JP4140730B2 - Control method of converter boiler - Google Patents

Control method of converter boiler Download PDF

Info

Publication number
JP4140730B2
JP4140730B2 JP2005189399A JP2005189399A JP4140730B2 JP 4140730 B2 JP4140730 B2 JP 4140730B2 JP 2005189399 A JP2005189399 A JP 2005189399A JP 2005189399 A JP2005189399 A JP 2005189399A JP 4140730 B2 JP4140730 B2 JP 4140730B2
Authority
JP
Japan
Prior art keywords
furnace
blowing
drum
boiler
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005189399A
Other languages
Japanese (ja)
Other versions
JP2007010187A (en
Inventor
勤 小川
崇 塩地
直人 宇都宮
秀彦 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2005189399A priority Critical patent/JP4140730B2/en
Publication of JP2007010187A publication Critical patent/JP2007010187A/en
Application granted granted Critical
Publication of JP4140730B2 publication Critical patent/JP4140730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、2炉以上のPS転炉を並列使用する主に銅製錬操業で、排ガスからの熱回収を目的に各炉の排ガス道に設置し、ドラム(ドラム)を共通使用する転炉ボイラーにおいて、複数炉の同時吹錬を可能とする為のドラム水位制御方法に関するものである。 The present invention is a copper smelting operation mainly using two or more PS converters in parallel, installed in the exhaust gas passage of each furnace for the purpose of heat recovery from exhaust gas, and a converter boiler that commonly uses a drum (drum) The present invention relates to a drum water level control method for enabling simultaneous blowing of a plurality of furnaces.

一般に、銅の製錬工程としては種々の工程が実施されているが、その代表的なプロセスとしては自溶炉においてカワを作り、そのカワを図1に示す転炉(1)の装入口(2)より装入し、処理して銅含有量98.5mass%程度の粗銅を得て、さらにその粗銅を精製して銅含有量を99.3
mass%〜99.5mass%程度まで上昇させてからアノート゛を鋳造し、最終的に電解精製するフ゜ロセスである。
また鋳返し銅などは、図1に示す装入シュート(3)から装入される。
銅転炉は、一般にヒ゜アース・スミス式転炉(以下、PS転炉と略す)と呼ばれる円筒横型の炉体が用いられ、操業時には炉を傾転して炉側面下方から空気あるいは酸素富化空気を吹き込むことができる数十本の羽口(図1(4))を有している。
In general, various processes are carried out as a copper smelting process. As a typical process, a blast furnace is used to make a river in a flash smelting furnace. 2) Charged and processed to obtain crude copper with a copper content of about 98.5 mass%, and further refined the crude copper to a copper content of 99.3
It is a process that casts note after raising the mass% to about 99.5 mass%, and finally electrolytically refines it.
In addition, cast copper or the like is charged from the charging chute (3) shown in FIG.
The copper converter is a cylindrical horizontal furnace called a heat and Smith type converter (hereinafter abbreviated as PS converter). During operation, the furnace is tilted to air or oxygen-enriched air from below the side of the furnace. Dozens of tuyere (FIG. 1 (4)).

PS転炉の操業はバッチ式であり、前工程の自溶炉から各バッチに必要な量のカワをレート゛ルに入れ銅転炉内に装入するが、転炉内に装入された1バッチ分のカワの吹錬には、造カン期と造銅期の異なる吹錬期間が存在する。
造カン期では、カワ中のFeとSを酸化除去する過程であり、酸化されたSはSO2ガスとして、図1の排ガス用のフード(5)を介して、排ガス中に除去され、酸化されたFeは溶剤である硅酸鉱と結合させ、低融点のカラミを生成させて第1造カン期の終了後に炉外に除去する。
The operation of the PS converter is a batch type. The amount of river required for each batch is charged into the copper converter from the flash furnace of the previous process and charged into the copper converter, but one batch is charged into the converter. There is a different blowing period between the can-making period and the copper-making period.
In the can-making stage, Fe and S in the river are oxidized and removed. The oxidized S is removed as SO 2 gas into the exhaust gas through the exhaust gas hood (5) in FIG. The obtained Fe is combined with oxalic acid ore, which is a solvent, to produce low melting point calami and is removed outside the furnace after the first canning period.

