセンスアンプのデータを第2の動作期間において所定単位毎に次々と読み出す(又は書き込む)動作であり、従ってページ長はその活性化領域が大きいほど長く構成できる。一方、DRAMの消費電力はこの活性化されるメモリセル領域とセンスアンプの個数に大きく依存し、活性化領域を小さくするほど消費電力は低減できる。
特開平9−245474号公報 特開平10−83672号公報 特開平11−110963号公報
一般に、DRAMを混載する半導体装置は使用されるシステムの用途によって、必要とされる入出力のデータ幅は異なる。しかしながら、従来のDRAMを用いた半導体装置においては、各種用途の半導体装置に混載化するためには、必要とされるデータ幅に応じて、回路構成やレイアウト構成を変更する必要があった。
本発明は、上記課題を克服するべく、回路構成やレイアウト構成を変更することなく、例えばメタル配線の接続変更だけで、所望のデータ幅を容易に実現できる半導体装置を提供することを目的とする。
上記目的を達成するために本発明にかかる半導体装置は、ダイナミック型記憶素子で構成されたメモリセルと、直交するワード線とビット線の交点に接続されたメモリセルが所定個数マトリックス状に配列されたメモリセルアレイと、ビット線の電位を増幅する第1のセンスアンプ回路と、ビット線と平行な方向に配置されるメインビット線と、第1のセンスアンプ回路の出力とメインビット線との間の導通を制御するスイッチ回路で構成されたメモリブロックを基本単位とし、同一列のメインビット線が互いに接続されるように所望の記憶容量分のメモリブロックが配置されたメモリブロックアレイと、メインビット線のデータを増幅する第2のセンスアンプ回路と、第2のセンスアンプ回路の出力データをラッチするラッチ回路と、ラッチ回路の出力を入力とするトライステートバッファと、複数個配置されたメモリブロックのうち一つまたは複数のメモリブロックに属するワード線および第2のセンスアンプを選択指示する第1のデコーダ回路と、複数個配置されたメモリブロックのうち一つのメモリブロックに属するスイッチ回路を選択指示する第2のデコーダ回路と、第1のデコーダ回路および第2のデコーダ回路を制御するアドレスプリデコーダ回路と、第2のデコーダ回路と第2のセンスアンプ回路、ラッチ回路、およびトライステートバッファを制御する制御信号発生回路で構成された半導体装置において、m、nは整数かつ、n/mは2以上の整数となる関係で、前記半導体装置の入出力データ幅がmビット、前記トライステートバッファの個数がn個とすると、前記トライステートバッファはn/m個なる複数個のグループに分けられ、前記グループ毎に前記トライステートバッファの出力は共通接続され、且つ前記各グループ内の一つのトライステートバッファのみを出力可能状態に設定することを特徴とする。
上記構成によれば、複数のトライステートバッファの出力を、例えばメタル配線で接続することにより、回路構成やレイアウトを変更することなく、容易に所望のデータ幅に設定可能である。
以下、本発明の実施の形態にかかる半導体装置について、図面を参照しながら説明する。図1は本発明にかかる半導体装置におけるDRAMマクロセルのレイアウト概略図である。
図1において、1はDRAMマクロセルを、2はメモリセルアレイとセンスアンプを一つの基本単位にブロック化したメモリブロックをそれぞれ示しており、2aはセンスアンプ回路を示している。また、3はロウデコーダを、4はアドレスプリデコーダ回路を、5はメインアンプ回路ブロックを、6は制御信号発生回路を、それぞれ示す。
図1では、メモリブロック2はロウ方向256ビット、カラム方向2048ビット配列された計512Kビットのアレイで構成されており、このメモリブロック2を所望の個数配列することで、任意の記憶容量を実現することができる。また、DRAMマクロセル1への主要な入出力信号としては、クロック(CLK)、ロウアドレスストローブ信号(/RAS)、カラムアドレスストローブ信号(/CAS)、ライトイネーブル信号(/WE)、アドレス入力信号(A(i))、データ出力信号(Do(k))、データ入力信号(Di(k))が挙げられる。なお、“/”は負論理を示す識別子である。図1に示すDRAMマクロセル1は、記憶容量4M(メガ)ビット、データ入出力は64ビットで構成されている。
