JP4140733B2 - Recharge method, water injection control method and water injection control system - Google Patents

Recharge method, water injection control method and water injection control system Download PDF

Info

Publication number
JP4140733B2
JP4140733B2 JP2005231910A JP2005231910A JP4140733B2 JP 4140733 B2 JP4140733 B2 JP 4140733B2 JP 2005231910 A JP2005231910 A JP 2005231910A JP 2005231910 A JP2005231910 A JP 2005231910A JP 4140733 B2 JP4140733 B2 JP 4140733B2
Authority
JP
Japan
Prior art keywords
water
water injection
shallow
amount
groundwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005231910A
Other languages
Japanese (ja)
Other versions
JP2006077567A (en
Inventor
忠良 石橋
満 清水
明之 渡邊
清 桑原
雅春 齋藤
博文 柳
佳久 沼田
茂 松岡
知晃 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2005231910A priority Critical patent/JP4140733B2/en
Publication of JP2006077567A publication Critical patent/JP2006077567A/en
Application granted granted Critical
Publication of JP4140733B2 publication Critical patent/JP4140733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

この発明は、リチャージ工法、その注水制御方法及び注水制御システムに関し、さらに詳細には、例えば、地下水位の高い地盤での掘削に際して汲み上げた地下水を地中に返送する技術に関する。   The present invention relates to a recharge method, a water injection control method thereof, and a water injection control system, and more particularly, to a technique for returning groundwater pumped up during excavation in a ground having a high groundwater level to the ground.

地下構造物を構築するために地盤を掘削するに際し、地下水位が高い場合には、その対策工法例えば地下水位低下工法や薬液注入工法などが実施される。地下水位低下工法は、地下から揚水して、必要な施工部位の地下水位を低下させることにより、地盤の安定を図る工法である。この地下水位低下工法は、薬液注入工法などの止水工法に対し、確実な地下水対策工法であることから、特に線路下施工では安全性に優れている。   When excavating the ground to construct an underground structure, if the groundwater level is high, countermeasures such as a groundwater level lowering method or a chemical injection method are implemented. The groundwater level lowering method is a method for stabilizing the ground by pumping water from the ground and lowering the groundwater level at the necessary construction site. This groundwater level lowering construction method is a reliable groundwater countermeasure construction method against the waterstop construction method such as the chemical solution injection construction method, and is therefore excellent in safety especially in the construction under the railway.

ところで、地下水位低下工法により汲み上げた地下水を、そのまま下水道や河川に放流すると、周辺地盤の沈下や井戸の水位低下などの被害を招く。このため、揚水された地下水を地中に返送する工法、すなわちリチャージ工法も広く実施されている。   By the way, if the groundwater pumped up by the groundwater level lowering method is discharged into the sewers and rivers as it is, it will cause damage such as subsidence of the surrounding ground and lowering of the water level of the wells. For this reason, a method of returning the pumped groundwater to the ground, that is, a recharge method is widely implemented.

図11は、従来から実施されているリチャージ工法を示し、掘削がなされる施工部位20近くに揚水井21が設置され、その周囲に復水井22が設置される。揚水井21から地下水を汲み上げることにより自然地下水位L0 がL1 に低下し、施工部位での掘削施工が可能となる。揚水井21から汲み上げられた地下水は、復水井22を通して自然ヘッド圧程度での自然注水により地中に返送される。なお、図11において符号23は不透水層、24は透水層を示している。 FIG. 11 shows a conventional recharge method, in which a pumping well 21 is installed near a construction site 20 where excavation is performed, and a condensate well 22 is installed around the pumping well 21. Natural groundwater level L 0 by pumping groundwater from pumping well 21 drops to L 1, it is possible to drill construction in construction sites. The groundwater pumped from the pumping well 21 is returned to the ground through natural water injection at a natural head pressure through the condensate well 22. In addition, in FIG. 11, the code | symbol 23 is a water-impermeable layer and 24 has shown the water-permeable layer.

しかしながら、このリチャージ工法では、地下水中に含まれる浮遊懸濁物質、バクテリア、地下水中に含まれる溶解鉄分の酸化物などにより、復水井の孔壁やフィルターに目詰まりが発生する。このため、返送効率が悪くなり、場合によっては下水道や河川に排水せざるを得ないこともある。   However, in this recharge method, clogging occurs in the pore wall and filter of the condensate well due to suspended suspended solids, bacteria, and dissolved iron oxides contained in the groundwater. For this reason, the return efficiency is deteriorated, and in some cases, it may be forced to drain into a sewer or a river.

このようなことから、懸濁物などによる目詰まりを防止するための方法が種々提案されている(例えば特許文献1参照)。また、揚水した地下水を加圧して戻すことにより、地下水を大気から遮断し、地下水中に溶解している鉄分の酸化を防止するという方法も提案されている(特許文献2参照)。
特開平6−193041号公報 特開2002−256538号公報
For this reason, various methods for preventing clogging due to suspended matter have been proposed (see, for example, Patent Document 1). In addition, a method has been proposed in which groundwater that has been pumped is pressurized and returned to shut off the groundwater from the atmosphere and prevent oxidation of iron dissolved in the groundwater (see Patent Document 2).
JP-A-6-193041 JP 2002-256538 A

この発明は上記のような技術的背景に基づいてなされたものであって、次の目的を達成するものである。
この発明の目的は、目詰まりの発生が避けられない復水井におけるフィルターやスクリーンなどの濾過設備を不要とし、かつ揚水量が多い場合でも排水することなく確実に地下水を返送することができるリチャージ工法を提供することを目的とする。
The present invention has been made based on the technical background as described above, and achieves the following object.
The purpose of the present invention is to eliminate the need for filtration facilities such as filters and screens in condensate wells where clogging is unavoidable, and to reliably return groundwater without draining even when the amount of pumped water is large The purpose is to provide.

この発明の別の目的は、掘削施工部位などの所要部位の地下水位は低下させる一方、その周辺の地下水位環境に影響が生じるのを防止しながら、汲み上げた地下水のほぼ全量を地中に戻すという完全なリチャージ工法を実現することができる注水制御方法及び制御システムを提供することを目的とする。   Another object of the present invention is to return almost all of the pumped-up groundwater to the ground while reducing the groundwater level at the required site such as excavation site while preventing the surrounding groundwater level environment from being affected. It aims at providing the water injection control method and control system which can implement | achieve the complete recharge construction method.

この発明は上記課題を達成するために、次のような手段を採用している。
すなわち、この発明は、揚水井から地下水を汲み上げることにより所要部位の自然地下水を低下させ、汲み上げた地下水を復水井を通して地中に注水して返送するリチャージ工法において、
前記復水井として注水部が不透水層よりも上方の前記自然地下水位を生じさせる浅層部に位置する浅層部復水井と、注水部が不透水層よりも下方の深層部に位置する深層部復水井とを設置し、
前記浅層部復水井からは低圧で、前記深層部復水井からは高圧でそれぞれ加圧注水することにより、地下水を返送することを特徴とするリチャージ工法にある。
The present invention employs the following means in order to achieve the above object.
That is, the invention reduces the natural groundwater level of required site by pumping groundwater from pumping well, the recharge method to return the groundwater pumped by water injection into the ground through the recovery fluid well,
As the condensate well, a shallow portion condensate well in which the water injection portion is located in a shallow portion that causes the natural groundwater level above the impermeable layer, and a deep layer in which the water injection portion is located in a deep portion below the impermeable layer Set up a part condensate well,
In the recharge method, groundwater is returned by performing pressurized water injection at a low pressure from the shallow layer condensate well and at a high pressure from the deep layer condensate well.

ここに、深層部とは、地下水位よりかなり大きな圧力で注水しても、地表面への地下水の逆流や地表面の浮き上がり等の影響が生じない深度領域をいう。例えば、不透水層以深であって地下水位よりもかなり大きな圧力で注水しても不透水層に損傷を生じない、その結果地表面にも影響が出ない深度領域が該当する。また、浅層部とは、深層部以外の深度領域をいい、具体的には自然地下水位と同等あるいはそれよりも若干高い圧力でのみ注水可能な深度領域であり、一般的には地表から比較的浅い部分である。   Here, the deep layer refers to a depth region in which, even if water is injected at a pressure significantly higher than the groundwater level, there is no influence such as reverse flow of groundwater to the ground surface or floating of the ground surface. For example, a depth region that is deeper than the impermeable layer and does not cause damage to the impermeable layer even when water is injected at a pressure significantly higher than the groundwater level, and as a result does not affect the ground surface. The shallow layer means a depth region other than the deep layer. Specifically, it is a depth region where water can be injected only at a pressure equivalent to or slightly higher than the natural groundwater level. The shallow part.

また、この発明は、揚水井と、注水部が浅層部に位置する浅層部復水井と、注水部が深層部に位置する深層部復水井とを設置し、前記揚水井から地下水を汲み上げることにより所要部位の地下水位を低下させるとともに、汲み上げた地下水を加圧して前記浅層部復水井及び深層部復水井を通して地下水を返送するリチャージ工法において、
揚水量と浅層部復水井及び深層部復水井への全注水量との差と、浅層部の地下水位とがそれぞれ設定範囲にあるか否かを監視し、
この監視結果に基づき、前記浅層部復水井への注水を主とし、前記深層部復水井への注水を従として、それぞれの注水量を変化させることを特徴とするリチャージ工法における注水制御方法にある。
The present invention also includes a pumping well, a shallow condensate well where the water injection part is located in the shallow part, and a deep condensate well where the water injection part is located in the deep part, and pumps groundwater from the pumping well. In the recharge method of lowering the groundwater level of the required site by pressing the groundwater pumped up and returning the groundwater through the shallow condensate well and the deep condensate well,
Monitor whether the difference between the pumped amount and the total amount of water injected into the shallow condensate well and the deep condensate well and the groundwater level in the shallow layer are within the set range.
Based on this monitoring result, the water injection control method in the recharge method is characterized in that the water injection amount is changed mainly based on the water injection to the shallow condensate well and the water injection to the deep condensate well. is there.