第1造カン期の終了後にカラミを排出し、炉内の溶体が減少し、湯面が下がるので、追加のカワを装入し、第2造カン期が行われる。造カン期を終了してカラミを炉外に排出した後、炉内に残る溶体は白カワと呼ばれ、銅品位は75mass%前後であり、若干除いたFeを除いてはCu2Sである。造カン期終了後は、造銅期に移行する。ここではCu2SのSを酸化除去し、最終的には、98.5mass%程度の転炉粗銅に仕上げる。 After the end of the first canning period, the waste is discharged, the melt in the furnace is reduced, and the molten metal level is lowered, so an additional river is charged and the second canning period is performed. After finishing the can-making period and discharging the calami to the outside of the furnace, the solution remaining in the furnace is called white river, the copper grade is around 75 mass%, and it is Cu 2 S except Fe slightly removed . After completion of the can-making period, the process shifts to the copper-making period. Here, S of Cu 2 S is oxidized and removed, and finally, it is finished into converter crude copper of about 98.5 mass%.

銅転炉(図2の6)の操業において造カン期及び造銅期の排ガスの熱回収において、炉後部にボイラ伝熱面(7)を有するボイラーを設置するのが一般的である。
一般的なボイラーは、図2に示されるようにボイラドラム(10)を1基所有しており、ボイラ給水ライン(12)・ボイラ蒸気ライン(13)・ボイラ循環行きライン(15)・ボイラ循環戻りライン(16)が存在する。
排ガスからの熱回収はボイラ伝熱面(7)に送られる循環水を通して行われ、加熱された蒸気はボイラドラム(10)よりボイラ蒸気ライン(13)を通して、タービンへと送られ発電として使用され、水として回収される。回収した水は、ボイラ給水ライン(12)を通してボイラドラム(10)へポンフ゜により送られる。
In the operation of the copper converter (6 in FIG. 2), in the heat recovery of the exhaust gas during the can-making period and the copper-making period, it is common to install a boiler having a boiler heat transfer surface (7) at the rear of the furnace.
As shown in Fig. 2, a common boiler has one boiler drum (10). Boiler water supply line (12), boiler steam line (13), boiler circulation line (15), boiler circulation There is a return line (16).
Heat recovery from the exhaust gas is performed through circulating water sent to the boiler heat transfer surface (7), and the heated steam is sent from the boiler drum (10) through the boiler steam line (13) to the turbine and used for power generation. Recovered as water. The recovered water is pumped to the boiler drum (10) through the boiler feed line (12).

転炉操業は、前述のようにバッチ操業である為、熱負荷の変動が起こり、圧力・水位が変化し、水位制御が必要となる。1炉吹錬時の水位制御については、特開平10-115405号(出願人:住友金属鉱山株式会社、「ボイラードラム給水量の制御方法」)の開示(特許文献1)があり、転炉の操業状態を「送風停止状態」、「吹錬送風開始直後状態」、「吹錬送風状態」、「送風停止直後状態」に区分し、制御している。
「送風停止状態」はト゛ラム水位と給水の2要素により、ドラム水位を送風停止時での目標ドラム水位になるように給水量を調節する。
「吹錬送風開始直後」は、蒸気・給水の2要素により、発生蒸気量の増加に応じて給水量を調節する。
「吹錬送風停止直後」については、蒸気・給水・ドラム水位の3要素により、発生蒸気量の変化と吹錬送風時での目標ドラム水位に対する偏差値との両者によって給水量を調節する。
「送風停止直後」については、蒸気・給水の2要素により、発生蒸気量の減少に応じて給水量を調節する。しかし、これだけでは以下に示すような問題点があった。
特開平10-115405号
Since the converter operation is a batch operation as described above, the heat load fluctuates, the pressure and the water level change, and the water level control is required. Regarding the water level control during one furnace blowing, there is a disclosure (Patent Document 1) of Japanese Patent Laid-Open No. 10-115405 (Applicant: Sumitomo Metal Mining Co., Ltd., “Control Method of Boiler Drum Water Supply”). The operation state is divided into “blowing stopped state”, “state immediately after the start of blowing blasting”, “blowing blowing state”, and “state immediately after stopping blowing” and is controlled.
In the “air blow stop state”, the water supply amount is adjusted so that the drum water level becomes the target drum water level when the air supply is stopped by the two factors of the drum water level and the water supply.
In “immediately after the start of blowing air blowing”, the amount of water supply is adjusted according to the increase in the amount of generated steam, using two elements of steam and water supply.
For “immediately after stopping blow blowing”, the amount of water supply is adjusted by both the change in the amount of generated steam and the deviation from the target drum level at the time of blowing blow by the three factors of steam, water supply and drum water level.
For “immediately after stopping air blowing”, the amount of water supply is adjusted according to the decrease in the amount of generated steam, using two elements of steam and water supply. However, this alone has the following problems.
JP 10-115405 A