図2は、DRAMマクロセル1におけるメモリブロック2、メインアンプ回路ブロック5、及びロウデコーダ3の一部についての詳細構成図である。図2では、センスアンプ回路2aは1列に1024個配列され、メインビット線MBLは2個のセンスアンプ回路2aで1本を共有化されるため終端部を含め1025本、メインアンプ11等の入出力回路は512個備えているものとする。なお、説明文中で“*”表示をしているものは、この512個の何れかを示している。
図2において、7はワード線WLおよびビット線BLに接続されたメモリセルを示し、センスアンプ回路2aはその左右に配置されたビット線対BL、BLBで一つのセンスアンプ回路2aを共有する一般的に知られているシェアード方式で構成されている。
8はN型MOSトランジスタで形成された転送ゲートを、MBL(1)、MBL(2)、…は第3メタルで形成されるメインビット線を示し、センスアンプ回路2aの相補出力は転送ゲート8を介して選択されるメインビット線MBL(i)、MBL(i+1)に接続される(i=0〜1023)。
9は転送ゲート8の開閉を選択指示する4入力のAND回路で構成されたデコーダを示し、その第1の入力は転送ゲート8の開閉タイミングを指示するMBT信号が接続され、第2および第3の入力は何れのセンスアンプ回路2aをメインビット線対MBL(i)、MBL(i+1)に接続するかを選択指示するアドレスデコード信号PA(0)〜PA(3)およびPB(0)〜PB(3)がプログラム接続され、第4の入力は活性化するメモリブロック2を選択指示するブロック選択信号BLK(0)〜BLK(7)のうち隣接するメモリブロック2を選択指示するもの同士をOR回路9aで論理和したものが接続されている。
また、メインアンプ回路ブロック5において、10はN型MOSトランジスタQ1で構成されたカラムデコーダ回路を示し、そのゲートにはアドレスデコード信号PA(0)とPA(2)をOR回路9bで論理和した信号とアドレスデコード信号PA(1)とPA(3)をOR回路9bで論理和した信号が交互に接続されている。
11はカラムデコーダ10の出力MA(*)、MB(*)を入力とするメインアンプ回路を、12はラッチ信号DLCHで制御されるラッチ回路を、13は出力イネーブル信号OE(j)でその出力が制御されるトライステートバッファを示し、最終的にメモリセル7からの読み出しデータはデータ出力端子Do(k)より出力される(j=0〜7、k=0〜63)。
一方、データの書き込みはデータ入力端子Din(k)より、インバータ15およびライトイネーブル信号WE(j)で制御されるトライステートバッファ14を介してカラムデコーダ10の出力MA(*)、MB(*)に接続されている。
なお、本回路の入力信号のうち、MBTは制御信号発生回路6より供給され、アドレスデコード信号PA(0)〜PA(3)およびPB(0)〜PB(3)、ブロック選択信号BLK(0)〜BLK(7)はアドレスプリデコーダ回路より供給される。
図3は、メインアンプ回路11およびラッチ回路12の詳細回路図である。図3において、11aは入力信号のプリチャージ回路を示し、メインビット線プリチャージ信号/MPRをゲート入力とするP型MOSトランジスタQ2およびQ3で構成されている。11bは出力信号のプリチャージ回路を示し、メインアンプイネーブル信号MSEをゲート入力とするP型MOSトランジスタQ4およびQ5で構成されている。11cはアンプ回路を示し、P型MOSトランジスタQ6およびN型MOSトランジスタQ7、Q8、Q9で構成され、その出力をP型MOSトランジスタQ6の互いのゲートに接続したクロスカップル型アンプで形成されている。またN型トランジスタQ7のゲートには、カラムデコーダ10の出力信号MA(*)およびMB(*)が接続され、N型MOSトランジスタQ8のゲートには後述するラッチ回路12の出力が接続され、N型MOSトランジスタQ9のゲートにはメインアンプイネーブル信号MSEが接続されている。
ラッチ回路12は、直列接続されたP型MOSトランジスタQ10、Q11、N型MOSトランジスタQ12、Q13で構成されるトライステートインバータと、インバータ16、17と、P型MOSトランジスタQ14およびN型MOSトランジスタQ15からなるトランスファゲートで構成されている。ラッチ回路12はラッチ信号DLCHにより制御され、その相補出力はアンプ回路11cのN型MOSトランジスタQ8に接続され、またその一方の出力Mout(*)は図2に示すトライステートバッファ13に接続される。なお、本回路の入力信号/MPR、MSE、DLCHはいずれも制御信号発生回路6より供給される。