より具体的には、揚水量と全注水量との差が設定範囲にないとき、浅層部復水井への注水量を変化させ、前記浅層部復水井への注水量の変化によって前記地下水位が上下限設定値に達したとき、前記深層部復水井への注水量を変化させる。   More specifically, when the difference between the pumped water amount and the total water injection amount is not within the set range, the water injection amount to the shallow condensate well is changed, and the groundwater is changed by the change in the water injection amount to the shallow condensate well. When the position reaches the upper and lower limit set values, the amount of water injected into the deep condensate well is changed.

また、揚水量と全注水量との差が設定範囲にあって、前記地下水位が設定範囲にないとき、浅層部復水井への注水量を変化させ、前記浅層部復水井への注水量の変化によって、揚水量と全注水量との差が上下限設定値に達したとき、前記深層部復水井への注水量を変化させる。   In addition, when the difference between the pumped amount and the total water injection amount is within the set range and the groundwater level is not within the set range, the amount of water injected into the shallow condensate well is changed, and the injection into the shallow condensate well is changed. When the difference between the pumped water amount and the total water injection amount reaches the upper and lower limit set values due to the change in the water amount, the water injection amount to the deep layer condensate well is changed.

さらに、この発明は、揚水井と、注水部が浅層部に位置する浅層部復水井と、注水部が深層部に位置する深層部復水井とを設置し、前記揚水井から地下水を汲み上げることにより所要部位の地下水位を低下させるとともに、汲み上げた地下水を加圧して前記浅層部復水井及び深層部復水井を通して地下水を返送するリチャージ工法を実施するための注水制御システムであって、
揚水井から汲み上げた地下水を受水する受水槽と、
この受水槽から前記浅層部復水井及び前記深層部復水井に地下水をそれぞれ返送するための浅層部返送管路及び深層部返送管路と、
この浅層部返送管路及び深層部返送管路にそれぞれ設けられ、地下水を加圧して返送するための浅層部圧送装置及び深層部圧送装置と、
揚水量と浅層部復水井及び深層部復水井への全注水量との差を検出する水量差検出手段と、
浅層部の地下水位を検出する地下水位検出手段と、
前記水量差検出手段と地下水位検出手段との検出結果に基づき、前記浅層部圧送装置及び深層部圧送装置の各作動を制御する制御装置と
を備えてなることを特徴とするリチャージ工法実施のための注水制御システムにある。
The present invention further includes a pumping well, a shallow condensate well where the water injection part is located in the shallow part, and a deep condensate well where the water injection part is located in the deep part, and pumps groundwater from the pumping well. A water injection control system for carrying out a recharge method for reducing groundwater level at a required site and pressurizing pumped groundwater and returning groundwater through the shallow condensate well and deep condensate well,
A water receiving tank for receiving groundwater pumped from the pumping well;
A shallow layer return conduit and a deep layer return conduit for returning groundwater from the water receiving tank to the shallow portion condensate well and the deep portion condensate well, respectively.
A shallow layer pumping device and a deep layer pumping device, which are respectively provided in the shallow layer return conduit and the deep layer return conduit, and pressurize and return the groundwater;
A water amount difference detecting means for detecting a difference between the pumped amount and the total water injection amount to the shallow part condensate well and the deep part condensate well;
Groundwater level detection means for detecting the groundwater level in the shallow layer,
A control device for controlling each operation of the shallow layer pumping device and the deep layer pumping device based on the detection results of the water amount difference detecting means and the groundwater level detecting means. For the water injection control system.

より具体的には、前記制御装置は、
前記水量差が設定範囲内にあるか否かを判定する水量差判定手段と、
前記地下水位が設定範囲内にあるか否かを判定する地下水位判定手段と、
前記水量差判定手段及び地下水位判定手段の判定結果に基づき、前記浅層部圧送装置及び深層部圧送装置の各作動を制御する圧送装置制御手段と
を備えてなる。
More specifically, the control device includes:
Water amount difference determining means for determining whether or not the water amount difference is within a set range;
A groundwater level determination means for determining whether or not the groundwater level is within a set range;
And a pumping device control unit that controls each operation of the shallow layer pumping device and the deep layer pumping device based on the determination results of the water amount difference determination unit and the groundwater level determination unit.

また、前記圧送装置制御手段は、前記水量差が設定範囲にないとき、前記浅層部圧送装置の作動を制御して浅層部復水井への注水量を変化させ、前記浅層部復水井への注水量の変化によって前記地下水位が上下限設定値に達したとき、前記深層部圧送装置の作動を制御して前記深層部復水井への注水量を変化させる。   Further, when the water amount difference is not within a set range, the pumping device control means controls the operation of the shallow layer pumping device to change the amount of water injected into the shallow layer condensate well, and the shallow layer condensate well. When the groundwater level reaches the upper and lower limit set values due to the change in the amount of water injected into the water, the operation of the deep layer pumping device is controlled to change the amount of water injected into the deep layer condensate well.

また、前記圧送装置制御手段は、前記水量差が設定範囲にあって、前記地下水位が設定範囲にないとき、前記浅層部圧送装置の作動を制御して浅層部復水井への注水量を変化させ、前記浅層部復水井への注水量の変化によって前記水量差が上下限設定値に達したとき、前記深層部圧送装置の作動を制御して前記深層部復水井への注水量を変化させる。   The pumping device control means controls the operation of the shallow layer pumping device when the water amount difference is within a set range and the groundwater level is not within the set range to control the amount of water injected into the shallow layer condensate well. And when the water amount difference reaches the upper and lower limit set values due to the change in the amount of water injected into the shallow layer condensate well, the amount of water injected into the deep layer condensate well is controlled by controlling the operation of the deep layer pumping device. To change.

また、前記水量差検出手段は、前記受水槽に設けられた水位センサからなる。前記地下水位検出手段は、浅層部に設置された観測井に設けられた水位センサからなる。前記浅層部圧送装置及び深層部圧送装置は、可変速ポンプからなる。   Moreover, the said water amount difference detection means consists of a water level sensor provided in the said water-receiving tank. The groundwater level detection means comprises a water level sensor provided in an observation well installed in a shallow layer. The shallow layer pumping device and the deep layer pumping device are variable speed pumps.

前記浅層部返送管路及び深層部返送管路は、前記受水槽に連結された共通管路と、この共通管路から分岐して浅層部復水井及び深層部復水井に延びる分岐管路とで構成され、前記浅層部圧送装置及び深層部圧送装置は、前記共通管路に設けられた可変速ポンプと、各分岐管路に設けられた電磁弁とからなる構成を採ることもできる。   The shallow layer return pipe and the deep layer return pipe are a common pipe connected to the water receiving tank, and a branch pipe branched from the common pipe and extending to the shallow layer condensate well and the deep layer condensate well. The shallow layer pumping device and the deep layer pumping device can adopt a configuration including a variable speed pump provided in the common pipe and an electromagnetic valve provided in each branch pipe. .

この発明によれば、汲み上げた地下水を加圧注水することにより、目詰まりの発生を防止することができ、このためフィルターやスクリーンなどの濾過設備、洗浄用ポンプなどが不要となる。したがって、復水井用の管も小径のもので済む。   According to the present invention, clogging can be prevented from occurring by pressurizing the pumped-up groundwater, thereby eliminating the need for filtration equipment such as filters and screens, washing pumps, and the like. Therefore, the pipe for the condensate well needs only a small diameter.

また、復水井は深層部復水井と浅層部復水井とからなり、浅層部復水井から地下水を返送することにより、地下水位を低下させるべき領域以外の地下水位低下を防止する一方、揚水量が多い場合には深層部復水井から返送することにより、排水することなく確実に地下水を返送することができる。   The condensate well consists of a deep condensate well and a shallow condensate well, and groundwater is returned from the shallow condensate well to prevent a decrease in the groundwater level outside the area where the groundwater level should be lowered. When the amount is large, the groundwater can be reliably returned without draining by returning it from the deep condensate well.

また、この発明によれば、揚水量と全注水量との水量差と、地下水位とを監視し、その監視結果に基づいて、まず浅層部復水井への注水量を増減させ、その増減処理で対応できない場合に深層部復水井への注水量を増減させるという注水制御がなされる。このため、周辺の地下水位環境に大きな影響を与えることなく、汲み上げた地下水のほぼ全量を地中に戻すという完全なリチャージ工法を実現することができる。   Further, according to the present invention, the difference between the pumped water amount and the total water injection amount and the groundwater level are monitored, and based on the monitoring results, the water injection amount to the shallow condensate well is first increased or decreased. Water injection control is performed to increase or decrease the amount of water injected into the deep condensate well when the treatment cannot cope. For this reason, it is possible to realize a complete recharge method in which almost all of the pumped-up groundwater is returned to the ground without greatly affecting the surrounding groundwater level environment.

図1は、この発明の実施形態を示す断面図である。掘削がなされる施工部位1又はその近くに揚水井2が設置されるのは、従来と同様である。この発明では、復水井が浅層部復水井3aと、深層部復水井3bとの2種の復水井からなっている。   FIG. 1 is a cross-sectional view showing an embodiment of the present invention. It is the same as before that the pumping well 2 is installed at or near the construction site 1 where excavation is performed. In this invention, the condensate well consists of two types of condensate wells, a shallow layer condensate well 3a and a deep layer condensate well 3b.