ボイラーの性質上、熱負荷が大きくなるとドラム水位が上昇し、熱負荷が小さくなるとト゛ラム水位が降下する。
複数炉に伝熱面を設置し、ドラムを共通使用する転炉ボイラーにおいては、従来技術で2炉吹錬を行った場合、目まぐるしく吹錬炉が0炉,1炉,2炉と切替わり、伝熱面の熱負荷の変動に対応できず、ドラム水位が大幅に変動する。
最悪の場合は、ボイラーの強制循環ポンフ゜がトリップ停止することにより、吹錬の中断が遅れると、チューブの破損を招く。
2炉吹錬を行う際は、2炉吹錬、1炉吹錬または吹錬停止の状態が考えられ、0炉⇔1炉,1炉⇔2炉の切替えが発生する。これらの切替え時に、従来の蒸気流量・ドラム水位・給水流量の3(ないし2)要素制御では、前述の原因で、ボイラードラム水位が大きく変動し、自動制御が困難であった。
Due to the nature of the boiler, the drum water level increases when the heat load increases, and the drum water level decreases when the heat load decreases.
In converter boilers where heat transfer surfaces are installed in multiple furnaces and drums are used in common, when two furnaces are blown by the conventional technology, the blowing furnaces are rapidly switched to 0, 1 and 2 furnaces. It cannot cope with fluctuations in the heat load on the heat transfer surface, and the drum water level fluctuates significantly.
In the worst case, the forced circulation pump of the boiler stops tripping, and if the interruption of blowing is delayed, the tube will be damaged.
When performing two-furnace blowing, there are two furnace blowing, one-furnace blowing, or blowing-stopped states, and switching between zero-furnace, one-furnace, and one-furnace-furnace occurs. At the time of switching, the conventional 3 (or 2) element control of steam flow rate, drum water level, and feed water flow rate has caused the boiler drum water level to fluctuate greatly due to the above-mentioned causes, making automatic control difficult.

本発明においては、上記の課題を解決するため以下の発明を成した。
(1) 並列された二炉の銅製錬転炉を、すべての炉が非吹錬状態(以下「0炉吹錬」という)、一炉のみが吹錬状態(「1炉吹錬」という)、及び二炉が吹錬状態(以下「2炉吹錬」という)を切替えて操業し、かつすべての転炉のボイラーに対して1基のドラムを用いて制御する転炉の排ガス煙道のボイラー制御方法において、2炉吹錬時に、ある水位以上かつあるドラム水位の上昇速度以上の時に、前記ドラムより自動で水を排出し、あるドラム水位上昇速度以下になった際に排出をやめることによりキャリーオーバーを防止することを特徴とする転炉ボイラーの制御方法。
In the present invention, the following inventions have been made to solve the above problems.
(1) Two parallel-furnace copper smelting converters, all furnaces in the non-blowing state (hereinafter referred to as “0 furnace blowing”), and only one furnace in the blowing state (referred to as “1 furnace blowing”) , And two furnaces operated by switching the blowing state (hereinafter referred to as “two-furnace blowing”), and controlled using a single drum for all converter boilers. in the boiler control method, upon 2 oxygen blowing, above a certain level and when more than the rising speed of a drum water level, to stop discharging when the water is discharged automatically from the drum, falls below a certain drum level rise velocity A control method for a converter boiler, characterized in that carryover is prevented by

(2)0炉吹錬時に、ドラム圧力測定値PV値及び加熱蒸気圧の設定値SV値に応じてドラム加熱及び自動ブローを実施することにより、水位を最低レベルに保ち、0炉から1炉への吹錬切替えを実施し、さらに1炉から2炉への吹錬切替えを可能とすることを特徴とする(1)記載の転炉ボイラーの制御方法。 (2) at 0 oxygen blowing, by implementing the drum heating and automatic blow according to the set value SV value of the drum pressure measurements PV value and the heating steam pressure, keeping the water level to the lowest level, from 0 furnace 1 The method for controlling a converter boiler according to (1) , wherein the blowing switching to the furnace is performed, and the blowing switching from one furnace to two furnaces is enabled.