図4は、アドレスプリデコーダ回路4を構成する回路のうち、その入力回路の詳細回路図である。図4において、18はセレクタ回路、19はロード/ホールド型D−FF回路、20および21はインバータ、22は“H”レベルまたは“L”レベルに固定するプログラム回路を示す。
セレクタ回路18は、RASサイクルにおいてアドレス入力を可能と設定するRACF信号がAポートに接続され、CASサイクルにおいてアドレス入力を可能と設定するCACF信号がBポートに接続され、セレクタポートSにはプログラム回路22の出力が接続され、Aポート入力またはBポート入力の一方を出力ポートYに出力する構成となっている。セレクタ回路18は、Sポートの入力レベルが“L”レベル設定の時、AポートのデータがポートYに出力され、Sポートの入力レベルが“H”レベル設定の時、BポートのデータがポートYに出力される。
ロード/ホールド型D−FF回路19は、セレクタ回路18の出力がロード/ホールドポートLHに接続され、データ入力ポートDにはアドレス信号A(i)が接続され、クロックポートCKにはクロック信号CLKが接続され、またその出力はインバータ20、21を介して正、負論理信号AP(i)、AN(i)が出力される。
プログラム回路22は、DRAMマクロセル1が適用される半導体装置のページ長仕様に応じて、アドレス毎にメタル配線で電源配線またはグランド配線の一方に接続される。なお、本回路の入力信号の内RACF、CACF、CLKは制御信号発生回路6より供給される。
図5から図7は、アドレスプリデコーダ回路4を構成する回路のうち、メインビット線の選択に関係するアドレスプリデコード回路の回路図である。図5は8個のメモリブロック2の何れかを選択指示するブロック選択プリデコーダ回路の回路図であり、図6、図7はメインビット線MBL(i)とセンスアンプ回路2aとを選択指示するアドレスデコード回路の回路図である。何れの回路の出力信号もロウデコーダ3に入力される。
23、25、26はAND回路、24は電源線またはアドレス信号の何れか一方にメタル配線で接続するプログラム回路である。何れのアドレス信号も図4で説明した入力回路の出力が接続される。
図8は、制御信号発生回路6を構成する回路のうち、図2または図3に示したメインアンプブロック5やメインビット線の制御に関係する信号の発生回路である。30はクロックCLKとイネーブル端子で構成された出力MPULSEを生成する基準パルス発生回路、31は基準パルス発生回路30の信号をもとに作られるパルス発生回路、32は/RASおよび/CASを入力とするNOR回路、33はD−FF回路、34a〜34cはインバータ、35はNAND回路、36はインバータ回路、37はNOR回路32の出力Bまたはインバータ36の出力Aのいずれか一方を基準パルス発生回路30のイネーブル端子にメタルで接続するプログラム回路である。基準パルス発生回路30はイネーブル端子に“H”レベルが入力されている期間に入力されたクロックCLKの立ち上がりエッジに同期して所定幅のパルスMPULSEを発生する構成となっている。
図9はアドレスプリデコーダ回路4を構成する回路のうち、図2に示すトライステートバッファ13を制御する出力イネーブル信号OE(0)〜OE(7)のプリデコード回路の回路図である。27は4入力のAND回路を示し、データ出力のタイミング制御信号OEと、カラム系アドレス信号AN(13)〜AN(15)、AP(13)〜AP(15)を入力としている。何れのアドレス信号も図4で説明した入力回路の出力が接続され、タイミング制御信号OEは制御信号発生回路6より供給される。
図10は、図2に示したトライステートバッファ13の接続関係図である。DRAMマクロセル1は512ビット分の並列動作をするトライステートバッファ13を備えており、64ビット出力構成に変換するため、隣接するトライステートバッファ13を8個単位でその出力をメタルで共通接続している。また、出力の各々に図9で説明した出力イネーブル信号OE(j)が接続されている。
次に、以上のように構成された半導体装置において、その設定方法および動作について図面を参照しながら説明する。図11は、DRAMマクロセル1の読み出し制御方法に関するタイミング図である。
