JP2009112933A - Soil purifying method - Google Patents
Soil purifying method Download PDFInfo
- Publication number
- JP2009112933A JP2009112933A JP2007288207A JP2007288207A JP2009112933A JP 2009112933 A JP2009112933 A JP 2009112933A JP 2007288207 A JP2007288207 A JP 2007288207A JP 2007288207 A JP2007288207 A JP 2007288207A JP 2009112933 A JP2009112933 A JP 2009112933A
- Authority
- JP
- Japan
- Prior art keywords
- soil
- soil purification
- well
- water permeability
- organic matter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002689 soil Substances 0.000 title claims abstract description 360
- 238000000034 method Methods 0.000 title claims abstract description 115
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 125
- 238000002347 injection Methods 0.000 claims abstract description 103
- 239000007924 injection Substances 0.000 claims abstract description 103
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 97
- 238000005086 pumping Methods 0.000 claims abstract description 75
- 239000000126 substance Substances 0.000 claims abstract description 56
- 230000008569 process Effects 0.000 claims abstract description 53
- 239000003673 groundwater Substances 0.000 claims abstract description 39
- 238000000746 purification Methods 0.000 claims description 142
- 239000005416 organic matter Substances 0.000 claims description 127
- 230000035699 permeability Effects 0.000 claims description 57
- 238000012423 maintenance Methods 0.000 claims description 43
- 239000003814 drug Substances 0.000 claims description 30
- 238000003756 stirring Methods 0.000 claims description 24
- 238000002156 mixing Methods 0.000 claims description 23
- 229940079593 drug Drugs 0.000 claims description 18
- 230000006872 improvement Effects 0.000 claims description 18
- 239000004094 surface-active agent Substances 0.000 claims description 16
- 230000009471 action Effects 0.000 claims description 15
- 238000005507 spraying Methods 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 13
- 239000007864 aqueous solution Substances 0.000 claims description 8
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 7
- 239000012670 alkaline solution Substances 0.000 claims description 7
- -1 amine compound Chemical class 0.000 claims description 6
- 239000012459 cleaning agent Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 150000005215 alkyl ethers Chemical class 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 2
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 230000005611 electricity Effects 0.000 claims 1
- 238000005067 remediation Methods 0.000 claims 1
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical compound [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 claims 1
- 239000000295 fuel oil Substances 0.000 abstract description 17
- 239000000243 solution Substances 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 73
- 239000010410 layer Substances 0.000 description 60
- 238000000926 separation method Methods 0.000 description 19
- 239000003921 oil Substances 0.000 description 16
- 235000019198 oils Nutrition 0.000 description 16
- 239000011368 organic material Substances 0.000 description 16
- 239000007788 liquid Substances 0.000 description 15
- 229920006395 saturated elastomer Polymers 0.000 description 13
- 239000012044 organic layer Substances 0.000 description 12
- 239000003208 petroleum Substances 0.000 description 10
- 239000011259 mixed solution Substances 0.000 description 7
- 238000011109 contamination Methods 0.000 description 6
- 238000011065 in-situ storage Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000010793 Steam injection (oil industry) Methods 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000009412 basement excavation Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 235000019645 odor Nutrition 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000021962 pH elevation Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000011403 purification operation Methods 0.000 description 2
- 239000012629 purifying agent Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 241000512290 Antalis Species 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 239000004902 Softening Agent Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000011083 cement mortar Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 230000008821 health effect Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 238000003900 soil pollution Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Processing Of Solid Wastes (AREA)
Abstract
Description
本発明は、有機物、特に油分により汚染された土壌を原位置で浄化する方法に関する。なお、本発明でいう「原位置で浄化する方法」とは、地中の汚染土壌を掘り起こさずにその場所で浄化する方法を意味する。 The present invention relates to a method for purifying soil contaminated with organic matter, particularly oil, in situ. In the present invention, the “method for purifying in situ” means a method for purifying the soil without digging up contaminated soil in the ground.
産業活動に伴い生じる種々の汚染物質による土壌汚染が問題となっており、健康に対する影響の懸念から、2003年2月に土壌汚染対策法が施行された。
しかし、土壌汚染対策法では、ベンゼンは規制対象となっているものの、他の石油類による土壌汚染は対象となっていない。石油類に起因する油膜や油臭がある土壌は、生活環境保全上、汚染された土壌として認識されることが多く、この場合は浄化が必要不可欠となる。なお、前記石油類の油膜や油臭に端を発する油汚染土壌の対策については、「油汚染対策ガイドライン」が環境省より2006年4月に発行された。
Soil pollution caused by various pollutants caused by industrial activities has become a problem, and the Soil Contamination Countermeasures Law was enacted in February 2003 due to concerns about health effects.
However, the Soil Contamination Countermeasures Law regulates benzene, but not soil contamination by other petroleum. Soil with an oil film or oily odor caused by petroleum is often recognized as contaminated soil for the preservation of the living environment, and in this case, purification is indispensable. In addition, the “Oil Pollution Countermeasure Guidelines” was issued in April 2006 by the Ministry of the Environment regarding countermeasures against oil-contaminated soil originating from oil slicks and oily odors.
石油類などの有機物により汚染された土壌を浄化する技術としては、例えば界面活性剤を含む土壌浄化剤により汚染土壌を浄化する方法がある(例えば、下記特許文献1〜3を参照。)。界面活性剤を含む土壌浄化剤は地盤に注入した際の拡散性が高く、少ない使用量でも広範囲に亘って汚染物質を効果的に浄化できる。 As a technique for purifying soil contaminated with organic substances such as petroleum, for example, there is a method of purifying contaminated soil with a soil purifier containing a surfactant (see, for example, Patent Documents 1 to 3 below). A soil purification agent containing a surfactant has high diffusibility when injected into the ground, and can effectively purify pollutants over a wide range even with a small amount of use.
ところで、本発明者等は、上記特許文献1〜3に記載の方法では、汚染土壌の土粒子に付着した有機物が界面活性剤を含む土壌浄化剤により剥離されて分離するが、浄化対象となる有機物がC重油などの粘度が高い石油類の場合には、剥離分離した有機物が土粒子の間隙に詰まりさらなる浄化が困難になるという問題があることを知見した。 By the way, in the methods described in Patent Documents 1 to 3, the present inventors peel and separate organic substances adhering to soil particles of contaminated soil by a soil purifier containing a surfactant, but they are targeted for purification. In the case where the organic matter is petroleum such as C heavy oil, it has been found that there is a problem that the separated and separated organic matter is clogged in the gaps between the soil particles, making further purification difficult.
本発明の目的は、上記した問題点を改善することにあり、特に土壌浄化剤を用いる汚染土壌の原位置での浄化を作業の進行に伴って起こる浄化効率の低下を防止しつつ効果的に行う方法を提供することにある。 An object of the present invention is to improve the above-mentioned problems, and in particular, while effectively preventing the reduction of the purification efficiency that occurs as the work progresses in-situ purification of contaminated soil using a soil purification agent. It is to provide a way to do.
本発明は、有機物により汚染された土壌を含む汚染領域に複数の注入井戸とそれらの間に配した揚水井戸をそれぞれ地下水面よりも下方に達するように設ける工程、注入井戸から土壌浄化剤を注入し且つ揚水井戸から揚水を行う工程、および土壌の通水性維持改善工程を有することを特徴とする土壌浄化方法である。本発明の方法によれば、土壌浄化剤により土粒子から剥離分離した有機物がC重油などの粘度が高い石油類の場合でも、通水性維持改善工程を有するので、土壌の通水性が確保されて剥離分離した有機物を含む地下水の回収を容易に行うことができる。 The present invention provides a step of providing a plurality of injection wells and pumping wells disposed between them in a contaminated area including soil contaminated with organic matter so as to reach below the groundwater surface, and injecting a soil purification agent from the injection wells And a soil purification method characterized by having a step of pumping water from a pumping well and a step of maintaining and improving the water permeability of the soil. According to the method of the present invention, even when the organic substance peeled and separated from the soil particles by the soil purifier is a petroleum having a high viscosity such as C heavy oil, it has a water permeability maintenance improving process, so that the water permeability of the soil is secured. It is possible to easily recover groundwater containing separated and separated organic substances.
本発明の土壌浄化方法で用いる土壌の通水性維持改善工程は、用いた土壌浄化剤により分離(分解を伴った分離をも包含する。)した有機物に起因する土壌の通水性の低下を防止する工程であり、次のような手段が好ましく用いられる。 The step of maintaining and improving the water permeability of the soil used in the soil purification method of the present invention prevents a decrease in the water permeability of the soil due to the organic matter separated (including separation accompanied by decomposition) by the used soil purification agent. The following means are preferably used.
本発明で用いるに適する通水性維持改善工程の第1の例は、汚染領域に対して振動体により振動を付与する工程である。この工程によれば、土粒子に付着している有機物に振動が付与されることにより、該有機物の剥離分離性と剥離分離した有機物の移動性が維持改善されて該有機物の回収効率が向上する。 A first example of the water permeability maintenance improving process suitable for use in the present invention is a process of applying vibration to a contaminated area by a vibrating body. According to this step, vibration is imparted to the organic matter adhering to the soil particles, so that the separation and separation of the organic matter and the mobility of the separated and separated organic matter are maintained and improved, and the recovery efficiency of the organic matter is improved. .
本発明で用いるに適する通水性維持改善工程の第2の例は、土壌浄化剤を注入井戸に注入する際に、土壌浄化剤に対して一定または間欠の圧力を付与する工程である。この工程によれば、土粒子に付着している有機物に対して一定または間欠の圧力が付与されることにより、該有機物の剥離分離性と剥離分離した有機物の移動性が維持改善されて該有機物の回収効率が向上する。 A second example of the water permeability maintenance improving process suitable for use in the present invention is a process of applying a constant or intermittent pressure to the soil cleaning agent when the soil cleaning agent is injected into the injection well. According to this step, by applying a constant or intermittent pressure to the organic matter adhering to the soil particles, the separation and separation of the organic matter and the mobility of the separated and separated organic matter are maintained and improved. Recovery efficiency is improved.
本発明で用いるに適する通水性維持改善工程の第3の例は、攪拌混合装置により土壌浄化剤と土壌とを攪拌混合する工程である。この工程によれば、攪拌混合装置により有機物で汚染された土壌の浄化を確実に行うことができ、土粒子から剥離分離した該有機物が目詰まりを起こす恐れもない。 A third example of the water permeability maintenance improving step suitable for use in the present invention is a step of stirring and mixing the soil purifier and the soil with a stirring and mixing device. According to this process, the soil contaminated with the organic matter can be reliably purified by the stirring and mixing device, and the organic matter peeled and separated from the soil particles does not cause clogging.
本発明で用いるに適する通水性維持改善工程の第4の例は、地下水面より上方の位置まで汚染領域の土壌を掘削し、該掘削面上に板状部材または気密性シートを被覆したのち、該部材またはシートの上に盛土を施工する工程である。この工程によれば、地下水面の上方を板状部材または気密性シートで被覆しているために汚染領域から地下水や気体がもれにくく、注入井戸における水頭圧の損失を防止することができ、該圧力を遠方まで到達させることができる。 A fourth example of the water permeability maintenance and improvement process suitable for use in the present invention is to excavate soil in a contaminated area to a position above the groundwater surface, and after covering the excavated surface with a plate-like member or an airtight sheet, It is a step of constructing embankment on the member or sheet. According to this process, since the upper part of the groundwater surface is covered with a plate-like member or an airtight sheet, groundwater and gas are unlikely to leak from the contaminated area, and loss of water head pressure in the injection well can be prevented. The pressure can reach far.