浅層部復水井3aは、注水部4が浅層部、この実施形態では不透水層5の上方の透水層7に位置する復水井であり、施工部位1の周辺に複数本設置されている。また、深層部復水井3bは、注水部4が深層部、この実施形態では不透水層5の下方の透水層6に位置する復水井であり、施工部位1の周辺に複数本設置されている。   The shallow layer condensate well 3a is a condensate well in which the water injection part 4 is located in the shallow layer part, in this embodiment, the permeable layer 7 above the impermeable layer 5, and a plurality of condensate wells are installed around the construction site 1. . Moreover, the deep layer condensate well 3b is a condensate well in which the water injection part 4 is located in the deep layer part, in this embodiment, the water permeable layer 6 below the impermeable layer 5, and a plurality of condensate wells are installed around the construction site 1. .

揚水井2から地下水を汲み上げることにより、自然地下水位L0 がL1 に低下し、施工部位1での掘削が可能になる。汲み上げられた地下水は、浅層部復水井3aを通して注水部4から低圧で地中に加圧注水される。この浅層部復水井3aからの地下水の返送により、施工部位1以外の領域の地下水位がL2 に維持され、地下水位の低下が防止される。また、揚水量が多い場合、地下水は深層部復水井3bを通して注水部4から高圧で地中に加圧注水される。この深層部復水井3bからの地下水の返送により、地下水を排水することなく、確実に地中に返送することができる。 By pumping groundwater from pumping wells 2, natural groundwater level L 0 drops to L 1, allowing drilling in construction site 1. The groundwater pumped up is pressurized and injected into the ground at a low pressure from the water injection section 4 through the shallow condensate well 3a. The return of the groundwater from the shallow layer portion condensate fluid well 3a, the groundwater level in the region other than the construction site 1 is maintained at L 2, lowering of groundwater level is prevented. When the amount of pumped water is large, groundwater is pressurized and injected into the ground at a high pressure from the water injection section 4 through the deep condensate well 3b. By returning the groundwater from the deep condensate well 3b, the groundwater can be reliably returned to the ground without draining the groundwater.

浅層部復水井3a及び深層部復水井3bからの地下水の注水は、いずれも地盤に割裂を生じさせる加圧注水である。このため、目詰まりが避けられないフィルターやスクリーンなどの濾過設備、洗浄用ポンプなどが不要である。したがって、浅層部復水井3a及び深層部復水井3bは、いずれも管径を小さくすることができる。   The injection of groundwater from the shallow part condensate well 3a and the deep part condensate well 3b is a pressurized water injection that causes splitting of the ground. This eliminates the need for filtration equipment such as filters and screens, cleaning pumps, etc., where clogging is unavoidable. Therefore, both the shallow layer condensate well 3a and the deep layer condensate well 3b can reduce the pipe diameter.

加圧注水することで従来の目詰まりの問題は回避することができる。ここで、仮に、浅層部復水井3aのみよって地下水を返送するとした場合、低圧での返送であることから、復水井1本当たりの返送量を大きくとれず、その結果、復水井の本数を多くしなければならない。逆に、深層部復水井3bのみによって地下水を返送するとした場合、高圧での返送であることから返送量を大きくとることができるが、施工部位1以外の領域での地下水位低下を招くことになる。この発明は、従来の目詰まりの問題を回避するだけでなく、施工部位以外の領域の地下水位低下を防止しつつ、地下水の確実な返送を可能とした合理的なシステムである。   The conventional clogging problem can be avoided by water injection under pressure. Here, if groundwater is returned only by the shallow condensate well 3a, since it is returned at a low pressure, the return amount per condensate well cannot be increased, and as a result, the number of condensate wells is reduced. I have to do more. On the contrary, when the groundwater is returned only by the deep condensate well 3b, the return amount can be increased because it is returned at a high pressure, but the groundwater level in the region other than the construction site 1 is lowered. Become. The present invention is a rational system that not only avoids the conventional clogging problem but also enables reliable return of groundwater while preventing a decrease in groundwater level in a region other than the construction site.

図2は、深層部復水井3bの詳細を示す断面図である。深層部復水井3bにはケーシングパイプ10が設置され、このケーシングパイプ10内に先端にストレーナ11を有する注水管12が設置されている。加圧注水される返送水の逆流を防止するために、ストレーナ11の上方において注水管12と孔壁との間に止水材13が設けられている。浅層部復水井3aの構造も、設置深さが異なるだけでほぼ同様である。   FIG. 2 is a cross-sectional view showing details of the deep layer condensate well 3b. A casing pipe 10 is installed in the deep condensate well 3b, and a water injection pipe 12 having a strainer 11 at the tip is installed in the casing pipe 10. In order to prevent the reverse flow of the return water to be injected under pressure, a water stop material 13 is provided between the water injection pipe 12 and the hole wall above the strainer 11. The structure of the shallow layer condensate well 3a is substantially the same except that the installation depth is different.

図3は、この発明による注水制御システムの実施形態を示す機能ブロック図である。図において領域Aは地下水位を低下させる領域であり、例えば線路下の地盤の掘削施工部位1を含む領域である。この領域Aには複数の揚水井2が設置される。領域Bは領域Aの周辺にあって、浅層部の地下水位Lを低下させたくない領域であり、この領域Bには地下水位を制御することができる複数の浅層部復水井3aが設置される。なお、複数の深層部復水井3bは、領域Bに設置されているが、浅層部の地下水位にはほとんど影響を与えることはないので、領域B以外の領域に設置してもよい。領域B又はその近くに、浅層部の地下水位Lを計測するための複数の観測井50が設置され、これらの観測井50には水位センサ51が設けられている。この水位センサ51の計測信号は制御装置60に入力される。   FIG. 3 is a functional block diagram showing an embodiment of the water injection control system according to the present invention. In the figure, a region A is a region where the groundwater level is lowered, for example, a region including the excavation site 1 of the ground under the track. In this region A, a plurality of pumping wells 2 are installed. Area B is an area around area A where it is not desired to lower the groundwater level L of the shallow layer. In this area B, a plurality of shallow layer condensate wells 3a that can control the groundwater level are installed. Is done. In addition, although the several deep layer condensate well 3b is installed in the area | region B, you may install in the area | regions other than the area | region B, since it hardly affects the groundwater level of a shallow layer part. A plurality of observation wells 50 for measuring the shallow groundwater level L are installed in or near the region B, and water level sensors 51 are provided in these observation wells 50. The measurement signal of the water level sensor 51 is input to the control device 60.

揚水井2から汲み上げられた地下水は揚水管路52を介して受水槽53に受水される。この受水槽53には浅層部返送管路54a及び深層部返送管路54bがそれぞれ接続され、これらの返送管路54a,54bには可変速ポンプ55a,55bがそれぞれ設けられている。地下水は可変速ポンプ55a,55bにより加圧され、返送管路54a,54bを介して浅層部復水井3a及び深層部復水井3bに供給され、地盤に加圧注水される。   Groundwater pumped up from the pumping well 2 is received by a receiving tank 53 through a pumping pipe 52. The water receiving tank 53 is connected with a shallow layer return conduit 54a and a deep layer return conduit 54b, respectively, and variable speed pumps 55a and 55b are provided in the return conduits 54a and 54b, respectively. The groundwater is pressurized by the variable speed pumps 55a and 55b, supplied to the shallow layer condensate well 3a and the deep layer condensate well 3b via the return pipes 54a and 54b, and pressurized and injected into the ground.

揚水管路52には揚水量を検出するための流量センサ56が設けられ、その計測信号は制御装置60に入力される。浅層部返送管路54a及び深層部返送管路54bには注水量を検出するための流量センサ57a,57bと、注水圧力(ポンプ圧)を検出するための圧力センサ58a,58bとがそれぞれ設けられ、これらの計測信号は制御装置60に入力される。受水槽53には受水されている地下水の水槽水位を検出するための水槽水位センサ59が設けられ、その計測信号は制御装置60に入力される。   The pumping pipe 52 is provided with a flow rate sensor 56 for detecting the pumping amount, and the measurement signal is input to the control device 60. The shallow layer return conduit 54a and the deep layer return conduit 54b are provided with flow sensors 57a and 57b for detecting the amount of water injection and pressure sensors 58a and 58b for detecting the water injection pressure (pump pressure), respectively. These measurement signals are input to the control device 60. The water receiving tank 53 is provided with a water tank water level sensor 59 for detecting the water level of the groundwater being received, and the measurement signal is input to the control device 60.

制御装置60は、水量差判定手段61と地下水位判定手段62と圧送装置制御手段63とを備えている。水量差判定手段61は、水槽水位センサ59の計測信号に基づき揚水量と全注水量(浅層部復水井3aへの注水量と深層部復水井3bへの注水量との総和)との差が設定範囲にあるか否かを判断するためのものである。ここで、設定範囲とは、図9に示すように、基本水位よりも水位が上昇した上限水位と、下降した下限水位との間の範囲のことである。図9において、水量差がゼロ(揚水量=全注水量)のときは水槽水位は基本水位にあり、水量差があって揚水量>全注水量のときは水槽水位は上限水位側(+側)に変動し、揚水量<全注水量のときは水槽水位は下限水位側(−側)に変動する。   The control device 60 includes water amount difference determination means 61, groundwater level determination means 62, and pumping device control means 63. The water amount difference determining means 61 is based on the measurement signal of the tank water level sensor 59 and the difference between the pumped water amount and the total water injection amount (the sum of the water injection amount to the shallow layer condensate well 3a and the water injection amount to the deep layer condensate well 3b). Is for determining whether or not is within the set range. Here, the set range is a range between the upper limit water level where the water level has risen above the basic water level and the lower limit water level, as shown in FIG. In FIG. 9, when the water volume difference is zero (pumped water amount = total water injection amount), the aquarium water level is at the basic water level, and when there is a water volume difference and the pumped water amount> total water injection amount, the water tank water level is at the upper water level side (+ side). ), And when the pumping amount <total water injection amount, the water level of the tank changes to the lower limit water level side (-side).

