JP4141184B2 - In-situ purification method for contaminated groundwater - Google Patents

In-situ purification method for contaminated groundwater Download PDF

Info

Publication number
JP4141184B2
JP4141184B2 JP2002172548A JP2002172548A JP4141184B2 JP 4141184 B2 JP4141184 B2 JP 4141184B2 JP 2002172548 A JP2002172548 A JP 2002172548A JP 2002172548 A JP2002172548 A JP 2002172548A JP 4141184 B2 JP4141184 B2 JP 4141184B2
Authority
JP
Japan
Prior art keywords
purification
ground
contaminated
situ
groundwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002172548A
Other languages
Japanese (ja)
Other versions
JP2004016865A (en
Inventor
端 淳 一 川
合 達 司 河
藤 圭二郎 伊
田 宏 吉
沢 進 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Chemical Grouting Co Ltd
Original Assignee
Kajima Corp
Chemical Grouting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Chemical Grouting Co Ltd filed Critical Kajima Corp
Priority to JP2002172548A priority Critical patent/JP4141184B2/en
Publication of JP2004016865A publication Critical patent/JP2004016865A/en
Application granted granted Critical
Publication of JP4141184B2 publication Critical patent/JP4141184B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、掘削を伴わずに地盤中にウォータージェットを利用して浄化体を形成し、揮発性有機化合物(VOC)や硝酸態窒素などの環境汚染物質によって汚染された土壌および地下水(または地盤)を原位置浄化する汚染地下水の原位置浄化工法に関する。
【0002】
【従来の技術】
地中に溶剤、洗浄剤、消炎剤などの揮発性有機化合物や硝酸態窒素、農薬などが浸透すると地下水が汚染され、その下流域で水が汲み上げられて利用されるとその毒性や有害性が利用者、あるいはその水域の生態系に悪影響をおよぼす。
従来、このような汚染された地下地盤に対し、掘削を伴わないでこれらの汚染物質を浄化する物質を地盤中に設置する方法としては、
(1)液状やスラリー状、又はガス状の浄化物質を注入井より注入もしくは圧入する。
(2)バックホウなどの重機を用いて土壌中に浄化物質を混合する。
(3)オーガーなどの掘削装置を用いて土壌中に浄化物質を混合する。
(4)ケーソンやトレンチ等を設置して内部を掘削し浄化物質を地盤中に設置する。
などが知られている。
【0003】
上記従来の浄化方法では、以下に示すような問題点があった。
(1)注入井より浄化物質を注入する場合、透水性の悪いシルトや粘土質への適用は、供給速度が大幅に遅く効率が極端に低下する。また、不飽和層へのガス流にしても同様に透気性の影響を大きく受ける。
従来の薬注工法を利用する場合は、混合範囲が地盤特性の影響を大きく受け地盤中に浄化材を均一に注入できない。
(2)重機などを用いて直接汚染土壌に混合する方法は、深度の深い汚染に対してコストが大幅に増加する。
(3)オーガーなどを用いて混合する方法は、深度の深い汚染に対して技術的には対応可能であるが、地表面から汚染部まで掘削するため実際には掘削費用の大幅な増加を招く。また、オーガーの半径により適用面積が限定されるため平面的な広がりは期待できない。そして、混ぜ込む浄化材は地表面から底部まで全体に広がるため、汚染されていない部分にも浄化材が供給され、浄化材の使用量を過剰に必要とする。
(4)ケーソンを設置する方法も、地表面から汚染部まで掘削するため(3)と同様に深度の深い汚染に対してコストが大幅に増加する。
【0004】
なお、特開2001−79534号公報には、汚染地盤を攪拌しつつ過酸化水素と第1鉄塩とを供給し、汚染地盤、過酸化水素、および第1鉄塩の混合によって有機物等を浄化する技術が開示されている。
【0005】
【発明が解決しようとする課題】
従来の薬注工法を利用して浄化材混合液を地盤に注入する場合、地盤の不均一性により浄化材が均一に地盤内に混合することはできない。
高圧の液体を噴出しながら回転するロッド(噴射管)を地盤中で上下させるジェット工法を用いて浄化材を汚染地盤に注入すれば、原位置で直接汚染土壌もしくは地下水と混合することができる。この際、浄化材が分散もしくは溶解しづらい粉体の場合は、必要に応じて粘性や比重を調節するための物質を添加しスラリー状で注入することが可能である。
このウォータージェット工法は、深い深度への対応が可能であり、任意の深度範囲に限定した適用をすることで汚染されていない土壌への浄化材の消費を抑え、最小限の注入量でのピンポイント注入もしくは攪拌混合が可能となる。
【0006】
通常のジェット工法では、注入半径を正確に制御することは難しいが、角度を付して設けた2個のジェット孔によってジェット水流をクロスするように噴出させるウォータージェット交差噴流工法では、切削(注入)半径を正確に制御することができる。
【0007】
したがって、本発明は、ウォータージェットを利用し、汚染地盤中の地下水が下流部へ流出しないようにするための浄化体を確実かつ容易に形成し、汚染地下水の浄化を行う原位置浄化工法を提供することを目的としている。
浄化材が混合液内で分離する場合は、均一な注入は難しい。また通常の増粘材を添加しても、地盤の透水性が低下し、浄化効果が得られない。
【0008】
【課題を解決するための手段】
本発明によれば、汚染土壌地盤中にウォータジェットを利用して浄化体を形成し汚染地下水を浄化する原位置浄化工法において、多重管を削孔されたパイロット孔に挿入し高圧水のウォータージェットによって所定範囲内の切削を行い、同時に多重管のウォータージェット下方に設けられた噴射孔より汚染地下水を原位置浄化するための還元性浄化材混合液を噴射しつつ引き上げてウォータージェットで切削された地盤を還元性浄化材と攪拌混合して浄化体を形成し、前記還元性浄化材水溶液の噴射注入後に、浄化体の上部にできた空洞部に、多重管を引き抜いた後に、固化材を注入し難透水層を形成し、以って汚染地下水を原位置浄化するようになっている。
【0009】
すなわち、本発明によれば、汚染された地盤中の地下水流に向けてパイロット孔を削孔し、そのパイロット孔に多重管を挿入して高圧水ウォータージェットにより所定範囲の切削を行う。同時にウォータージェット下方から例えば鉄粉等の還元性浄化材混合液を半径方向に噴出し、そのウォータージェットで切削された所定範囲内の地盤を浄化材と混練する。こうして、多重管を所定の高さ引き上げて所定深度に浄化体を形成する。
また、多重管を回転し、引き上げてより広い範囲に浄化体を形成することもできる。
そして、形成した浄化体の上部にできた空胴部には、多重管を引き抜いた後に固化材を注入する。
さらに、ウォータージェット交差噴流工法により、正確に注入範囲を制御できるようになるため、浄化材の注入量が低減できる。
【0010】
このようにして地盤中に鉄粉等の還元性浄化材が混練されて高透水性の浄化体が形成される。したがって、上流からの汚染水は浄化体によって浄化されて流れ、その際に、上部に注入された固化材により浄化体上面を通過して下流部に流出するのが防止されるので確実に浄化が行われる。
【0011】
また、前記還元性浄化材混合液に易分解性の増粘材(例えばグアガム)を添加し粘性を高めれば、比重が大きく異なる還元性浄化材を均一に分散した状態で注入できるようになり、それと共に設置後すみやかに注入部分の透水性を恢復することが可能になる。
なお、注入する鉄粉等の還元性浄化材混合液に増粘材を添加してスラリー化すると比重の大きい浄化材の沈降を防ぐことができ、その一方では、この方法で比重の軽い浄化材の深さ分離を防ぐこともできる。
【0012】
さらに、本発明は、高圧水で切削された汚染物質を含むスラリーを配管によって地上部に導き、排気ガス処理手段を設けた密閉タンクでそれを受け、工事に伴って発生する有害ガスの大気への拡散を防止して施工する。
【0013】
このように本発明は、ウォータージェットによって施工するので、深度の深い汚染にも適用できると共に、均一に浄化材を地盤に注入混合でき、また交差噴流を用いることで、切削(注入)範囲を正確に制御することができ、従来工法に比べ最小限の注入量での注入・混練が可能となる。
また、浄化体同士をラップさせて施工することにより浄化体混合地盤の平面的長さ、厚さを自由に変えることができ、浄化体同士の隙間もなく高精度で施工できる。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明のウォータージェット交差噴流工法を用いた鉄粉浄化体設置工法の実施形態を説明する。
図1に示すように、ウォータージェットを噴射する多重管は、鉄粉混合液、高圧水、および圧縮空気を送出する三重管1で構成され、その下端近傍には半径方向に浄化材混合液の噴射孔であるノズル2が設けられており、その上方には高圧水を噴射するノズル3a、3bが軸方向に対で設けられ、半径方向に所定距離で交差するウォータージェット交差噴流を形成するように構成されている。
そして、地上部には排出された汚染土を一時貯留する密閉型スライム受けタンク5が設けられており、そのタンク5には、排気ガス処理手段である活性炭吸着装置6が接続されて有害ガスが大気中に拡散しないように構成されている。
【0015】
その施工手順としては、まず、図1に示すように地盤G中の地下水流Wに向けて立孔(パイロット孔)10が削孔される。そして、その立孔10に三重管1が挿入され、ノズル3a、3bからの超高圧水のウォータージェット交差噴流J1によって所定径φの範囲内の切削を行い、回転しながら引き上げられる。それと同時に、ノズル2から還元性浄化材である鉄粉混合液がジェットJとなって注入され、切削された地盤と注入された鉄粉とが混練される。こうして、切削と鉄粉混合液注入により余剰となった土壌は、三重管1の外周部を通って排出され、地上のスライム受けタンク5に搬出される。
【0016】
このようにして所定の混入長(高さ)の施工が行われ、鉄粉浄化体15が形成される。そして、ウォータージェット交差噴流J1で切削された鉄粉水溶液上部のブリージングによってできた空洞部16には、三重管1を引き抜いた後に、図2に示すように固化材が注入され、難透水層が形成される。
【0017】
上記のようにして形成された鉄粉浄化体15は、その上部16に固化材で難透水層が構築され、上面を浄化されない汚染地下水が通過して流下することが防止される。また、ウォータージェット交差噴流を利用して施工されるので所定範囲内で浄化材を確実に混練することができ、その所定範囲外を乱すことなく施工できる。
【0018】
【実験例】
以下、本発明に基づく実験例について説明する。
実験例の工事では、図3の平面図に破線で示す直径φ=2.3mの改良体A−1およびA−2に対し、鉄粉混合液注入が行われた。その鉄粉混合液の配合は、表1に示すものである。
【表1】

Figure 0004141184
【0019】
なお、図3において、◆印(B1〜B5)は後記する施工後のサンプリング位置、○印(M1〜M3)はモニタリング井戸位置それぞれ示している。
【0020】
また、事前の地下水濃度測定結果は、表2に示すものであり、地下水汚染濃度の設計値0.8mg/L以下であった。
【表2】
Figure 0004141184
【0021】
ボーリング試料の分析の結果から地盤内に混入された鉄粉と砂との重量比は、図4(深度分布)に示すものであった。
図4のように深度分布に関しては、鉄粉の沈み込みや有意不均一はなく、ほぼ設計値以上の値が得られている。そして、r=1.0mと1.5mとでは、明らかに鉄粉混入量は異なり、計画通りの改良範囲が達成されている。
改良体A−1とA−2とのラップ部(B4)でも、ラップしていない部分と同様に鉄粉が入っており、平面的に連続した施工が可能であることが実証されている。
【0022】
深度−10m(GL−10)で鉄粉量が多い傾向があり、B5だけがその傾向から外れているが、浄化効果に影響を及ぼすほど顕著なものではない。
B2が突出して鉄粉量が多いのは、A−1施工での鉄粉の配合が高いためである。また、B1ではそれ程鉄粉が多くないことから、注入鉄粉量が多い場合には中心付近での鉄粉量が多くなるのみであり、浄化の観点からは、注入鉄粉水溶液濃度を高くすることは、コストに見合った浄化効果の増加が望めず、合理的ではない。
【0023】
施工時において測定した値等から計算した鉄粉注入量(浄化体の体積当たりの鉄粉重量)と実験結果から計算した値を表3および表4に示す。表3は施工結果から鉄粉の収支計算をした結果、表4は実験結果から計算した鉄粉の収支計算の結果をそれぞれ示している。
【0024】
評価手法の一例としては、安全側を考慮して実験で鉄粉量を測定した位置より内側(中心側)は測定値以上であると考えると、以下のように評価できる。
A−1では、中心付近とr=1.0m付近の鉄粉量の差が大きく、表3のような鉄粉量分布の単純化が適していないが安全側で考え、中心付近(0〜0.5m)で650kg/m、外側(0.5〜1.15m)で150kg/m以上
A−2では、鉄粉量は中心付近(0〜0.5m)で300kg/m以上
【表3】
Figure 0004141184
【表4】
Figure 0004141184
【0025】
次に、地下水のモニタリングの結果を図6、7および表5に示す。この図は、図5に示すように鉄粉浄化体15内にJM−1、上流側にJM−3、下流側にJM−2の各観測井を設け、地下水のモニタリングを行った結果であり、地下水中の揮発性有機化合物(VOC)濃度(図6および図7)、pH、および酸化還元電位ORP(表5)を測定し、鉄粉浄化体15の効果や性能を評価したものである。
【表5】
Figure 0004141184
【0026】
地下水モニタリング結果では、上流地下水JM−3のVOC濃度に対して鉄粉浄化体中JM−1および下流JM−2での濃度の低減効果が見られる。この濃度低下は、注入した鉄粉量や鉄のVOC分解能力から想定される濃度変化とほぼ一致しており、設計時の予想通り,TCE(テトラクロロエチレン)やPCE(パークロロエチレン)の濃度を環境基準値まで浄化することができた。
また、鉄粉浄化体中のpHはアルカリ性を、そしてORP(酸化還元電位)は、還元性状態を示す結果となっている。これは、以下の還元反応によると考えられており、VOCの濃度低下が鉄粉の還元分解反応であることを支持する結果であった。
【化1】
Figure 0004141184
(なお、R−Clは、TCEなどの有機塩素化合物を示す。)
【0027】
【発明の効果】
以上説明したように構成された本発明によれば、以下に示す効果を奏する。
(1) ウォータージェットを利用して施工するので浄化体の均質性が確保でき、かつ交差噴流を用いることにより所定範囲内を正確かつ確実に混練でき、その外部を乱すことなく施工できる。
(2) 浄化材(鉄粉)をジェットで混練するので透水性が原地盤より上がり、高透水性地盤が構築されて汚染地下水を容易に集め、浄化することができる。
(3) 浄化体の上部が難透水層に構築され、上面を汚染地下水が通過することが防止される。
(4) 生分解性の増粘材を用いると、圧送時の粉体の沈降を防ぐことができ、しかも、施工後には地中において時間経過と共に粘性が低下して透水性を確保できる。
【図面の簡単な説明】
【図1】本発明によるウォータージェット交差噴流での切削と鉄粉混合液の注入状態を示す図。
【図2】上部の空洞部に固化材を注入している状態を示す図。
【図3】実験例の鉄粉浄化体の施工およびサンプリング位置を示す平面図。
【図4】実験例で混入された鉄粉と砂との重量比の深度分布を示すグラフ。
【図5】実験例で地下水のモニタリングのための観測井の位置関係を示す平面図。
【図6】地下水モニタリング結果のPCE濃度の変化を示すグラフ。
【図7】地下水モニタリング結果のTCE濃度の変化を示すグラフ。
【符号の説明】
1・・・三重管
2・・・鉄粉混合液噴射ノズル
3a、3b・・・ウォータージェット交差噴流用ノズル
5・・・スライム受けタンク
6・・・活性炭吸着装置
10・・・立孔
15・・・浄化体
16・・・空洞部(難透水層)[0001]
BACKGROUND OF THE INVENTION
The present invention forms soil and groundwater (or ground) contaminated by environmental pollutants such as volatile organic compounds (VOC) and nitrate nitrogen by forming a purification body using groundwater jet in the ground without excavation. ) In-situ purification method for contaminated groundwater.
[0002]
[Prior art]
Infiltration of volatile organic compounds such as solvents, cleaning agents, and anti-inflammatory agents, nitrate nitrogen, and agricultural chemicals into the ground will contaminate groundwater, and if water is pumped downstream and used, its toxicity and harmfulness will be lost. It adversely affects the user or the ecosystem of the water area.
Conventionally, with respect to such contaminated underground ground, as a method of installing substances in the ground to purify these pollutants without excavation,
(1) A liquid, slurry, or gaseous purification substance is injected or injected from an injection well.
(2) The purification substance is mixed in the soil using a heavy machine such as a backhoe.
(3) The purification substance is mixed in the soil using an excavator such as an auger.
(4) Install caisson, trench, etc., excavate the inside and install the purification substance in the ground.
Etc. are known.
[0003]
The conventional purification method has the following problems.
(1) When the purification substance is injected from the injection well, application to silt or clay with poor water permeability significantly slows the supply rate and extremely decreases the efficiency. Similarly, the gas flow to the unsaturated layer is greatly affected by air permeability.
When the conventional chemical injection method is used, the mixing range is greatly affected by the ground characteristics, and the purification material cannot be uniformly injected into the ground.
(2) The method of directly mixing with contaminated soil using a heavy machine or the like greatly increases the cost for deep contamination.
(3) The method of mixing using an auger or the like is technically capable of dealing with deep contamination, but in practice, excavation from the ground surface to the contaminated part causes a significant increase in excavation costs. . In addition, since the application area is limited by the radius of the auger, a planar spread cannot be expected. And since the purification material to mix spreads from the ground surface to the whole bottom, a purification material is supplied also to the part which is not contaminated, and the usage-amount of a purification material is required excessively.
(4) Since the caisson is also excavated from the ground surface to the contaminated part, the cost is greatly increased for deep contamination as in (3).
[0004]
In JP-A-2001-79534, hydrogen peroxide and ferrous salt are supplied while stirring the contaminated ground, and organic matter and the like are purified by mixing the contaminated ground, hydrogen peroxide, and ferrous salt. Techniques to do this are disclosed.
[0005]
[Problems to be solved by the invention]
When the purification material mixture is injected into the ground using the conventional chemical injection method, the purification material cannot be uniformly mixed in the ground due to the non-uniformity of the ground.
If the purification material is injected into the contaminated ground using a jet method in which a rotating rod (jet pipe) is moved up and down in the ground while jetting high-pressure liquid, it can be directly mixed with the contaminated soil or groundwater in the original position. At this time, if the purification material is a powder that is difficult to disperse or dissolve, it is possible to add a substance for adjusting the viscosity and specific gravity as necessary and inject in a slurry form.
This water jet method can handle deep depths, and can be applied only to a range of depths to reduce the consumption of cleansing material in uncontaminated soil and to minimize the amount of injection. Point injection or stirring mixing is possible.
[0006]
In the normal jet method, it is difficult to accurately control the injection radius, but in the water jet cross jet method in which the jet water flow is jetted by two jet holes provided at an angle, cutting (injection) is performed. ) The radius can be controlled accurately.
[0007]
Therefore, the present invention provides an in-situ purification method that uses a water jet to reliably and easily form a purification body for preventing groundwater in the contaminated ground from flowing out downstream, and purifies the contaminated groundwater. The purpose is to do.
When the purification material is separated in the mixed solution, uniform injection is difficult. Moreover, even if a normal thickener is added, the water permeability of the ground is lowered, and a purification effect cannot be obtained.
[0008]
[Means for Solving the Problems]
According to the present invention, in the in-situ purification method for purifying contaminated groundwater by using a water jet in a contaminated soil ground , a multiple pipe is inserted into a drilled pilot hole, perform cutting in a predetermined range by a jet, it is cut by water jet pulled up while injecting the reducing purification material mixture for situ remediation of contaminated groundwater from the ejection hole provided in a water jet under the multi-tube at the same time The ground is stirred and mixed with a reducing purification material to form a purification body, and after injection of the reducing purification material aqueous solution, the multiple pipe is drawn into the cavity formed above the purification body, and then the solidification material is It is injected to form a poorly permeable layer , thereby purifying contaminated groundwater in situ.
[0009]
That is, according to the present invention, a pilot hole is drilled toward the groundwater flow in the contaminated ground, and a multiple pipe is inserted into the pilot hole, and a predetermined range of cutting is performed with a high-pressure water jet. At the same time, a reducing purification material mixture such as iron powder is ejected in the radial direction from below the water jet, and the ground within a predetermined range cut by the water jet is kneaded with the purification material. In this way, the purifier is formed at a predetermined depth by raising the multiple pipes to a predetermined height.
It is also possible to form the purification body in a wider range by rotating and pulling up the multiple tube.
Then, the solidification material is injected into the cavity formed at the upper part of the formed purification body after the multiple tube is pulled out.
Furthermore, since the injection range can be accurately controlled by the water jet cross jet method, the injection amount of the purification material can be reduced.
[0010]
In this way, a reducing purification material such as iron powder is kneaded in the ground to form a highly water-permeable purification body. Therefore, the contaminated water from the upstream is purified and flowed by the purifying body, and at this time, the solidified material injected into the upper part is prevented from passing through the upper surface of the purifying body and flowing out to the downstream part. Done.
[0011]
Moreover, if an easily decomposable thickener (e.g. guar gum) is added to the reductive purification material mixture to increase the viscosity, it becomes possible to inject the reductive purification material having a large specific gravity in a uniformly dispersed state. At the same time, it becomes possible to recover the water permeability of the injection part immediately after installation.
In addition, if a thickener is added to the reductive purification material mixture such as iron powder to be injected and slurried, the purification material having a large specific gravity can be prevented from settling. On the other hand, the purification material having a low specific gravity can be obtained by this method. It is also possible to prevent depth separation.
[0012]
Furthermore, the present invention introduces a slurry containing contaminants cut with high-pressure water to the ground by piping, receives it in a sealed tank provided with exhaust gas treatment means, and releases it to the atmosphere of harmful gases generated during construction. Prevent the diffusion of the construction.
[0013]
As described above, since the present invention is constructed by a water jet, it can be applied to deep contamination, and the purifying material can be uniformly injected and mixed into the ground, and the crossing jet can be used to accurately set the cutting (injection) range. Therefore, the injection and kneading can be performed with a minimum injection amount as compared with the conventional method.
Moreover, the planar length and thickness of the purification body mixed ground can be freely changed by wrapping the purification bodies, and construction can be performed with high accuracy without a gap between the purification bodies.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of an iron powder purifier installation method using the water jet cross jet method of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the multiple pipe which injects a water jet is comprised with the iron powder mixed liquid, the high pressure water, and the triple pipe | tube 1 which sends out compressed air, and the purifier mixed liquid is radially arranged in the vicinity of the lower end. A nozzle 2 which is an injection hole is provided, and nozzles 3a and 3b for injecting high-pressure water are provided in pairs above the nozzle 2 so as to form a water jet cross jet that intersects with a predetermined distance in the radial direction. It is configured.
The ground part is provided with a closed slime receiving tank 5 for temporarily storing the discharged contaminated soil, and the tank 5 is connected with an activated carbon adsorbing device 6 which is an exhaust gas processing means to receive harmful gas. It is configured not to diffuse into the atmosphere.
[0015]
As the construction procedure, first, a vertical hole (pilot hole) 10 is drilled toward the groundwater flow W in the ground G as shown in FIG. Then, the triple pipe 1 is inserted into the vertical hole 10, and cutting is performed within the range of a predetermined diameter φ by the water jet cross jet J <b> 1 of ultrahigh pressure water from the nozzles 3 a and 3 b and is pulled up while rotating. At the same time, the iron powder mixed liquid, which is a reducing purification material, is injected as a jet J from the nozzle 2, and the ground thus cut and the injected iron powder are kneaded. Thus, the surplus soil by cutting and iron powder mixture injection is discharged through the outer periphery of the triple pipe 1 and is carried out to the slime receiving tank 5 on the ground.
[0016]
In this way, the construction with a predetermined mixing length (height) is performed, and the iron powder purifying body 15 is formed. Then, after the triple pipe 1 is pulled out, the solidified material is injected into the cavity 16 formed by breathing of the upper part of the iron powder aqueous solution cut by the water jet cross jet J1, as shown in FIG. It is formed.
[0017]
The iron powder purifier 15 formed as described above has a hardly water-permeable layer formed of a solidified material on an upper portion 16 thereof, and prevents contaminated groundwater that is not purified on the upper surface from flowing down. Moreover, since it constructs using a water jet cross jet, it can knead | purify a purification material within a predetermined range reliably, and can construct it without disturbing the outside of the predetermined range.
[0018]
[Experimental example]
Hereinafter, experimental examples based on the present invention will be described.
In the construction of the experimental example, the iron powder mixture was injected into the improved bodies A-1 and A-2 having a diameter φ = 2.3 m indicated by a broken line in the plan view of FIG. The composition of the iron powder mixture is shown in Table 1.
[Table 1]
Figure 0004141184
[0019]
In FIG. 3, ♦ marks (B1 to B5) indicate sampling positions after construction, and ○ marks (M1 to M3) respectively indicate monitoring well positions.
[0020]
The preliminary groundwater concentration measurement results are shown in Table 2, and the groundwater contamination concentration design value was 0.8 mg / L or less.
[Table 2]
Figure 0004141184
[0021]
From the result of the analysis of the boring sample, the weight ratio of iron powder and sand mixed in the ground was as shown in FIG. 4 (depth distribution).
As shown in FIG. 4, regarding the depth distribution, there is no subsidence or significant nonuniformity of iron powder, and a value almost equal to or higher than the design value is obtained. And r = 1.0m and 1.5m clearly differ in the iron powder mixing amount, and the improvement range as planned is achieved.
Even in the lap portion (B4) between the improved bodies A-1 and A-2, iron powder is contained in the same manner as the unwrapped portion, and it has been proved that continuous construction can be performed in a plane.
[0022]
There is a tendency that the amount of iron powder is large at a depth of -10 m (GL-10), and only B5 is deviated from the tendency, but it is not so remarkable that it affects the purification effect.
The reason why B2 protrudes and the amount of iron powder is large is that the amount of iron powder in A-1 construction is high. Moreover, since there is not so much iron powder in B1, when the amount of injected iron powder is large, only the amount of iron powder near the center is increased. From the viewpoint of purification, the concentration of the injected iron powder aqueous solution is increased. This is not rational because an increase in the purification effect commensurate with the cost cannot be expected.
[0023]
Tables 3 and 4 show the iron powder injection amount (iron powder weight per volume of the purifier) calculated from the values measured at the time of construction and the values calculated from the experimental results. Table 3 shows the results of the iron powder balance calculation from the construction results, and Table 4 shows the results of the iron powder balance calculation calculated from the experimental results.
[0024]
As an example of the evaluation method, if it is considered that the inner side (center side) is more than the measured value from the position where the iron powder amount is measured in the experiment in consideration of the safety side, the evaluation can be performed as follows.
In A-1, the difference between the iron powder amount near the center and r = 1.0 m is large, and the simplification of the iron powder amount distribution as shown in Table 3 is not suitable. 0.5 m) at 650 kg / m 3 , outside (0.5 to 1.15 m) at 150 kg / m 3 or more A-2, iron powder amount is 300 kg / m 3 or more near the center (0 to 0.5 m) [Table 3]
Figure 0004141184
[Table 4]
Figure 0004141184
[0025]
Next, the results of groundwater monitoring are shown in FIGS. This figure is the result of monitoring groundwater by providing each observation well of JM-1, JM-3 on the upstream side, and JM-2 on the downstream side in the iron powder purifier 15 as shown in FIG. The volatile organic compound (VOC) concentration (FIGS. 6 and 7), pH, and oxidation-reduction potential ORP (Table 5) in groundwater are measured, and the effect and performance of the iron powder purifier 15 are evaluated. .
[Table 5]
Figure 0004141184
[0026]
In the groundwater monitoring result, the effect of reducing the concentration of JM-1 in the iron powder purifier and the downstream JM-2 with respect to the VOC concentration of the upstream groundwater JM-3 is seen. This decrease in concentration is almost the same as the change in concentration expected from the amount of iron powder injected and the VOC decomposition ability of iron. As expected at the time of design, the concentration of TCE (tetrachloroethylene) and PCE (perchlorethylene) was reduced to the environment. It was possible to purify to the reference value.
Further, the pH in the iron powder purifier is alkaline, and the ORP (oxidation-reduction potential) indicates a reducing state. This is considered to be due to the following reduction reaction, and was a result supporting that the decrease in the concentration of VOC is a reductive decomposition reaction of iron powder.
[Chemical 1]
Figure 0004141184
(R-Cl represents an organic chlorine compound such as TCE.)
[0027]
【The invention's effect】
The present invention configured as described above has the following effects.
(1) Since construction is performed using a water jet, the homogeneity of the purification body can be secured, and the use of the cross jet can accurately and reliably knead the inside of the predetermined range, and construction can be performed without disturbing the outside.
(2) Since the purification material (iron powder) is kneaded with a jet, the permeability is higher than that of the original ground, and a highly permeable ground can be constructed to easily collect and purify contaminated groundwater.
(3) The upper part of the purification body is constructed as a poorly permeable layer, preventing contaminated groundwater from passing through the upper surface.
(4) When a biodegradable thickener is used, sedimentation of the powder during pumping can be prevented, and after construction, the viscosity decreases with the passage of time in the ground to ensure water permeability.
[Brief description of the drawings]
FIG. 1 is a diagram showing cutting with a water jet cross jet according to the present invention and an injection state of an iron powder mixture.
FIG. 2 is a view showing a state in which a solidifying material is injected into the upper cavity.
FIG. 3 is a plan view showing the construction and sampling position of an iron powder purifier in an experimental example.
FIG. 4 is a graph showing the depth distribution of the weight ratio of iron powder and sand mixed in an experimental example.
FIG. 5 is a plan view showing the positional relationship of observation wells for groundwater monitoring in an experimental example.
FIG. 6 is a graph showing changes in PCE concentration as a result of groundwater monitoring.
FIG. 7 is a graph showing changes in TCE concentration as a result of groundwater monitoring.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Triple tube 2 ... Iron powder liquid mixture injection nozzle 3a, 3b ... Water jet cross jet nozzle 5 ... Slime receiving tank 6 ... Activated carbon adsorption device 10 ... Vertical hole 15 ..Purification body 16 ... cavity (hardly permeable layer)

Claims (4)

汚染土壌地盤中にウォータジェットを利用して浄化体を形成し汚染地下水を浄化する原位置浄化工法において、多重管を削孔されたパイロット孔に挿入し高圧水のウォータージェットによって所定範囲内の切削を行い、同時に多重管のウォータージェット下方に設けられた噴射孔より汚染地下水を原位置浄化するための還元性浄化材混合液を噴射しつつ引き上げてウォータージェットで切削された地盤を還元性浄化材と攪拌混合して浄化体を形成し、前記還元性浄化材水溶液の噴射注入後に、浄化体の上部にできた空洞部に、多重管を引き抜いた後に、固化材を注入し難透水層を形成し、以って汚染地下水を原位置浄化することを特徴とする汚染地下水の原位置浄化工法。In the in-situ purification method , which uses a water jet to form a purification body in the contaminated soil ground and purifies the contaminated groundwater, multiple pipes are inserted into the drilled pilot holes and within a specified range by high-pressure water jets. Reducing the ground ground cut by the water jet by cutting and simultaneously pulling up the reducible purification material mixed liquid for in-situ purification of the contaminated groundwater from the injection hole provided below the water jet of the multiple pipe wood and mixed with stirring to form a purifier, the after injection the injection of reducing purification material solution, the cavity made in the upper part of the purifier, after withdrawal of the multi-tube, the implanted difficulty aquifer solidified material It formed, in situ cleaning method for contaminated groundwater, which comprises situ remediation of contaminated groundwater me than. 所定範囲内の切削を行う高圧水のウォータージェットが交差噴流である請求項1記載の汚染地下水の原位置浄化工法。Situ remediation method for groundwater contaminated according to claim 1, wherein water jet of high-pressure water is cross jet which performs cutting in a predetermined range. 前記還元性浄化材混合液に易分解性の増粘材を添加することで、比重の異なる還元性浄化材を均一に注入できるようにすると共に設置後すみやかに注入部分の透水性を恢復することを可能とした請求項1に記載の汚染地下水の原位置浄化工法。By adding an easily decomposable thickener to the reductive purification material mixture, it is possible to uniformly inject reductive purification materials having different specific gravities, and to quickly restore the water permeability of the injection portion after installation. The in-situ purification method for contaminated groundwater according to claim 1, wherein 高圧水で切削された汚染物質を含むスラリーを配管によって地上部に導き、排気ガス処理手段を設けた密閉タンクでそれを受け、工事に伴って発生する有害ガスの大気への拡散を防止して施工する請求項1または2に記載の汚染地下水の原位置浄化工法。  Slurry containing pollutants cut with high-pressure water is guided to the ground by piping, and it is received by a sealed tank equipped with exhaust gas treatment means to prevent the diffusion of harmful gases generated during construction to the atmosphere. The in-situ purification method for contaminated groundwater according to claim 1 or 2 to be constructed.
JP2002172548A 2002-06-13 2002-06-13 In-situ purification method for contaminated groundwater Expired - Lifetime JP4141184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002172548A JP4141184B2 (en) 2002-06-13 2002-06-13 In-situ purification method for contaminated groundwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002172548A JP4141184B2 (en) 2002-06-13 2002-06-13 In-situ purification method for contaminated groundwater

Publications (2)

Publication Number Publication Date
JP2004016865A JP2004016865A (en) 2004-01-22
JP4141184B2 true JP4141184B2 (en) 2008-08-27

Family

ID=31172077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002172548A Expired - Lifetime JP4141184B2 (en) 2002-06-13 2002-06-13 In-situ purification method for contaminated groundwater

Country Status (1)

Country Link
JP (1) JP4141184B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8067088B2 (en) 2004-05-20 2011-11-29 Albemarle Corporation Pelletized brominated anionic styrenic polymers and their preparation and use

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4592016B2 (en) * 2005-08-30 2010-12-01 ケミカルグラウト株式会社 Powder body injection method
JP4821384B2 (en) * 2006-03-10 2011-11-24 株式会社大林組 In-situ cleaning method for organic compound contaminated soil
JP5594805B2 (en) * 2007-03-28 2014-09-24 鹿島建設株式会社 Purification method for contaminated soil
JP2009112933A (en) * 2007-11-06 2009-05-28 Nippo Corporation:Kk Soil purifying method
CN112407961B (en) * 2020-11-28 2022-04-19 浙江固强新材料有限公司 Curing agent conveying equipment for sludge soil remediation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8067088B2 (en) 2004-05-20 2011-11-29 Albemarle Corporation Pelletized brominated anionic styrenic polymers and their preparation and use

Also Published As

Publication number Publication date
JP2004016865A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
CA3025709C (en) In-situ injection of soil and groundwater - high pressure rotary jet grouting in-situ remediation system and method
US5456550A (en) Procedure for delivering a substance into an aquifer
CN205762951U (en) Soil and subsoil water inject high-pressure rotary-spray injection in-situ remediation system in situ
EP1166904B1 (en) Method for detoxification treatment of soil
KR101955112B1 (en) Method for Field soil stabilization and remediation of polluted soil by Extraction / filling method using PMI-system
CN113477687B (en) Method for restoring low-permeability stratum contaminated soil through chemical oxidation in cooperation with hydraulic fracturing
JP4141184B2 (en) In-situ purification method for contaminated groundwater
KR20110041262A (en) The multi-type injection &amp; jetting equipment and in-situ soil remediation method using this equipment
JP5569618B1 (en) In-situ purification method by multi-point injection
JP5218853B2 (en) Recontamination prevention method after remediation of contaminated soil
US7044152B2 (en) Apparatus for in-situ remediation using a closed delivery system
JP3809579B2 (en) Contaminated soil improvement method
KR101410473B1 (en) Monitoring system for in-situ underground agitation and soil washing method for complexly contaminated soil using the same
JP3833943B2 (en) Chemical injection method and chemical injection device
JP3452916B1 (en) Contaminated soil improvement method
JP2015121031A (en) Mouth pipe for high pressure jet mixing method, and high pressure jet mixing method
JP4347717B2 (en) Soil purification method
JP2005185982A (en) Method and system for cleaning contaminated soil
JP2005144345A (en) Method of purifying polluted soil
JP5020683B2 (en) Containment method for contaminated soil
JP4167563B2 (en) Contaminated groundwater purification structure
JP2003074047A (en) Underground purifying wall constructing method
JP2005021730A (en) Wall for preventing diffusion of volatile organic compound and method for constructing the wall
JP2005161124A (en) System and method for purifying contaminated ground water
JP2005021873A (en) Cleaning method for contaminated soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4141184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term