本発明で用いるに適する通水性維持改善工程の第5の例は、地下水面より上方の位置からも土壌浄化剤を散布する工程である。この工程によれば、汚染領域に対して側方および上方の2方向から土壌浄化剤が供給されるので、汚染領域に土壌浄化剤が確実に供給され浄化効率もよい。 A fifth example of the water permeability maintenance improving process suitable for use in the present invention is a process of spraying a soil purifier from a position above the groundwater surface. According to this step, the soil purification agent is supplied from the side and the upper direction with respect to the contaminated area, so that the soil purification agent is reliably supplied to the contaminated area and the purification efficiency is good.
本発明で用いるに適する通水性維持改善工程の第6の例は、注入井戸から土壌浄化剤を注入する前に、該汚染領域の中央部の土壌を攪拌する工程である。この工程によれば、剥離分離した有機物が粘度の高い石油類の場合でも、通水性が確保され該有機物の回収を容易かつ確実に行うことができる。 A sixth example of the water permeability maintenance and improvement step suitable for use in the present invention is a step of stirring the soil in the center of the contaminated area before injecting the soil purification agent from the injection well. According to this step, even when the organic substance separated and separated is petroleum having a high viscosity, water permeability is ensured and the organic substance can be easily and reliably recovered.
本発明で用いるに適する通水性維持改善工程の第7の例は、汚染領域の土壌に棒状部材により水平方向の穴を設ける工程である。この工程によれば、土密度が小さくなり通水性が向上するので、剥離分離した有機物の回収を容易に行うことができる。 A seventh example of the water permeability maintenance improving process suitable for use in the present invention is a process of providing a horizontal hole with a rod-shaped member in soil in a contaminated area. According to this step, since the soil density is reduced and the water permeability is improved, the organic substance separated and separated can be easily collected.
本発明で用いるに適する通水性維持改善工程の第8の例は、汚染領域の土壌をスチームなどの加熱手段により加熱する工程である。この工程によれば、土粒子から剥離分離した有機物が加熱されて粘度が下がるので、該有機物が目詰まりを起こすことがなく容易に回収することができる。 The eighth example of the water permeability maintenance improving process suitable for use in the present invention is a process of heating the soil in the contaminated area by a heating means such as steam. According to this step, the organic material peeled and separated from the soil particles is heated to lower the viscosity, so that the organic material can be easily recovered without causing clogging.
本発明で用いるに適する通水性維持改善工程の第9の例は、土壌浄化剤を注入した後に水または先に注入したものより低濃度の土壌浄化剤を注入する工程である。この工程によれば、先に注入された比較的高濃度の土壌浄化剤により土粒子から剥離分離した有機物が、後から注入された水または比較的低濃度の土壌浄化剤により押し流されるので、該有機物が目詰まりを起こすことがなく容易に回収することができる A ninth example of the water permeability maintenance improving process suitable for use in the present invention is a process of injecting a soil purification agent having a concentration lower than that of water or previously injected after injecting the soil purification agent. According to this step, the organic matter peeled and separated from the soil particles by the relatively high concentration soil purifier injected earlier is swept away by the water injected later or the relatively low concentration soil purifier. Organic matter can be easily recovered without clogging
本発明で用いるに適する通水性維持改善工程の第10の例は、汚染領域の土壌を掘削して毛管現象により該掘削面の近傍まで上昇してきた有機物を取り除く工程である。この工程によれば、土粒子から剥離分離した有機物が土粒子の間隙中で目詰まりを起こした場合でも、汚染領域の上方から該有機物を取り除くことができるので、目詰まりによる影響を最小限に抑えることができる A tenth example of the water permeability maintenance and improvement process suitable for use in the present invention is a process of excavating soil in a contaminated area to remove organic matter that has risen to the vicinity of the excavated surface by capillary action. According to this process, even when the organic matter separated and separated from the soil particles is clogged in the gap between the soil particles, the organic matter can be removed from above the contaminated area, so that the influence of the clogging is minimized. Can be suppressed
本発明で用いるに適する通水性維持改善工程の第11の例は、汚染領域の上方および下方に遮水層を設け、該遮水層により上下を挟まれた領域にフェントン剤、界面活性剤などの薬剤を注入したのち、水または土壌浄化剤を注入する工程である。この工程によれば、汚染領域に注入した薬剤が周囲の土壌中に流出することなく汚染領域に集中的に供給されるので、汚染土壌の浄化効率が高められ、土粒子から剥離分離した有機物が土粒子の間隙中で目詰まりを起こす恐れも低減される。 An eleventh example of the water permeability maintenance and improvement process suitable for use in the present invention is that a water shielding layer is provided above and below the contaminated area, and a Fenton agent, a surfactant, etc. are provided in the area sandwiched by the water shielding layer. This is a step of injecting water or a soil purification agent after injecting the chemical. According to this process, since the chemicals injected into the contaminated area are concentratedly supplied to the contaminated area without flowing into the surrounding soil, the purification efficiency of the contaminated soil is improved, and the organic substances separated from the soil particles are separated. The risk of clogging in the gaps between the soil particles is also reduced.
本発明で用いるに適する通水性維持改善工程の第12の例は、汚染領域に貫入した注入管の先端部から汚染領域へ向けて土壌浄化剤を高圧で噴射する工程である。この工程によれば、汚染領域が高圧の土壌浄化剤で攪拌混合されるので、土壌中の空隙が十分に確保され、土粒子から剥離分離した有機物が土粒子の間隙中で目詰まりを起こす恐れが少ない。 A twelfth example of the water permeability maintenance improving process suitable for use in the present invention is a process of injecting a soil purification agent at a high pressure from the tip of the injection pipe penetrating into the contaminated area toward the contaminated area. According to this process, since the contaminated area is agitated and mixed with the high-pressure soil cleansing agent, there is sufficient space in the soil, and organic substances that are separated from the soil particles may clog in the soil particle gaps. Less is.
本発明で用いるに適する通水性維持改善工程の第13の例は、注入井戸と揚水井戸との間に設けた鉛直ドレーンから有機物を回収する工程である。この工程によれば、鉛直ドレーンの数を適宜調整することにより土粒子から剥離分離した有機物が鉛直ドレーンから順次回収されるので、該有機物が土粒子の間隙中で目詰まりを起こす恐れが低減される。 A thirteenth example of the water permeability maintenance improving process suitable for use in the present invention is a process of recovering organic matter from a vertical drain provided between an injection well and a pumping well. According to this process, the organic matter separated and separated from the soil particles is recovered sequentially from the vertical drain by appropriately adjusting the number of vertical drains, and therefore the risk of the organic matter becoming clogged in the gaps between the soil particles is reduced. The
本発明で用いるに適する通水性維持改善工程の第14の例は、汚染領域に大規模な振動を付与して液状化を発生させたのち、該汚染領域の地表面まで上昇してきた有機物を取り除く工程である。この工程によれば、土粒子からの有機物の剥離分離が促進されるとともに、液状化現象を利用して該有機物の回収を行うので、該有機物が土壌中で目詰まりを起こす恐れが少ない。 A fourteenth example of the water permeability maintenance and improvement process suitable for use in the present invention removes organic matter that has risen to the ground surface of the contaminated area after a large-scale vibration is applied to the contaminated area to cause liquefaction. It is a process. According to this step, separation and separation of the organic matter from the soil particles are promoted, and the organic matter is recovered using a liquefaction phenomenon, so that the organic matter is less likely to be clogged in the soil.
本発明で用いるに適する通水性維持改善工程の第15の例は、注入井戸の下端部まで挿入した注入管の先端部から汚染領域に向かう斜め上方へ土壌浄化剤を高圧で噴射する工程である。この工程によれば、土壌浄化剤と汚染領域との接触面積が大きくなるので、汚染土壌の浄化を効率的に行うことができ、剥離分離した有機物が目詰まりを起こす恐れも低減される。 A fifteenth example of the water permeability maintenance and improvement process suitable for use in the present invention is a process of injecting a soil purification agent at a high pressure obliquely upward toward the contaminated area from the tip of the injection pipe inserted to the lower end of the injection well. . According to this step, since the contact area between the soil purification agent and the contaminated area is increased, the contaminated soil can be purified efficiently, and the risk of clogging the separated and separated organic matter is reduced.
本発明で用いるに適する通水性維持改善工程の第16の例は、注入井戸と揚水井戸との間にその先端部が汚染領域より下方に達するようにスパージング井戸を設け、該スパージング井戸の先端部から高圧の空気を噴射する工程である。この工程によれば、高圧空気の作用により土粒子に付着している有機物の剥離分離が促進されるとともに、剥離分離した有機物が該空気に連行して容易に移動できるので、該有機物が土壌中で目詰まりを起こす恐れが少ない。 A sixteenth example of the water flow maintenance and improvement process suitable for use in the present invention is that a sparging well is provided between the injection well and the pumping well so that its tip reaches below the contaminated area, and the tip of the sparging well This is a step of injecting high-pressure air from. According to this step, the separation and separation of the organic matter adhering to the soil particles is promoted by the action of the high-pressure air, and the separated and separated organic matter can be easily moved along with the air. Is less likely to cause clogging.
本発明で用いるに適する通水性維持改善工程の第17の例は、土壌浄化剤としてアルカリ性溶液を用いるか、または土壌浄化剤を注入する前に過酸化水素水などのフェントン剤を注入することにより有機物の粘度を低下させる工程である。この工程によれば、有機物がC重油などの粘度が高い石油類の場合でも、アルカリ溶液の作用によりその粘度が低減されたり、フェントン剤の作用によりその濃度が低減されたりするので、土粒子から剥離分離した有機物が土粒子の間隙中で目詰まりを起こす恐れが少ない。 A seventeenth example of the water permeability maintenance and improvement process suitable for use in the present invention is that an alkaline solution is used as the soil purification agent or a Fenton agent such as hydrogen peroxide is injected before the soil purification agent is injected. This is a step of reducing the viscosity of the organic matter. According to this process, even when the organic matter is petroleum having high viscosity such as C heavy oil, the viscosity is reduced by the action of the alkaline solution or the concentration is reduced by the action of the Fenton agent. There is little risk of clogging of the separated organic matter in the gaps between the soil particles.
本発明で用いるに適する通水性維持改善工程の第18の例は、土壌浄化剤としてプラスに帯電した土壌浄化剤を用い、注入井戸に陽極を配置し揚水井戸に陰極を配置して通電する工程である。この工程によれば、剥離分離した有機物がプラスに帯電した土壌浄化剤(陽イオン)に連行して容易に移動できるので、該有機物が土壌中で目詰まりを起こす恐れが少ない。 An eighteenth example of the water permeability maintenance and improvement process suitable for use in the present invention is a process in which a positively charged soil cleaning agent is used as a soil cleaning agent, an anode is disposed in the injection well, and a cathode is disposed in the pumping well to energize. It is. According to this step, the separated and separated organic matter can be easily moved along with the positively charged soil purification agent (cation), and therefore the organic matter is less likely to be clogged in the soil.
本発明で用いるに適する通水性維持改善工程の第19の例は、地表から汚染領域に達する吸引管を貫入して有機物を真空吸引する工程である。この工程によれば、土粒子から剥離分離した有機物が土粒子間で目詰まりを起こした場合でも、該有機物を吸引管で直接吸引するので該有機物が土壌中で目詰まりを起こす恐れがない。 A nineteenth example of the water permeability maintenance improving process suitable for use in the present invention is a process of vacuuming organic matter through a suction pipe reaching the contaminated area from the ground surface. According to this step, even when the organic matter peeled and separated from the soil particles is clogged between the soil particles, the organic matter is directly sucked by the suction pipe, so that the organic matter is not clogged in the soil.