地下水位判定手段62は、観測井50に設けられた水位センサ51の計測信号に基づき地下水位が設定範囲にあるか否かを判断するためのものである。ここで、設定範囲とは、定常時の基本水位よりも地下水位が上昇した上限水位と、下降した下限水位との間の範囲のことである。この地下水位の基本水位及び上下限水位は、土質データや地盤の透水係数などを勘案して設定される。   The groundwater level determination means 62 is for determining whether or not the groundwater level is within the set range based on the measurement signal of the water level sensor 51 provided in the observation well 50. Here, the set range is a range between the upper limit water level in which the groundwater level has risen above the basic water level in a steady state and the lower limit water level that has fallen. The basic water level and the upper and lower limit water levels of the groundwater level are set in consideration of soil data and soil permeability.

圧送装置制御手段63は、水量差判定手段61及び地下水位判定手段62の判定結果に基づき、可変速ポンプ55a,55bの作動を制御するためのものである。すなわち、水量差あるいは地下水位がそれぞれの設定範囲にないとき、可変速ポンプ55a,55bに制御信号を送り、その回転数を変化させて浅層部復水井3a及び深層部復水井3bへの注水量を変化させる。   The pumping device control means 63 is for controlling the operation of the variable speed pumps 55a and 55b based on the determination results of the water amount difference determination means 61 and the groundwater level determination means 62. That is, when the water volume difference or the groundwater level is not within the respective setting ranges, a control signal is sent to the variable speed pumps 55a and 55b, and the number of revolutions is changed, so Change the amount of water.

次に、制御システムの動作を図4〜図8に示すフローチャートを参照して説明する。図4に示すように、リチャージ工法の実施中において、制御装置60は水槽水位が図9に示した上下限設定範囲にあるか否かを判断する(ステップS1)。水槽水位が設定範囲にあれば、制御装置60は地下水位が上下限設定範囲にあるか否かを判断する(ステップS2)。地下水位が設定範囲にあれば、運転続行状態であるかを判断し(ステップS3)、運転続行状態にあればステップS1に戻る。   Next, the operation of the control system will be described with reference to the flowcharts shown in FIGS. As shown in FIG. 4, during the execution of the recharge method, the control device 60 determines whether or not the water tank water level is within the upper and lower limit setting range shown in FIG. 9 (step S1). If the aquarium water level is within the set range, the control device 60 determines whether or not the groundwater level is within the upper and lower limit set range (step S2). If the groundwater level is within the set range, it is determined whether the operation is continued (step S3). If the operation is continued, the process returns to step S1.

ここで、ステップS1において水槽水位が設定範囲にないとされたとき、制御装置60は水槽水位の変動が図9に示した上限側(+側)か、下限側(−側)かを判断し(ステップS4)、上限側(+側)すなわち揚水量>全注水量であれば、注水量を増加させる処理を行う(ステップS5)。また、水槽水位変動が下限側(−側)すなわち揚水量<全注水量であれば、注水量を減少させる処理を行う(ステップS6)。   Here, when it is determined in step S1 that the aquarium water level is not within the set range, the control device 60 determines whether the fluctuation of the aquarium water level is the upper limit side (+ side) or the lower limit side (− side) shown in FIG. (Step S4) If the upper limit side (+ side), that is, the pumping amount> the total water injection amount, a process of increasing the water injection amount is performed (step S5). Moreover, if the water tank level fluctuation is the lower limit side (− side), that is, the pumping amount <the total water injection amount, the water injection amount is reduced (step S6).

図5は注水量増加処理(ステップS5)の詳細を示すフローチャートである。制御装置60がこれを実行するのは前記したように、揚水量>全注水量であって水槽水位が上限設定水位を超えていると判断した場合であり、まず水槽水位が上限警戒水位(図9参照)内にあるか否かをチェックし(ステップS5-1)、警戒水位を超えていれば警報を発したうえで(ステップS5-2)、浅層部返送管路54aの可変速ポンプ55aの回転数を増加させ、浅層部復水井3aへの注水量を増加させる(ステップS5-3)。その際、制御装置60は揚水管路52に設けた流量センサ56の計測データと、浅層部返送管路54a及び深層部返送管路54bに設けた流量センサ57a,57bの各計測データとから、必要増加注水量を演算処理し、その必要増加注水量データに基づき段階的に浅層部復水井3aへの注水量を増加させる。   FIG. 5 is a flowchart showing details of the water injection amount increasing process (step S5). As described above, the control device 60 executes this when the pumping amount> the total water injection amount and when the water tank level is determined to exceed the upper limit set water level. 9) (step S5-1), and if the warning water level is exceeded, an alarm is issued (step S5-2), and then the variable speed pump of the shallow return line 54a The rotation speed of 55a is increased, and the amount of water injected into the shallow layer condensate well 3a is increased (step S5-3). At that time, the control device 60 uses the measurement data of the flow rate sensor 56 provided in the pumping pipeline 52 and the measurement data of the flow rate sensors 57a and 57b provided in the shallow layer return pipeline 54a and the deep layer return pipeline 54b. The necessary increased water injection amount is processed, and the water injection amount to the shallow condensate well 3a is increased stepwise based on the required increased water injection amount data.

この注水量増加操作は、浅層部返送管路54aの圧力センサ58a、観測井50の地下水位センサ51及び受水槽53の水位センサ59の各計測データをチェックしながら行われる(ステップS5-4,S5-5,S5-6)。すなわち、制御装置60は、ステップS5-4で注水圧力(ポンプ圧)が上限設定値内と判断し、ステップS5-5で地下水位が上限設定値内と判断している場合には、ステップS5-6で水槽水位が−側に変化したと判断するまで、浅層部復水井3aへの注水量を段階的に増加させる。   This water injection amount increasing operation is performed while checking each measurement data of the pressure sensor 58a of the shallow layer return conduit 54a, the groundwater level sensor 51 of the observation well 50, and the water level sensor 59 of the water receiving tank 53 (step S5-4). , S5-5, S5-6). That is, the control device 60 determines that the water injection pressure (pump pressure) is within the upper limit set value in step S5-4, and if the groundwater level is determined to be within the upper limit set value in step S5-5, step S5. -6, gradually increase the amount of water injected into the shallow condensate well 3a until it is determined that the tank level has changed to the-side.

浅層部復水井3aへの注水量増加により、制御装置60がステップS5-4で注水圧力(ポンプ圧)が上限設定値に達した、あるいはステップS5-5で地下水位が上限設定値に達したと判断すると、制御装置60は深層部返送管路54bの可変速ポンプ55bの回転数を増加させ、深層部復水井3bへの注水量を増加させる(ステップS5-7)。   Due to an increase in the amount of water injected to the shallow condensate well 3a, the controller 60 has reached the upper limit set value in step S5-4, or the groundwater level has reached the upper set value in step S5-5. If it judges that it has performed, the control apparatus 60 will increase the rotation speed of the variable speed pump 55b of the deep layer return pipeline 54b, and will increase the amount of water injection to the deep layer condensate well 3b (step S5-7).

この注水量増加操作は、深層部返送管路54bの圧力センサ58b及び受水槽53の水位センサ59の各計測データをチェックしながら行われる(ステップS5-8,S5-9)。すなわち、制御装置60は、ステップS5-8での判断結果、注水圧力(ポンプ圧)が上限設定値内であれば、ステップS5-9で水槽水位が−側に変化したと判断するまで、深層部復水井3bへの注水量を段階的に増加させる。
This water injection amount increasing operation is performed while checking each measurement data of the pressure sensor 58b of the deep layer return conduit 54b and the water level sensor 59 of the water receiving tank 53 (steps S5-8, S5-9). That is, if the water injection pressure (pump pressure) is within the upper limit set value as a result of the determination in step S5-8, the control device 60 does not continue until it determines that the water tank water level has changed to the negative side in step S5-9. The amount of water injected into the partial condensate well 3b is increased stepwise.
.

深層部復水井3bへの注水量増加により、制御装置60がステップS5-8で注水圧力(ポンプ圧)が上限設定値に達したと判断すると、警報を発する(ステップS5-10)。この場合は、全揚水量を返送するのは困難なものとし、揚水量の一部を放流する(ステップS5-11)。   If the controller 60 determines that the water injection pressure (pump pressure) has reached the upper limit value in step S5-8 due to the increase in the amount of water injected into the deep condensate well 3b, an alarm is issued (step S5-10). In this case, it is difficult to return the total pumped amount, and a part of the pumped amount is discharged (step S5-11).

図6は注水量減少処理(ステップS6)の詳細を示すフローチャートである。制御装置60がこれを実行するのは前記したように、揚水量<全注水量であって水槽水位が下限設定水位を下回っていると判断した場合であり、まず水槽水位が下限警戒水位(図9参照)内にあるか否かをチェックし(ステップS6-1)、警戒水位を下回っていれば警報を発したうえで(ステップS6-2)、浅層部返送管路54aの可変速ポンプ55aの回転数を減少させ、浅層部復水井3aへの注水量を減少させる(ステップS6-3)。その際、制御装置60は、前記した注水量増加の場合と同様に、揚水量データと全注水量データとから必要減少注水量を演算処理し、その必要減少注水量データに基づき段階的に浅層部復水井3aへの注水量を減少させる。   FIG. 6 is a flowchart showing details of the water injection amount reduction process (step S6). As described above, the control device 60 executes this when the pumping amount is less than the total water injection amount and it is determined that the aquarium water level is lower than the lower limit set water level. 9) (step S6-1), and if it is below the warning water level, an alarm is issued (step S6-2), and then the variable speed pump of the shallow part return conduit 54a The rotational speed of 55a is reduced, and the amount of water injected into the shallow layer condensate well 3a is reduced (step S6-3). At that time, as in the case of the above-described increase in the water injection amount, the control device 60 calculates the necessary reduced water injection amount from the pumped water amount data and the total water injection amount data, and gradually reduces the amount of water injection based on the necessary reduced water injection amount data. Reduce the amount of water injected into the stratum condensate well 3a.