本発明によれば、
(1)複数炉に伝熱面を設置し、ボイラドラムを共通使用する転炉ボイラーにおいて、ドラム水位変動を一定範囲に収め、ボイラーの強制循環ポンフ゜のトリッフ゜停止を防止し、蒸気ラインへの熱水のキャリーオーハ゛ーを発生させることなく安定した2炉吹錬操業が可能となった。
(2)炉切替え時、吹錬開始に際して、常に吹錬可能な状態を維持できる為、ボイラーのドラム水位制御不能状態による吹錬不能、待機状態の発生を回避し、生産量を最大に維持することが可能となった。
According to the present invention,
(1) In converter boilers that install heat transfer surfaces in multiple furnaces and use boiler drums in common, fluctuations in the drum water level are kept within a certain range, and stoppage of the boiler forced circulation pump trip is prevented, and heat to the steam line Stable two-furnace smelting operation became possible without generating water carryover.
(2) When the furnace is switched, the state in which blowing can be performed is always maintained at the start of blowing. Therefore, it is possible to avoid the occurrence of the inability to blow and the standby state due to the drum water level control disabled state of the boiler, and to maintain the production volume to the maximum. It became possible.

以下、本発明の実施形態を図面に基づいて説明する。自溶炉で産出されたCu2S,FeSを主体とした溶融カワ200〜230t(Cu:63〜70mass%,Fe:14〜6
mass%,S:20〜15mass%)を円筒横型PS転炉に装入して酸化吹錬する場合について説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 200 ~ 230t of molten metal mainly composed of Cu 2 S and FeS produced in flash furnace (Cu: 63 ~ 70mass%, Fe: 14 ~ 6)
(mass%, S: 20-15 mass%) is charged into a cylindrical horizontal PS converter and subjected to oxidation blowing.

レート゛ルによって運ばれたカワは、図1に示すように、転炉炉体(1)の装入口(2)から炉内に装入される。その後、羽口(4)より送風しつつ転炉炉体(1)を起こして、炉内に装入されているカワに、酸素富化空気を吹き込む。カワ中の組成・量に応じてSiO2を主成分とする硅酸鉱を炉内に装入してカワ中の鉄と硫黄の酸化を行う。 As shown in FIG. 1, the river carried by the plate is charged into the furnace through the charging port (2) of the converter furnace body (1). Thereafter, the converter furnace body (1) is raised while blowing from the tuyere (4), and oxygen-enriched air is blown into the river charged in the furnace. Depending on the composition and amount in the river, oxalic acid ore containing SiO 2 as the main component is charged into the furnace to oxidize iron and sulfur in the river.

第1造カン期で生成したカラミは炉外に排出されるが、カラミが取り除かれると炉内の溶体が減少するので、その後、追加のカワを炉内に装入し、第2造カン期を行う。
第2造カン期にも同様に羽口(図1の4)からカワ中に酸素富化空気を吹き込み、硅酸鉱を炉内に装入してカワ中の鉄と硫黄の酸化を行う。第2造カン期で生成した酸化鉄とSiO2を結合させてカラミを炉外に取り出し、銅品位75 mass%程度の白カワとなし、次の造銅期に入る。造銅期で白カワはさらに酸化され、銅品位98mass%程度の粗銅となる。
Karami produced in the 1st canning period is discharged outside the furnace, but when it is removed, the solution in the furnace will decrease. I do.
Similarly, in the second canning period, oxygen-enriched air is blown into the river from the tuyere (4 in FIG. 1), and oxalate ore is charged into the furnace to oxidize iron and sulfur in the river. The iron oxide produced in the second canning stage and SiO 2 are combined and the calami is taken out of the furnace, and a white leather with a copper grade of about 75 mass% is formed, and the next copper making stage begins. In the copper making stage, white river is further oxidized to become crude copper with a copper quality of about 98 mass%.