本発明で用いるに適する通水性維持改善工程の第20の例は、汚染領域を水平方向に貫通するように周面に開口部を有する水平井戸を設け、該水平井戸の注入口から土壌浄化剤を注入し、揚水井戸または水平井戸の揚水口から揚水する工程である。この工程によれば、剥離分離した有機物が土壌中を移動する距離が少なくなるので、該有機物が土粒子の間隙中で目詰まりを起こす可能性が低減される。 A twentieth example of the water permeability maintenance and improvement process suitable for use in the present invention is provided with a horizontal well having an opening in the peripheral surface so as to penetrate the contaminated area in the horizontal direction, and the soil purifier is introduced from the inlet of the horizontal well. And pumping water from the pumping well of the pumping well or horizontal well. According to this step, the distance that the separated and separated organic matter moves through the soil is reduced, so that the possibility that the organic matter is clogged in the gap between the soil particles is reduced.
本発明で用いるに適する通水性維持改善工程の第21の例は、汚染領域を鉛直方向に貫通するように円筒部材を設け、該円筒部材の下端部から土壌浄化剤を高圧で注入する工程である。この工程によれば、周囲を拘束された土壌中に水圧が加わるので、剥離分離した有機物が地下水とともに上方へ押し流されて、該有機物が土粒子の間隙中で目詰まりを起こす可能性が低減される。 A twenty-first example of the water permeability maintenance and improvement process suitable for use in the present invention is a process of providing a cylindrical member so as to penetrate the contaminated area in the vertical direction and injecting a soil purification agent at a high pressure from the lower end of the cylindrical member. is there. According to this process, since water pressure is applied to the soil restricted in the surrounding area, the organic matter separated and separated is pushed upward together with the groundwater, and the possibility that the organic matter is clogged in the gap between the soil particles is reduced. The
上記した第1〜第21の工程例は、必要に応じ2つ以上を組合せることも可能である。
本発明では土壌浄化剤として、界面活性剤を含有する水溶液が好ましく用いられ、特に、界面活性剤として、ポリオキシアルキレンアルキルエーテルとアミン化合物を含む組成物、またはジ−2−エチルヘキシルスルホサクシネートナトリウム(AOT)とアリカリ土類金属塩を含む組成物が好ましく用いられる。これらを用いて本発明方法を実施することにより、浄化対象がC重油などの粘度が高い石油類の場合でも、土粒子に付着しているこれらの石油類を容易かつ確実に剥離分離して汚染土壌の浄化を行うことができる。
The above-described first to twenty-first process examples can be combined in two or more as necessary.
In the present invention, an aqueous solution containing a surfactant is preferably used as the soil purification agent, and in particular, a composition containing a polyoxyalkylene alkyl ether and an amine compound, or di-2-ethylhexyl sulfosuccinate sodium as the surfactant. A composition containing (AOT) and an antali earth metal salt is preferably used. By carrying out the method of the present invention using these, even if the object to be purified is petroleum oil with high viscosity such as C heavy oil, these oils adhering to the soil particles are easily separated and separated and contaminated. The soil can be purified.
本発明の土壌浄化方法によれば、汚染物質がC重油などの粘度の高い油分を主体とする場合でも、浄化作業の過程で浄化効率を低下させることなく、浄化作業全体をより短期間に効率的に行うことが可能となる。 According to the soil purification method of the present invention, even when the pollutant is mainly oil with a high viscosity such as C heavy oil, the entire purification operation can be efficiently performed in a shorter time without reducing the purification efficiency in the course of the purification operation. Can be performed automatically.
本発明は、重油などの有機物で汚染された土壌を含む汚染領域の地下水面よりも下方に達するように複数の注入井戸とそれらの間に配した揚水井戸を設け、各注入井戸から界面活性剤含有水溶液を典型例とする土壌浄化剤を注入し揚水井戸から揚水を行うと共に土壌の通水性維持改善操作を行う原位置浄化方法である。 The present invention provides a plurality of injection wells and a pumping well arranged between them so as to reach below the groundwater surface of a contaminated area including soil contaminated with organic matter such as heavy oil, and a surfactant is provided from each injection well. This is an in-situ purification method for injecting a soil purification agent having a contained aqueous solution as a typical example, pumping water from a pumping well, and performing an operation for maintaining and maintaining the water permeability of the soil.
以下、本発明を図面に基づいて説明する。
図1は、本発明の土壌浄化方法において用いられる土壌浄化システムの好適な一例を示す説明図である。図1に示す土壌浄化システム100は、地表から順に不飽和層(非帯水層)1および飽和層(帯水層)2が存在する汚染領域において、飽和層2中に存在する汚染領域(有機物層)3を原位置で浄化するためのシステムである。
Hereinafter, the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view showing a preferred example of a soil purification system used in the soil purification method of the present invention. A soil purification system 100 shown in FIG. 1 includes a contaminated region (organic matter) existing in a saturated layer 2 in a contaminated region where an unsaturated layer (non-aquifer) 1 and a saturated layer (aquifer) 2 are present in order from the ground surface. This is a system for purifying the layer 3 in-situ.
土壌の汚染原因となる有機物は特に限定されないが、本発明は、鉱油、合成油および動植物油、ならびにこれらの廃油などの油分により汚染された土壌を浄化する方法として好適である。上記油分のうち、鉱油としては、ガソリン、灯油、軽油および重油などの燃料油、潤滑油などが挙げられる。 The organic matter that causes soil contamination is not particularly limited, but the present invention is suitable as a method for purifying soil contaminated with oil such as mineral oil, synthetic oil and animal and vegetable oil, and waste oil thereof. Among the oils, examples of the mineral oil include fuel oils such as gasoline, kerosene, light oil and heavy oil, and lubricating oils.
土壌浄化システム100においては、汚染領域に複数の注入井戸10およびそれらの中間に位置する揚水井戸11がそれぞれ離間して設けられている。注入井戸10および揚水井戸11は、それぞれ地下水面Lよりも下方に達するように、すなわちそれらの下端が地下水面Lよりも下方に位置するように設けられており、飽和層2においては注入井戸10から揚水井戸11へ向かう地下水の動水勾配が形成されている。注入井戸10は有機物層3を囲むように複数個、たとえば3〜15個設置し、揚水井戸11は設置された注水井戸10のほぼ中心(汚染領域の中央部)に設置する。 In the soil purification system 100, a plurality of injection wells 10 and a pumping well 11 located in the middle of them are provided separately in the contaminated area. The injection well 10 and the pumping well 11 are provided so as to reach below the groundwater surface L, that is, their lower ends are located below the groundwater surface L. In the saturated layer 2, the injection well 10 A dynamic gradient of groundwater from the water to the pumping well 11 is formed. A plurality of, for example, 3 to 15, injection wells 10 are installed so as to surround the organic material layer 3, and the pumping well 11 is installed almost at the center of the installed water injection well 10 (the central part of the contaminated area).
注入井戸10の上端には配管32を介して薬剤混合供給装置31が連結されている。これにより、土壌浄化剤(薬剤)が薬剤混合供給装置31から注入井戸10を通って飽和層2に注入される。本発明で用いうる土壌浄化剤としては、有機剥離剤、化学酸化剤および油軟化剤が例として挙げられる。 A drug mixture supply device 31 is connected to the upper end of the injection well 10 via a pipe 32. As a result, the soil purification agent (medicine) is injected into the saturated layer 2 from the drug mixing and supplying device 31 through the injection well 10. Examples of the soil purification agent that can be used in the present invention include organic stripping agents, chemical oxidizing agents, and oil softening agents.
有機剥離剤としては、炭酸ナトリウムやケイ酸ナトリウムなどのアルカリ剤、アニオン系またはノニオン系の界面活性剤などがあり、これらは水溶液の状態で注入される。化学酸化剤としては、クエン酸、硫酸第一鉄、過酸化水素などのフェントン反応を目的とした薬剤がある。油軟化剤としては、植物系溶剤、軽質鉱物油、アルカン、シクロアルカンを主成分とした炭化水素系溶剤がある。 Examples of the organic release agent include alkali agents such as sodium carbonate and sodium silicate, anionic or nonionic surfactants, and these are injected in the form of an aqueous solution. As the chemical oxidizing agent, there are agents for the Fenton reaction such as citric acid, ferrous sulfate, hydrogen peroxide and the like. As the oil softener, there are hydrocarbon solvents mainly composed of vegetable solvents, light mineral oils, alkanes, and cycloalkanes.
本発明においては、これらの土壌浄化剤の中でも、界面活性剤の水溶液を用いることが好ましい。具体的には、ポリオキシアルキレンアルキルエーテルとアミン化合物を含む組成物、または、ジ−2−エチルヘキシルスルホサクシネートナトリウム(AOT)と硫酸マグネシウムや塩化カルシウムなどのアリカリ土類金属塩を含む組成物の使用が特に好ましい。界面活性剤は水溶液の形で用いられる。 In the present invention, among these soil purification agents, it is preferable to use an aqueous solution of a surfactant. Specifically, a composition containing a polyoxyalkylene alkyl ether and an amine compound, or a composition containing di-2-ethylhexyl sulfosuccinate sodium (AOT) and an alkaline earth metal salt such as magnesium sulfate or calcium chloride. Use is particularly preferred. The surfactant is used in the form of an aqueous solution.
注入井戸10から飽和層2に注入された土壌浄化剤は、地下水の流れAに沿って飽和層2中を移動し、有機物層3に到達する。そして、土壌浄化剤により有機物層3に含まれる土粒子に付着している有機物が分解され剥離分離して、汚染土壌が浄化される。このとき、浄化対象となる有機物がC重油などの粘度が高い石油類の場合には、剥離分離した有機物が土粒子の間隙に詰まり土壌の通水性が低下するため、剥離分離した有機物の回収が困難になることがある。そこで、本発明においては、通水性維持改善工程により該有機物に起因して土壌の通水性が低下することを防止し、または前記有機物に起因して低下した土壌の通水性を改善して、剥離分離した有機物を含む地下水の回収を容易に行えるようにしている。 The soil purifier injected into the saturated layer 2 from the injection well 10 moves in the saturated layer 2 along the groundwater flow A and reaches the organic layer 3. And the organic substance adhering to the soil particle contained in the organic substance layer 3 is decomposed | disassembled and separated by the soil purification agent, and contaminated soil is purified. At this time, when the organic matter to be purified is petroleum having a high viscosity such as C heavy oil, the separated and separated organic matter is clogged in the gaps between the soil particles, and the water permeability of the soil is reduced. It can be difficult. Therefore, in the present invention, it is possible to prevent the soil permeability from being lowered due to the organic matter by the water permeability maintenance improving step, or to improve the soil permeability lowered due to the organic matter, and to separate the soil. The groundwater containing the separated organic matter can be easily collected.
揚水井戸11の上端には配管23を介して揚水ポンプ20が連結されており、この揚水ポンプ20により揚水(薬剤、水、有機物の混合液)が地上に汲み上げられる。採取された揚水は揚水ポンプ20から油水分離槽21および分留装置22へ送られ、揚水が薬剤と有機物の混合液Aおよび薬剤と水の混合液Bに分離される。分離された混合液Aは、配管27から回収される。一方、分離された混合液Bは、配管28を通って薬剤混合供給装置31へ送られて薬剤の濃度調整を行った後に再利用される。
本発明で用いられる通水性維持改善手段工程としては、以下のものがある。図2〜図13はこれらの説明図である。
A pumping pump 20 is connected to the upper end of the pumping well 11 through a pipe 23, and pumped water (mixed liquid of medicine, water, and organic matter) is pumped up by the pumping pump 20. The collected pumped water is sent from the pumping pump 20 to the oil / water separation tank 21 and the fractionator 22, and the pumped water is separated into a mixed solution A of the drug and organic matter and a mixed solution B of the drug and water. The separated mixed solution A is recovered from the pipe 27. On the other hand, the separated mixed solution B is sent to the drug mixture supply device 31 through the pipe 28 and is reused after adjusting the concentration of the drug.
Examples of the water permeability maintenance and improvement means used in the present invention include the following. 2-13 is explanatory drawing of these.
(1)振動付与
注入井戸10から飽和層2に注入された土壌浄化剤が有機物層3に到達すると、土壌浄化剤により有機物層3の土粒子に付着している有機物が分解され剥離分離するが、このとき振動ローラ41、平面バイブレータ(図示せず)、棒状バイブレータ42などの振動体により有機物層3に対して振動を付与する。有機物層3への振動付与は、注入井戸10からの土壌浄化剤の注入と同時に行い剥離分離した有機物が土粒子の間隙に詰まらないようにすることが好ましいが、注入井戸10からの土壌浄化剤の注入が完了した後で振動を付与して有機物の詰まりを解消することもできるし、土壌浄化剤の注入と振動付与を交互に繰り返し行うこともできる。これにより、土粒子に付着している有機物の剥離分離が促進されるとともに、剥離分離した有機物が土粒子の間隙中で目詰まりを起こすことなく、該有機物が地下水の流れAに沿って飽和層2中を移動して円滑に回収される(図2)。
(1) Applying vibration When the soil purifier injected into the saturated layer 2 from the injection well 10 reaches the organic matter layer 3, the organic matter adhering to the soil particles of the organic matter layer 3 is decomposed and separated by the soil purifier. At this time, the organic layer 3 is vibrated by a vibrating body such as the vibrating roller 41, a flat vibrator (not shown), and a rod-like vibrator 42. The application of vibration to the organic layer 3 is preferably performed simultaneously with the injection of the soil purification agent from the injection well 10 so that the separated and separated organic matter is not clogged in the gaps between the soil particles. After completion of the injection, the vibration can be applied to eliminate the clogging of the organic matter, and the injection of the soil purification agent and the application of the vibration can be alternately repeated. This facilitates the separation and separation of the organic matter adhering to the soil particles, and the organic matter separated and separated does not clog in the gap between the soil particles, and the organic matter is saturated along the groundwater flow A. 2 and smoothly recovered (FIG. 2).
(2)加圧注入
注入井戸10から土壌浄化剤を注入する際に、注入井戸10の上端部に接続された加圧ポンプ51により該土壌浄化剤に対して一定または間欠の圧力を付与する。土壌浄化剤への加圧は、注入井戸10からの土壌浄化剤の注入と同時に行い剥離分離した有機物が土粒子の間隙に詰まらないようにすることが好ましいが、注入井戸10からの土壌浄化剤の注入が完了した後で加圧を行い有機物の詰まりを解消することもできるし、土壌浄化剤の注入と加圧を交互に繰り返し行うこともできる。土壌浄化剤に加圧する方法としては、注入井戸10の上端部に蓋をしたのち加圧ポンプ51により加圧する方法が好ましいが、注入井戸10と揚水井戸11との水頭差により加圧力を得るようにしてもよい。このとき土壌浄化剤に加える加圧力は土壌の土質などにもよるが、1kPa〜100kPa程度である。より具体的には、注入井戸10からの土壌浄化剤の注入量を多くして注入井戸10の水位を上昇させるとともに、揚水井戸11からの揚水量を少なくして揚水井戸11の水位を下降させることにより、注入井戸10から揚水井戸11へ向かう動水勾配を大きくする方法がある。また、注入井戸10と揚水井戸11との間に井戸を設けて、最初はこの井戸から揚水を行い土粒子から剥離分離した有機物を回収し、該井戸より上流側の土壌浄化が完了した後は該井戸から土壌浄化剤の注入を行い、さらに下流側に設けた井戸から揚水を行い土粒子から剥離分離した有機物を回収するという操作を順次行うようにしてもよい。この場合には、井戸どうしの間隔を狭くすることにより、より大きな動水勾配が得られて効果的である。これにより、注入井戸10から揚水井戸11へ向かう地下水の流れAが強められるので、土粒子から剥離分離した有機物が土粒子の間隙中で目詰まりを起こすことがなく、該有機物が地下水の流れAに沿って飽和層2中を移動して円滑に回収される(図3)。
(2) Pressurized injection When injecting the soil purification agent from the injection well 10, a constant or intermittent pressure is applied to the soil purification agent by the pressure pump 51 connected to the upper end of the injection well 10. The pressurization to the soil purification agent is preferably performed simultaneously with the injection of the soil purification agent from the injection well 10 so that the separated and separated organic matter is not clogged in the gaps between the soil particles. After completion of the injection of water, pressurization can be performed to eliminate clogging of organic matter, and injection and pressurization of the soil purification agent can be alternately repeated. As a method for pressurizing the soil purification agent, a method in which the upper end of the injection well 10 is covered and then pressurized by the pressurizing pump 51 is preferable. However, the pressure is obtained by the head difference between the injection well 10 and the pumping well 11. It may be. At this time, the pressure applied to the soil purification agent is about 1 kPa to 100 kPa, although it depends on the soil quality. More specifically, the amount of soil purification agent injected from the injection well 10 is increased to increase the water level of the injection well 10, and the amount of pumping from the pumping well 11 is decreased to decrease the level of the pumping well 11. Therefore, there is a method of increasing the dynamic water gradient from the injection well 10 to the pumping well 11. In addition, after a well is provided between the injection well 10 and the pumping well 11, the organic matter separated from the soil particles is first recovered by pumping from the well, and after the soil purification upstream of the well is completed, An operation of injecting a soil purification agent from the well, pumping water from a well provided on the downstream side, and recovering organic matter separated and separated from the soil particles may be sequentially performed. In this case, it is effective to obtain a larger hydrodynamic gradient by narrowing the interval between the wells. As a result, the flow A of groundwater from the injection well 10 to the pumping well 11 is strengthened, so that the organic matter separated and separated from the soil particles is not clogged in the gaps between the soil particles, and the organic matter flows into the groundwater flow A. Along the saturated layer 2 and smoothly recovered (FIG. 3).
(3)攪拌混合
注入井戸10から飽和層2に注入された土壌浄化剤が有機物層3に到達すると、土壌浄化剤により有機物層3の土粒子に付着している有機物が分解され剥離分離するが、このときトレンチャなどの攪拌混合装置61を有機物層3に貫入して土壌浄化剤と有機物層3の土壌とを攪拌混合する。土壌の攪拌混合は、注入井戸10からの土壌浄化剤の注入が完了した後で有機物の詰まりを解消することを目的として行うことが好ましいが、土壌浄化剤の注入と同時に行い剥離分離した有機物が土粒子の間隙に詰まらないように行うこともできるし、土壌浄化剤の注入と攪拌混合を交互に繰り返し行うこともできる。これにより、有機物層3の浄化が確実に行われるとともに土粒子から剥離分離した有機物が土粒子の間隙中で目詰まりを起こす恐れもない(図4)。
(3) Stirring and mixing When the soil purifier injected into the saturated layer 2 from the injection well 10 reaches the organic matter layer 3, the organic matter adhering to the soil particles in the organic matter layer 3 is decomposed and separated by the soil purifier. At this time, a stirrer / mixer 61 such as a trencher is inserted into the organic layer 3 to stir and mix the soil purifier and the soil of the organic layer 3. The stirring and mixing of the soil is preferably performed for the purpose of eliminating the clogging of the organic matter after the injection of the soil purification agent from the injection well 10 is completed. It can be carried out so as not to be clogged with the gaps between the soil particles, and the soil purifying agent can be injected and stirred and mixed alternately. As a result, the organic layer 3 is reliably purified and the organic material peeled and separated from the soil particles is not clogged in the gaps between the soil particles (FIG. 4).
(4)浄化箇所密封
汚染領域の土壌を地下水面より上方の位置まで掘削し、該掘削面上に板状部材または気密性シート71を被覆したのち該部材またはシート71の上に盛土を施工して埋め戻す。そして、該汚染領域に注入井戸10と揚水井戸11を設けて、注入井戸10から土壌浄化剤を注入して揚水井戸11から揚水することにより、汚染土壌の浄化を行う。これにより、板状部材または気密性シートで被覆された汚染領域からの地下水や気体の流出が抑制されて注入井戸10における水頭圧の損失が防止されるので、注入井戸10から付与した圧力が遠方まで到達できるとともに、地下水の流れAが強められて有機物層3の浄化効率が向上する(図5)。
(4) Purification site sealing Excavate the soil in the contaminated area to a position above the groundwater surface, cover the excavated surface with a plate-like member or air-tight sheet 71, and then apply embankment on the member or sheet 71 Backfill. Then, an injection well 10 and a pumping well 11 are provided in the contaminated area, and a soil purification agent is injected from the injection well 10 and pumped up from the pumping well 11 to purify the contaminated soil. As a result, the outflow of groundwater and gas from the contaminated area covered with the plate-like member or the airtight sheet is suppressed and loss of the head pressure in the injection well 10 is prevented, so that the pressure applied from the injection well 10 is far away. In addition, the flow A of groundwater is strengthened and the purification efficiency of the organic layer 3 is improved (FIG. 5).
(5)表面散布
汚染領域に注入井戸10と揚水井戸11を設けて、注入井戸10から土壌浄化剤を注入して揚水井戸11から揚水するとともに、地下水面より上方の位置から散布装置(散布ノズル)81により土壌浄化剤を散布することにより、汚染土壌の浄化を行う。これにより、汚染領域に対して側方および上方の2方向から土壌浄化剤が供給されるので、有機物層3の浄化効率が向上する(図6)。
(5) Surface spraying The injection well 10 and the pumping well 11 are provided in the contaminated area, the soil purification agent is injected from the pouring well 10 and pumped from the pumping well 11, and the spraying device (spraying nozzle) from a position above the groundwater surface. ) 81 to clean up the contaminated soil by spraying a soil cleaner. Thereby, since the soil purifier is supplied from the side and the upper direction with respect to the contaminated area, the purification efficiency of the organic substance layer 3 is improved (FIG. 6).
(6)汚染領域中央部のほぐし
まず、バックホウなどの掘削装置により汚染領域の中央部上方(掘削箇所)の土壌を掘削して、汚染領域(有機物層3)の上面を露出させる。次に、トレンチャなどの攪拌混合装置61により汚染領域(有機物層3)の中央部(撹拌箇所)の土壌を攪拌したのち、前記掘削した土壌を埋め戻す。最後に、汚染領域の外側に注入井戸10を設けるとともに汚染領域の中央部に揚水井戸11を設けて該注入井戸10から土壌浄化剤を注入し、汚染領域の中央部において地下水を揚水ポンプ20で吸引して揚水井戸11から汲み上げる。これにより、土粒子から剥離分離した有機物を含む地下水の通水性が向上するので、該有機物が土粒子の間隙中で目詰まりを起こすことがなく確実に回収される(図7)。
(6) Unraveling the central part of the contaminated area First, the soil above the central part of the contaminated area (excavated place) is excavated by a drilling device such as a backhoe to expose the upper surface of the contaminated area (organic matter layer 3). Next, after stirring the soil in the central portion (stirring location) of the contaminated area (organic matter layer 3) by the stirring and mixing device 61 such as a trencher, the excavated soil is backfilled. Finally, an injection well 10 is provided outside the contaminated area, a pumping well 11 is provided in the center of the contaminated area, and a soil purification agent is injected from the injection well 10, and groundwater is pumped by the pump 20 in the center of the contaminated area. Suction and pump from pumping well 11. As a result, the water permeability of the groundwater containing the organic matter separated and separated from the soil particles is improved, so that the organic matter is reliably recovered without causing clogging in the gaps between the soil particles (FIG. 7).
(7)通水経路の形成
汚染領域に注入井戸10と揚水井戸11を設けて、注入井戸10から土壌浄化剤を注入して揚水井戸11から揚水するとともに、汚染領域の土壌に棒状部材により水平方向の穴91をあけることにより、汚染土壌の浄化を行う。これにより、汚染領域の土壌中に水みちが形成されることとなり、土粒子から剥離分離した有機物が土粒子の間隙中で目詰まりを起こすことがなく確実に回収される(図8)。
(7) Formation of water flow path An injection well 10 and a pumping well 11 are provided in the contaminated area, a soil purification agent is injected from the pouring well 10 and pumped up from the pumping well 11, and the soil in the contaminated area is horizontal by a rod-shaped member. The contaminated soil is purified by making holes 91 in the direction. As a result, a water path is formed in the soil in the contaminated area, and the organic matter peeled and separated from the soil particles is reliably recovered without causing clogging in the gaps between the soil particles (FIG. 8).
(8)汚染領域加熱
スチーム注入装置45を用いてスチーム注入井戸46から有機物層3へスチームを注入するか、または事前に加熱した土壌浄化剤を注入井戸10から注入することにより、有機物層3中の地下水の温度を30℃〜80℃の範囲で加熱する。なお、スチームに代えて温水などの加熱した流体を用いることができる。また、土壌浄化剤の種類によっては高温での反応性が低い場合もあるので、このようなときにはスチームなどで加熱した地下水を適宜冷ました後で土壌浄化剤を注入する。これにより、土粒子から剥離分離した有機物が加熱されてその粘度が下がるので、該有機物が土粒子の間隙中で目詰まりを起こすことがなく容易に回収される(図9)。
(8) Heating of the contaminated region In the organic layer 3 by injecting steam from the steam injection well 46 into the organic material layer 3 using the steam injection device 45 or by injecting a preheated soil purification agent from the injection well 10. The temperature of the groundwater is heated in the range of 30 to 80 ° C. Note that a heated fluid such as warm water can be used instead of steam. In addition, since the reactivity at high temperature may be low depending on the type of the soil purification agent, in such a case, the soil purification agent is injected after appropriately cooling the groundwater heated with steam or the like. As a result, the organic substance peeled and separated from the soil particles is heated and its viscosity is lowered, so that the organic substance is easily recovered without causing clogging in the gaps between the soil particles (FIG. 9).
(9)薬剤注入方法
最初に薬剤混合供給装置31から供給される比較的高濃度の土壌浄化剤を注入井戸10から注入し、所定時間経過後に液体供給装置47から供給される水または比較的低濃度の土壌浄化剤を注入することにより、汚染土壌の浄化を行う。そして、必要に応じてこの工程を繰り返し行う。これにより、先に注入された比較的高濃度の土壌浄化剤により土粒子から剥離分離した有機物が、後から注入された水または比較的低濃度の土壌浄化剤により押し流されるので、該有機物が目詰まりを起こすことがなく容易に回収することができる(図10)。
(9) Method of Injecting Drug First, a relatively high concentration soil purifier supplied from the drug mixture supply device 31 is injected from the injection well 10, and water supplied from the liquid supply device 47 after a predetermined time or relatively low Contaminated soil is purified by injecting a soil cleaner at a concentration. Then, this process is repeated as necessary. As a result, the organic matter exfoliated and separated from the soil particles by the relatively high concentration soil purification agent injected earlier is swept away by the water or the relatively low concentration soil purification agent injected later. It can be easily recovered without causing clogging (FIG. 10).
(10)被覆土はぎ取り
注入井戸10から飽和層2に注入された土壌浄化剤が有機物層3に到達すると、土壌浄化剤により有機物層3の土粒子に付着している有機物が剥離分離するが、このとき土壌浄化剤と有機物との混合液が毛管現象により有機物層3より上方の土壌中を上昇する現象が見られる。そこで、有機物層3より上方の土壌を一定深さまで掘削して掘削土は汚染領域3の近傍に仮置きしておき、該掘削面に上昇してきた前記混合液を真空ポンプなどで吸引して取り除いた後、仮置きしておいた掘削土を浄化された土壌の上に埋め戻す。このとき、前記土壌を地下水面まで掘削して該地下水面に浮いている前記混合液を取り除くようにしてもよい。取り除いた処理液は油水分離槽へ送られて浄化処理に供される。これにより、土粒子から剥離分離した有機物が土粒子の間隙中で目詰まりを起こした場合でも、有機物層3の上方から該有機物を取り除くことができるので、目詰まりによる影響を最小限に抑えることができる(図11)。
(10) Stripping of covered soil When the soil purifier injected into the saturated layer 2 from the injection well 10 reaches the organic matter layer 3, the organic matter adhering to the soil particles of the organic matter layer 3 is separated and separated by the soil purifier, At this time, a phenomenon is observed in which the mixed liquid of the soil purifier and the organic matter rises in the soil above the organic matter layer 3 by capillary action. Therefore, the soil above the organic layer 3 is excavated to a certain depth, and the excavated soil is temporarily placed in the vicinity of the contaminated area 3, and the mixed liquid that has risen on the excavated surface is removed by suction with a vacuum pump or the like. Then, the excavated soil that has been temporarily placed is backfilled on the purified soil. At this time, the soil may be excavated to the groundwater surface to remove the mixed solution floating on the groundwater surface. The removed treatment liquid is sent to the oil / water separation tank and subjected to purification treatment. As a result, even when the organic matter peeled and separated from the soil particles is clogged in the gaps between the soil particles, the organic matter can be removed from above the organic matter layer 3, thereby minimizing the influence of clogging. (FIG. 11).
(11)上下遮水層
有機物層3の上方および下方にセメントモルタル、ベントナイトなどの遮水材を圧入して遮水層48を設け、該遮水層により上下を挟まれた領域に注入管49によりフェントン剤、界面活性剤などの薬剤を注入してしばらく放置する。その後、注入井戸10から水または土壌浄化剤を注入して揚水井戸11から揚水することにより、前記薬剤により剥離分離された有機物を回収する。これにより、有機物層3に注入した薬剤が周囲の土壌中に流出することなく有機物層3に集中的に供給されるので、汚染土壌の浄化効率が高められ、土粒子から剥離分離した有機物が土粒子の間隙中で目詰まりを起こす恐れも低減される(図12)。
(11) Upper and lower water-impervious layers Water-impervious materials such as cement mortar and bentonite are press-fitted above and below the organic material layer 3 to provide a water-impervious layer 48, and an injection pipe 49 is inserted in the region sandwiched between the upper and lower layers Inject a drug such as a Fenton agent or surfactant, and leave it for a while. Thereafter, water or a soil purification agent is injected from the injection well 10 and pumped up from the pumping well 11, thereby recovering the organic matter peeled and separated by the chemical. Thereby, since the chemical | medical agent inject | poured into the organic substance layer 3 is intensively supplied to the organic substance layer 3 without flowing out into the surrounding soil, the purification efficiency of contaminated soil is improved and the organic substance exfoliated and separated from the soil particles is soiled. The risk of clogging in the interstices between particles is also reduced (FIG. 12).
(12)自由推進高圧水噴射
注入井戸10の近傍で揚水井戸11よりの土壌中に注入管55を貫入して注入管55の先端部が有機物層3に到達したら、該先端部を揚水井戸11へ向かう水平方向に向けて折り曲げて該先端部に設けた高圧噴射ノズルから土壌浄化剤を高圧(ウォータージェット)で噴射する。そして、土壌浄化剤と有機物層3の土粒子に付着している有機物とが攪拌混合されてスラリー状の混合液となったら、注入井戸10から注水して揚水井戸11から揚水することにより、該混合液を回収して汚染土壌を浄化する。さらに、注入管55の先端部を折り曲げた状態のまま水平方向へ貫入させて有機物層3のまだ浄化されていない汚染領域に到達したら、高圧噴射ノズルから土壌浄化剤を高圧で噴射して上記と同様にして汚染土壌を浄化する。以下、同様の操作を繰り返すことにより、有機物層3全体の浄化を行う。これにより、汚染領域が高圧の土壌浄化剤で攪拌混合されるので、土壌中の空隙が十分に確保され、土粒子から剥離分離した有機物が土粒子の間隙中で目詰まりを起こす恐れが少ない(図13)。
(12) Free-propulsion high-pressure water injection When the injection pipe 55 penetrates into the soil from the pumping well 11 in the vicinity of the injection well 10 and the tip of the injection pipe 55 reaches the organic substance layer 3, the tip is moved to the pumping well 11 The soil purifier is sprayed at a high pressure (water jet) from a high pressure spray nozzle that is bent toward the horizontal direction toward the top and provided at the tip. Then, when the soil purification agent and the organic matter adhering to the soil particles of the organic matter layer 3 are stirred and mixed to become a slurry-like mixed liquid, water is poured from the injection well 10 and pumped from the pumping well 11. Collect the mixed solution to purify contaminated soil. Further, when the tip of the injection pipe 55 is bent in the horizontal direction and reaches the uncontaminated contaminated area of the organic material layer 3, the soil purifier is sprayed from the high pressure spray nozzle at a high pressure. The contaminated soil is purified in the same way. Thereafter, the same operation is repeated to purify the entire organic material layer 3. As a result, the contaminated area is agitated and mixed with a high-pressure soil cleansing agent, so that there are sufficient voids in the soil, and there is little risk of clogging of organic matter separated and separated from the soil particles in the gaps between the soil particles ( FIG. 13).
(13)鉛直ドレーン
注入井戸10と揚水井戸11との間にペーパードレーン、グラベルドレーン、サンドドレーンなどの鉛直ドレーン56を設けた後、注入井戸10から土壌浄化剤を注入する。注入した土壌浄化剤は有機物層3の中に浸透してその作用により土粒子に付着している有機物が剥離分離し、地下水とともに鉛直ドレーン56へ流出する。この有機物と地下水との混合液を鉛直ドレーン56から汲み上げて回収して、浄化処理に供する。これにより、鉛直ドレーン56の数を適宜調整することにより土粒子から剥離分離した有機物が鉛直ドレーン56から順次回収されるので、該有機物が土粒子の間隙中で目詰まりを起こす恐れが低減される(図14)。
(13) Vertical drain After providing vertical drains 56, such as a paper drain, a gravel drain, and a sand drain, between the injection well 10 and the pumping well 11, the soil purifier is injected from the injection well 10. The injected soil purifying agent penetrates into the organic substance layer 3, and the organic substances adhering to the soil particles are separated and separated by the action, and flows out to the vertical drain 56 together with the groundwater. The mixed liquid of the organic matter and the ground water is pumped up from the vertical drain 56 and collected, and then subjected to purification treatment. As a result, by appropriately adjusting the number of the vertical drains 56, the organic matter separated and separated from the soil particles is sequentially collected from the vertical drains 56, so that the risk of the organic matter becoming clogged in the gaps between the soil particles is reduced. (FIG. 14).
(14)強制液状化
注入井戸10から土壌浄化剤を注入して揚水井戸11から揚水することにより、有機物層3に土壌浄化剤を浸透させた状態でしばらく放置する。所定時間経過後、有機物層3を含む土壌に起振装置57により大規模な振動を付与する。この振動により有機物層3を含む土壌が液状化を起こして、土壌浄化剤の作用により土粒子から剥離分離した有機物が地下水とともに地表面まで上昇してくるので、該有機物を含む地下水を真空ポンプなどで吸引して取り除いて汚染土壌の浄化を行う。これにより、土粒子からの有機物の剥離分離が促進されるとともに、液状化現象を利用して該有機物の回収を行うので、該有機物が土壌中で目詰まりを起こす恐れが少ない(図15)。
(14) Forced liquefaction By injecting the soil purification agent from the injection well 10 and pumping it from the pumping well 11, the organic matter layer 3 is allowed to stand for a while in the state in which the soil purification agent is infiltrated. After a predetermined time has elapsed, a large-scale vibration is applied to the soil including the organic material layer 3 by the vibration generator 57. This vibration causes the soil containing the organic matter layer 3 to liquefy, and the organic matter separated and separated from the soil particles by the action of the soil purifier rises to the ground surface together with the groundwater. Clean up the contaminated soil by removing with suction. As a result, the separation and separation of the organic matter from the soil particles are promoted, and the organic matter is recovered by utilizing the liquefaction phenomenon, so that the organic matter is less likely to be clogged in the soil (FIG. 15).
(15)高圧水斜め上方噴射
注入井戸10に注入管58を挿入してその先端部が注入井戸10の下端部に到達したら、注入管58の先端部に設けた高圧噴射ノズルから土壌浄化剤を高圧(ウォータージェット)で噴射する。このとき、高圧噴射ノズルから噴射する土壌浄化剤の噴射方向を図15に示すように斜め上方とする。注入井戸10の下端部には、土壌浄化剤を噴射できるように開口部が設けられている。土壌中に噴射された土壌浄化剤は、土壌中を浸透して有機物層3の下面に到達して土粒子に付着している有機物を剥離分離する。これにより、土壌浄化剤と有機物層3との接触面積が大きくなるので、汚染土壌の浄化を効率的に行うことができ、剥離分離した有機物が目詰まりを起こす恐れも低減される。なお、上記したウォータージェットを用いる方法に代えて、注入井戸10の下端部から飽和層2へ土壌浄化剤を流出させて揚水井戸11から揚水することにより図16に示すような地下水流Bを発生させて、土壌浄化剤をこの地下水流Bに乗せて有機物層3の下面に到達させるようにしてもよい。(図16)。
(15) High-pressure water oblique upward injection When the injection pipe 58 is inserted into the injection well 10 and its tip reaches the lower end of the injection well 10, the soil purifier is applied from the high-pressure injection nozzle provided at the tip of the injection pipe 58. Injected with high pressure (water jet). At this time, the spraying direction of the soil purifier sprayed from the high pressure spray nozzle is set obliquely upward as shown in FIG. An opening is provided at the lower end of the injection well 10 so that the soil purifier can be sprayed. The soil purifier sprayed into the soil penetrates the soil, reaches the lower surface of the organic material layer 3 and separates and separates the organic material adhering to the soil particles. Thereby, since the contact area of a soil purification agent and the organic substance layer 3 becomes large, the contaminated soil can be purified efficiently, and the possibility that the separated and separated organic substances are clogged is reduced. In place of the method using the water jet described above, a ground water flow B as shown in FIG. 16 is generated by causing the soil purifier to flow from the lower end of the injection well 10 to the saturated layer 2 and pumping it from the pumping well 11. Then, the soil purification agent may be put on the groundwater flow B to reach the lower surface of the organic material layer 3. (FIG. 16).
(16)エアスパージング
注入井戸10と揚水井戸11とのほぼ中間にその先端部が有機物層3より十分に下方へ達するようにスパージング井戸59を設けて、スパージング井戸59の先端部から高圧の空気を噴射する。該空気は土壌中を上昇して有機物層3に到達して、この空気の作用により土粒子に付着している有機物が剥離分離する。そして、注入井戸10から注水して揚水井戸11から揚水することにより、剥離分離した有機物を回収する。これにより、高圧空気の作用により土粒子に付着している有機物の剥離分離が促進されるとともに、剥離分離した有機物が該空気に連行して容易に移動できるので、該有機物が土壌中で目詰まりを起こす恐れが少ない(図17)。
(16) Air sparging A sparging well 59 is provided in the middle of the injection well 10 and the pumping well 11 so that the tip thereof is sufficiently below the organic material layer 3, and high pressure air is supplied from the tip of the sparging well 59. Spray. The air rises in the soil and reaches the organic substance layer 3, and the organic substances attached to the soil particles are separated and separated by the action of the air. And the organic substance which peeled and isolate | separated is collect | recovered by pouring water from the injection well 10 and pumping it from the pumping well 11. This facilitates the separation and separation of the organic matter adhering to the soil particles by the action of high-pressure air, and the organic matter separated and separated can easily move along with the air, so that the organic matter is clogged in the soil. Is less likely to occur (FIG. 17).
(17)土壌アルカリ化/事前フェントン処理
薬剤混合供給装置31から注入井戸10へpH9〜10程度のアルカリ性の土壌浄化剤を注入して、有機物層3にアルカリ溶液を浸透させた状態でしばらく放置する。そして、土粒子から剥離分離した有機物の粘度がアルカリ溶液により十分に低下したら、揚水井戸11から揚水を行い剥離分離した有機物を回収して汚染土壌を浄化する。この場合には、浄化処理終了後にアルカリ化した土壌に中和剤を添加して中和処理を行う。また、アルカリ溶液に代えて過酸化水素水などのフェントン剤を用いてもよく、この場合にはフェントン剤の作用により有機物が分解されてその濃度が低減した後に、土壌浄化剤を注入して汚染土壌を浄化する。これにより、有機物がC重油などの粘度が高い石油類の場合でも、アルカリ溶液の作用によりその粘度が低減されたり、フェントン剤の作用によりその濃度が低減されたりするので、土粒子から剥離分離した有機物が土粒子の間隙中で目詰まりを起こす恐れが少ない(図18)。
(17) Soil alkalinization / pre-fenton treatment An alkaline soil cleaner having a pH of about 9 to 10 is injected from the chemical mixture supply device 31 into the injection well 10 and left for a while in a state where an alkaline solution is infiltrated into the organic layer 3. . And if the viscosity of the organic substance exfoliated and separated from the soil particles is sufficiently lowered by the alkaline solution, the organic substance separated and separated is recovered by pumping water from the pumping well 11, and the contaminated soil is purified. In this case, a neutralizing agent is added to the alkalinized soil after the purification treatment to complete the neutralization treatment. In addition, a Fenton agent such as hydrogen peroxide solution may be used in place of the alkaline solution. In this case, after the organic matter is decomposed by the action of the Fenton agent and its concentration is reduced, the soil purification agent is injected to contaminate. Purify the soil. As a result, even when the organic matter is petroleum such as C heavy oil, the viscosity is reduced by the action of the alkaline solution or the concentration is reduced by the action of the Fenton agent. There is little risk of organic matter clogging in the gaps between soil particles (FIG. 18).
(18)電気泳動法
注入井戸10からカチオン系界面活性剤などのプラスに帯電した土壌浄化剤を注入して、有機物層3に陽イオンを浸透させた状態とする。そして、注入井戸10にはプラスの電極(陽極)75を配置し揚水井戸11にはマイナスの電極(陰極)76を配置して通電することにより、土壌浄化剤の作用で土粒子から剥離分離した有機物を抱えたプラスに帯電した土壌浄化剤(陽イオン)を注入井戸10から揚水井戸11の方向へ移動させて、揚水井戸11から揚水を行い剥離分離した有機物を回収する。これにより、剥離分離した有機物がプラスに帯電した土壌浄化剤(陽イオン)に連行して容易に移動できるので、該有機物が土壌中で目詰まりを起こす恐れが少ない(図19)。
(18) Electrophoresis Method A positively charged soil purification agent such as a cationic surfactant is injected from the injection well 10 so that the organic layer 3 is infiltrated with cations. Then, a positive electrode (anode) 75 is arranged in the injection well 10 and a negative electrode (cathode) 76 is arranged in the pumping well 11 and energized, so that it is separated from the soil particles by the action of the soil purifier. A positively charged soil purifier (cation) holding organic matter is moved from the injection well 10 to the pumping well 11, and the organic matter separated and separated is recovered by pumping water from the pumping well 11. As a result, the separated and separated organic matter can be easily moved along with the positively charged soil purification agent (cation), so that the organic matter is less likely to be clogged in the soil (FIG. 19).
(19)真空吸引
注入井戸10から土壌浄化剤を注入して揚水井戸11から揚水することにより、地下水の流れAを発生させて土壌浄化剤を有機物層3に浸透させる。そして、地表から有機物層3に達する吸引管77を貫入して真空ポンプ78で真空吸引することにより、土壌浄化剤の作用により土粒子から剥離分離した有機物を回収する。これにより、土粒子から剥離分離した有機物が土粒子間で目詰まりを起こした場合でも、該有機物を吸引管77で直接吸引するので該有機物が土壌中で目詰まりを起こす恐れがない(図20)。
(19) Vacuum suction A soil purification agent is injected from the injection well 10 and pumped up from the pumping well 11 to generate a groundwater flow A and permeate the soil purification agent 3 into the organic material layer 3. Then, the suction pipe 77 reaching the organic substance layer 3 from the ground surface is penetrated and vacuum suction is performed by the vacuum pump 78, whereby the organic matter separated from the soil particles by the action of the soil purification agent is recovered. As a result, even when the organic matter peeled and separated from the soil particles is clogged between the soil particles, the organic matter is directly sucked by the suction pipe 77, so that the organic matter is not clogged in the soil (FIG. 20). ).
上記の撹拌混合(3)および汚染領域中央部のほぐし(6)を、注入井戸などの使用なしに行う態様(第2の態様)について以下に述べる。
図11に第2の態様を示す。この図において61は掘削機械(バックホウ)、62は混合機械(スタビライザ)である。まず、バックホウ61により汚染領域3の上方の土壌を掘削して汚染領域3を露出させる。このとき、掘削土は汚染領域3の近傍に仮置きしておく。次に、スタビライザ62に設けた薬剤散布装置により汚染領域3の露出面に薬剤を均一に散布しながら、スタビライザ62に設けた混合装置により薬剤と汚染土壌とを撹拌混合する。撹拌混合が完了したら、薬剤と有機物の混ざった処理液を真空ポンプなどで吸引して取り除いた後、仮置きしておいた掘削土を浄化された土壌の上方に埋め戻す。取り除いた処理液は油水分離槽へ送られて薬剤と有機物の混合液Aおよび薬剤と水の混合液Bに分離され、混合液Aは廃棄し、混合液Bはこれに薬剤を加えたのち前記薬剤散布装置に送られて土壌浄化剤(薬剤)として再利用される。なお、本工法に用いる混合機械としては、トレンチャ式混合機械などを用いることもできる。
A mode (second mode) in which the stirring and mixing (3) and the unraveling (6) at the center of the contaminated area are performed without using an injection well or the like will be described below.
FIG. 11 shows a second aspect. In this figure, 61 is an excavating machine (backhoe) and 62 is a mixing machine (stabilizer). First, the soil above the contaminated area 3 is excavated by the backhoe 61 to expose the contaminated area 3. At this time, the excavated soil is temporarily placed in the vicinity of the contaminated area 3. Next, the drug and the contaminated soil are stirred and mixed by the mixing device provided in the stabilizer 62 while the drug is uniformly distributed on the exposed surface of the contaminated region 3 by the drug spraying device provided in the stabilizer 62. When the stirring and mixing is completed, the treatment liquid mixed with the chemical and the organic substance is removed by suction with a vacuum pump or the like, and then the temporarily placed excavated soil is backfilled above the purified soil. The removed treatment liquid is sent to an oil-water separation tank and separated into a mixed liquid A of chemical and organic substance and a mixed liquid B of chemical and water. The mixed liquid A is discarded, and the mixed liquid B is added with the chemical and then It is sent to a chemical spraying device and reused as a soil purification agent (medicine). In addition, a trencher type mixing machine etc. can also be used as a mixing machine used for this construction method.
図12に第2の態様の別の例を示す。この図において63は地盤改良機械(マッドスタビライザ)、65は浄化用流体製造プラント、66は薬剤供給装置、67はエアコンプレッサ、68は発電機、69は処理杭である。 FIG. 12 shows another example of the second mode. In this figure, 63 is a ground improvement machine (mud stabilizer), 65 is a purification fluid production plant, 66 is a chemical supply device, 67 is an air compressor, 68 is a generator, and 69 is a processing pile.
汚染領域3の上方の地盤上における掘削位置に、地盤改良機械63の電動機に取り付けられた回転ロッド64の中心をセットして、回転ロッド64を電動機で回転させながら下降させて回転ロッド64の先端から高圧水を噴射することにより不飽和層の土壌を掘削する。このときの掘削孔の直径は、通常30cm程度である。一方、地盤上の地盤改良機械63の近傍に設けた浄化用流体製造プラント65では、薬剤供給装置66から供給された土壌浄化剤を用いて浄化用流体(薬剤)を製造する。回転ロッド64の先端が汚染領域3(飽和層)の上端部に到達したら、薬剤をポンプで圧送して回転ロッド64の内部を通して回転ロッド64の先端より少し上方に設けたノズル孔まで送り、そこから薬剤と空気を水平方向へ高圧で吐出しながら回転ロッド64をさらに螺旋状に回転させながら貫入させて汚染領域3の土壌と薬剤とを撹拌混合する。このときの撹拌混合範囲は回転ロッド64を中心として半径1m程度であり、この範囲において薬剤と有機物と水(地下水)が混合されてスラリー状になる。また、撹拌混合は隣り合う撹拌混合範囲が互いにラップするようにして、浄化もれが生じないように行う。回転ロッド64の先端が汚染領域3の下端部に到達したら、薬剤の吐出を止めて回転ロッド64を引き抜く。撹拌混合が完了したら、あらかじめ打ち込んでおいたウェルポイント井戸により、薬剤と有機物と水(地下水)の混合液を回収する。そして、上記作業を繰り返すことにより汚染領域の浄化を行う。 The center of the rotating rod 64 attached to the electric motor of the ground improvement machine 63 is set at the excavation position on the ground above the contaminated area 3, and the rotating rod 64 is lowered while being rotated by the electric motor, and the tip of the rotating rod 64 is moved. The soil in the unsaturated layer is excavated by spraying high pressure water from. The diameter of the excavation hole at this time is usually about 30 cm. On the other hand, in the purification fluid manufacturing plant 65 provided in the vicinity of the ground improvement machine 63 on the ground, the purification fluid (medicine) is manufactured using the soil purification agent supplied from the chemical supply device 66. When the tip of the rotating rod 64 reaches the upper end of the contaminated area 3 (saturated layer), the medicine is pumped by a pump and sent through the inside of the rotating rod 64 to a nozzle hole provided slightly above the tip of the rotating rod 64. Then, while discharging the medicine and air in a horizontal direction at a high pressure, the rotating rod 64 is further spirally rotated to penetrate and mix the soil and the medicine in the contaminated area 3 with stirring. The stirring and mixing range at this time is about 1 m in radius with the rotating rod 64 as the center, and in this range, the drug, organic matter, and water (ground water) are mixed to form a slurry. In addition, the stirring and mixing is performed so that adjacent stirring and mixing ranges are overlapped with each other so that no purification leakage occurs. When the tip of the rotating rod 64 reaches the lower end of the contaminated area 3, the discharge of the medicine is stopped and the rotating rod 64 is pulled out. When the stirring and mixing is completed, the mixed solution of the chemical, the organic matter and the water (ground water) is collected by the well point well that has been previously driven. Then, the contaminated area is purified by repeating the above operation.
この例では、薬剤の吐出を貫入時に行っているが、貫入時と引抜き時の両方で撹拌混合するようにしてもよい。また、ここでは回転ロッド64の先端から薬剤をウォータージェットにより噴射して、その噴射圧により汚染土壌と薬剤とを撹拌混合する例を示したが、ウォータージェットに換えて撹拌翼を用いて汚染土壌と薬剤とを撹拌混合する方法を用いることもできる。 In this example, the medicine is discharged at the time of penetration, but it may be stirred and mixed both at the time of penetration and at the time of withdrawal. In addition, here, an example is shown in which a medicine is jetted from the tip of the rotating rod 64 by a water jet, and the contaminated soil and the medicine are stirred and mixed by the jet pressure. However, the contaminated soil is replaced by a stirring blade instead of the water jet. A method of stirring and mixing the drug and the drug can also be used.
図13は、本発明の土壌浄化方法の第3の実施形態を示す説明図である。まず、汚染領域3の上方の地表面から、散布装置(散布ノズル)81を用いて土壌浄化剤を散布する。次に、汚染領域3の中央部に揚水井戸11を設けて、該揚水井戸から揚水を行って薬剤と有機物との混合液を回収する。 FIG. 13 is an explanatory view showing a third embodiment of the soil purification method of the present invention. First, a soil purifier is sprayed from the ground surface above the contaminated area 3 using a spraying device (spraying nozzle) 81. Next, the pumping well 11 is provided in the central part of the contaminated area 3, and pumping is performed from the pumping well to collect a mixed liquid of the medicine and the organic matter.
図24は、本発明の土壌浄化方法の第4の実施形態を示す説明図である。この図において85は水平井戸である。有機物層3を水平方向に貫通するように水平井戸85を設けて、水平井戸85の注入口86から土壌浄化剤を注入する。水平井戸85のうち有機物層3に存在する部分には周面全体に多数の開口部が設けられており、水平井戸85に注入された土壌浄化剤はこの開口部から土壌中へ流出して土粒子に付着している有機物を剥離分離する。そして、剥離分離した有機物は前記開口部から水平井戸85の中へ取り込まれて、揚水井戸11または水平井戸12の揚水口87から揚水することにより回収される。これにより、剥離分離した有機物が土壌中を移動する距離が少なくなるので、該有機物が土粒子の間隙中で目詰まりを起こす可能性が低減される。 FIG. 24 is explanatory drawing which shows 4th Embodiment of the soil purification method of this invention. In this figure, 85 is a horizontal well. A horizontal well 85 is provided so as to penetrate the organic material layer 3 in the horizontal direction, and a soil purification agent is injected from an inlet 86 of the horizontal well 85. A portion of the horizontal well 85 that is present in the organic layer 3 is provided with a large number of openings on the entire peripheral surface, and the soil purifier injected into the horizontal well 85 flows into the soil through the openings. The organic substance adhering to the particles is separated and separated. The separated and separated organic matter is taken into the horizontal well 85 from the opening and collected by pumping from the pumping port 87 of the pumping well 11 or the horizontal well 12. As a result, the distance that the separated and separated organic matter moves through the soil is reduced, so that the possibility of the organic matter becoming clogged in the gap between the soil particles is reduced.
図25は、本発明の土壌浄化方法の第5の実施形態を示す説明図である。この図において88は円筒部材、89は注入管である。有機物層3を鉛直方向に貫通するように円筒部材88を設けて、該円筒部材88の下端部から注入管89により土壌浄化剤を含む圧力水を注入する。そして、円筒部材88の内側にある土壌中を該圧力水が上昇して有機物層3を通過する際に土粒子に付着した有機物を剥離分離して、該有機物を連行してさらに円筒部材88の内側にある土壌中を上昇する。最後に、円筒部材88の上端部に位置する土壌の表面に浮いてきた有機物を真空ポンプなどにより回収して汚染土壌を浄化する。これにより、周囲を拘束された土壌中に水圧が加わるので、剥離分離した有機物が地下水とともに上方へ押し流されて、該有機物が土粒子の間隙中で目詰まりを起こす可能性が低減される。 FIG. 25 is an explanatory view showing a fifth embodiment of the soil purification method of the present invention. In this figure, 88 is a cylindrical member and 89 is an injection tube. A cylindrical member 88 is provided so as to penetrate the organic material layer 3 in the vertical direction, and pressure water containing a soil purification agent is injected from the lower end portion of the cylindrical member 88 through the injection pipe 89. Then, when the pressure water rises in the soil inside the cylindrical member 88 and passes through the organic substance layer 3, the organic substance attached to the soil particles is separated and separated, and the organic substance is entrained to further remove the cylindrical substance 88. Ascend in the soil inside. Finally, the organic matter floating on the surface of the soil located at the upper end of the cylindrical member 88 is collected by a vacuum pump or the like to purify the contaminated soil. As a result, water pressure is applied to the soil restricted in the surroundings, so that the organic matter separated and separated is pushed upward together with the groundwater, and the possibility that the organic matter is clogged in the gap between the soil particles is reduced.
〔実施例〕
本発明の効果を確認するために、次のような試験を行った。
図14に示す室内試験用水槽(幅20cm×高さ18cm×長さ70cm)にC重油5%を含む4号珪砂を高さ18cmまで充填して、その上面から土壌浄化剤として薬剤a(界面活性剤水溶液:ポリオキシアルキレンアルキルエーテルとアミン化合物、界面活性剤濃度1%)、薬剤b(界面活性剤水溶液:AOTとアリカリ土類金属塩、界面活性剤濃度1%)を流速20ml/minで通水した。このときの通水面の高さは、約14cm、動水勾配は0.5cm、通水時間は49時間となるようにした。また、それぞれの薬剤の通水とあわせて表1に示す操作を行った。各実施例および比較例について、通水性および重油除去性を確認した結果を表2に示す。
〔Example〕
In order to confirm the effect of the present invention, the following tests were conducted.
A laboratory test water tank (width 20 cm × height 18 cm × length 70 cm) shown in FIG. 14 is filled with No. 4 silica sand containing 5% C heavy oil to a height of 18 cm, and the agent a (interface) is used as a soil purification agent from the upper surface. Activating agent aqueous solution: polyoxyalkylene alkyl ether and amine compound, surfactant concentration 1%), drug b (surfactant aqueous solution: AOT and ant earth metal salt, surfactant concentration 1%) at a flow rate of 20 ml / min. I passed water. At this time, the height of the water flow surface was about 14 cm, the dynamic water gradient was 0.5 cm, and the water flow time was 49 hours. Moreover, operation shown in Table 1 was performed together with the water flow of each chemical | medical agent. Table 2 shows the results of confirming water permeability and heavy oil removability for each example and comparative example.
この試験結果より、本発明の土壌浄化方法に係わる実施例1〜7によれば、浄化対象が粘度の大きいC重油の場合でも土壌の通水性を良好に保つことができ、C重油の回収も十分に行えることが確認できた。これに対して、何も操作を行わなかった比較例では土壌浄化剤により剥離分離したC重油が土粒子の間隙で目詰まりを起こしてしまい、ほとんど通水しない状態となりC重油の回収が行えなかった。 From this test result, according to Examples 1 to 7 related to the soil purification method of the present invention, even when the purification target is C heavy oil having a high viscosity, the water permeability of the soil can be kept good, and the C heavy oil can be recovered. It was confirmed that this could be done sufficiently. On the other hand, in the comparative example in which no operation was performed, the C heavy oil peeled and separated by the soil purifier clogged in the gaps between the soil particles, and the water hardly passed and the C heavy oil could not be recovered. It was.
本発明の方法によれば、土壌浄化剤による汚染土壌の浄化とあわせて上記A〜Iの操作を行うことにより、土壌浄化剤により剥離分離された有機物が土壌中で目詰まりを起こすことがなく容易に回収されるので、従来技術と比較して土壌浄化剤の性能を十分に発揮させることができ浄化効率が向上する。 According to the method of the present invention, the organic substances separated and separated by the soil purification agent are not clogged in the soil by performing the operations A to I together with the purification of the contaminated soil by the soil purification agent. Since it is easily recovered, the performance of the soil purification agent can be sufficiently exhibited as compared with the prior art, and the purification efficiency is improved.
本発明の土壌浄化方法は、製油所跡地などの油分により汚染された土壌を含む汚染領域の原位置浄化方法として有用である。 The soil purification method of the present invention is useful as an in-situ purification method for a contaminated area including soil contaminated with oil such as a refinery site.
100 土壌浄化システム
1 不飽和層(非帯水層)
2 飽和層(帯水層)
3 汚染領域(有機物層)
10 注入井戸
11 揚水井戸
20 揚水ポンプ
21 油水分離槽
22 分留装置
23,24,25,26,27,28,32 配管
30 注入ポンプ
31 薬剤混合供給装置
41 振動ローラ
42 棒状バイブレータ
45 スチーム注入装置
46 スチーム注入井戸
47 液体供給装置
48 遮水層
49,55,58,89 注入管
51 加圧ポンプ
56 鉛直ドレーン
57 起振装置
59 スパージング井戸
61 攪拌混合装置
71 板状部材または気密性シート
75 プラスの電極(陽極)
76 マイナスの電極(陰極)
77 吸引管
78 真空ポンプ
81 散布装置(散布ノズル)
85 水平井戸
86 注入口
87 揚水口
88 円筒部材
91 穴
G 土壌
L 地下水位
100 Soil purification system 1 Unsaturated layer (non-aquifer)
2 Saturation layer (aquifer)
3 Pollution area (organic matter layer)
DESCRIPTION OF SYMBOLS 10 Injection well 11 Pumping well 20 Pumping pump 21 Oil-water separation tank 22 Fractionation device 23, 24, 25, 26, 27, 28, 32 Piping 30 Injection pump 31 Drug mixing supply device 41 Vibrating roller 42 Bar-shaped vibrator 45 Steam injection device 46 Steam injection well 47 Liquid supply device 48 Impermeable layer 49, 55, 58, 89 Injection pipe 51 Pressure pump 56 Vertical drain 57 Vibrator 59 Sparging well 61 Stirring mixing device 71 Plate member or airtight sheet 75 Positive electrode (anode)
76 Negative electrode (cathode)
77 Suction tube 78 Vacuum pump 81 Spraying device (spraying nozzle)
85 Horizontal well 86 Inlet 87 Pumping port 88 Cylindrical member 91 Hole G Soil L Groundwater level
Claims (27)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007288207A JP2009112933A (en) | 2007-11-06 | 2007-11-06 | Soil purifying method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007288207A JP2009112933A (en) | 2007-11-06 | 2007-11-06 | Soil purifying method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009112933A true JP2009112933A (en) | 2009-05-28 |
Family
ID=40780675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007288207A Pending JP2009112933A (en) | 2007-11-06 | 2007-11-06 | Soil purifying method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009112933A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009114312A (en) * | 2007-11-06 | 2009-05-28 | Lion Corp | Soil cleaning agent composition |
JP2009132905A (en) * | 2007-11-06 | 2009-06-18 | Lion Corp | Soil cleaning agent composition |
JP2013075263A (en) * | 2011-09-30 | 2013-04-25 | Japan Organo Co Ltd | Removing system and removing method of volatile substance in underground water |
JP2014079713A (en) * | 2012-10-17 | 2014-05-08 | Takenaka Komuten Co Ltd | Method for purifying contaminated soil and purifier |
JP2014087765A (en) * | 2012-10-31 | 2014-05-15 | Dowa Eco-System Co Ltd | Soil cleaning method and apparatus |
JP2017136515A (en) * | 2016-02-01 | 2017-08-10 | 国立大学法人秋田大学 | Apparatus and method for decontaminating contaminated earth |
JP2018061915A (en) * | 2016-10-11 | 2018-04-19 | 株式会社沙羅 | Purification method of contaminated ground |
WO2018087995A1 (en) * | 2016-11-08 | 2018-05-17 | 株式会社竹中工務店 | Subsurface soil remediation method |
JPWO2018043507A1 (en) * | 2016-08-29 | 2019-07-04 | 株式会社竹中工務店 | Underground soil remediation method |
CN111485545A (en) * | 2020-03-18 | 2020-08-04 | 中国人民解放军空军工程大学 | Saline soil foundation treatment method |
CN113753981A (en) * | 2021-09-17 | 2021-12-07 | 河北省地矿局第三水文工程地质大队 | Fourth series underground water and soil pollution treatment method |
JP7514666B2 (en) | 2020-06-26 | 2024-07-11 | 国際航業株式会社 | VOC in-situ purification system and VOC in-situ purification method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1190410A (en) * | 1997-09-16 | 1999-04-06 | Ohbayashi Corp | In-situ remediation system of contaminant |
JP2001017955A (en) * | 1999-07-08 | 2001-01-23 | Miyoshi Oil & Fat Co Ltd | Method for cleaning soil |
JP2002143828A (en) * | 2000-11-09 | 2002-05-21 | Ichinomiya Kimitake | Countermeasure method for cleaning of soil and soil cleaning system |
JP2002205047A (en) * | 2001-01-10 | 2002-07-23 | Nippon Kokan Light Steel Kk | Method for removing contaminant |
JP2004016865A (en) * | 2002-06-13 | 2004-01-22 | Kajima Corp | Construction method for cleaning polluted groundwater in situ |
JP2006346549A (en) * | 2005-06-15 | 2006-12-28 | Kubota Corp | In-situ purification method of contaminated soil |
JP2007237132A (en) * | 2006-03-10 | 2007-09-20 | Ohbayashi Corp | Original position washing method of soil polluted with organic compound |
JP2007253058A (en) * | 2006-03-23 | 2007-10-04 | Nippon Oil Corp | Method for recovering oil from oil-contaminated soil in situ |
JP2007253075A (en) * | 2006-03-23 | 2007-10-04 | Nippon Oil Corp | Soil purifying method |
JP2007268401A (en) * | 2006-03-31 | 2007-10-18 | Kurita Water Ind Ltd | In-situ cleaning method and in-situ cleaning system of contaminated soil and/or ground water |
-
2007
- 2007-11-06 JP JP2007288207A patent/JP2009112933A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1190410A (en) * | 1997-09-16 | 1999-04-06 | Ohbayashi Corp | In-situ remediation system of contaminant |
JP2001017955A (en) * | 1999-07-08 | 2001-01-23 | Miyoshi Oil & Fat Co Ltd | Method for cleaning soil |
JP2002143828A (en) * | 2000-11-09 | 2002-05-21 | Ichinomiya Kimitake | Countermeasure method for cleaning of soil and soil cleaning system |
JP2002205047A (en) * | 2001-01-10 | 2002-07-23 | Nippon Kokan Light Steel Kk | Method for removing contaminant |
JP2004016865A (en) * | 2002-06-13 | 2004-01-22 | Kajima Corp | Construction method for cleaning polluted groundwater in situ |
JP2006346549A (en) * | 2005-06-15 | 2006-12-28 | Kubota Corp | In-situ purification method of contaminated soil |
JP2007237132A (en) * | 2006-03-10 | 2007-09-20 | Ohbayashi Corp | Original position washing method of soil polluted with organic compound |
JP2007253058A (en) * | 2006-03-23 | 2007-10-04 | Nippon Oil Corp | Method for recovering oil from oil-contaminated soil in situ |
JP2007253075A (en) * | 2006-03-23 | 2007-10-04 | Nippon Oil Corp | Soil purifying method |
JP2007268401A (en) * | 2006-03-31 | 2007-10-18 | Kurita Water Ind Ltd | In-situ cleaning method and in-situ cleaning system of contaminated soil and/or ground water |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009114312A (en) * | 2007-11-06 | 2009-05-28 | Lion Corp | Soil cleaning agent composition |
JP2009132905A (en) * | 2007-11-06 | 2009-06-18 | Lion Corp | Soil cleaning agent composition |
JP2013075263A (en) * | 2011-09-30 | 2013-04-25 | Japan Organo Co Ltd | Removing system and removing method of volatile substance in underground water |
JP2014079713A (en) * | 2012-10-17 | 2014-05-08 | Takenaka Komuten Co Ltd | Method for purifying contaminated soil and purifier |
JP2014087765A (en) * | 2012-10-31 | 2014-05-15 | Dowa Eco-System Co Ltd | Soil cleaning method and apparatus |
JP2017136515A (en) * | 2016-02-01 | 2017-08-10 | 国立大学法人秋田大学 | Apparatus and method for decontaminating contaminated earth |
JPWO2018043507A1 (en) * | 2016-08-29 | 2019-07-04 | 株式会社竹中工務店 | Underground soil remediation method |
JP2018061915A (en) * | 2016-10-11 | 2018-04-19 | 株式会社沙羅 | Purification method of contaminated ground |
WO2018087995A1 (en) * | 2016-11-08 | 2018-05-17 | 株式会社竹中工務店 | Subsurface soil remediation method |
CN109982781A (en) * | 2016-11-08 | 2019-07-05 | 株式会社竹中工务店 | Underground purification method |
JPWO2018087995A1 (en) * | 2016-11-08 | 2019-09-26 | 株式会社竹中工務店 | Underground soil purification method |
EP3539682A4 (en) * | 2016-11-08 | 2020-05-27 | Takenaka Corporation | Subsurface soil remediation method |
JP7031823B2 (en) | 2016-11-08 | 2022-03-08 | 株式会社竹中工務店 | Underground soil purification method |
US11679425B2 (en) | 2016-11-08 | 2023-06-20 | Takenaka Civil Engineering & Construction Co., Ltd. | Subsurface soil purification method |
CN111485545A (en) * | 2020-03-18 | 2020-08-04 | 中国人民解放军空军工程大学 | Saline soil foundation treatment method |
JP7514666B2 (en) | 2020-06-26 | 2024-07-11 | 国際航業株式会社 | VOC in-situ purification system and VOC in-situ purification method |
CN113753981A (en) * | 2021-09-17 | 2021-12-07 | 河北省地矿局第三水文工程地质大队 | Fourth series underground water and soil pollution treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009112933A (en) | Soil purifying method | |
JP4428638B2 (en) | In-situ purification method for contaminated soil | |
JP5430056B2 (en) | Treatment method of contaminated soil | |
KR100998969B1 (en) | Method purification for pollution of soil in-situ | |
KR20110041262A (en) | The multi-type injection & jetting equipment and in-situ soil remediation method using this equipment | |
JP3567435B2 (en) | Contaminated soil cleaning system and cleaning method using it | |
JP6023040B2 (en) | Mouth pipe for high-pressure jet stirring method and high-pressure jet stirring method | |
JP3508997B2 (en) | How to clean contaminated soil | |
JP3716998B2 (en) | Soil purification method and apparatus | |
JP4010793B2 (en) | How to repair contaminated soil | |
JP6603954B2 (en) | Purification method and system for oil-contaminated soil | |
JPH10258266A (en) | Method for repairing original position of polluted ground and pollutant treatment apparatus | |
JP3586841B2 (en) | How to clean the soil | |
KR20080034861A (en) | On-site soil washing method using pipe propulsion | |
JP5603097B2 (en) | Purification method for underground oil contaminated part | |
JP5042278B2 (en) | Contaminated soil purification method | |
JP3897553B2 (en) | Construction method of underground purification wall | |
JP4821821B2 (en) | Purification method and system for contaminated soil | |
JP2004223491A (en) | Method for purifying soil | |
JP4360157B2 (en) | Purification method and system for hardly air permeable and contaminated soil | |
JP2001311140A (en) | Hazardous material treatment method | |
JP4036386B1 (en) | Purification method | |
JP4177155B2 (en) | Purification body construction method | |
JP4135909B2 (en) | Purification method for contaminated ground | |
JP4374951B2 (en) | Purification method and system for hardly air permeable and contaminated soil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100310 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110324 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110419 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111018 |