この注水量減少操作は、観測井50の地下水位センサ51及び受水槽53の水位センサ59の各計測データをチェックしながら行われる(ステップS6-4,S6-5)。すなわち、制御装置60は、ステップS6-4で地下水位が下限設定値内と判断している場合には、ステップS6-5で水槽水位が+側に変化したと判断するまで、浅層部復水井3aへの注水量を段階的に減少させる。   This water injection amount reduction operation is performed while checking each measurement data of the ground water level sensor 51 of the observation well 50 and the water level sensor 59 of the water receiving tank 53 (steps S6-4 and S6-5). That is, when the control device 60 determines that the groundwater level is within the lower limit value in step S6-4, the control device 60 recovers the shallow layer until it determines that the water tank level has changed to the + side in step S6-5. The amount of water injected into the well 3a is decreased stepwise.

浅層部復水井3aへの注水量減少により、制御装置60がステップS6-4で地下水位が下限設定値に達したと判断すると、制御装置60は深層部返送管路54bの可変速ポンプ55bの回転数を減少させ、深層部復水井3bへの注水量を減少させる(ステップS6-6)。   If the control device 60 determines that the groundwater level has reached the lower limit value in step S6-4 due to a decrease in the amount of water injected into the shallow condensate well 3a, the control device 60 determines that the variable speed pump 55b in the deep layer return conduit 54b. And the amount of water injected into the deep condensate well 3b is reduced (step S6-6).

この注水量減少操作は、深層部返送管路54bの受水槽53の水位センサ59の計測データをチェックしながら行われる(ステップS6-7)。すなわち、制御装置60は、ステップS6-7で水槽水位が+側に変化したと判断するまで、深層部復水井3bへの注水量を段階的に減少させる。
This water injection amount reduction operation is performed while checking the measurement data of the water level sensor 59 of the water receiving tank 53 of the deep layer return conduit 54b (step S6-7). That is, the controller 60 reduces the amount of water injected to the deep condensate well 3b in a stepwise manner until it is determined in step S6-7 that the water tank water level has changed to the + side.
.

以上のような注水量増加処理(ステップS5)又は注水量減少処理(ステップS6)により、水槽水位は設定範囲に維持され、揚水量と全注水量との水量差は設定範囲に維持される。この注水量増加処理及び注水量減少処理は、いずれも、地下水位をチェックしながら、まず浅層部復水井3aへの注水量を増減させ、その増減処理で対応できない場合にのみ深層部復水井3bへの注水量を増減させるという処理である。このため、施工部位周辺の地下水位環境に大きな影響を与えることなく、また、特殊な事態が発生した場合を除き、外部に放流をすることなく、施工部位で汲み上げた地下水を地中に全量戻すという完全なリチャージ工法を実現することができる。   By the water injection amount increasing process (step S5) or the water injection amount decreasing process (step S6) as described above, the water level of the aquarium is maintained within the set range, and the water amount difference between the pumped water amount and the total water injection amount is maintained within the set range. Both the water injection volume increasing process and the water injection volume decreasing process are performed by increasing or decreasing the water injection volume to the shallow condensate well 3a while checking the groundwater level, and only when the increase / decrease process cannot cope with it. This is a process of increasing or decreasing the amount of water injected into 3b. For this reason, all the groundwater pumped up at the construction site is returned to the ground without any significant impact on the groundwater level environment around the construction site and without being discharged to the outside unless a special situation occurs. A complete recharge method can be realized.

この発明では上記のように、地下水位をチェックしながら、浅層部復水井3aへの注水制御を主とし、深層部復水井3bへの注水制御を従として注水制御を行うので、水槽水位が設定範囲に維持されれば、通常は、地下水位も設定範囲あるいは設定範囲外となっても警戒水位には達しない範囲に維持されるものと考えられる。しかし、水槽水位が設定範囲に維持されていても、地下水流の変化などにより、施工部位周辺領域の予期しない地下水位変動もあり得ないことではない。そこで、この発明では、そのような場合であっても、地下水位を設定範囲に維持する処理を行っている。   In the present invention, as described above, while checking the groundwater level, the water injection control to the shallow condensate well 3a is mainly performed, and the water injection control is performed according to the water injection control to the deep condensate well 3b. If maintained within the set range, it is normally considered that the groundwater level is maintained within a range that does not reach the warning water level even if the groundwater level is outside the set range or set range. However, even if the aquarium water level is maintained within the set range, it is not impossible for the groundwater level to change unexpectedly in the area around the construction site due to changes in the groundwater flow. Therefore, in the present invention, even in such a case, processing for maintaining the groundwater level within the set range is performed.

すなわち、図4に示したフローチャートにおいて、ステップS1で水槽水位が設定範囲にあると判断された場合であっても、前記したように制御装置60はステップS2で地下水位が設定範囲にあるかどうかを判断する。その結果、地下水位が設定範囲にないと判断されれば、制御装置60は地下水位の変動が上限側(+側)か、下限側(−側)かを判断し(ステップS7)、下限側(−側)であれば、注水量を増加させる処理を行う(ステップS8)。また、地下水位の変動が上限側(+側)であれば、注水量を減少させる処理を行う(ステップS9)。   That is, in the flowchart shown in FIG. 4, even if it is determined in step S1 that the aquarium water level is within the set range, as described above, the control device 60 determines whether the groundwater level is in the set range in step S2. Judging. As a result, if it is determined that the groundwater level is not within the set range, the control device 60 determines whether the fluctuation of the groundwater level is the upper limit side (+ side) or the lower limit side (− side) (step S7). If it is (-side), the process which increases the amount of water injection will be performed (step S8). Moreover, if the fluctuation | variation of a groundwater level is an upper limit side (+ side), the process which reduces the amount of water injection will be performed (step S9).

図7は注水量増加処理(ステップS8)の詳細を示すフローチャートである。制御装置60がこれを実行するのは前記したように、地下水位が下限設定水位を下回っていると判断した場合であり、まず地下水位が下限警戒水位内にあるか否かをチェックし(ステップS8-1)、警戒水位を下回っていれば警報を発したうえで(ステップS8-2)、浅層部返送管路54aの可変速ポンプ55aの回転数を増加させ、浅層部復水井3aへの注水量を増加させる(ステップS8-3)。その際、制御装置60は、予め設定された地下水位の変動量に対する注水量の関係から必要増加注水量を演算し、その必要増加注水量データに基づき段階的に浅層部復水井3aへの注水量を増加させる。   FIG. 7 is a flowchart showing details of the water injection amount increasing process (step S8). As described above, the control device 60 executes this when the groundwater level is determined to be below the lower limit set water level, and first checks whether the groundwater level is within the lower warning water level (step S8-1) If the alert water level is below the alert water level (step S8-2), the rotational speed of the variable speed pump 55a in the shallow layer return conduit 54a is increased, and the shallow layer condensate well 3a The amount of water injected into the water is increased (step S8-3). At that time, the control device 60 calculates the required increased water injection amount from the relationship of the water injection amount with respect to the fluctuation amount of the groundwater level set in advance, and step by step based on the required increased water injection amount data to the shallow condensate well 3a. Increase water injection volume.

この注水量増加操作は、浅層部返送管路54aの圧力センサ58a、受水槽53の水位センサ59及び観測井50の地下水位センサ51の各計測データをチェックしながら行われる(ステップS8-4,S8-5,S8-6)。すなわち、制御装置60は、ステップS8-4で注水圧力(ポンプ圧)が上限設定値内にないと判断した場合には警報を発する(ステップS8-7)。そして、ステップS8-5で水槽水位が下限設定値内であれば、ステップS8-6で地下水位が+側に変化したと判断するまで、浅層部復水井3aへの注水量を段階的に増加させる。   This water injection amount increasing operation is performed while checking each measurement data of the pressure sensor 58a of the shallow layer return conduit 54a, the water level sensor 59 of the water receiving tank 53, and the groundwater level sensor 51 of the observation well 50 (step S8-4). , S8-5, S8-6). That is, the control device 60 issues an alarm when it is determined in step S8-4 that the water injection pressure (pump pressure) is not within the upper limit set value (step S8-7). If the tank water level is within the lower limit in step S8-5, the amount of water injected into the shallow condensate well 3a is stepwise until it is determined in step S8-6 that the groundwater level has changed to the + side. increase.

浅層部復水井3aへの注水量増加により、制御装置60がステップS8-5で水槽水位が下限設定値に達したと判断すると、制御装置60は深層部返送管路54bの可変速ポンプ55bの回転数を減少させ、深層部復水井3bへの注水量を減少させる(ステップS8-8)。この注水量減少操作は、受水槽53の水位センサ59の計測データをチェックしながら行われ(ステップS8-9)、制御装置60はステップS8-9での判断結果、水槽水位が+側に変化したと判断するまで、深層部復水井3bへの注水量を段階的に減少させる。   When the controller 60 determines that the water tank level has reached the lower limit in step S8-5 due to an increase in the amount of water injected into the shallow condensate well 3a, the controller 60 adjusts the variable speed pump 55b of the deep section return conduit 54b. , And the amount of water injected into the deep condensate well 3b is decreased (step S8-8). This water injection amount reduction operation is performed while checking the measurement data of the water level sensor 59 of the water receiving tank 53 (step S8-9), and the control device 60 changes the water level of the water tank to the + side as a result of the determination in step S8-9. Until it is determined that the water has been injected, the amount of water injected into the deep condensate well 3b is reduced stepwise.

