JP4141610B2 - Resin roller mold - Google Patents

Resin roller mold Download PDF

Info

Publication number
JP4141610B2
JP4141610B2 JP2000018559A JP2000018559A JP4141610B2 JP 4141610 B2 JP4141610 B2 JP 4141610B2 JP 2000018559 A JP2000018559 A JP 2000018559A JP 2000018559 A JP2000018559 A JP 2000018559A JP 4141610 B2 JP4141610 B2 JP 4141610B2
Authority
JP
Japan
Prior art keywords
core body
body holding
resin
holding member
molding die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000018559A
Other languages
Japanese (ja)
Other versions
JP2001205639A (en
Inventor
利幸 小松
洋 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2000018559A priority Critical patent/JP4141610B2/en
Publication of JP2001205639A publication Critical patent/JP2001205639A/en
Application granted granted Critical
Publication of JP4141610B2 publication Critical patent/JP4141610B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レーザプリンターや複写機、ファクシミリ装置などの電子写真方式を採用した各種装置に組み込まれる現像ローラ、帯電ローラ、転写ローラなどの樹脂ローラの成形金型に関する。
【0002】
【従来の技術】
レーザプリンターや複写機、ファクシミリ装置などの電子写真方式を採用した各種装置には現像ローラ、帯電ローラ、転写ローラなどのローラが組み込まれている。このようなローラの例として図10に斜視図、図11(a)および(b)に断面図を示す。このローラ10は、芯体21と、樹脂材料にて形成される円筒状の成形部12とを有する。
【0003】
このようなローラ10を成形するための金型は、例えば、図12に示すように、筒状金型13と、この筒状金型13の両端部に取り付けられ、前記筒状金型13に内挿された芯体21を保持するとともに筒状金型13の両端を封止する一対の芯体保持部材14、14とを有する。そして、樹脂注入側の芯体保持部材14には筒状金型13内のローラ成形空間15に樹脂材料を注入するための樹脂注入口16が形成され、この樹脂注入口16における金型外面側開口部に設けた半円状のノズルタッチ部19へ成形機の樹脂注入ノズル18を圧接し、該樹脂注入ノズル18から樹脂注入口16を通してローラ成形空間15に樹脂材料が注入される。尚、樹脂注入側の芯体保持部材14には、樹脂注入に際してローラ成形空間15内の空気を抜くための空気抜き機構を設けることもある。そして、金型内に樹脂の充填が完了した後、ローラ成形空間15内の樹脂を加熱硬化させる。樹脂の硬化が完了した後、芯体保持部材14を筒状金型13から、その軸方向に沿って、それぞれ上方および下方に抜き去る。次いで、筒状金型13に対して芯体21を押し出すなどして、筒状金型13内に保持されている成形品を取り出す。
【0004】
ところが、上記のような成形金型により樹脂ローラを成形する場合、筒状金型13と芯体保持部材14の組み付け嵌合部、例えば芯体保持部材14の外周面に設けた嵌合用鍔部141と筒状金型13の開口縁131との間などにゴミや樹脂成形物が噛み込んだり、筒状金型13と芯体保持部材14の組み付け嵌合部の寸法精度が良くなかったりした場合には、図13のように筒状金型13の中心軸O1と芯体保持部材14の中心軸O2が傾くことになる。そのような状態で組み合わされた筒状金型13と芯体保持部材14で樹脂ローラを成形する場合、内挿された芯体21には曲げの力が働き、芯体21が湾曲する。そして芯体21が湾曲したまま、前記成形方法で樹脂注入口16から樹脂を注入し、加熱硬化完了後、筒状金型13から成形品を取り出した際には、図14のように、芯体21は曲げの力が解放されるために直線状に戻ることになる。しかし、芯体21が湾曲したまま成形されたため、芯体21が直線状に戻っても、樹脂成形部12は偏肉しているため樹脂ローラとしては、偏心していることになる。この偏心している量を、フレと称し、製品の寸法規格に含まれる。例えば、外径φ16mm、軸方向長さ250mm、芯体外径φ8mmの樹脂ローラのフレの規格は、両端芯体部を保持して、50μm以下を満足しなければならない。
【0005】
【発明が解決しようとする課題】
このように、本発明者らの研究によれば、筒状金型13と芯体保持部材14の中心軸O1、O2が傾いて組み合わされた金型で成形された樹脂ローラは、芯体21が湾曲したまま成形されるために樹脂成形部12は偏肉し、フレが大きいことがわかった。しかし、樹脂ローラのフレは、製品規格に規定され、フレが大きな製品は不良となり、良品率を減少させることになる。
【0006】
本発明はかかる現況に鑑みてなされたものであり、その目的は、たとえ筒状金型13と芯体保持部材14の中心軸O1、O2が傾いて組み合わされた場合でも、芯体保持部材14に内挿される芯体21には曲げの力がかかることを防止することで、結果的にフレの小さい樹脂ローラを製造可能な成形金型を提供することである。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、本発明は、予め芯体を内挿した成形金型を用いて金型内に樹脂材料を注入し、硬化させる成形方法で得られる樹脂ローラの成形金型における芯体保持部材として、該芯体保持部材に形成した、芯体を挿入保持するための芯体挿入孔を、芯体外径と同等の寸法の内径を有する芯体保持部と該芯体保持部の内径より大きい部分で構成することにより、上記の目的を達成した。
【0008】
すなわち、本発明に係る樹脂ローラ成形金型は、筒状金型と、該筒状金型の両端部に取り付けられて筒状金型の両端部を封止する一対の芯体保持部材とからなり、ローラの芯体の両端部をそれぞれ前記一対の芯体保持部材に設けた芯体挿入孔内に保持させて成形金型内に芯体を装着し、この成形金型内に樹脂材料を注入し、硬化させることで、芯体の周囲に円筒状の樹脂成形部を形成するようにした樹脂ローラ成形金型において、前記芯体保持部材の芯体挿入孔として、芯体を保持可能な内径を有する芯体保持部の奥部に前記芯体保持部より内径の大きな大径部を設けてなることを特徴とするものである。
【0009】