図11において、DRAMマクロセル1はクロックCLKの立ち上がりエッジに同期して動作が制御される。最初に、時間t0においてロウアドレスストローブ/RASが“L”レベル、カラムアドレスストローブ/CASが“H”レベルであることを受け、ロウ系アドレスA(i)を取り込む。次に、時間t1においてロウアドレスストローブ/RASおよびカラムアドレスストローブ/CASがともに“L”レベルであることを受け、カラム系アドレスA(i)を取り込む。その後、同一サイクル内でtA経過後、データ出力端子Doから該当するアドレスのデータが出力される。次に、時間t2において次のカラム系アドレスが入力されると、同様にtA経過後、それに該当するアドレスのデータが出力される。
以下、設定ページ長内のカラム系アドレス空間でこのページモード動作はくり返し行われる。また、ロウアドレスストローブ/RAS、カラムアドレスストローブ/CASをともに“H”に設定すると、クロックCLKの“H”エッジに同期するタイミングでプリチャージ動作が開始される。
図12はページ長とアドレスの割り付けの対応関係図である。このDRAMマクロセル1は記憶容量4Mビットで64ビット構成である為、必要とするアドレスはA0〜A15の16ビットとなる。
図12(1)のようにDRAMを混載する半導体装置がDRAMマクロセル1に必要とする最大ページ長が8ページ以下の場合、A0〜A12の13ビットをRASサイクルで取り込む(図11の時間t0のタイミング)設定を行い、A13〜A15の3ビットのみをCASサイクル(図11の時間t1以降のタイミング)で取り込む。具体的な設定方法は、図4に示すプログラム回路22の内、A0〜A12に対応するものに関して“L”レベル設定をし、A13〜A15に対応するものに関して“H”レベル設定を行う。また図5に示すプログラム回路24は同図に示されたように全てアドレス信号線AN(j)、AP(j)側に設定しておく。また図7示すプログラム回路24は全て電源線側に設定しておく。また、図8に示すプログラム回路37は、同図に示す端子A側に設定しておく。
図12(2)のようにDRAMを混載する半導体装置がDRAMマクロセル1に必要とする最大ページ長が9ページ以上32ページ以下の場合、A0〜A10の11ビットをRASサイクルで取り込む(図11の時間t0のタイミング)設定を行い、A11〜A15の5ビットをCASサイクル(図11の時間t1以降のタイミング)で取り込む。具体的な設定方法は、図4に示すプログラム回路22の内、A0〜A10に対応するものに関して“L”レベル設定をし、A11〜A15に対応するものに関して“H”レベル設定を行う。また、図5に示すプログラム回路24は同図に示されたように全てアドレス信号線AN(j)、AP(j)側に設定し、図7に示すプログラム回路24は全て電源線側に設定しておく。さらに、図8に示すプログラム回路37は、同図に示す端子B側に設定しておく。
図12(3)のようにDRAMを混載する半導体装置がDRAMマクロセル1に必要とする最大ページ長が33ページ以上64ページ以下の場合、A0〜A9の10ビットをRASサイクルで取り込む(図11の時間t0のタイミング)設定を行い、A10〜A15の6ビットをCASサイクル(図11の時間t1以降のタイミング)で取り込む。具体的な設定方法は、図4に示すプログラム回路22の内、A0〜A9に対応するものに関して“L”レベル設定をし、A10〜A15に対応するものに関して“H”レベル設定を行う。また、図5に示すプログラム回路24はアドレス信号線AN(10)、AP(10)は電源線側に設定し、図7に示すプログラム回路24はAN(9)、AP(9)のみ電源線側に設定しておく。さらに、図8に示すプログラム回路37は、同図に示す端子B側に設定しておく。
図12(4)のようにDRAMを混載する半導体装置がDRAMマクロセル1に必要とする最大ページ長が65ページ以上128ページ以下の場合、A0〜A8の9ビットをRASサイクルで取り込む(図11の時間t0のタイミング)設定を行い、A9〜A15の7ビットをCASサイクル(図11の時間t1以降のタイミング)で取り込む。具体的な設定方法は、図4に示すプログラム回路22の内、A0〜A8に対応するものに関して“L”レベル設定をし、A9〜A15に対応するものに関して“H”レベル設定を行う。また、図5に示すプログラム回路24は全て電源線側に設定し、図7に示すプログラム回路24は全てアドレス信号線AN(j)、AP(j)側に設定しておく。さらに、図8に示すプログラム回路37は、同図に示す端子B側に設定しておく。
DRAMマクロセル1は図1で示したように、メモリセルアレイが8ブロック、センスアンプ列が9列で構成されている。図13は上記各ページ長設定別に、一回の読み出しまたは書き込み動作で活性化される領域の例示図である。