図2に示すように、造カン期及び造銅期の反応で発生する高温(約500〜600℃)のSO2を含んだ排ガス(17)は、硫酸工場(9)に送られ硫酸に製造される。硫酸製造前に、除塵装置が設置されており、除塵装置の性能上、発生ガス7の温度を250〜350℃まで、冷却する必要がある。
その為、図2のように、転炉排ガス道間に廃熱ボイラーであるボイラ伝熱部(7)、ボイラードラム(10)を設置することが通例となっている。
As shown in Fig. 2, the exhaust gas (17) containing high temperature (about 500-600 ° C) SO 2 generated in the reaction of the can-making stage and the copper-making stage is sent to the sulfuric acid factory (9) to produce sulfuric acid. Is done. Prior to the production of sulfuric acid, a dust removing device is installed, and the temperature of the generated gas 7 needs to be cooled to 250 to 350 ° C. for the performance of the dust removing device.
Therefore, as shown in FIG. 2, it is customary to install a boiler heat transfer section (7) and a boiler drum (10), which are waste heat boilers, between the converter exhaust gas passages.

廃熱ボイラーであるボイラ伝熱部(7)、ボイラードラム(10)には、種々のタイプのものがあるが、通常転炉(6)は2基以上であることからコスト面を考慮して、ボイラドラム(10)を1基保有し、各炉にボイラ伝熱部(7)を用いた強制循環タイプのボイラーが望ましいと考えられている。 There are various types of boiler heat transfer section (7) and boiler drum (10), which are waste heat boilers. However, since there are usually two or more converters (6), considering the cost. It is considered desirable to use a forced circulation boiler that has one boiler drum (10) and uses a boiler heat transfer section (7) in each furnace.

転炉操業は、バッチ式である為、ボイラーの熱負荷変動が激しい。その為、ドラム水位の変動が激しく、通常のドラム水位・給水量・ドラム圧力の3要素制御では、水位の異常低下によるボイラー給水循環ポンプ(11)の停止、または、水位の異常上昇によるキャリーオーバーを起こす可能性がある。
問題解決の為、熱負荷の少ない0炉吹錬時(例えば、2炉とも酸素含有ガスを転炉に装入しない時期を表す表現であり、酸化熱が発生しない時である。)に圧力に応じて水位を最低に保つ。
Since the converter operation is batch-type, the boiler's heat load fluctuates drastically. Therefore, the drum water level fluctuates drastically, and in normal three-element control of drum water level, water supply amount, and drum pressure, the boiler feed water circulation pump (11) stops due to an abnormal drop in water level, or carry over due to an abnormal rise in water level. May cause.
In order to solve the problem, the pressure is reduced to zero when the furnace is blown with low heat load (for example, the time when both furnaces are not charged with oxygen-containing gas into the converter, and when oxidation heat is not generated). Accordingly, keep the water level to a minimum .

熱負荷の多い2炉吹錬時(例えば、2炉とも酸素含有ガスを転炉に吹錬込む時期を表す表現であり、酸化熱が非常に発生する時期である。)には、水位・水位勾配に応じてドラム底部よりドラム水の排出を図2に示す水底ブローライン(18)により行い、円滑な操業を可能とする。 At the time of two-furnace blowing with high heat load (for example, both of the two furnaces represent the time when oxygen-containing gas is blown into the converter, and this is the time when oxidation heat is generated very much). Drum water is discharged from the bottom of the drum according to the gradient by means of the water bottom blow line (18) shown in FIG. 2 to enable smooth operation.

具体的制御方法は次のとおりである。
(1)PV値及びSV値制御
ドラム圧力測定値PV値 < 加熱蒸気圧力SV+固定値かつドラム水位 > 設定値A
となった時点で、水底よりドラム水を排出する。即ち、ドラム圧力測定値PVが、加熱蒸気圧力設定値(SV)と固定値の合計を下回り、かつドラム水位が設定値Aより高い場合、ドラム底部に設けた排水ラインからドラム水位が所定の高さBになるまで排水する。
The specific control method is as follows.
(1) PV value and SV value control drum pressure measurement PV value <heating steam pressure SV + fixed value and drum water level> set value A
At that time, the drum water is discharged from the bottom of the water. That is, when the drum pressure measurement PV is less than the sum of the heating steam pressure set value (SV) and the fixed value and the drum water level is higher than the set value A, the drum water level is set to a predetermined high level from the drain line provided at the bottom of the drum. Drain until B is reached.

(2)ドラム水位及びドラム水位上昇速度制御
(イ)ドラム水位 < 設定値Bとなった時点で、排出を止める0炉吹錬時にドラム圧力に応じて水位を最低に保つ制御を行う。
(ロ)ドラム水位上昇速度 > 設定値Cかつドラム水位 > 設定値Dとなった時点で、ドラム底部よりドラム水を排出する。
(ハ)ドラム水位勾配 < 設定値Eとなった時点で、ドラム水位上昇速度が設定値Cより大きく、かつドラム水位が設定値Dより高い場合、ドラム底部よりドラム水を排出し、ドラム水位上昇速度が設定値Eを下回ったところで排水を止める。
(2) Drum water level and drum water level rising speed control (a) When the drum water level is less than the set value B, control is performed to keep the water level to the lowest level according to the drum pressure at the time of 0 furnace blowing when the discharge is stopped.
(B) When the drum water level rise speed> set value C and drum water level> set value D, the drum water is discharged from the bottom of the drum.
(C) When the drum water level gradient <the set value E, when the drum water level rising speed is higher than the set value C and the drum water level is higher than the set value D, the drum water is discharged from the drum bottom and the drum water level rises. Stop draining when the speed falls below the set value E.

(実施例)
(0炉吹錬の時の排出条件では、)排出開始条件は、ドラム圧力PV値>2.65Mpa(圧力設定値(SV))+0.1Mpa(固定値)であり、かつドラム水位>-280mmである場合は、排出終了条件は、ドラム水位<-330mmである。
(2炉吹錬時の排出条件では、)
排出開始条件は、ドラム水位上昇速度>7mm/secであり、かつドラム水位50mm以上である場合は、排出終了条件は、ドラム水位上昇速度<-1mm/secである。
(Example)
(The discharge conditions when the 0 oxygen blowing) discharge start conditions are drum pressure PV value> 2.65Mpa (pressure setpoint (SV)) + 0.1 Mpa (fixed value), and a drum water level> -280Mm In some cases, the discharge termination condition is a drum water level <-330 mm.
(In terms of discharge conditions during 2 furnace blowing )
When the discharge start condition is a drum water level rise speed> 7 mm / sec and the drum water level is 50 mm or more, the discharge end condition is a drum water level rise speed <−1 mm / sec.

図3にドラム水位(図中の実線で示す。)の変動を示す。図3に示す実線のドラム水位は、左側から1炉吹錬の場合は、ドラム水位が中間点にあり、2炉吹錬となるとドラム水位が上昇し、キャリーオーバーを防止する為に、ドラム水を排出している。排出する条件は、ドラム水位が50mm以上かつドラム水位の上昇速度が7mm/s以上である。排出停止は、ドラム水位の上昇速度が-1mm/s以下となっている。 Fig. 3 shows the fluctuation of the drum water level (indicated by the solid line in the figure). In the case of one furnace blowing from the left side, the drum water level shown in FIG. 3 is at the middle point. When two furnaces are blown , the drum water level rises to prevent carryover. Is discharged. The conditions for discharging are a drum water level of 50 mm or more and a drum water level rising speed of 7 mm / s or more. In the discharge stop, the rising speed of the drum water level is -1 mm / s or less.

0炉吹錬の時期になるとドラム圧力(図3に破線で示す。)が低下する為、ドラム水位が低くなっていく。安定な操業を行う為に、ドラム圧が2.65MPa以下とならないよう加熱蒸気を吹きこむ。その為、ドラム水位が上昇しているが、ドラム水位が-280mmとなった時点で、ドラム水を排出し-330mmになるまで抜き続ける。(水位を-330〜-280mmに保つようにする) At the time of zero furnace blowing, the drum pressure (indicated by a broken line in FIG. 3) decreases, so the drum water level decreases. In order to ensure stable operation, heat steam is blown so that the drum pressure does not fall below 2.65 MPa. For this reason, the drum water level is rising, but when the drum water level reaches -280 mm, the drum water is discharged and continuously drained until it reaches -330 mm. (Keep the water level between -330 and -280mm)

上記の操作を行うことにより、図3に示すように、水位の条件により、操業調整を行うことなく、円滑に操業が行われている事が分かる。 By performing the above operation, as shown in FIG. 3, it can be seen that the operation is smoothly performed without adjusting the operation depending on the water level condition.