上記のような本発明に係る樹脂ローラ成形金型によれば、芯体保持部材の芯体挿入孔として、芯体を保持可能な内径を有する芯体保持部の奥部に前記芯体保持部より内径の大きな大径部を設けてなることから、この成形金型を用いて樹脂ローラを成形する場合、仮に筒状金型と芯体保持部材の組み付け嵌合部などにゴミや樹脂成形物が噛み込んだり、組み付け嵌合部の寸法精度が良くなかったりして、筒状金型の中心軸と芯体保持部材の中心軸とが傾いた状態で組み合わされた状態で樹脂ローラを成形する場合であっても、芯体は芯体保持部材における芯体保持部により筒状金型の中心に保持されるとともに、芯体端部が位置する芯体挿入孔の奥部は前記芯体保持部よりも内径を大きくして芯体の周囲に空間が形成されていることから、芯体端部において芯体に対して曲げの力が働くことなく、芯体は湾曲することがない。よって、成形された樹脂ローラは偏心することなく、フレが小さい製品が安定的に生産できる。
【0010】
前記のような芯体保持部材における芯体挿入孔の構造は、芯体保持部材の樹脂成形部側端面に開口する芯体挿入孔の開口内縁部に位置する芯体保持部の内周面を芯体挿入孔の中心に向かって突出させることで構成することができる。この場合の一つの実施態様としては、芯体保持部の内周面が芯体挿入孔の中心に向かって断面円弧状に突出しているものであり、また、他の実施態様としては、前記芯体保持部の内周面が芯体挿入孔の中心に向かって断面尖形状に突出しているものであり、さらに他の実施態様としては、前記芯体保持部内周面の断面円弧状あるいは尖形状の突出した部分の頂部が、芯体保持部材の外周面に設けた筒状金型嵌合用鍔部の位置にあるものである。
【0011】
尚、上記のように芯体挿入孔に大径部を設けた芯体保持部材は、成形金型の両端に取り付けられる一対の芯体保持部材の少なくとも一方に採用すればよく、また、両方に採用する場合にあっても、両方の芯体保持部材は必ずしも同一の構造でなくともよい。
【0012】
【発明の実施の形態】
以下、本発明について、成形金型、および芯体の図面に基づいて説明する。図1に示すように、成形金型100は、筒状金型13と、該筒状金型13の両端部に取り付けられて筒状金型13の両端開口部を封止する一対の芯体保持部材14、14とからなり、前記筒状金型13および一対の芯体保持部材14、14からローラ成形空間15を形成している。そして、一方の芯体保持部材14には樹脂注入口16が設けられている。
【0013】
前記芯体21の形態としては、例えば、図11(a)および(b)の断面図に示される芯体21などが挙げられるが、これらに限定されるものではない。また、その材質としては、樹脂ローラの芯体として公知の任意の材料、例えば、金属材料や導電性を付与した樹脂材料などが、本発明の芯体21として適用可能である。
【0014】
本発明の成形金型100、および使用する芯体21は、公知の樹脂ローラの任意の大きさについて適用可能である。一般的な樹脂ローラは、例えば直径10mm〜30mm、長さ200mm〜400mmの大きさであり、また、芯体保持部材14に保持される芯体21の端軸部211の外径は、4mm〜10mmである。
【0015】
筒状金型13、および芯体保持部材14は、熱硬化性樹脂成形用に用いられる公知の任意の材料から構成され、好ましくは、プリハードン鋼、焼き入れ鋼、非磁性鋼、炭素工具鋼、耐食鋼(ステンレス鋼)などであるが、これらに限定されるものではない。
【0016】
図1に示すように、筒状金型13の内部には、内挿される樹脂ローラの芯体21が、両端の芯体保持部材14、14に保持されている。これらの芯体保持部材14の一方は、例えば1実施例として図2に示すように、外周面に筒状金型13嵌合用の鍔部141を形成するとともに、芯体挿入孔140として、芯体21における端軸部211の外径とほぼ同等の寸法の内径を有し、芯体21の端軸部211を保持可能とした芯体保持部142と、該芯体保持部142の奥部に形成された、前記芯体保持部142より内径の大きな大径部143で構成されて、芯体保持部142が大径部143よりも芯体挿入孔140の中心に向かって突出した形状に予め加工を施しておく。この芯体挿入孔140の加工は、例えば旋盤やフライス盤に芯体保持部材14を固定し、芯体保持部142の内径で孔を形成した後、この孔へ挿入可能な大きさの中グリ切削バイトにより加工(中グリ加工)することで、芯体保持部142の奥部に大径部143を容易に形成することができる。
【0017】
具体的形状としては、前記芯体保持部材14の芯体保持部142の内径d1は、芯体挿入孔140内への樹脂材料の侵入を防止するとともに芯体21の挿入しやすさも考慮し、芯体端軸部211の外径より10〜30μm程度大きく、より好ましくは10〜20μm程度大きく形成されている。芯体保持部142の内径が大きすぎる場合には、金型内に注入された樹脂材料が芯体挿入孔140内に侵入して、成形された芯体21の端軸部211の外周面が樹脂にて被覆されてしまうおそれがあり、また、芯体保持部142の内径d1が小さすぎる場合には、芯体21の端軸部211の挿入作業が困難になるおそれがあるだけでなく、芯体保持部142の幅wの大きさによっては、芯体保持部材14に内挿される芯体21に曲げの力がかかることを防止することが困難となる場合がある。
【0018】
また、該芯体保持部142の芯体軸方向の幅wは、芯体保持部材14の樹脂成形部側端面144から10mm以下が好ましく、8mm以下がより好ましい。この芯体保持部142の芯体軸方向の幅wが大きい場合には、その内径d1にもよるが、芯体21の端軸部211が、その軸方向に沿って広い範囲で保持接触されてることで、挿入される芯体21に曲げの力がかかることを防止するという効果が得られない場合がある。
【0019】
さらに、芯体挿入孔140における前記芯体保持部142の奥部に形成される大径部143の内径は、芯体挿入孔140内に挿入される芯体21の端軸部211の長さにもよるが、芯体端軸部211の外径より0.2mm以上大きいことが好ましく、0.3mm以上がより好ましい。
【0020】
そして、上記のような本発明に係る樹脂ローラ成形金型100によれば、前記のように加工を施した芯体保持部材14と筒状金型13とを組み合わせた際に、例えば、筒状金型13の開口縁131と芯体保持部材14の嵌合用鍔部141との組み付け嵌合部にゴミや樹脂成形物が噛み込んでいたり、前記組み付け嵌合部の寸法精度が良くなかったりして、図1のように筒状金型13の中心軸と芯体保持部材14の中心軸が傾いてしまった場合に、芯体21は、その端軸部211が芯体保持部142により筒状金型13の中心に保持されるとともに、芯体端部212では、芯体保持部142よりも内径が大きな大径部143が形成されていることにより芯体端部212に対して芯体21を曲げる力が働くことなく、芯体21は湾曲することがない。よって、成形された樹脂ローラは偏心することなく、フレが小さい製品が安定的に生産できる。
【0021】
また、前記芯体保持部材14の別の実施例としては、図3に示すように、芯体挿入孔140における、芯体を保持接触する芯体保持部142の内周面を芯体挿入孔140の中心に向かって断面円弧状に突出するよう予め加工を施しておく。この場合にも、前記突出した芯体保持部142の内径、即ち突出部の頂部の内径d1は、挿入される芯体端軸部211の外径より10〜30μm大きく加工されることが好ましい。また、前記円弧状突出部の半径が小さい方が、芯体21との接触面積がより小さくなり、芯体21を保持、接触して芯体21に対する曲げる力の作用を軽減できることから、円弧状突出部の半径は、5mm以下が好ましく、2.5mm以下がより好ましい。このように、芯体保持部142の内面を断面円弧状に突出して形成することで、芯体端軸部211の外周面に芯体保持部142が線状に保持接触して、芯体21に対する曲げる力の作用をより一層軽減することができる。