ページ長が8ページまたは32ページ設定の場合、図13(1)のように図5に示されたブロック選択プリデコーダ回路の出力信号BLK(0)〜BLK(7)はアドレス入力に対して1本のみ選択されるので、8ブロックのメモリセルアレイのうち1ブロックと、その両側のセンスアンプ列が2列のみ、即ち2048個のセンスアンプ回路2aが活性化される。
ページ長が64ページ設定の場合、図13(2)のように図5に示されたブロック選択プリデコーダ回路の出力信号BLK(0)〜BLK(7)は、アドレス入力に対して2本選択されるので、8ブロックのメモリセルアレイのうち2ブロックと、その両側のセンスアンプ列が4列、即ち4096個のセンスアンプ回路2aが活性化される。
ページ長が128ページ設定の場合、図13(3)のように図5に示されたブロック選択プリデコーダ回路の出力信号BLK(0)〜BLK(7)は、アドレス入力に対して4本選択されるので、8ブロックのメモリセルアレイのうち4ブロックと、その両側のセンスアンプ列が8列、即ち8192個のセンスアンプ回路2aが活性化される。
次に、内部信号のタイミング動作を説明する。図16は、図8に示した基準パルス発生回路30の動作についてイネーブル端子を端子A側に接続した場合(即ちページ長8ページ設定の場合)と端子B側に接続した場合(即ちページ長32ページ以上の設定の場合)について示している。
図16において、NOR回路32の出力は/RASおよび/CASがともに“L”レベルの期間中“H”レベルが出力される。従って端子B側に接続された場合、クロックCLKの立ち上がりエッジに同期してその期間中毎回基準パルスMPULSEは発生される。
一方、D−FF回路33の出力はNOR回路32の出力をクロックCLKでサンプリングされた信号であり、さらにはそれをインバータ34a、34b、34cを介して所定時間遅延した逆相信号となる。インバータ36の出力は/RASおよび/CASがともに“L”レベルに設定されたタイミングから最初にクロックが立ち上がった後の所定期間のみ“H”レベルが出力される。従って、端子A側に接続された場合、クロックCLKの立ち上がりエッジに同期して1回のみ基準パルスMPULSEは発生される。
図14は、ページ長=8ページに設定した場合のDRAMマクロセル1の動作について示している。まず、時間t0のタイミングでロウ系のアドレスを取り込み、それに応じてブロック選択信号BLK(*)で指示されるワード線WLおよびセンスアンプ列が活性化されビット線対BL,BLBの増幅動作が行われる。
次に、時間t1のタイミングでカラム系のアドレス取り込みとともに、前述したように基準パルス発生回路30より基準パルスMPULSEが1回だけ発生され、それに伴って転送ゲート制御信号MBT、ラッチ信号DLCH、メインビット線プリチャージ信号/MPR、メインアンプイネーブル信号MSEが以下に説明するタイミング関係でパルス発生回路31より生成される。
まず、ラッチ信号DLCHが“L”レベルに設定されラッチ回路12はスルー状態となる。その後メインビット線プリチャージ信号/MPRは“H”レベルに設定されメインビット線のプリチャージ動作が終了する。同時に転送ゲート制御信号MBTが“H”レベルに設定される。アドレスデコード信号PA(0)〜PA(3)およびPB(0)〜PB(3)はその時点までに確定しているため、その指定アドレスに相当するセンスアンプ2aとメインビット線MBL(i)、MBL(i+1)が接続される。その後メインアンプイネーブル信号MSEが“H”レベルに設定され、メインアンプ11が活性化されセンスアンプ2aのデータが読み出される。その後ラッチ信号DLCHが“H”レベルに設定されメインアンプ11で読み出されたデータはラッチされ、その後メインアンプの非活性化、転送ゲートの閉鎖およびメインビット線のプリチャージが行われる。さらには出力イネーブル信号OE(j)とカラム系アドレスの指示に応じて該当するラッチ回路12のデータが出力端子Do(k)より出力される。
t2以降のタイミングでは、メインアンプ11等の動作は行われず、ラッチ回路12でt1のサイクルでラッチされているデータを、カラムアドレスA13〜A15で指示されるトライステートバッファ13をイネーブルにすることだけで出力される。この設定の場合、最少のセンスアンプ列の活性化と、メインビット線も一回の振幅動作だけであるので、低消費電力化が実現できる。