(比較例)
図4に本水位制御を行わない時の例を示す。図4に示すように、1炉吹錬から2炉吹錬に切替え時、ドラム水位が急上昇し、キャリーオーバーを起こしそうになる為、1炉吹錬の状態に戻した後、十分にドラム水位(図中の実線で示す。)を下げ、再び、2炉吹錬の状態にしていた。
(Comparative example)
Fig. 4 shows an example when this water level control is not performed. As shown in FIG. 4, when switching from 1 oxygen blowing to 2 oxygen blowing, drum level is rapidly increased, because it becomes likely cause carryover, after returning to the state of 1 oxygen blowing, sufficiently drum level (shown by solid line in FIG.) lower the again had to state 2 oxygen blowing.

また、この時の水抜き量が多すぎると、0炉吹錬の際に、水位が下がり過ぎてボイラー循環水ホ゜ンフ゜が停止することがあった。
また、ボイラードラム圧(図中の破線により示す。)を2.65MPa以上に保つ為に加熱蒸気が吹錬込まれ、水位の高い状態で0炉吹錬から1炉吹錬に切替えた際に、キャリーオーバーを起こしそうになり、0炉吹錬状態に戻し、ドラム水を排出した後に、再び1炉吹錬の状態にした。図4に記載したように操業が中断され、制御がし難くなっている事が把握される。
If the amount of water drained at this time was too large, the water level would drop too much during zero furnace blowing , and the boiler circulating water pump could stop.
In addition, when the boiler drum pressure (shown by the broken line in the figure) is maintained at 2.65 MPa or higher, heated steam is blown, and when switching from 0 furnace blowing to 1 furnace blowing at a high water level, Carry-over was likely to occur, and after returning to the 0 furnace blowing state, the drum water was discharged, and then the 1 furnace was blown again. As shown in FIG. 4, it is understood that the operation is interrupted and it is difficult to control.

本発明及び従来に係わる転炉を示す側面図及び断面図Side view and sectional view showing the converter according to the present invention and the related art 銅転炉とボイラー設備を示すShows copper converter and boiler equipment 実施時のボイラードラム水位の推移Changes in boiler drum water level during implementation 実施前のボイラードラム水位の推移Changes in boiler drum water level before implementation

符号の説明Explanation of symbols

1 転炉炉体
2 装入口
3 装入シュート
4 羽口
5 フート゛
6 銅転炉
7 ボイラー伝熱部
8 ガス道
9 硫酸工場
10 ボイラードラム
11 ボイラー水循環ポンプ
12 ボイラー給水ライン
13 ボイラー蒸気ライン
14 ボイラー加熱蒸気ライン
15 循環行きライン
16 循環戻りライン
17 排ガス流れ
18 水底ブローライン

DESCRIPTION OF SYMBOLS 1 Converter furnace body 2 Inlet 3 Charge chute 4 tuyere 5 Hood 6 Copper converter 7 Boiler heat-transfer part 8 Gas passage 9 Sulfuric acid factory 10 Boiler drum 11 Boiler water circulation pump 12 Boiler water supply line 13 Boiler steam line 14 Boiler heating Steam line 15 Circulation line 16 Circulation return line 17 Exhaust gas flow 18 Bottom blow line

Claims (2)

並列された二炉の銅製錬転炉を、すべての炉が非吹錬状態(以下「0炉吹錬」という)、一炉のみが吹錬状態(以下「1炉吹錬」という)、及び二炉が吹錬状態(以下「2炉吹錬」という)を切替えて操業し、かつすべての転炉のボイラーに対して1基のドラムを用いて制御する転炉の排ガス煙道のボイラー制御方法において、2炉吹錬時に、ある水位以上かつあるドラム水位の上昇速度以上の時に、前記ドラムより自動で水を排出し、あるドラム水位上昇速度以下になった際に排出をやめることによりキャリーオーバーを防止することを特徴とする転炉ボイラーの制御方法。 Two parallel-furnace copper smelting converters, all furnaces in the non-blowing state (hereinafter referred to as “0 furnace blowing”), only one furnace in the blowing state (hereinafter referred to as “1 furnace blowing”), and Boiler control for the flue gas flue of the converter, in which the two furnaces operate by switching the blowing state (hereinafter referred to as “two-furnace blowing”) and control all boilers using one drum. in the method, carry at 2 oxygen blowing, above a certain level and when more than the rising speed of a drum level, by quitting discharged when the water is discharged automatically from the drum, falls below a certain drum level rise velocity A control method for a converter boiler, characterized by preventing overload. 0炉吹錬時に、ドラム圧力測定値PV値及び加熱蒸気圧の設定値SV値に応じてドラム加熱及び自動ブローを実施することにより、水位を最低レベルに保ち、0炉から1炉への吹錬切替えを実施し、さらに1炉から2炉への吹錬切替えを可能とすることを特徴とする請求項1記載の転炉ボイラーの制御方法。 0During furnace blowing , drum level heating and automatic blow are performed according to drum pressure measurement PV value and heating steam pressure setting SV value, so that the water level is kept at the lowest level and from 0 furnace to 1 furnace. 2. The method for controlling a converter boiler according to claim 1 , wherein the blowing boiler switching is performed, and further, the blowing switching from one furnace to two furnaces is enabled.
JP2005189399A 2005-06-29 2005-06-29 Control method of converter boiler Active JP4140730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005189399A JP4140730B2 (en) 2005-06-29 2005-06-29 Control method of converter boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005189399A JP4140730B2 (en) 2005-06-29 2005-06-29 Control method of converter boiler

Publications (2)

Publication Number Publication Date
JP2007010187A JP2007010187A (en) 2007-01-18
JP4140730B2 true JP4140730B2 (en) 2008-08-27

Family

ID=37748941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005189399A Active JP4140730B2 (en) 2005-06-29 2005-06-29 Control method of converter boiler

Country Status (1)

Country Link
JP (1) JP4140730B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103328887A (en) * 2010-04-29 2013-09-25 西门子公司 Method and device for controlling the temperature of steam in a boiler

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104456522B (en) * 2013-09-24 2016-06-01 宝山钢铁股份有限公司 Multi fuel boiler drum level bias adjustment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103328887A (en) * 2010-04-29 2013-09-25 西门子公司 Method and device for controlling the temperature of steam in a boiler
CN103328887B (en) * 2010-04-29 2016-04-20 西门子公司 For controlling the method and apparatus of vapor (steam) temperature in boiler

Also Published As

Publication number Publication date
JP2007010187A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
KR101385531B1 (en) Arc melting equipment and molten metal manufacturing method using arc melting equipment
EP2861774B1 (en) Method and arrangement for refining copper concentrate
JP4140730B2 (en) Control method of converter boiler
JP5198741B2 (en) Converter exhaust gas treatment equipment
KR101696112B1 (en) Method for manufacturing molten steel inhibiting reducing degradation
CN105385806A (en) Furnace protection method for controlling rising of bottom of carbonized electric furnace and splashing of slag on wall of furnace
JP5411466B2 (en) Iron bath melting furnace and method for producing molten iron using the same
CN217868964U (en) Bottom-blowing smelting furnace capable of reducing copper content in slag
JP4426489B2 (en) Operation method of copper converter
JP5079444B2 (en) Slag coating method for converter inner wall
CN104388617A (en) Main runner structure of smelting furnace
JP6913043B2 (en) How to operate a metal smelter
CN108570526B (en) Control method for converter non-normal smelting
SU759606A1 (en) Method of pyrorefining of crude copper
CN211871889U (en) Water-cooled wall type iron bath slag-melting tank
CN108004417A (en) A kind of high melt liquid level flash converting furnace and its control and operating method
KR100862033B1 (en) Operation method of minimizing remnant of the molten iron and slag in hearth at blow-out
JP6665693B2 (en) Reduction method in copper refining furnace
JP2000301320A (en) Method for dissolving clogging of porous plug in ladle refining furnace
JPH10310814A (en) Method for melting cold iron source and melting equipment thereof
JP2007231388A (en) Molten salt electrolysis method and molten salt electrolytic cell
KR20230167924A (en) Electric furnace
CN115287461A (en) Method for continuously smelting titanium carbide slag
JP3858285B2 (en) Blast furnace operation method
US1531858A (en) Method of and apparatus for making electric steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4140730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250