【0022】
さらに、別の実施形態として図4、図5に示す実施例のように、芯体保持部材14の芯体挿入孔140内に突出した芯体保持部142を、その幅w方向の中心あるいは突出した頂部が、筒状金型13の開口縁131と該芯体保持部14の外周面に設けた嵌合用鍔部141の位置になるように形成しておくことができる。このように、芯体保持部142を、その幅w方向の中心あるいは突出部分の頂部が、筒状金型13の開口縁131と該芯体保持部14の外周面に設けた嵌合用鍔部141の位置になるように形成しておくことで、例えば、図1に示すように芯体保持部材14が傾いて筒状金型13に組み合わされたとき、嵌合用鍔部141の端部を支点に傾くので、芯体21を保持、接触している芯体保持部142の中心点が、筒状金型13の中心からずれる量が最小となる。よって、芯体21の中心点と樹脂成形部12の中心点とのずれが最小となり、ひいてはフレ量が最小になる。
【0023】
この場合も、芯体保持部142の内径は芯体の挿入しやすさも考慮して芯体端軸部の外径より10〜30μm大きく加工されており、また、芯体保持部142の幅wは、樹脂成形部端面側から10mm以下が好ましく、8mm以下がより好ましく、また、断面円弧状の突出部の半径は5mm以下が好ましく、2.5mm以下がより好ましい。
【0024】
さらに、前記図3、図5に示した芯体保持部142内面を断面円弧状突出部に形成する場合のように、芯体保持部142の内面を突出して形成することで、芯体端軸部211の外周面を芯体保持部142が線状に保持接触するようにする場合の実施の形態としては、上記のように断面円弧状に突出させる場合の他、例えば、図6〜図10に示すように、芯体保持部142の内周面を断面尖形状に突出させるようにしてもよく、突出部の形状は特に限定されるものではなく、また、その突出部の位置も、図6に示すように、芯体挿入孔140の開口縁の内側に設けたり、図7に示すように、芯体挿入孔140の開口端縁に設けたり、さらに、図9、図10に示すように、突出部を嵌合用鍔部141の位置に一致させることもでき、適宜設定することができる。
【0025】
尚、いずれの実施態様においても、芯体保持部材14における芯体保持部142の内面は芯体21が接触する部分であり、且つ寸法精度が要求される部分でもあるので、耐摩耗性を考慮し、部分的に金型硬度を向上させたコーティング処理をしたり、摩耗した際に交換が可能なように入駒構造にすることが可能なことは言うまでもない。
【0026】
また、芯体保持部材14は、筒状金型13の両端のそれぞれに取り付けられるが、少なくともそのうち一つに前記の実施態様が選択でき、両方に必要な場合は、必ずしも同一の態様を選択せずともよい。
【0027】
次に、上記のような本発明に係る樹脂ローラ成形金型100を用いて樹脂ローラを成形する具体的方法を説明する。例えば、成形用樹脂材料として、末端アリル化ポリオキシプロピレン系重合体にポリシロキサン系硬化剤と導電性付与剤(カーボンブラック)を配合し、液状樹脂用射出注入機において、ローラ外径(樹脂成形部の外径)がφ16mmで、樹脂成形部12の長さが250mmのローラを成形する場合、配合された注入樹脂の粘度は、導電性付与剤の混合部数によるが、200〜800ポイズで、注入時の注入圧力は0.5MPa〜4MPaである。そして、例えば、上記寸法形状のローラで、樹脂成形部12の肉厚が4mmの場合、金型の樹脂注入口16の口径は、1mm〜2mmとなっている。尚、注入時の成形金型100の向きは金型の長手方向を垂直に立て、金型の下部から注入することが望ましい。
【0028】
金型の加熱は、従来公知の任意の方法で行うことができる。具体的には、例えば、加熱ファンが設けられた加熱炉内で加熱する方法、金型の周囲に電気ヒータを配して加熱する方法、または誘導加熱コイルを金型周辺に配して加熱する方法がある。金型の温度は、熱硬化性樹脂の注入および加熱硬化を行うことができる任意の温度が選択可能であるが、樹脂の注入時は、樹脂が注入しやすく、かつ硬化しない温度、例えば20℃〜80℃程度が好ましい。また、樹脂の加熱温度は、樹脂に配合される硬化遅延剤の分量にもよるが、80℃〜200℃程度が望ましい。
【0029】
成形用樹脂材料としては、熱硬化性樹脂が用いられる。例えばシリコーン、ウレタン、アクリロニトリル・ブタジエン共重合(NBR)、エチレン・プロピレン・ジエン・メチレン共重合体(EPDM)などが使用できる。これらの熱硬化性樹脂には、必要に応じてその他の各種添加剤を添加することができる。例えば、カーボンなどの抵抗制御剤(導電性付与剤)を添加すれば、ローラの電気抵抗を制御することができる。
【0030】
前記熱硬化性樹脂材料として、以下に説明する硬化性組成物も使用できる。この硬化性組成物の反応硬化物からなる成形樹脂は特に柔軟な構造を持つため、樹脂成形部の肉厚を薄くしても十分にその弾性効果を発揮する。またオキシアルキレン単位を含む場合には、硬化前に低粘度であるため扱いやすく、飽和炭化水素単位を含む場合には、低吸水率となり高湿環境下でも体積変化およびローラ抵抗の変化が少ないという点で好ましい。
【0031】
即ち、前記熱硬化性樹脂材料としては、
(A)分子中に少なくとも1個のアルケニル基を有し、主鎖を構成する繰り返し単位が主にオキシアルキレン単位または飽和炭化水素単位からなる重合体と
(B)分子中に少なくとも2個のヒドロシリル基を有する硬化剤と
(C)ヒドロシリル化触媒と
(D)導電性付与剤と
を主成分とする硬化性組成物を用いることが好ましい。
【0032】
前記熱硬化性樹脂材料には、必要に応じて、硬化剤、硬化促進剤、硬化遅延剤などの、熱硬化反応を調整する材料が添加される。また、必要に応じて、有機または無機の充填剤を添加できる。さらに、必要に応じて有機または無機の各種顔料、増粘剤、離型剤などを添加することができる。
【0033】
【実施例】
次に実施例を挙げて本発明を具体的に説明するが、これらの実施例は何ら本発明を制限するものではない。
【0034】
図1に示す本発明の樹脂ローラ成形金型を用いて、図10に示すような、ローラ外径(樹脂成形部12の外径)がφ16mm、樹脂成形部12の長さが250mmで、芯体端軸部211の外径がφ8mmである樹脂ローラ10を成形した。使用した成形金型100における一方(上側)の芯体保持部材14(図2に示すもの。)の芯体保持部142の内径d1は、前記樹脂ローラ10の芯体端軸部211の外径より20μm大きく、該芯体保持部142の芯体軸方向の幅wは、芯体保持部材14の樹脂成形部側端面144から8mmで、芯体保持部142の奥部に位置する大径部143の内径d2は樹脂ローラ10の芯体端軸部211の外径より0.2mm大きく加工した。
【0035】
使用した熱硬化性樹脂材料は、下記表1に示す配合樹脂で、粘度は600ポイズであった。
【0036】
【表1】