図15はページ長=32ページ以上に設定した場合のDRAMマクロセル1の動作について示している。図14のページ長=8ページに設定した場合と異なるのは、ロウ系アドレスとカラム系アドレスの割り付けおよびt1以降の各サイクルで毎回メインアンプの読み出し動作が行われる点にある。
一般に、DRAMを混載する半導体装置は使用されるシステムの用途によって、必要とされる入出力のデータ幅は異なる。図17は、図2で説明したトライステートバッファ13の出力部の接続状態を、各種データ幅の場合について示したものである。
図10で説明したように、64ヒ゛ット出力構成の場合は512個配列されるトライステートバッファ13のうち、隣接する8個のトライステートバッファ13の出力をメタルで共通接続し、この端子をDRAMマクロセル1の出力端子Do(k)とする(k=0〜63)。
128ヒ゛ット出力構成の場合は512個配列されるトライステートバッファ13のうち、隣接する4個のトライステートバッファ13の出力をメタルで共通接続し、この端子をDRAMマクロセル1の出力端子Do(k)とする(k=0〜127)。
256ヒ゛ット出力構成の場合は512個配列されるトライステートバッファ13のうち、隣接する2個のトライステートバッファ13の出力をメタルで共通接続し、この端子をDRAMマクロセル1の出力端子Do(k)とする(k=0〜255)。
512ヒ゛ット出力構成の場合は512個配列されるトライステートバッファ13の出力をそのままDRAMマクロセル1の出力端子Do(k)とする(k=0〜511)。
図18は出力イネーブル信号OE(0)〜OE(7)のプリデコード回路の回路図を示している。図9で示したプリデコード回路と同一の構成にプログラム回路40が付加されている。
64ビット出力構成の場合、同図に示したようにAN(13)〜AN(15)、AP(13)〜AP(15)側にプログラムする。これによりOE(0)〜OE(7)の8出力のうち1本のみが選択される。
128ビット出力構成の場合、AN(15)、AP(15)を電源線側にプログラムする。これによりOE(0)〜OE(3)の4出力のうち1本、OE(4)〜OE(7)の4出力のうち1本が選択される。
256ビット出力構成の場合、AN(14)、AP(14)、AN(15)、AP(15)を電源線側にプログラムする。これによりOE(0)〜OE(1)の2出力のうち1本、OE(2)〜OE(3)の2出力のうち1本、OE(4)〜OE(5)の2出力のうち1本、OE(6)〜OE(7)の2出力のうち1本が選択される。
512ビット出力構成の場合、AN(13)〜AN(15)、AP(13)〜AP(15)はいずれも電源線側にプログラムする。これによりOEの動きに連動して8本の出力全てが選択される。
なお、プログラム回路22、24、40はメタル配線によって信号線をバイパスする方式としたが、コンタクト接続によるプログラムや、メタル配線の代わりにトランジスタによるスイッチを設ける方式としてもよい。
また図4に示すセレクタ回路18およびプログラム回路22は、全てのアドレス入力A0〜A15に設けているが、必要とされるアドレス入力(ページ長=8ページの場合にはA9〜A12)のみに設けてもよい。
また、図8においてページ長=8ページの場合、A端子に接続し基準パルスMPULSEはCASサイクルで一回のみ発生されるようにしたが、回路を簡略化する目的やページモード自体を使用しない場合、端子B側の信号で代用する構成としてもよい。
さらには、図11等で説明したDRAMマクロセル1の仕様は、一般的に知られているEDO方式に類似した方式であるが、シンクロナス方式等や複数のバンクで構成したDRAMにおいても同様に適用できる。
以上のように本実施の形態によれば、DRAMマクロセルの活性化領域およびページ長を自由に設定することができることから、ページ長が必要となる大容量データにおいては、活性化領域を連続して確保することでデータ転送速度の高速化を図ることができ、一方でページ長が必要でない通常のデータの場合には、無駄な活性化領域を生み出すことなく最小限の活性化領域で処理を行うことで省電力化を図ることができる。また、複数のトライステートバッファの出力をメタル接続することで、回路の構成やレイアウトを変えることなく、メタル配線の接続変更のみによって、データ幅を希望値に変更することが可能となる。
本発明の半導体装置によれば、回路構成やレイアウトを変更することなく、適用されるシステムに応じて最適なデータ幅に設定可能であり、DRAMの低電力化や高速化に有用である。