深層部復水井3bへの注水量減少により、ステップS8-9で水槽水位が+側に変化したと判断されれば、水槽水位の設定範囲内での浅層部復水井3aへの注水量増加が再び可能となる。そこで、制御装置60は、ステップS8-6に戻って地下水位が+側に変化しているかどうかをチェックし、変化していなければ再び浅層部復水井3aへの注水量を増加させる(ステップS8-3)。   If it is determined in step S8-9 that the water level of the tank has changed to the + side due to a decrease in the amount of water injected into the deep condensate well 3b, the amount of water injected into the shallow condensate well 3a within the set range of the aquarium water level Will be possible again. Therefore, the control device 60 returns to step S8-6 to check whether or not the groundwater level has changed to the + side, and if it has not changed, the amount of water injected into the shallow condensate well 3a is increased again (step). S8-3).

図8は注水量減少処理(ステップS9)の詳細を示すフローチャートである。制御装置60がこれを実行するのは前記したように、地下水位が上限設定水位を超えていると判断した場合であり、まず地下水位が上限警戒水位内にあるか否かをチェックし(ステップS9-1)、警戒水位を超えていれば警報を発したうえで(ステップS9-2)、浅層部返送管路54aの可変速ポンプ55aの回転数を減少させ、浅層部復水井3aへの注水量を減少させる(ステップS9-3)。その際、制御装置60は、予め設定された地下水位の変動量に対する注水量の関係から必要減少注水量を演算し、その必要減少注水量データに基づき浅層部復水井3aへの注水量を段階的に減少させる。   FIG. 8 is a flowchart showing details of the water injection amount reduction process (step S9). As described above, the control device 60 executes this when the groundwater level is determined to exceed the upper limit set water level. First, it is checked whether the groundwater level is within the upper warning water level (step S9-1) If the warning water level is exceeded, an alarm is issued (step S9-2), and the rotational speed of the variable speed pump 55a of the shallow layer return conduit 54a is decreased, and the shallow layer condensate well 3a The amount of water injected into the water is reduced (step S9-3). At that time, the control device 60 calculates the required reduced water injection amount from the relationship of the water injection amount to the preset groundwater level fluctuation amount, and calculates the water injection amount to the shallow condensate well 3a based on the necessary reduced water injection amount data. Decrease in steps.

この注水量減少操作は、受水槽53の水位センサ59及び観測井50の地下水位センサ51の各計測データをチェックしながら行われる(ステップS9-4,S9-5)。すなわち、制御装置60は、ステップS9-4で水槽水位が上限設定値内であれば、ステップS9-5で地下水位が−側に変化したと判断するまで、浅層部復水井3aへの注水量を段階的に減少させる。   This water injection amount reduction operation is performed while checking each measurement data of the water level sensor 59 of the water receiving tank 53 and the groundwater level sensor 51 of the observation well 50 (steps S9-4 and S9-5). That is, if the water tank level is within the upper limit value in step S9-4, the control device 60 will note to the shallow condensate well 3a until it is determined in step S9-5 that the groundwater level has changed to the-side. Reduce the amount of water step by step.

浅層部復水井3aへの注水量減少により、制御装置60がステップS9-4で水槽水位が上限設定値に達したと判断すると、制御装置60は深層部返送管路54bの可変速ポンプ55bの回転数を増加させ、深層部復水井3bへの注水量を増加させる(ステップS9-6)。この注水量増加操作は、深層部返送管路54bの圧力センサ58b及び受水槽53の水位センサ59の各計測データをチェックしながら行われる(ステップS9-7,S9-8)。すなわち、制御装置60は、ステップS9-7での判断結果、注水圧力(ポンプ圧)が上限設定値内であれば、ステップS9-8で水槽水位が−側に変化したと判断するまで、深層部復水井3bへの注水量を段階的に増加させる。   When the controller 60 determines that the water level in the aquarium has reached the upper limit value in step S9-4 due to a decrease in the amount of water injected into the shallow condensate well 3a, the controller 60 determines the variable speed pump 55b of the deep layer return conduit 54b. Is increased to increase the amount of water injected into the deep condensate well 3b (step S9-6). This water injection amount increasing operation is performed while checking each measurement data of the pressure sensor 58b of the deep layer return conduit 54b and the water level sensor 59 of the water receiving tank 53 (steps S9-7, S9-8). That is, if the water injection pressure (pump pressure) is within the upper limit set value as a result of the determination in step S9-7, the control device 60 will continue until it determines in step S9-8 that the aquarium water level has changed to the-side. The amount of water injected into the partial condensate well 3b is increased stepwise.

深層部復水井3bへの注水量増加により、制御装置60がステップS9-7で注水圧力(ポンプ圧)が上限設定値に達したと判断すると、警報を発する(ステップS9-9)。この場合は、深層部復水井3bへの注水量増加によっては、水槽水位を設定範囲に維持しながら浅層部復水井3aへの注水量を減少させるのは困難なものとし、揚水量の一部を放流する(ステップS9-10)。   If the controller 60 determines that the water injection pressure (pump pressure) has reached the upper limit value in step S9-7 due to the increase in the amount of water injected into the deep condensate well 3b, an alarm is issued (step S9-9). In this case, depending on an increase in the amount of water injected into the deep condensate well 3b, it is difficult to reduce the amount of water injected into the shallow condensate well 3a while maintaining the tank level within the set range. Part is discharged (step S9-10).

深層部復水井3bへの注水量増加により、ステップS9-8で水槽水位が−側に変化したと判断されれば、水槽水位の設定範囲内での浅層部復水井3aへの注水量減少が再び可能となる。そこで、制御装置60は、ステップS9-5に戻って地下水位が−側に変化しているかどうかをチェックし、変化していなければ再び浅層部復水井3aへの注水量を減少させる(ステップS9-3)。   If it is determined in step S9-8 that the aquarium water level has changed to the-side due to an increase in the amount of water injected into the deep condensate well 3b, a decrease in the amount of water injected into the shallow condensate well 3a within the setting range of the aquarium water level Will be possible again. Therefore, the control device 60 returns to step S9-5 to check whether or not the groundwater level has changed to the-side, and if not, again reduces the amount of water injected into the shallow layer condensate well 3a (step S9-5). S9-3).

以上のような注水量増加処理(ステップS8)又は注水量減少処理(ステップS9)により、揚水量と全注水量との差が設定範囲にありながら、地下水流の変動などにより地下水位に変動が生じた場合でも、その地下水位を設定範囲に維持することができる。   By the water injection amount increasing process (step S8) or the water injection amount decreasing process (step S9) as described above, the groundwater level changes due to changes in the groundwater flow while the difference between the pumped water amount and the total water injection amount is within the set range. Even if it occurs, the groundwater level can be maintained within the set range.

図10は制御システムの別の実施形態を示す機能ブロック図である。この実施形態では受水槽53から浅層部復水井3a及び深層部復水井3bに地下水を返送する返送管路は、受水槽53に連結された共通管路64と、共通管路64から分岐する分岐管路64a,64bとで構成されている。そして共通管路64に可変速ポンプ65が設けられ、分岐管路64a,64bに電磁弁66a,66bがそれぞれ設けられている。   FIG. 10 is a functional block diagram showing another embodiment of the control system. In this embodiment, the return pipe for returning groundwater from the water receiving tank 53 to the shallow part condensate well 3 a and the deep part condensate well 3 b branches from the common pipe 64 connected to the water receiving tank 53 and the common pipe 64. It consists of branch pipes 64a and 64b. A variable speed pump 65 is provided in the common pipe 64, and electromagnetic valves 66a and 66b are provided in the branch pipes 64a and 64b, respectively.

したがって、浅層部圧送装置は浅層部返送管路64,64aに設けられた可変速ポンプ65と電磁弁66aとによって構成され、また深層部圧送装置は深層部返送管路64,64bに設けられた可変速ポンプ65と電磁弁66bとによって構成される。この実施形態の場合、浅層部復水井3a及び深層部復水井3bへの各注水量の増減操作は、可変速ポンプ65の回転数と電磁弁66a,66bの開度を変化させることにより行われる。   Accordingly, the shallow layer pumping device is constituted by the variable speed pump 65 and the electromagnetic valve 66a provided in the shallow layer returning conduits 64 and 64a, and the deep layer pumping device is provided in the deep layer returning conduits 64 and 64b. The variable speed pump 65 and the electromagnetic valve 66b. In the case of this embodiment, the operation of increasing or decreasing the amount of water injected into the shallow condensate well 3a and the deep condensate well 3b is performed by changing the rotational speed of the variable speed pump 65 and the opening degree of the electromagnetic valves 66a and 66b. Is called.

上記各実施形態は例示にすぎず、この発明は種々の態様を採ることができる。例えば、上記制御システムの実施形態では受水槽53に設けた水位センサ59から得られる計測データによって揚水量と全注水量との水量差を検出しているが、これに限るものではない。すなわち、揚水管路52に設けた流量センサ56、浅層部返送管路54a及び深層部返送管路54bにそれぞれ設けた流量センサ57a,57bの各計測データから揚水量と全注水量との水量差を演算し、これを検出水量差とする構成を採ることもできる。   The above embodiments are merely examples, and the present invention can take various forms. For example, in the embodiment of the control system described above, the water amount difference between the pumped water amount and the total water injection amount is detected by the measurement data obtained from the water level sensor 59 provided in the water receiving tank 53, but the present invention is not limited to this. That is, the amount of pumped water and the total amount of water injected from the measurement data of the flow rate sensor 56 provided in the pumping pipe 52, the flow rate sensors 57a and 57b provided in the shallow layer return pipe 54a and the deep layer return pipe 54b, respectively. It is also possible to adopt a configuration in which the difference is calculated and used as a detected water amount difference.

この発明によるリチャージ工法の実施形態を示す断面図である。It is sectional drawing which shows embodiment of the recharge construction method by this invention. 深層部復水井の詳細を示す断面図である。It is sectional drawing which shows the detail of a deep layer condensate well. 注水制御システムの実施形態を示す機能ブロック図である。It is a functional block diagram showing an embodiment of a water injection control system. 制御装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of a control apparatus. 水槽水位が変動したときの注水量増加処理を説明するためのフローチャートである。It is a flowchart for demonstrating the water injection amount increase process when a water tank water level fluctuates. 水槽水位が変動したときの注水量減少処理を説明するためのフローチャートである。It is a flowchart for demonstrating the water injection amount reduction process when an aquarium water level fluctuates. 地下水位が変動したときの注水量増加処理を説明するためのフローチャートである。It is a flowchart for demonstrating the water injection amount increase process when a groundwater level fluctuates. 地下水位が変動したときの注水量減少処理を説明するためのフローチャートである。It is a flowchart for demonstrating the water injection amount reduction process when a groundwater level fluctuates. 水槽水位の設定範囲を示す図であるIt is a figure which shows the setting range of an aquarium water level 注水制御システムの別の実施形態を示す図である。It is a figure which shows another embodiment of a water injection control system. 従来工法を示す断面図である。It is sectional drawing which shows a conventional construction method.

符号の説明Explanation of symbols

1 施工部位
2 揚水井
3a 浅層部復水井
3b 深層部復水井
4 注水部
5 不透水層
6 透水層
7 透水層
10 ケーシングパイプ
11 ストレーナ
12 注水管
13 止水材
50 観測井
51 地下水位センサ
52 揚水管路
53 受水槽
54a 浅層部返送管路
54b 深層部返送管路
55a,55b 可変速ポンプ
56 流量センサ
57a,57b 流量センサ
58a,58b 圧力センサ
59 水槽水位センサ
60 制御装置
61 水量差判定手段
62 地下水位判定手段
63 圧送装置制御手段
64 共通管路
64a,64b 分岐管路
65 可変速ポンプ
66a,66b 電磁弁
A 地下水位を低下させる領域領域
B 地下水位を低下させたくない領域
DESCRIPTION OF SYMBOLS 1 Construction site 2 Pumping well 3a Shallow part condensate well 3b Deep part condensate well 4 Injection part 5 Impervious layer 6 Permeable layer 7 Permeable layer 10 Casing pipe 11 Strainer 12 Injection pipe 13 Water stop material 50 Observation well 51 Groundwater level sensor 52 Pumping pipe 53 Water receiving tank 54a Shallow layer return pipe 54b Deep layer return pipe 55a, 55b Variable speed pump 56 Flow rate sensor 57a, 57b Flow rate sensor 58a, 58b Pressure sensor 59 Aquarium water level sensor 60 Controller 61 Water difference judgment means 62 Groundwater level judgment means 63 Pumping device control means 64 Common pipes 64a, 64b Branch pipes 65 Variable speed pumps 66a, 66b Solenoid valve A Area where the groundwater level is lowered B Area where the groundwater level is not desired to be lowered

Claims (12)

揚水井から地下水を汲み上げることにより所要部位の自然地下水を低下させ、汲み上げた地下水を復水井を通して地中に注水して返送するリチャージ工法において、
前記復水井として注水部が不透水層よりも上方の前記自然地下水位を生じさせる浅層部に位置する浅層部復水井と、注水部が不透水層よりも下方の深層部に位置する深層部復水井とを設置し、
前記浅層部復水井からは低圧で、前記深層部復水井からは高圧でそれぞれ加圧注水することにより、地下水を返送することを特徴とするリチャージ工法。
Lowering the natural groundwater level of required site by pumping groundwater from pumping well, the recharge method to return the groundwater pumped by water injection into the ground through the recovery fluid well,
As the condensate well, a shallow portion condensate well in which the water injection portion is located in a shallow portion that causes the natural groundwater level above the impermeable layer, and a deep layer in which the water injection portion is located in a deep portion below the impermeable layer Set up a part condensate well,
A recharge method for returning groundwater by performing pressurized water injection at a low pressure from the shallow condensate well and at a high pressure from the deep condensate well.
揚水井と、注水部が浅層部に位置する浅層部復水井と、注水部が深層部に位置する深層部復水井とを設置し、前記揚水井から地下水を汲み上げることにより所要部位の地下水位を低下させるとともに、汲み上げた地下水を加圧して前記浅層部復水井及び深層部復水井を通して地下水を返送するリチャージ工法において、
揚水量と浅層部復水井及び深層部復水井への全注水量との差と、浅層部の地下水位とがそれぞれ設定範囲にあるか否かを監視し、
この監視結果に基づき、前記浅層部復水井への注水を主とし、前記深層部復水井への注水を従として、それぞれの注水量を変化させることを特徴とするリチャージ工法における注水制御方法。
Groundwater at the required site by installing a pumping well, a shallow condensate well where the water injection part is located in the shallow part, and a deep condensate well where the water injection part is located in the deep part, and pumping groundwater from the pumping well In the recharging method of lowering the position, pressurizing the groundwater pumped up and returning the groundwater through the shallow condensate well and the deep condensate well,
Monitor whether the difference between the pumped amount and the total amount of water injected into the shallow condensate well and the deep condensate well and the groundwater level in the shallow layer are within the set range.
A water injection control method in the recharge method, characterized in that, based on this monitoring result, water injection into the shallow layer condensate well is mainly performed, and water injection amount is changed according to water injection into the deep layer condensate well.
揚水量と全注水量との差が設定範囲にないとき、浅層部復水井への注水量を変化させ、
前記浅層部復水井への注水量の変化によって前記地下水位が上下限設定値に達したとき、前記深層部復水井への注水量を変化させることを特徴とする請求項2記載のリチャージ工法における注水制御方法。
When the difference between the pumped water volume and the total water injection volume is not within the set range, change the water injection volume to the shallow condensate well,
The recharge method according to claim 2, wherein when the groundwater level reaches an upper and lower limit set value due to a change in the amount of water injected into the shallow condensate well, the amount of water injected into the deep condensate well is changed. Water injection control method.
揚水量と全注水量との差が設定範囲にあって、前記地下水位が設定範囲にないとき、浅層部復水井への注水量を変化させ、
前記浅層部復水井への注水量の変化によって、揚水量と全注水量との差が上下限設定値に達したとき、前記深層部復水井への注水量を変化させることを特徴とする請求項2記載のリチャージ工法における注水制御方法。
When the difference between the pumped water amount and the total water injection amount is within the set range, and the groundwater level is not within the set range, the water injection amount to the shallow condensate well is changed,
When the difference between the pumped water amount and the total water injection amount reaches an upper and lower limit set value due to a change in the water injection amount to the shallow layer condensate well, the water injection amount to the deep layer condensate well is changed. A water injection control method in the recharge method according to claim 2.
揚水井と、注水部が浅層部に位置する浅層部復水井と、注水部が深層部に位置する深層部復水井とを設置し、前記揚水井から地下水を汲み上げることにより所要部位の地下水位を低下させるとともに、汲み上げた地下水を加圧して前記浅層部復水井及び深層部復水井を通して地下水を返送するリチャージ工法を実施するための注水制御システムであって、
揚水井から汲み上げた地下水を受水する受水槽と、
この受水槽から前記浅層部復水井及び前記深層部復水井に地下水をそれぞれ返送するための浅層部返送管路及び深層部返送管路と、
この浅層部返送管路及び深層部返送管路にそれぞれ設けられ、地下水を加圧して返送するための浅層部圧送装置及び深層部圧送装置と、
揚水量と浅層部復水井及び深層部復水井への全注水量との差を検出する水量差検出手段と、
浅層部の地下水位を検出する地下水位検出手段と、
前記水量差検出手段と地下水位検出手段との検出結果に基づき、前記浅層部圧送装置及び深層部圧送装置の各作動を制御する制御装置と
を備えてなることを特徴とするリチャージ工法実施のための注水制御システム。
Groundwater at the required site by installing a pumping well, a shallow condensate well where the water injection part is located in the shallow part, and a deep condensate well where the water injection part is located in the deep part, and pumping groundwater from the pumping well A water injection control system for carrying out a recharge method for reducing ground pressure and pressurizing the pumped-up groundwater and returning groundwater through the shallow condensate well and the deep condensate well,
A water receiving tank for receiving groundwater pumped from the pumping well;
A shallow layer return conduit and a deep layer return conduit for returning groundwater from the water receiving tank to the shallow portion condensate well and the deep portion condensate well, respectively.
A shallow layer pumping device and a deep layer pumping device, which are respectively provided in the shallow layer return conduit and the deep layer return conduit, and pressurize and return the groundwater;
A water amount difference detecting means for detecting a difference between the pumped amount and the total water injection amount to the shallow part condensate well and the deep part condensate well;
Groundwater level detection means for detecting the groundwater level in the shallow layer,
A control device for controlling each operation of the shallow layer pumping device and the deep layer pumping device based on the detection results of the water amount difference detecting means and the groundwater level detecting means. Water injection control system for.
前記制御装置は、
前記水量差が設定範囲内にあるか否かを判定する水量差判定手段と、
前記地下水位が設定範囲内にあるか否かを判定する地下水位判定手段と、
前記水量差判定手段及び地下水位判定手段の判定結果に基づき、前記浅層部圧送装置及び深層部圧送装置の各作動を制御する圧送装置制御手段と
を備えてなることを特徴とする請求項5記載のリチャージ工法実施のための注水制御システム。
The controller is
Water amount difference determining means for determining whether or not the water amount difference is within a set range;
A groundwater level determination means for determining whether or not the groundwater level is within a set range;
6. A pumping device control unit that controls each operation of the shallow layer pumping device and the deep layer pumping device based on the determination results of the water amount difference determination unit and the groundwater level determination unit. Water injection control system for implementation of the recharge method described.
前記圧送装置制御手段は、前記水量差が設定範囲にないとき、前記浅層部圧送装置の作動を制御して浅層部復水井への注水量を変化させ、前記浅層部復水井への注水量の変化によって前記地下水位が上下限設定値に達したとき、前記深層部圧送装置の作動を制御して前記深層部復水井への注水量を変化させることを特徴とする請求項6記載のリチャージ工法実施のための注水制御システム。   When the water amount difference is not within a set range, the pumping device control means controls the operation of the shallow layer pumping device to change the amount of water injected into the shallow layer condensate well, and to the shallow layer condensate well. The amount of water injection to the deep layer condensate is changed by controlling the operation of the deep layer pumping device when the groundwater level reaches an upper and lower limit set value due to a change in water injection amount. Water injection control system for the implementation of the recharge method. 前記圧送装置制御手段は、前記水量差が設定範囲にあって、前記地下水位が設定範囲にないとき、前記浅層部圧送装置の作動を制御して浅層部復水井への注水量を変化させ、前記浅層部復水井への注水量の変化によって前記水量差が上下限設定値に達したとき、前記深層部圧送装置の作動を制御して前記深層部復水井への注水量を変化させることを特徴とする請求項6記載のリチャージ工法実施のための注水制御システム。   When the water amount difference is within a set range and the groundwater level is not within the set range, the pumping device control means controls the operation of the shallow layer pumping device to change the water injection amount to the shallow layer condensate well. When the difference in water amount reaches the upper and lower limit set values due to changes in the amount of water injected into the shallow section condensate well, the operation of the deep section pumping device is controlled to change the amount of water injected into the deep section condensate well. The water injection control system for carrying out the recharge method according to claim 6. 前記水量差検出手段は、前記受水槽に設けられた水位センサからなることを特徴とする請求項5〜8のいずれか1記載のリチャージ工法実施のための注水制御システム。   The water injection control system for carrying out the recharge method according to any one of claims 5 to 8, wherein the water amount difference detecting means comprises a water level sensor provided in the water receiving tank. 前記地下水位検出手段は、浅層部に設置された観測井に設けられた水位センサからなることを特徴とする請求項5〜8のいずれか1記載のリチャージ工法実施のための注水制御システム。   The water injection control system for carrying out a recharge method according to any one of claims 5 to 8, wherein the groundwater level detection means comprises a water level sensor provided in an observation well installed in a shallow layer. 前記浅層部圧送装置及び深層部圧送装置は、可変速ポンプからなることを特徴とする請求項5〜8のいずれか1記載のリチャージ工法実施のための注水制御システム。   The water injection control system for carrying out a recharge method according to any one of claims 5 to 8, wherein the shallow layer pumping device and the deep layer pumping device comprise variable speed pumps. 前記浅層部返送管路及び深層部返送管路は、前記受水槽に連結された共通管路と、この共通管路から分岐して浅層部復水井及び深層部復水井に延びる分岐管路とで構成され、
前記浅層部圧送装置及び深層部圧送装置は、前記共通管路に設けられた可変速ポンプと、各分岐管路に設けられた電磁弁とからなることを特徴とする請求項5〜8のいずれか1記載のリチャージ工法実施のための注水制御システム。
The shallow layer return pipe and the deep layer return pipe are a common pipe connected to the water receiving tank, and a branch pipe branched from the common pipe and extending to the shallow layer condensate well and the deep layer condensate well. And consists of
The shallow layer pumping device and the deep layer pumping device are each composed of a variable speed pump provided in the common pipe and an electromagnetic valve provided in each branch pipe. A water injection control system for carrying out the recharge method according to any one of the above.
JP2005231910A 2004-08-12 2005-08-10 Recharge method, water injection control method and water injection control system Active JP4140733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005231910A JP4140733B2 (en) 2004-08-12 2005-08-10 Recharge method, water injection control method and water injection control system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004235195 2004-08-12
JP2005231910A JP4140733B2 (en) 2004-08-12 2005-08-10 Recharge method, water injection control method and water injection control system

Publications (2)

Publication Number Publication Date
JP2006077567A JP2006077567A (en) 2006-03-23
JP4140733B2 true JP4140733B2 (en) 2008-08-27

Family

ID=36157242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005231910A Active JP4140733B2 (en) 2004-08-12 2005-08-10 Recharge method, water injection control method and water injection control system

Country Status (1)

Country Link
JP (1) JP4140733B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102635122A (en) * 2012-04-10 2012-08-15 上海广联建设发展有限公司 Dewatering-recharging integrated device and process for foundation pit engineering
CN103526780A (en) * 2013-10-23 2014-01-22 天津大学 Water plugging seepage-proofing method for recharge well
CN103643689A (en) * 2013-12-06 2014-03-19 上海申元岩土工程有限公司 Pipe type underground water drainage blind ditch and construction technology and application thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102383412A (en) * 2010-08-27 2012-03-21 中铁二十二局集团第三工程有限公司 Construction method by adopting dewatering and water recharging to control sedimentation surrounding deep foundation pit
JP5659693B2 (en) * 2010-10-25 2015-01-28 株式会社大林組 Condensation method and condensate system
JP4897934B1 (en) * 2011-06-17 2012-03-14 博明 上山 Channel switching type geothermal water circulation device
JP5096608B1 (en) * 2011-11-07 2012-12-12 博明 上山 Channel switching type geothermal water circulation device
JP6043165B2 (en) * 2012-11-19 2016-12-14 鹿島建設株式会社 Groundwater level rise system, groundwater level rise method
JP6455032B2 (en) * 2014-09-02 2019-01-23 株式会社大林組 Pull-out method for existing piles
JP6447046B2 (en) * 2014-11-20 2019-01-09 株式会社大林組 Groundwater pumping management system and groundwater pumping method
CN106436717A (en) * 2016-07-22 2017-02-22 江苏科兴项目管理有限公司 Impervious curtain river-near foundation pit adopting dewatering wells and design method
CN106245621B (en) * 2016-07-27 2018-03-23 济南轨道交通集团有限公司 A kind of electric osmose inverted well construction method
CN108252294B (en) * 2018-02-01 2019-12-13 中纬建设工程有限公司 Foundation pit groundwater recharge system
CN109235392A (en) * 2018-10-23 2019-01-18 山东农业大学 A kind of draining of pipe well combination wind-light-electricity complementary changes salt system and its application method
KR102132792B1 (en) * 2020-02-04 2020-07-10 김준성 Recharge system and recharge method
CN112049138A (en) * 2020-09-04 2020-12-08 湖南省第六工程有限公司 Deep foundation pit dewatering, purifying and recharging integrated system and control method
CN113089702A (en) * 2021-04-15 2021-07-09 安徽水安建设集团股份有限公司 Pump station foundation pit integrated drainage system and construction method
CN115094932B (en) * 2022-07-27 2023-10-24 中铁十二局集团有限公司 Deep foundation pit pressure-bearing water pumping and filling integrated device and use method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102635122A (en) * 2012-04-10 2012-08-15 上海广联建设发展有限公司 Dewatering-recharging integrated device and process for foundation pit engineering
CN103526780A (en) * 2013-10-23 2014-01-22 天津大学 Water plugging seepage-proofing method for recharge well
CN103643689A (en) * 2013-12-06 2014-03-19 上海申元岩土工程有限公司 Pipe type underground water drainage blind ditch and construction technology and application thereof
CN103643689B (en) * 2013-12-06 2015-08-12 上海申元岩土工程有限公司 A kind of pipe type underground water drainage blind ditch and construction technology thereof and application

Also Published As

Publication number Publication date
JP2006077567A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
JP4140733B2 (en) Recharge method, water injection control method and water injection control system
JP5212070B2 (en) Common well and construction method of regular well
CN104018511B (en) A kind of construction technology of underground construction drainage and anti-float device
KR200460536Y1 (en) Vacuum deep well drainage system for underground water level lowering method
CN106088094A (en) High mountain strid Method of Arch Dam Foundation segmentation stage grouting method
CN108655160A (en) A kind of three-dimensional circular for underground water in-situ immobilization disturbs intensifying device and method
CN110439015B (en) Precipitation well structure with clear hole function
CN213979070U (en) Basement pressure relief device that lets out water
JP5204626B2 (en) Groundwater management system
CN213867881U (en) Ground wall seepage emergency system
JP6870969B2 (en) How to extubate an existing well
KR101793360B1 (en) System and method for controlling land deformation
CN110777830A (en) Foundation pit dewatering control method under geological condition of water-rich thick gravel layer
US7374691B2 (en) In-situ hydraulic treatment conduit
CN209803622U (en) automatic pumping and draining device for engineering construction
CN112709248A (en) Grouting system and process suitable for high slope curtain grouting stability control
EP2281950A1 (en) System for treating underground fluids
CN114150716B (en) Experimental device for underground structure drainage decompression anti-floating
JPH11269861A (en) Water injection method in recharge method
CN217870570U (en) Underground water pumping and draining device for foundation pit dewatering well
CN214614103U (en) Steel plate supporting and dewatering integrated system
CN110763400B (en) Method and system for detecting defects of vertical impervious curtain
CN218970051U (en) Pipe well structure under full operating mode condition
CN220450892U (en) Foundation engineering water-retaining precipitation structure
CN211898482U (en) Automatic drainage device of foundation slab sump pit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4140733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250