Figure 0004141610
【0037】
上記の配合樹脂材料を液状樹脂用射出注入機において、注入圧力を4MPaで、金型の樹脂注入口16の内径が1.5mmの上記成形金型100の成形空間15に、該金型100の長手方向を垂直に立てた状態で、金型の下部から注入した。金型の加熱は、加熱ファンが設けられた加熱炉内で加熱する方法で、加熱炉内の雰囲気温度を140℃に設定し、20分間加熱後、前記成形金型100の筒状金型13から、成形品の軸方向に20kgの離型荷重を印加しながら、約10秒で離型し、成形品を得た。
【0038】
その結果、得られた樹脂ローラのフレは、芯体が挿入、保持可能な内径の芯体挿入孔のみで構成された従来の芯体保持部材を用いた成形金型で成形した樹脂ローラの場合の65μmと比べて35μm小さい30μmであり、フレの規格である50μm以下を満足するものであった。
【0039】
【発明の効果】
以上のように、本発明の成形金型を用いれば、成形時に芯体に曲げの力が働かず、成形される樹脂ローラとして、フレが小さい良品を安定的に得ることが可能となる。
【図面の簡単な説明】
【図1】 本発明に係る樹脂ローラ成形金型の1つの実施態様における芯体保持部材と筒状金型の組み合わせ状態を示す断面図である。
【図2】 本発明の1つの実施態様における芯体保持部材の断面説明図である。
【図3】 本発明の1つの実施態様における芯体保持部材の断面説明図である。
【図4】 本発明の1つの実施態様における芯体保持部材の断面説明図である。
【図5】 本発明の1つの実施態様における芯体保持部材の断面説明図である。
【図6】 本発明の1つの実施態様における芯体保持部材の断面説明図である。
【図7】 本発明の1つの実施態様における芯体保持部材の断面説明図である。
【図8】 本発明の1つの実施態様における芯体保持部材の断面説明図である。
【図9】 本発明の1つの実施態様における芯体保持部材の断面説明図である。
【図10】 一般的な樹脂ローラの斜視図である。
【図11】 (a)、(b)は一般的な樹脂ローラの断面図である。
【図12】 従来技術の成形金型の断面図である。
【図13】 従来技術の成形金型における芯体保持部材と筒状金型との中心軸が傾いた状態を示す断面図である。
【図14】 従来技術の成形金型を用いて、芯体保持部材と筒状金型との中心軸が傾いた状態で成形された樹脂ローラの断面図である。
【符号の説明】
10:ローラ、12:樹脂成形部、13:筒状金型、14:芯体保持部材、15:ローラ成形空間、16:樹脂注入口、18:樹脂注入ノズル、19:ノズルタッチ部、21:芯体、100:成形金型、131:筒状金型開口縁、140:芯体挿入孔、141:嵌合用鍔部、142:芯体保持部、143:大径部、144:樹脂成形部側端面、211:芯体端軸部、212:芯体端部。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molding die for resin rollers such as a developing roller, a charging roller, and a transfer roller incorporated in various apparatuses employing an electrophotographic system such as a laser printer, a copying machine, and a facsimile machine.
[0002]
[Prior art]
Various apparatuses adopting an electrophotographic system such as a laser printer, a copying machine, and a facsimile apparatus incorporate rollers such as a developing roller, a charging roller, and a transfer roller. As an example of such a roller, FIG. 10 is a perspective view, and FIGS. 11A and 11B are cross-sectional views. The roller 10 includes a core body 21 and a cylindrical molding portion 12 formed of a resin material.
[0003]
For example, as shown in FIG. 12, a mold for forming such a roller 10 is attached to the cylindrical mold 13 and both ends of the cylindrical mold 13. It has a pair of core body holding members 14 and 14 that hold the inserted core body 21 and seal both ends of the cylindrical mold 13. A resin inlet 16 for injecting a resin material into the roller molding space 15 in the cylindrical mold 13 is formed in the core holding member 14 on the resin injection side, and the mold outer surface side at the resin inlet 16 A resin injection nozzle 18 of the molding machine is pressed against a semicircular nozzle touch portion 19 provided in the opening, and a resin material is injected from the resin injection nozzle 18 into the roller molding space 15 through the resin injection port 16. The core holding member 14 on the resin injection side may be provided with an air release mechanism for extracting air from the roller molding space 15 during resin injection. Then, after the resin is filled in the mold, the resin in the roller molding space 15 is heated and cured. After the curing of the resin is completed, the core body holding member 14 is extracted from the cylindrical mold 13 upward and downward along the axial direction thereof. Next, the core 21 is pushed out of the cylindrical mold 13 to take out the molded product held in the cylindrical mold 13.
[0004]
However, when the resin roller is molded by the molding die as described above, an assembly fitting portion between the cylindrical die 13 and the core body holding member 14, for example, a fitting collar provided on the outer peripheral surface of the core body holding member 14 No. 141 and the opening edge 131 of the cylindrical mold 13 have dust or a resin molded product, or the dimensional accuracy of the assembly fitting portion between the cylindrical mold 13 and the core body holding member 14 has not been good. In this case, as shown in FIG. 13, the central axis O1 of the cylindrical mold 13 and the central axis O2 of the core body holding member 14 are inclined. When the resin roller is molded with the cylindrical mold 13 and the core body holding member 14 combined in such a state, bending force acts on the inserted core body 21, and the core body 21 is curved. Then, with the core body 21 being curved, the resin is injected from the resin injection port 16 by the above-described molding method, and when the molded product is taken out from the cylindrical mold 13 after the heat curing is completed, the core as shown in FIG. The body 21 returns to a straight line because the bending force is released. However, since the core body 21 is molded while being curved, even if the core body 21 returns to a linear shape, the resin molding portion 12 is uneven, so that the resin roller is eccentric. This eccentric amount is referred to as “fla” and is included in the dimensional standard of the product. For example, the resin roller flare standard having an outer diameter of φ16 mm, an axial length of 250 mm, and a core outer diameter of φ8 mm must satisfy 50 μm or less while holding the core portions at both ends.
[0005]
[Problems to be solved by the invention]
As described above, according to the study by the present inventors, the resin roller formed by the mold in which the cylindrical mold 13 and the central axes O1 and O2 of the core body holding member 14 are tilted and combined is the core body 21. It was found that the resin molded part 12 was unevenly thick and molded with a large amount of flexure. However, the deflection of the resin roller is stipulated in the product standard, and a product with a large deflection becomes defective and the yield rate is reduced.
[0006]
The present invention has been made in view of the present situation, and its purpose is to provide the core body holding member 14 even when the cylindrical mold 13 and the center axes O1 and O2 of the core body holding member 14 are tilted and combined. It is to provide a molding die capable of producing a resin roller with a small flare as a result by preventing a bending force from being applied to the core body 21 inserted into the core.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a core in a molding die of a resin roller obtained by a molding method in which a resin material is injected into a mold using a molding die in which a core is inserted in advance and cured. As a body holding member, a core body insertion hole for inserting and holding the core body formed in the core body holding member is provided with a core body holding portion having an inner diameter equivalent to the outer diameter of the core body and the core body holding portion. The above-described object is achieved by configuring the portion larger than the inner diameter.
[0008]
That is, the resin roller molding die according to the present invention includes a cylindrical die and a pair of core body holding members that are attached to both ends of the cylindrical die and seal both ends of the cylindrical die. The both ends of the roller core body are respectively held in the core body insertion holes provided in the pair of core body holding members, and the core body is mounted in the molding die, and the resin material is placed in the molding die. In a resin roller molding die in which a cylindrical resin molding portion is formed around the core body by pouring and curing, the core body can be held as a core body insertion hole of the core body holding member A large-diameter portion having an inner diameter larger than that of the core body holding portion is provided at the back of the core body holding portion having an inner diameter.
[0009]
According to the resin roller molding die according to the present invention as described above, the core body holding portion is provided at the back of the core body holding portion having an inner diameter capable of holding the core body as the core body insertion hole of the core body holding member. Since a large-diameter portion having a larger inner diameter is provided, when molding a resin roller using this molding die, it is assumed that dust or a resin molded product is attached to an assembly fitting portion of the cylindrical die and the core body holding member. The resin roller is molded in a state where the center axis of the cylindrical mold and the center axis of the core body holding member are tilted and the dimensional accuracy of the assembly fitting portion is not good. Even in this case, the core body is held at the center of the cylindrical mold by the core body holding portion of the core body holding member, and the back portion of the core body insertion hole where the core body end portion is located is the core body holding portion. Since the inner diameter is larger than the part and a space is formed around the core body, the core body Without a force of bending with respect to the core body in part, the core body has never curved. Therefore, the molded resin roller is not decentered, and a product with small flare can be stably produced.
[0010]
The structure of the core body insertion hole in the core body holding member as described above is such that the inner peripheral surface of the core body holding portion located at the opening inner edge of the core body insertion hole that opens to the resin molding portion side end surface of the core body holding member. It can comprise by projecting toward the center of a core body insertion hole. As one embodiment in this case, the inner peripheral surface of the core body holding portion protrudes in a circular arc shape toward the center of the core body insertion hole, and in another embodiment, the core The inner peripheral surface of the body holding part protrudes in a cross-sectional shape toward the center of the core body insertion hole, and in another embodiment, the inner peripheral surface of the core body holding part has a circular arc shape or a pointed shape. The top of the protruding portion is at the position of the cylindrical mold fitting collar provided on the outer peripheral surface of the core body holding member.
[0011]
In addition, the core body holding member provided with the large-diameter portion in the core body insertion hole as described above may be employed in at least one of the pair of core body holding members attached to both ends of the molding die, Even if it is adopted, both core body holding members do not necessarily have the same structure.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on drawings of a molding die and a core. As shown in FIG. 1, a molding die 100 includes a cylindrical die 13 and a pair of cores that are attached to both ends of the cylindrical die 13 and seal the opening portions at both ends of the cylindrical die 13. The roller forming space 15 is formed by the cylindrical mold 13 and the pair of core body holding members 14, 14. One core body holding member 14 is provided with a resin injection port 16.
[0013]
Examples of the form of the core body 21 include, but are not limited to, the core body 21 shown in the cross-sectional views of FIGS. 11A and 11B. Further, as the material, any known material as the core of the resin roller, for example, a metal material or a resin material imparted with conductivity can be used as the core 21 of the present invention.
[0014]
The molding die 100 of the present invention and the core body 21 to be used can be applied to any size of a known resin roller. A typical resin roller has a diameter of, for example, 10 mm to 30 mm and a length of 200 mm to 400 mm, and the outer diameter of the end shaft portion 211 of the core body 21 held by the core body holding member 14 is 4 mm to 4 mm. 10 mm.
[0015]
The cylindrical mold 13 and the core body holding member 14 are made of any known material used for thermosetting resin molding, preferably pre-hardened steel, hardened steel, nonmagnetic steel, carbon tool steel, Although it is corrosion-resistant steel (stainless steel) etc., it is not limited to these.
[0016]
As shown in FIG. 1, a core body 21 of a resin roller to be inserted is held by core body holding members 14 and 14 at both ends inside the cylindrical mold 13. For example, as shown in FIG. 2 as an example, one of these core body holding members 14 is formed with a flange 141 for fitting a cylindrical mold 13 on the outer peripheral surface, and a core body insertion hole 140 serving as a core. A core body holding portion 142 having an inner diameter substantially equal to the outer diameter of the end shaft portion 211 in the body 21 and capable of holding the end shaft portion 211 of the core body 21, and a back portion of the core body holding portion 142 The core body holding portion 142 is formed with a large diameter portion 143 having a larger inner diameter than the core body holding portion 142, and the core body holding portion 142 protrudes toward the center of the core body insertion hole 140 from the large diameter portion 143. Processing is performed in advance. The core body insertion hole 140 is machined by, for example, fixing the core body holding member 14 to a lathe or a milling machine, forming a hole with the inner diameter of the core body holding portion 142, and then cutting it in a size that can be inserted into the hole. By processing with a cutting tool (medium grind processing), the large-diameter portion 143 can be easily formed in the inner portion of the core body holding portion 142.
[0017]
As a specific shape, the inner diameter d1 of the core body holding portion 142 of the core body holding member 14 prevents intrusion of the resin material into the core body insertion hole 140 and considers ease of insertion of the core body 21. The outer diameter of the core body end shaft portion 211 is larger by about 10 to 30 μm, more preferably about 10 to 20 μm. When the inner diameter of the core body holding part 142 is too large, the resin material injected into the mold enters the core body insertion hole 140 and the outer peripheral surface of the end shaft part 211 of the molded core body 21 is There is a possibility of being covered with resin, and when the inner diameter d1 of the core body holding portion 142 is too small, not only the insertion work of the end shaft portion 211 of the core body 21 may be difficult, Depending on the size of the width w of the core body holding portion 142, it may be difficult to prevent the bending force from being applied to the core body 21 inserted in the core body holding member 14.
[0018]
Further, the width w of the core body holding portion 142 in the core body axial direction is preferably 10 mm or less, more preferably 8 mm or less, from the resin molding portion side end surface 144 of the core body holding member 14. When the width w of the core body holding portion 142 in the core body axial direction is large, the end shaft portion 211 of the core body 21 is held and contacted in a wide range along the axial direction depending on the inner diameter d1. As a result, the effect of preventing the bending force from being applied to the inserted core body 21 may not be obtained.
[0019]
Further, the inner diameter of the large-diameter portion 143 formed in the inner portion of the core body holding portion 142 in the core body insertion hole 140 is the length of the end shaft portion 211 of the core body 21 inserted into the core body insertion hole 140. However, it is preferably 0.2 mm or more larger than the outer diameter of the core end shaft portion 211, and more preferably 0.3 mm or more.
[0020]
According to the resin roller molding die 100 according to the present invention as described above, when the core body holding member 14 and the cylindrical die 13 processed as described above are combined, for example, a cylindrical shape Dust or a resin molded product may be caught in the assembly fitting portion between the opening edge 131 of the mold 13 and the fitting flange 141 of the core body holding member 14, or the dimensional accuracy of the assembly fitting portion may be poor. When the central axis of the cylindrical mold 13 and the central axis of the core body holding member 14 are inclined as shown in FIG. The core body end portion 212 is formed with a large-diameter portion 143 having an inner diameter larger than that of the core body holding portion 142. The core 21 does not bend without the force of bending the 21 acting. . Therefore, the molded resin roller is not decentered, and a product with small flare can be stably produced.
[0021]
Further, as another embodiment of the core body holding member 14, as shown in FIG. 3, the inner peripheral surface of the core body holding portion 142 that holds and contacts the core body in the core body insertion hole 140 is the core body insertion hole. Processing is performed in advance so as to protrude in a circular arc shape toward the center of 140. Also in this case, it is preferable that the inner diameter d1 of the protruding core body holding portion 142, that is, the inner diameter d1 of the top portion of the protruding portion, be processed to be 10 to 30 μm larger than the outer diameter of the core end shaft portion 211 to be inserted. In addition, the smaller the radius of the arcuate protrusion, the smaller the contact area with the core body 21, and the action of the force that holds and contacts the core body 21 to bend the core body 21 can be reduced. The radius of the protrusion is preferably 5 mm or less, and more preferably 2.5 mm or less. Thus, by forming the inner surface of the core body holding portion 142 so as to project in an arc shape in cross section, the core body holding portion 142 is held in linear contact with the outer peripheral surface of the core body end shaft portion 211, and the core body 21. The effect of the bending force on the can be further reduced.
[0022]
Furthermore, as another embodiment, as shown in the examples shown in FIGS. 4 and 5, the core body holding portion 142 that protrudes into the core body insertion hole 140 of the core body holding member 14 is arranged at the center or the protrusion in the width w direction. The top portion can be formed so as to be positioned at the opening edge 131 of the cylindrical mold 13 and the fitting flange 141 provided on the outer peripheral surface of the core body holding portion 14. In this manner, the core body holding portion 142 has a center in the width w direction or a top portion of the protruding portion provided on the opening edge 131 of the cylindrical mold 13 and the outer peripheral surface of the core body holding portion 14. For example, when the core body holding member 14 is inclined and combined with the cylindrical mold 13 as shown in FIG. Since it is inclined to the fulcrum, the amount by which the center point of the core body holding part 142 holding and contacting the core body 21 is shifted from the center of the cylindrical mold 13 is minimized. Therefore, the deviation between the center point of the core body 21 and the center point of the resin molding portion 12 is minimized, and the amount of flare is minimized.
[0023]
Also in this case, the inner diameter of the core body holding portion 142 is processed to be 10 to 30 μm larger than the outer diameter of the core body end shaft portion in consideration of ease of insertion of the core body, and the width w of the core body holding portion 142 is also increased. Is preferably 10 mm or less, more preferably 8 mm or less from the end surface side of the resin molded part, and the radius of the projecting part having a circular arc cross section is preferably 5 mm or less, more preferably 2.5 mm or less.
[0024]
Further, as in the case where the inner surface of the core body holding portion 142 shown in FIG. 3 and FIG. 5 is formed in a projecting portion having an arcuate cross section, the inner surface of the core body holding portion 142 is formed so as to protrude. As an embodiment in which the core body holding portion 142 is in linear contact with the outer peripheral surface of the portion 211, in addition to the case of projecting in a circular arc shape as described above, for example, FIGS. As shown in the figure, the inner peripheral surface of the core body holding part 142 may be protruded in a cross-sectional shape, and the shape of the protruding part is not particularly limited, and the position of the protruding part is also shown in the figure. 6, provided inside the opening edge of the core body insertion hole 140, provided at the opening edge of the core body insertion hole 140 as shown in FIG. 7, and further as shown in FIGS. 9 and 10. In addition, the protrusion can be made to coincide with the position of the fitting flange 141, and is set as appropriate. Door can be.
[0025]
In any of the embodiments, the inner surface of the core body holding portion 142 of the core body holding member 14 is a portion that contacts the core body 21 and is a portion that requires dimensional accuracy. However, it goes without saying that it is possible to perform a coating process in which the mold hardness is partially improved, or to make a frame structure so that it can be replaced when worn.
[0026]
Further, the core body holding member 14 is attached to each of both ends of the cylindrical mold 13, but at least one of the above-described embodiments can be selected, and if necessary for both, the same mode is not necessarily selected. It is not necessary.
[0027]
Next, a specific method for molding a resin roller using the resin roller molding die 100 according to the present invention as described above will be described. For example, as a molding resin material, a terminal allylic polyoxypropylene polymer is blended with a polysiloxane curing agent and a conductivity imparting agent (carbon black). Part outer diameter) is 16 mm, and when molding a roller with a resin molded part 12 having a length of 250 mm, the viscosity of the blended injected resin is 200 to 800 poise, depending on the number of parts mixed with the conductivity-imparting agent, The injection pressure at the time of injection is 0.5 MPa to 4 MPa. For example, when the thickness of the resin molded portion 12 is 4 mm with the above-described size-shaped roller, the diameter of the resin injection port 16 of the mold is 1 mm to 2 mm. It should be noted that the molding die 100 is preferably injected from the lower part of the mold with the longitudinal direction of the mold standing vertically.
[0028]
The mold can be heated by any conventionally known method. Specifically, for example, a method of heating in a heating furnace provided with a heating fan, a method of heating an electric heater around the mold, or an induction heating coil arranged around the mold for heating There is a way. The temperature of the mold can be selected from any temperature at which thermosetting resin can be injected and heat-cured, but at the time of resin injection, the resin is easily injected and does not cure, for example, 20 ° C. About -80 degreeC is preferable. Further, the heating temperature of the resin is preferably about 80 ° C. to 200 ° C., although it depends on the amount of the curing retarder blended in the resin.
[0029]
A thermosetting resin is used as the molding resin material. For example, silicone, urethane, acrylonitrile / butadiene copolymer (NBR), ethylene / propylene / diene / methylene copolymer (EPDM) and the like can be used. Various other additives can be added to these thermosetting resins as necessary. For example, if a resistance control agent (conductivity imparting agent) such as carbon is added, the electrical resistance of the roller can be controlled.
[0030]
As the thermosetting resin material, a curable composition described below can also be used. Since the molding resin made of a reaction cured product of this curable composition has a particularly flexible structure, even if the thickness of the resin molding portion is reduced, the elastic effect is sufficiently exhibited. Also, when it contains oxyalkylene units, it is easy to handle because it has a low viscosity before curing, and when it contains saturated hydrocarbon units, it has a low water absorption rate and there is little change in volume and roller resistance even in a high humidity environment. This is preferable.
[0031]
That is, as the thermosetting resin material,
(A) a polymer having at least one alkenyl group in the molecule, wherein the repeating unit constituting the main chain is mainly an oxyalkylene unit or a saturated hydrocarbon unit;
(B) a curing agent having at least two hydrosilyl groups in the molecule;
(C) a hydrosilylation catalyst
It is preferable to use a curable composition containing (D) a conductivity-imparting agent as a main component.
[0032]
A material that adjusts the thermosetting reaction, such as a curing agent, a curing accelerator, and a curing retarder, is added to the thermosetting resin material as necessary. Moreover, an organic or inorganic filler can be added as needed. Furthermore, various organic or inorganic pigments, thickeners, release agents and the like can be added as necessary.
[0033]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated concretely, these Examples do not restrict | limit this invention at all.
[0034]
Using the resin roller molding die of the present invention shown in FIG. 1, the outer diameter of the roller (outer diameter of the resin molding portion 12) is 16 mm, the length of the resin molding portion 12 is 250 mm, as shown in FIG. The resin roller 10 having an outer diameter of the body end shaft portion 211 of 8 mm was molded. The inner diameter d1 of the core body holding portion 142 of one (upper) core body holding member 14 (shown in FIG. 2) in the used molding die 100 is the outer diameter of the core body end shaft portion 211 of the resin roller 10. The core body holding portion 142 has a width w in the axial direction of the core body that is 8 mm from the resin molding portion side end surface 144 of the core body holding member 14 and is a large-diameter portion located at the back of the core body holding portion 142. The inner diameter d2 of 143 was processed to be 0.2 mm larger than the outer diameter of the core end shaft portion 211 of the resin roller 10.
[0035]
The thermosetting resin material used was a compounded resin shown in Table 1 below, and the viscosity was 600 poise.
[0036]
[Table 1]
Figure 0004141610
[0037]
In the injection injection machine for liquid resin, the above compounded resin material is injected into the molding space 15 of the molding die 100 having an injection pressure of 4 MPa and an inner diameter of the resin injection port 16 of the die of 1.5 mm. Injecting from the lower part of the mold with the longitudinal direction set vertically. The mold is heated in a heating furnace provided with a heating fan. The atmosphere temperature in the heating furnace is set to 140 ° C., heated for 20 minutes, and then the cylindrical mold 13 of the molding mold 100 is used. Then, the mold was released in about 10 seconds while applying a release load of 20 kg in the axial direction of the molded article to obtain a molded article.
[0038]
As a result, the resulting resin roller flare is a resin roller molded with a molding die using a conventional core body holding member composed only of an inner diameter core body insertion hole into which the core body can be inserted and held. 30 μm, which is 35 μm smaller than 65 μm, and satisfies the standard of 50 μm or less.
[0039]
【The invention's effect】
As described above, when the molding die of the present invention is used, a bending force does not act on the core body during molding, and a non-defective product with small flare can be stably obtained as a molded resin roller.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a combined state of a core body holding member and a cylindrical mold in one embodiment of a resin roller molding mold according to the present invention.
FIG. 2 is a cross-sectional explanatory view of a core body holding member in one embodiment of the present invention.
FIG. 3 is a cross-sectional explanatory view of a core body holding member in one embodiment of the present invention.
FIG. 4 is a cross-sectional explanatory view of a core body holding member in one embodiment of the present invention.
FIG. 5 is a cross-sectional explanatory view of a core body holding member in one embodiment of the present invention.
FIG. 6 is a cross-sectional explanatory view of a core body holding member in one embodiment of the present invention.
FIG. 7 is a cross-sectional explanatory view of a core body holding member in one embodiment of the present invention.
FIG. 8 is a cross-sectional explanatory view of a core body holding member in one embodiment of the present invention.
FIG. 9 is a cross-sectional explanatory view of a core body holding member in one embodiment of the present invention.
FIG. 10 is a perspective view of a general resin roller.
11A and 11B are cross-sectional views of a general resin roller.
FIG. 12 is a sectional view of a conventional molding die.
FIG. 13 is a cross-sectional view showing a state in which the central axes of the core body holding member and the cylindrical mold are inclined in a conventional mold.
FIG. 14 is a cross-sectional view of a resin roller formed using a conventional molding die in a state where the central axes of the core body holding member and the cylindrical die are inclined.
[Explanation of symbols]
10: roller, 12: resin molding part, 13: cylindrical mold, 14: core body holding member, 15: roller molding space, 16: resin injection port, 18: resin injection nozzle, 19: nozzle touch part, 21: Core body: 100: Molding die, 131: Cylindrical mold opening edge, 140: Core body insertion hole, 141: Fitting hook part, 142: Core body holding part, 143: Large diameter part, 144: Resin molding part Side end surface, 211: core body end shaft portion, 212: core body end portion.

Claims (5)

筒状金型と、該筒状金型の両端部に取り付けられて筒状金型の両端部を封止する一対の芯体保持部材とからなり、ローラの芯体の両端部をそれぞれ前記一対の芯体保持部材に設けた芯体挿入孔内に保持させて成形金型内に芯体を装着し、この成形金型内に樹脂材料を注入し、硬化させることで、芯体の周囲に円筒状の樹脂成形部を形成するようにした樹脂ローラ成形金型において、前記芯体保持部材の芯体挿入孔として、芯体を保持可能な内径を有する芯体保持部の奥部に前記芯体保持部より内径の大きな大径部を設けてなることを特徴とする樹脂ローラ成形金型。The cylindrical mold and a pair of core body holding members that are attached to both ends of the cylindrical mold and seal the both ends of the cylindrical mold. The core body is held in the core body insertion hole provided in the core body holding member, the core body is mounted in the molding die, and a resin material is injected into the molding die and cured, so that the core body is surrounded. In the resin roller molding die configured to form a cylindrical resin molding portion, the core is inserted into a core body holding portion having an inner diameter capable of holding the core body as a core body insertion hole of the core body holding member. A resin roller molding die comprising a large-diameter portion having an inner diameter larger than that of the body holding portion. 前記芯体保持部の内周面が芯体挿入孔の中心に向かって突出している請求項1に記載の樹脂ローラ成形金型。The resin roller molding die according to claim 1, wherein an inner peripheral surface of the core body holding portion projects toward the center of the core body insertion hole. 前記芯体保持部の内周面が芯体挿入孔の中心に向かって断面円弧状に突出している請求項2に記載の樹脂ローラ成形金型。The resin roller molding die according to claim 2, wherein an inner peripheral surface of the core body holding portion protrudes in a circular arc shape toward the center of the core body insertion hole. 前記芯体保持部の内周面が芯体挿入孔の中心に向かって断面尖形状に突出している請求項2に記載の樹脂ローラ成形金型。The resin roller molding die according to claim 2, wherein an inner peripheral surface of the core body holding portion protrudes in a cross-sectional shape toward the center of the core body insertion hole. 前記突出した芯体保持部内周面の頂部が、芯体保持部材の外周面に設けた筒状金型嵌合用鍔部の位置にある請求項2〜4のいずれかに記載の樹脂ローラ成形金型。The resin roller molding metal according to any one of claims 2 to 4, wherein a top portion of the protruding inner peripheral surface of the core body holding portion is located at a position of a cylindrical mold fitting flange provided on the outer peripheral surface of the core body holding member. Type.
JP2000018559A 2000-01-27 2000-01-27 Resin roller mold Expired - Fee Related JP4141610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000018559A JP4141610B2 (en) 2000-01-27 2000-01-27 Resin roller mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000018559A JP4141610B2 (en) 2000-01-27 2000-01-27 Resin roller mold