本発明が適用されたDRAMマクロセルのレイアウト概略図 DRAMマクロセルの詳細構成図 メインアンプ回路およびラッチ回路の詳細回路図 入力回路の詳細回路図 アドレスプリデコード回路の回路図 アドレスプリデコード回路の回路図 アドレスプリデコード回路の回路図 メインアンプブロック等の制御信号発生回路図 出力イネーブル信号のプリデコード回路の回路図 トライステートバッファの接続図 DRAMマクロセルの読み出し制御方法に関するタイミング図 ページ長とアドレスの割り付けの対応関係図 メモリセルアレイおよびセンスアンプ列活性化領域の例示図 ページ長=8ページの場合のタイミング図 ページ長=32ページ以上の場合のタイミング図 基準パルス発生回路のタイミング図 トライステートバッファの出力部の接続状態図 出力イネーブル信号のプリデコード回路の回路図
符号の説明
1 DRAMマクロセル
2 メモリブロック
2a センスアンプ回路
3 ロウデコーダ
4 アドレスプリデコーダ回路
5 メインアンプ回路ブロック
6 制御信号発生回路
7 メモリセル
8 転送ゲート
9 デコーダ
10 カラムデコーダ回路
11 メインアンプ回路
12 ラッチ回路
13、14 トライステートバッファ
15、16、17、20、21、34a、34b、34c インバータ
18 セレクタ回路
19 ロード/ホールド型D−FF回路
22、24、37、40 プログラム回路
23、25、26、27 AND回路
30 基準パルス発生回路
31 パルス発生回路
32 NOR回路
33 D−FF回路
35 NAND回路
36 インバータ回路

Claims (1)

  1. ダイナミック型記憶素子で構成されたメモリセルと、
    直交するワード線とビット線の交点に接続された前記メモリセルが所定個数マトリックス状に配列されたメモリセルアレイと、
    前記ビット線の電位を増幅する第1のセンスアンプ回路と、
    前記ビット線と平行な方向に配置されるメインビット線と、
    前記第1のセンスアンプ回路の出力と前記メインビット線との間の導通を制御するスイッチ回路で構成されたメモリブロックを基本単位とし、
    同一列の前記メインビット線が互いに接続されるように所望の記憶容量分の前記メモリブロックが配置されたメモリブロックアレイと、
    前記メインビット線のデータを増幅する第2のセンスアンプ回路と、
    前記第2のセンスアンプ回路の出力データをラッチするラッチ回路と、
    前記ラッチ回路の出力を入力とするトライステートバッファと、
    複数個配置された前記メモリブロックのうち一つまたは複数の前記メモリブロックに属する前記ワード線および前記第1のセンスアンプを選択指示する第1のデコーダ回路と、
    複数個配置された前記メモリブロックのうち一つの前記メモリブロックに属する前記スイッチ回路を選択指示する第2のデコーダ回路と、
    前記第1のデコーダ回路および前記第2のデコーダ回路を制御するアドレスプリデコーダ回路と、
    前記第2のデコーダ回路と前記第2のセンスアンプ回路、前記ラッチ回路、および前記
    トライステートバッファを制御する制御信号発生回路で構成された半導体装置において、
    m、nは整数かつ、n/mは2以上の整数となる関係で、前記半導体装置の入出力データ幅がmビット、前記トライステートバッファの個数がn個とすると、前記トライステートバッファはn/m個なる複数個のグループに分けられ、前記グループ毎に前記トライステートバッファの出力は共通接続され、且つ前記各グループ内の一つのトライステートバッファのみを出力可能状態に設定することを特徴とする半導体装置。
JP2004363283A 2004-12-15 2004-12-15 半導体装置 Expired - Fee Related JP4142635B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004363283A JP4142635B2 (ja) 2004-12-15 2004-12-15 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004363283A JP4142635B2 (ja) 2004-12-15 2004-12-15 半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33464098A Division JP3729665B2 (ja) 1998-11-25 1998-11-25 半導体装置

Publications (2)

Publication Number Publication Date
JP2005116173A JP2005116173A (ja) 2005-04-28
JP4142635B2 true JP4142635B2 (ja) 2008-09-03

Family

ID=34545356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363283A Expired - Fee Related JP4142635B2 (ja) 2004-12-15 2004-12-15 半導体装置

Country Status (1)

Country Link
JP (1) JP4142635B2 (ja)

Also Published As

Publication number Publication date
JP2005116173A (ja) 2005-04-28

Similar Documents

Publication Publication Date Title
JP4039532B2 (ja) 半導体集積回路装置
JP4229674B2 (ja) 半導体記憶装置及びその制御方法
US7489588B2 (en) Semiconductor memory device having a main amplifier equipped with a current control circuit in a burst read operation
JP2724932B2 (ja) デュアルポートメモリ
US7184323B2 (en) 4N pre-fetch memory data transfer system
US6240039B1 (en) Semiconductor memory device and driving signal generator therefor
TWI771090B (zh) 記憶體裝置、記憶體輸入/輸出以及形成記憶體裝置的方法
JPH11126491A (ja) 半導体記憶装置
KR100902125B1 (ko) 저전력 디램 및 그 구동방법
JP5038657B2 (ja) 半導体集積回路装置
JP2022525451A (ja) 面積効率の良いデュアルポート及びマルチポートsram、sramのための面積効率の良いメモリセル
JPH09102193A (ja) 半導体記憶装置
US6456563B1 (en) Semiconductor memory device that operates in sychronization with a clock signal
US7161865B2 (en) Semiconductor device
JP2016517125A (ja) 不揮発性ランダムアクセスメモリ
US6151265A (en) Memory device having direct sense circuit
JP3729665B2 (ja) 半導体装置
US7016235B2 (en) Data sorting in memories
US20100110747A1 (en) Semiconductor memory device
JP4142635B2 (ja) 半導体装置
US6160751A (en) Semiconductor memory device allowing efficient column selection
US20220215881A1 (en) Shiftable memory and method of operating a shiftable memory
US7095673B2 (en) Semiconductor memory device capable of operating at high speed
JP2003196985A (ja) 半導体メモリ及び半導体メモリのビットライト又はバイトライト方法
US6144609A (en) Multiport memory cell having a reduced number of write wordlines

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees