JP4141231B2 - Lightning protection insulator device - Google Patents

Lightning protection insulator device Download PDF

Info

Publication number
JP4141231B2
JP4141231B2 JP2002320668A JP2002320668A JP4141231B2 JP 4141231 B2 JP4141231 B2 JP 4141231B2 JP 2002320668 A JP2002320668 A JP 2002320668A JP 2002320668 A JP2002320668 A JP 2002320668A JP 4141231 B2 JP4141231 B2 JP 4141231B2
Authority
JP
Japan
Prior art keywords
lightning
electrode
horn
insulator
series gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002320668A
Other languages
Japanese (ja)
Other versions
JP2004158225A (en
Inventor
敏緒 渡辺
友安 長谷川
容丈 山田
聡 土居
博 藤田
俊幸 高木
龍哉 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Kansai Electric Power Co Inc
Original Assignee
NGK Insulators Ltd
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Kansai Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP2002320668A priority Critical patent/JP4141231B2/en
Publication of JP2004158225A publication Critical patent/JP2004158225A/en
Application granted granted Critical
Publication of JP4141231B2 publication Critical patent/JP4141231B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Insulators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、碍子連と平行に避雷ホーンを取り付けた避雷碍子装置に関するものであり、特に110〜154kV送電用の避雷碍子装置に関するものである。
【0002】
【従来の技術】
【特許文献1】
特開2002-93256号公報
【0003】
送電用の碍子装置を雷などの異常電圧によるフラッシオーバ事故から保護するために、碍子連の課電側金具及び接地側金具のそれぞれに碍子連ホーン取り付けた碍子装置は周知である。これらの碍子連ホーンのホーン間隔Z1は、電圧階級に応じた碍子連結長との絶縁協調を取れるように設定されている。しかしこのような従来のアークホーンには、フラッシオーバに伴う続流を積極的に遮断する機能はない。
【0004】
そこで上記の特許文献1に示すように、アレスタ機能を持つZnO素子を内蔵させた避雷ホーンを従来のアークホーンと並列に取り付け、雷サージ電圧を受けたときには避雷ホーンを通じて雷サージ電流を流し、商用周波の続流は遮断するようにした避雷碍子装置が既に実用化されている。
【0005】
このような避雷碍子装置においては、雷サージ電圧を受けたときに確実に避雷ホーンを通じて電流が流れるように、避雷ホーン間の直列ギャップ長Z2は、絶縁協調を考慮した碍子連ホーンのホーン間隔Z1よりも小さく設定されている。このためZnO素子が健全な間は問題がないが、雷撃によりZnO素子が破壊されて避雷ホーンとしての機能を失って導体化した場合には、ホーン間隔Z1よりも小さい直列ギャップ長Z2が残り、避雷ホーンが修理されるまでこの直列ギャップ長Z2だけで商用周波の運転電圧はもとより開閉サージ電圧に耐える必要がある。
【0006】
一般に送電線の開閉サージ耐電圧特性は、開閉サージ電圧平均値+3σに耐えることが要求されている。避雷碍子装置においてはZnO素子が正常であればこの要求を満足している。しかし、ZnO素子が破壊した場合は碍子連のホーン間隔Z1との絶縁協調を考慮して設定した直列ギャップ長Z2のみでは、この要求を十分満たすことが困難なため、これまでの運用例では開閉サージ電圧平均値+3σの発生確率とZnO素子の破壊故障の重畳確率が非常に小さいとの考え方から、ZnO素子破壊故障時の開閉サージ耐電圧を平均値+2σ程度としている。開閉サージ電圧の平均値μを2.25倍、標準偏差σを0.35倍とする抵抗リアクトル接地方式の一般値を採用するとμ+2σ=2.95倍となり、154KV送電線においては154KV×(1.15/1.1)×(√2/√3)×2.95倍×1.1の耐電圧に関する一般式から、427KVの開閉サージ電圧を受けても直列ギャップ長Z2で放電しないようにする必要がある。
【0007】
この要求に応えるためには、直列ギャップ長Z2を十分に大きくすればよい。しかし直列ギャップ長Z2を大きくすることは、雷サージ電圧を受けたときに確実に避雷ホーンを通じて電流を流すという本来の目的には反することとなる。特に154KVの既設送電線の絶縁設計が他の電圧階級に比べて過酷な条件にあることから、これまでの避雷碍子装置の運用例ではZnO素子破壊故障時の開閉サージ電圧はμ+1σとされてきた。このように矛盾する要求を同時に満たす設計は容易ではないため、特開2002-93256号公報に示した構造を154kV等の電圧階級に適用することは、これまで実現されていなかった。
【0008】
【発明が解決しようとする課題】
本発明は上記した従来の問題点を解決し、雷サージ電圧を受けたときに確実に避雷ホーンを通じて雷サージ電流を流すことができ、また雷撃によりZnO素子が破壊された故障時においても平均値+2σに耐える開閉サージ電圧特性を持たせることができる避雷碍子装置を提供するためになされたものである。
【0009】
【課題を解決するための手段】
上記の課題を解決するために本発明者は検討を重ねた結果、雷インパルスと開閉サージインパルスとの特性差に着目し、避雷ホーンの先端に設けられる直列ギャップ電極の形状を工夫すれば、前記の矛盾する要求を同時に満たす設計が可能となることを究明した。
【0010】
本発明はこの知見に基いてなされたものであり、110〜154kV送電用の碍子連の課電側金具及び接地側金具のそれぞれの一端に、ZnO素子の先端に直列ギャップ電極を備えた避雷ホーンを直列ギャップ長Zを持たせて取り付けるとともに、それぞれの他端には碍子連ホーンを絶縁協調に適した間隔Zを持たせて取り付けた避雷碍子において、課電側の直列ギャップ電極を球状電極とし、接地側の直列ギャップ電極を棒状電極とし、かつ球状電極の直径を、接地側の棒状電極の先端部の曲率直径の2〜4倍であり、かつ直列ギャップ長Z の5〜12%の範囲としたことを特徴とするものである。
【0011】
なお、絶縁協調性の向上のためには、直列ギャップ長Zをホーン間隔Zの60%以下とすることが好ましい。
【0012】
【発明の実施の形態】
以下に本発明の好ましい実施の形態を示す。
図1は本発明を154kV送電用の碍子連に適用した実施形態を示す図であり、1は碍子連、2は碍子連1を鉄塔アームに固定するための接地側金具、3は碍子連1の下端に送電線を取り付けるための課電側金具である。なお本発明の避雷碍子装置は、110kV送電用にも適用することができる。
【0013】
接地側金具2の一端にはホーン取付金具4を介して避雷ホーン5が取り付けられており、その他端には碍子連ホーン6が取り付けられている。また課電側金具3の一端にはホーン取付金具7を介して避雷ホーン8が取り付けられており、その他端には碍子連ホーン9が取り付けられている。碍子連ホーン6と碍子連ホーン9とは、従来と同様にその電圧階級における絶縁協調に適した間隔Z1を持たせて対向設置されており、154kVの場合には標準絶縁間隔1300mm、ホーンギャップでの換算値は1208mmである。
【0014】
避雷ホーン5、8はともにZnO素子の先端に直列ギャップ電極10、11を備えたものであり、本体部分の外周は絶縁被覆12により完全に覆われている。なお避雷ホーン5、8の両側にはL字状のアークガイド13、13を設け、過大な雷サージを受けた場合にはアークガイド13、13間で放電させてZnO素子の破壊を防止するとともに、万一のZnO素子破壊時の地絡・短絡電流による本体放圧時には、アーク電流をアークガイド13、13間に瞬時に移行させ本体の被アークダメージを少なくし爆発飛散防止をすることとなっている。
【0015】
本発明の避雷碍子装置は、課電側の避雷ホーン8の直列ギャップ電極11を電界緩和特性に優れた球状電極とし、接地側の避雷ホーン5の直列ギャップ電極10を棒状電極とした点に特徴がある。これらの直列ギャップ電極10、11間に、直列ギャップ長Z2が形成されている。このように課電側を球状電極とし、接地側を棒状電極とした理由は下記の通りである。
【0016】
雷インパルス閃絡電圧は直列ギャップ長Z2の影響を受けるものの、電極形状の影響をほとんど受けないことが知られている。従って雷インパルス閃絡電圧に関しては、本発明のように課電側を球状電極とし接地側を棒状電極としても、従来のように双方を棒状電極としてもほとんど変わらない。しかし開閉サージインパルスは電極形状の影響を受け易く、課電側の直列ギャップ電極12を球状電極として電界緩和を図ることにより、開閉サージ耐電圧を大幅に向上させることができる。この理由により、課電側を球状電極とし接地側を棒状電極とすれば、雷インパルス閃絡電圧特性に影響を及ぼすことなく、開閉サージ耐電圧のみを向上させることができる。
【0017】
本発明者が電極形状について実験を行なった結果、球状電極の径が大きくなるほど電界緩和特性が向上するが、その反面、表面に水滴などが付着するとその部分に局部的な電界集中が生じ、電界緩和効果が損なわれ易いことがわかった。また実際の避雷碍子装置ではZ1、Z2は大きく変えることはできないので、球状電極の径にも自ずから制約がある。従って球状電極の径には最適範囲があり、接地側の棒状電極の先端部の曲率直径の2〜4倍で、直列ギャップ長Z2の5〜12%の範囲が最適範囲であることを確認した。
【0018】
図2のグラフは、接地側の棒状電極の先端部の曲率直径を19mmの一定値とし、課電側の球状電極の直径を20〜100mmの間で変化させたときの開閉サージ耐電圧を測定した結果である。棒状電極の先端部の曲率直径の2〜4倍に相当する38〜76mmの範囲で、μ+1.5σをクリアでき棒状電極に比べ特性向上できることが示されている。球状電極の直径が小さいと電界緩和効果が低下し、大きすぎても表面に水滴などが付着した場合に電界緩和効果が損なわれるためと考えられる。
【0019】
図3のグラフは、直列ギャップ長Z2と開閉サージ耐電圧との関係を示すものである。このグラフに示されているように、従来の双方を棒状電極とした従来品ではμ+2σをクリアするために730mmの直列ギャップ長Z2を必要としていたのに対し、本発明のように課電側を球状電極とすれば、直列ギャップ長Z2を700mmとしてもμ+2σをクリアすることができる。このように本発明によれば、必要な開閉サージ耐電圧を維持しつつ直列ギャップ長Z2を従来品よりも短くできるため、雷サージ電圧を受けたときにはより確実に雷サージ電流を避雷ホーンを通じて流すことができる。また碍子装置全体のコンパクト化を図ることもできる。
【0020】
前記した課電側の球状電極の好ましい直径は、この直列ギャップ長Z2=700mmのほぼ5〜12%に相当する。この理由により、請求項2に記したように球状電極の直径を接地側の棒状電極の先端部の曲率直径の2〜4倍であり、かつ直列ギャップ長Z2の5〜12%の範囲とすることが好ましいものとした。
【0021】
また前記したように、碍子連ホーン6と碍子連ホーン9とは154kVの場合には絶縁協調に適した間隔Z1=1300mmを持たせて対向設置されている。絶縁協調特性の観点から、直列ギャップ長Z2をホーン間隔Z1の60%以下とすることが好ましく、直列ギャップ長Z2=700mmではZ2/Z1=0.54となる。
【0022】
棒状電極の先端部の曲率直径が19mm、課電側の球状電極の直径が50mm、直列ギャップ長Z2が700mmであるとき、絶縁協調特性は統計的手法を用いた場合、標準絶縁間隔1300mmに対して1.89σ(協調失敗確率2.94%)、碍子連ホーン間隔1300mmに対して3.46σ(協調失敗確率0.03%)となり、協調失敗することなく送電線に適用できることが確認された。
【0023】
【発明の効果】
以上に説明したように、本発明の避雷碍子装置は雷インパルスと開閉サージインパルスとの特性差に着目し、課電側の直列ギャップ電極を球状電極とし、接地側の直列ギャップ電極を棒状電極としたものである。これにより本発明の避雷碍子装置は、雷サージ電圧を受けたときに確実に避雷ホーンを通じて雷サージ電流を流し続流を遮断することができ、また雷撃によりZnO素子が破壊された故障時においても平均値+2σに耐える開閉サージ電圧特性を持たせることができる。さらに絶縁協調特性の点でも問題はなく、全体の直列ギャップ長Z2を短くすることにより、全体の小型化にも寄与することができるなど多くの利点を有するものである。
【図面の簡単な説明】
【図1】本発明の実施形T雷を示す正面図である。
【図2】課電側の球状電極の直径と開閉サージ耐電圧との関係を示すグラフである。
【図3】直列ギャップ長Z2と開閉サージ耐電圧との関係を示すグラフである。
【符号の説明】
1 碍子連、2 接地側金具、3 課電側金具、4 ホーン取付金具、5 避雷ホーン、6 碍子連ホーン、7 ホーン取付金具、8 避雷ホーン、9 碍子連ホーン、10 直列ギャップ電極、11 直列ギャップ電極、12 絶縁被覆、13 アークガイド
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lightning arrester device in which a lightning horn is attached in parallel with the insulator series, and more particularly to a lightning insulator device for 110-154 kV power transmission.
[0002]
[Prior art]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-93256
In order to protect a power transmission lever device from a flashover accident caused by an abnormal voltage such as lightning, a lever device in which a lever horn is attached to each of a charging side metal fitting and a ground side metal fitting is well known. The horn interval Z 1 of these insulator series horns is set so as to achieve insulation coordination with the insulator coupling length corresponding to the voltage class. However, such a conventional arc horn does not have a function of positively interrupting the continuity associated with the flashover.
[0004]
Therefore, as shown in Patent Document 1 above, a lightning horn incorporating a ZnO element having an arrester function is attached in parallel with a conventional arc horn, and when a lightning surge voltage is received, a lightning surge current is passed through the lightning horn, A lightning protection device that cuts off the frequency continuation has already been put into practical use.
[0005]
In such a lightning arrester insulator apparatus, as current flows reliably through the arrester horn when subjected to a lightning surge voltage, the series gap length Z 2 between lightning horn, the horn interval insulator string horn Considering insulation coordination It is set smaller than the Z 1. For this reason, there is no problem while the ZnO element is healthy. However, when the ZnO element is destroyed by lightning strike and loses its function as a lightning protection horn and becomes a conductor, the series gap length Z 2 is smaller than the horn interval Z 1. the remaining, the operation voltage of the commercial frequency by only the series gap length Z 2 until the lightning protection horn is repaired, it is necessary to withstand well switching surge voltage.
[0006]
In general, the switching surge withstand voltage characteristic of a transmission line is required to withstand the switching surge voltage average value + 3σ. In the lightning arrester, this requirement is satisfied if the ZnO element is normal. However, when the ZnO element breaks down, it is difficult to satisfy this requirement only with the series gap length Z 2 set in consideration of the insulation coordination with the horn interval Z 1 of the insulator series. Therefore, the switching surge withstand voltage at the time of ZnO element breakdown failure is set to about the average value + 2σ from the viewpoint that the occurrence probability of the switching surge voltage average value + 3σ and the overlapping probability of the breakdown failure of the ZnO element are very small. When the general value of the resistance reactor grounding method in which the average value μ of the switching surge voltage is 2.25 times and the standard deviation σ is 0.35 times is adopted, μ + 2σ = 2.95 times, and 154 KV × (1 .15 / 1.1) × (√2 / √3) × 2.95 times × 1.1 From the general formula for the withstand voltage, even if a switching surge voltage of 427 KV is received, the series gap length Z 2 is not discharged. It is necessary to.
[0007]
In order to meet this requirement, the series gap length Z 2 may be sufficiently increased. However, increasing the series gap length Z 2 is contrary to the original purpose of surely passing a current through a lightning protection horn when receiving a lightning surge voltage. In particular, since the insulation design of the existing transmission line of 154 KV is in harsh conditions compared to other voltage classes, the switching surge voltage at the time of ZnO element breakdown failure has been set to μ + 1σ in the operation examples of the lightning arrester so far. . Since it is not easy to simultaneously satisfy the contradictory requirements as described above, it has not been realized so far to apply the structure shown in Japanese Patent Laid-Open No. 2002-93256 to a voltage class such as 154 kV.
[0008]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems, can reliably pass a lightning surge current through a lightning protection horn when receiving a lightning surge voltage, and average value even in the case of a failure in which a ZnO element is destroyed by a lightning strike. It was made to provide a lightning arrester that can have switching surge voltage characteristics that can withstand + 2σ.
[0009]
[Means for Solving the Problems]
As a result of repeated studies by the present inventors to solve the above-mentioned problems, paying attention to the characteristic difference between the lightning impulse and the switching surge impulse, and devising the shape of the series gap electrode provided at the tip of the lightning horn, It was clarified that a design that satisfies the contradicting demands of the system could be made at the same time.
[0010]
The present invention has been made based on this finding, and a lightning protection horn provided with a series gap electrode at the tip of a ZnO element at one end of each of a charging side metal fitting and a ground side metal fitting of an insulator series for 110-154 kV power transmission. with the attaching to have a series gap length Z 2, in lightning protection insulator attached to the respective other ends to have a distance Z 1 to a suitable insulator string horn insulation coordination, spherical series gap electrodes of voltage application side an electrode, and a series gap electrodes on the ground side and the rod-shaped electrode, and the diameter of the spherical electrode, a 2-4 times the diameter of curvature of the tip of the rod-shaped electrode on the ground side, and the series gap length Z 2 5 to 12 % Range .
[0011]
Incidentally, in order to improve the insulation coordination property, it is preferable that the series gap length Z 2 and less than 60% of the horn interval Z 1.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
FIG. 1 is a diagram showing an embodiment in which the present invention is applied to a 154 kV power transmission insulator series, wherein 1 is an insulator series, 2 is a ground metal fitting for fixing the insulator series 1 to a steel tower arm, and 3 is an insulator series 1. It is the electric power transmission side metal fitting for attaching a power transmission line to the lower end of this. The lightning protection lever device of the present invention can also be applied to 110 kV power transmission.
[0013]
A lightning protection horn 5 is attached to one end of the grounding side metal fitting 2 via a horn attachment metal fitting 4, and an insulator series horn 6 is attached to the other end. A lightning protection horn 8 is attached to one end of the power-applying side fitting 3 via a horn attachment fitting 7, and an insulator reaming horn 9 is attached to the other end. The insulator series horn 6 and the insulator series horn 9 are opposed to each other with an interval Z 1 suitable for insulation coordination in the voltage class as in the conventional case. In the case of 154 kV, the standard insulation interval 1300 mm, the horn gap The conversion value at is 1208 mm.
[0014]
Both the lightning protection horns 5 and 8 are provided with series gap electrodes 10 and 11 at the tips of ZnO elements, and the outer periphery of the main body is completely covered with an insulating coating 12. In addition, L-shaped arc guides 13 and 13 are provided on both sides of the lightning protection horns 5 and 8, and when an excessive lightning surge is received, the arc guides 13 and 13 are discharged to prevent the ZnO element from being destroyed. When the main body is released due to a ground fault or short-circuit current in the event of destruction of the ZnO element, the arc current is instantaneously transferred between the arc guides 13 and 13 to reduce arc damage of the main body and prevent explosion explosion. ing.
[0015]
The lightning arrester device of the present invention is characterized in that the series gap electrode 11 of the lightning arrester horn 8 on the charging side is a spherical electrode having excellent electric field relaxation characteristics, and the series gap electrode 10 of the lightning arrester horn 5 on the ground side is a rod electrode. There is. A series gap length Z 2 is formed between the series gap electrodes 10 and 11. The reason why the charging side is a spherical electrode and the ground side is a rod-like electrode is as follows.
[0016]
Although lightning impulse flashover voltage is affected by the series gap length Z 2, it is known to hardly affected by the electrode shape. Therefore, the lightning impulse flashing voltage is almost the same even when the power application side is a spherical electrode and the ground side is a rod-shaped electrode as in the present invention, and both are rod-shaped electrodes as in the prior art. However, the switching surge impulse is easily affected by the electrode shape, and the switching surge withstand voltage can be greatly improved by reducing the electric field by using the series gap electrode 12 on the charging side as a spherical electrode. For this reason, if the charging side is a spherical electrode and the ground side is a rod-like electrode, only the switching surge withstand voltage can be improved without affecting the lightning impulse flashover voltage characteristics.
[0017]
As a result of experiments conducted on the electrode shape by the present inventor, as the diameter of the spherical electrode increases, the electric field relaxation characteristics improve. On the other hand, when water droplets or the like adhere to the surface, local electric field concentration occurs in the portion, and the electric field It was found that the relaxation effect is easily impaired. In addition, since Z 1 and Z 2 cannot be changed greatly in an actual lightning arrester, the diameter of the spherical electrode is naturally limited. Therefore, there is an optimal range for the diameter of the spherical electrode, confirming that the range of 5 to 12% of the series gap length Z2 is 2 to 4 times the curvature diameter of the tip of the rod electrode on the ground side. did.
[0018]
The graph of FIG. 2 measures the switching surge withstand voltage when the curvature diameter of the tip of the rod-like electrode on the ground side is a constant value of 19 mm and the diameter of the spherical electrode on the charging side is changed between 20 and 100 mm. It is the result. It has been shown that μ + 1.5σ can be cleared in the range of 38 to 76 mm corresponding to 2 to 4 times the curvature diameter of the tip of the rod-shaped electrode, and the characteristics can be improved compared to the rod-shaped electrode. It is considered that when the diameter of the spherical electrode is small, the electric field relaxation effect is lowered, and even if it is too large, the electric field relaxation effect is impaired when water droplets or the like adhere to the surface.
[0019]
The graph of FIG. 3 shows the relationship between the series gap length Z 2 and the switching surge withstand voltage. As shown in this graph, the conventional product with both rod-shaped electrodes conventionally requires a series gap length Z 2 of 730 mm in order to clear μ + 2σ, but as in the present invention. If the electric side is a spherical electrode, μ + 2σ can be cleared even if the series gap length Z 2 is 700 mm. According to the present invention, it is possible to shorter than conventional series gap length Z 2 while maintaining the required switching surge withstand voltage, through lightning horn more reliably lightning surge current when subjected to a lightning surge voltage It can flow. In addition, the whole insulator device can be made compact.
[0020]
The preferable diameter of the above-mentioned spherical electrode on the charging side corresponds to approximately 5 to 12% of this series gap length Z 2 = 700 mm. For this reason a 2-4 times the diameter of curvature of the tip of the rod-shaped electrode on the ground side diameter of the spherical electrode as noted in claim 2, and a 5 to 12% of the range of the series gap length Z 2 It was preferable to do.
[0021]
Further, as described above, the insulator horn 6 and the insulator horn 9 are opposed to each other with an interval Z 1 = 1300 mm suitable for insulation coordination in the case of 154 kV. From the viewpoint of insulation coordination characteristics, the series gap length Z 2 is preferably 60% or less of the horn interval Z 1 , and when the series gap length Z 2 = 700 mm, Z 2 / Z 1 = 0.54.
[0022]
When the curvature diameter of the tip of the rod-shaped electrode is 19 mm, the diameter of the spherical electrode on the charging side is 50 mm, and the series gap length Z 2 is 700 mm, the insulation coordination characteristics are set to a standard insulation interval of 1300 mm when using a statistical method. On the other hand, it was 1.89σ (cooperation failure probability 2.94%), 3.46σ (cooperation failure probability 0.03%) with respect to the insulator horn interval 1300mm, and it was confirmed that it can be applied to transmission lines without cooperation failure. It was.
[0023]
【The invention's effect】
As described above, the lightning arrester of the present invention pays attention to the characteristic difference between the lightning impulse and the switching surge impulse, and the series gap electrode on the charging side is a spherical electrode, and the series gap electrode on the ground side is a rod electrode. It is a thing. As a result, the lightning arrester device of the present invention can surely flow the lightning surge current through the lightning horn when the lightning surge voltage is received and interrupt the continuity, and even in the event of a failure where the ZnO element is destroyed by lightning strike. The switching surge voltage characteristics can withstand the average value + 2σ. Furthermore, there is no problem in terms of the insulation coordination characteristics, and there are many advantages such that the overall series gap length Z 2 can be shortened to contribute to the overall size reduction.
[Brief description of the drawings]
FIG. 1 is a front view showing an embodiment T lightning according to the present invention.
FIG. 2 is a graph showing the relationship between the diameter of a spherical electrode on the charging side and the switching surge withstand voltage.
FIG. 3 is a graph showing the relationship between series gap length Z 2 and switching surge withstand voltage.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 insulator series, 2 grounding side metal fittings, 3 electrical charging side metal fittings, 4 horn mounting metal fittings, 5 lightning horns, 6 insulator reaming horns, 7 horn mounting metal fittings, 8 lightning protection horns, 9 insulator reaming horns, 10 series gap electrodes, 11 series Gap electrode, 12 insulation coating, 13 arc guide

Claims (2)

110〜154kV送電用の碍子連の課電側金具及び接地側金具のそれぞれの一端に、ZnO素子の先端に直列ギャップ電極を備えた避雷ホーンを直列ギャップ長Zを持たせて取り付けるとともに、それぞれの他端には碍子連ホーンを絶縁協調に適した間隔Zを持たせて取り付けた避雷碍子において、課電側の直列ギャップ電極を球状電極とし、接地側の直列ギャップ電極を棒状電極とし、かつ球状電極の直径を、接地側の棒状電極の先端部の曲率直径の2〜4倍であり、かつ直列ギャップ長Z の5〜12%の範囲としたことを特徴とする避雷碍子装置。A lightning horn provided with a series gap electrode at the tip of a ZnO element is attached to one end of each of the insulator-side charging side metal fitting and grounding side metal fitting for 110-154 kV power transmission with a series gap length Z 2 , respectively. In the lightning insulator in which the insulator horn is attached to the other end of the insulator with a gap Z 1 suitable for insulation coordination, the series gap electrode on the charging side is a spherical electrode, the series gap electrode on the ground side is a rod electrode, and the diameter of the spherical electrodes are 2-4 times the diameter of curvature of the tip of the rod-shaped electrode on the ground side, and lightning arrester insulator apparatus, characterized in that the 5 to 12% of the series gap length Z 2. 直列ギャップ長ZSeries gap length Z 2 をホーン間隔ZHorn interval Z 1 の60%以下とした請求項1記載の避雷碍子装置。The lightning protection insulator device according to claim 1, which is 60% or less.
JP2002320668A 2002-11-05 2002-11-05 Lightning protection insulator device Expired - Lifetime JP4141231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002320668A JP4141231B2 (en) 2002-11-05 2002-11-05 Lightning protection insulator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002320668A JP4141231B2 (en) 2002-11-05 2002-11-05 Lightning protection insulator device

Publications (2)

Publication Number Publication Date
JP2004158225A JP2004158225A (en) 2004-06-03
JP4141231B2 true JP4141231B2 (en) 2008-08-27

Family

ID=32801448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002320668A Expired - Lifetime JP4141231B2 (en) 2002-11-05 2002-11-05 Lightning protection insulator device

Country Status (1)

Country Link
JP (1) JP4141231B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5052190B2 (en) * 2007-04-13 2012-10-17 三菱電機株式会社 Insulator device
CN102751056A (en) * 2012-07-24 2012-10-24 固力发集团有限公司 Discharge gap device
JP5830482B2 (en) * 2013-03-21 2015-12-09 日本碍子株式会社 Lightning arrester mounting structure in tension insulator
CN105098694A (en) * 2015-08-24 2015-11-25 国网天津静海供电有限公司 Overhead lightning line erection method based on typical design of power distribution network
CN105355342A (en) * 2015-12-10 2016-02-24 国网四川省电力公司电力科学研究院 Line lightning arrester
CN106058784B (en) * 2016-08-09 2019-01-29 丹东电力设备厂 Arrester installation pedestal
CN106300211A (en) * 2016-08-11 2017-01-04 广西电网有限责任公司贺州供电局 A kind of line terminal lightning protection method
CN106451080B (en) * 2016-12-27 2017-11-03 国网江苏省电力公司经济技术研究院 A kind of arrester
CN108400524A (en) * 2018-05-10 2018-08-14 特瑞格(天津)科技有限公司 A kind of plural serial stage multi-chamber lightning protection device for 220kV high voltage transmission lines
CN108565084B (en) * 2018-06-13 2024-04-12 泰州学院 Novel series gap composite insulation metal oxide lightning arrester
CN114825244A (en) * 2020-08-11 2022-07-29 国网山东省电力公司费县供电公司 Replacement method of lightning rod

Also Published As

Publication number Publication date
JP2004158225A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP4141231B2 (en) Lightning protection insulator device
RU2537037C2 (en) Current-collecting device for lightning protection of electrical equipment, and overhead transmission line equipped with such device
EP1102372B1 (en) Creeping discharge lightning arrestor
JP2698445B2 (en) Suspended lightning insulator for power transmission lines
CN115152109A (en) Lightning arrester with protective spark gap
JP3210386B2 (en) Applicable structure of lightning arrester device in transmission line
CN214280429U (en) 500kV discharge gap device
JPH0338901Y2 (en)
RU199041U1 (en) MULTI-CHAMBER ARRESTER WITH RIBS AND Cuts ALONG THE INSULATING BODY
CN208596863U (en) Multi-cavity arrester with guard electrode
JPH0367291B2 (en)
JPS6026484Y2 (en) overhead distribution line
JP2951046B2 (en) Lightning arrester with air discharge gap
JP2509741B2 (en) Lightning arrester device for power lines
JPH038016Y2 (en)
KR200332144Y1 (en) Arrester
JPH0313937Y2 (en)
CN112562949A (en) Series multi-gap metal oxide arrester
JP2509742B2 (en) Lightning arrester device for power lines
Tsuge Design and performance of external gap type line arrester
JPS63245832A (en) Lightning insulator for aerial transmission line
JPH038017Y2 (en)
JPH02234376A (en) Lightning protecting insulator
JPH0654621B2 (en) Lightning arrester device for overhead power lines
JPH036981Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4141231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

EXPY Cancellation because of completion of term