Publications (2)

Publication Number Publication Date
JP2001205639A JP2001205639A (en) 2001-07-31
JP4141610B2 true JP4141610B2 (en) 2008-08-27

Family

ID=18545390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000018559A Expired - Fee Related JP4141610B2 (en) 2000-01-27 2000-01-27 Resin roller mold

Country Status (1)

Country Link
JP (1) JP4141610B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5259079B2 (en) * 2006-12-13 2013-08-07 株式会社ブリヂストン Mold for elastic roller and method for producing elastic roller
JP5052119B2 (en) * 2006-12-20 2012-10-17 株式会社ブリヂストン Mold for elastic roller and method for producing elastic roller

Also Published As

Publication number Publication date
JP2001205639A (en) 2001-07-31

Similar Documents

Publication Publication Date Title
KR100723815B1 (en) Resin roller and method for manufacturing the resin roller
JP4141610B2 (en) Resin roller mold
JP5726712B2 (en) Mold and roller manufacturing method
JP2001219431A (en) Resin roller and its core as well as mold for molding resin roller and method for molding the same
JP2002046135A (en) Method for manufacturing resin roller
JP2010194940A (en) Molding device for roller and method of molding roller
JP2008040418A (en) Method of manufacturing elastic body roller and metal mold for molding
JP2010046814A (en) Mold for molding elastic roller
JP3941992B2 (en) Resin roller mold
JP6452532B2 (en) Method for producing foamed elastic roller
JP2000000831A (en) Elastic roller and its molding apparatus
JP5901326B2 (en) Roller manufacturing method
JP2008273023A (en) Method for manufacturing soft foam with surface skin
JP2009172907A (en) Shaping mold and manufacturing device of rubber roller and its manufacturing method
JP4807852B2 (en) Mold and molding method
JP2008037071A (en) Manufacturing method of rubber roller and mold for rubber roller
JP2007248812A (en) Conductive roller
JP2007268910A (en) Manufacturing method of foamed roller
JP5137184B2 (en) Mold and die manufacturing method
JP4324840B2 (en) Long sheet cylinder making apparatus and resin roll manufacturing method
JP2007296829A (en) Molding mold of rubber roller, and manufacturing process of rubber roller
JP3103140B2 (en) Roller manufacturing method
JP2006168254A (en) Mold for producing roller member
JP2006001107A (en) Mold for molding resin roller
KR20100098051A (en) Casting mould for manufacturing printer poller and casting method using the casting mould

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees