JP5198741B2 - Converter exhaust gas treatment equipment - Google Patents

Converter exhaust gas treatment equipment Download PDF

Info

Publication number
JP5198741B2
JP5198741B2 JP2006142583A JP2006142583A JP5198741B2 JP 5198741 B2 JP5198741 B2 JP 5198741B2 JP 2006142583 A JP2006142583 A JP 2006142583A JP 2006142583 A JP2006142583 A JP 2006142583A JP 5198741 B2 JP5198741 B2 JP 5198741B2
Authority
JP
Japan
Prior art keywords
exhaust gas
converter
copper
boiler
waste heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006142583A
Other languages
Japanese (ja)
Other versions
JP2007314814A (en
Inventor
勤 小川
敏博 永戸
豊 安田
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to JP2006142583A priority Critical patent/JP5198741B2/en
Publication of JP2007314814A publication Critical patent/JP2007314814A/en
Application granted granted Critical
Publication of JP5198741B2 publication Critical patent/JP5198741B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は、特に、銅精鉱及び銅原料を自溶炉、転炉、及び精製炉を用いて製錬して、銅電解精製に適した精製粗銅を得る銅製錬において用いられる転炉の排ガス処理装置に関するものである。
更に詳細には、本発明は、転炉でのCu2S、FeSを主体としたカワに硅酸鉱を投入し、炉体の側面下部に設置された多数の羽口から空気または酸素富化空気を吹き込む際に発生する排ガス(SO2ガスを含む)を処理する際に、排ガス冷却及び廃熱回収を目的に廃熱ボイラーを設置する場合において、ボイラー蒸発管への溶湯スプラッシュの付着及びそれに起因する蒸発管の減肉、そして投入固形物のキャリアオーバー時に発生するボイラー蒸発管の損傷を防止可能な転炉の排ガス処理装置に関するものである。
The present invention particularly smelts copper concentrate and copper raw material using a flash smelting furnace, converter and refining furnace to obtain refined crude copper suitable for copper electrolytic refining. The present invention relates to a processing apparatus.
In more detail, the present invention introduces oxalic acid ore into a Cu 2 S, FeS main river in the converter, and enriches air or oxygen from a number of tuyere installed at the lower side of the furnace body. When treating waste gas (including SO 2 gas) generated when air is blown, when installing a waste heat boiler for the purpose of exhaust gas cooling and waste heat recovery, adhesion of molten splash to the boiler evaporator tube and The present invention relates to an exhaust gas treatment apparatus for a converter capable of preventing the resulting evaporation tube from being thinned and the boiler evaporation tube from being damaged when the charged solid is over the carrier.
一般に、銅の製錬工程としては種々の処理方法があるが、その代表的なプロセスとしては自溶炉において銅精鉱を酸化溶錬して、カワを生成させ、そのカワを転炉で処理して銅含有量98.5mass%程度の粗銅を得て、さらにその粗銅を精製して銅含有量を99.3 mass %〜99.5 mass %程度まで上昇させてからアノードを鋳造し、最終的に電解精製するプロセスである。
銅転炉は、一般にピアース・スミス式転炉(以下、PS式転炉と略す)と呼ばれる円筒横型の炉体が用いられ、操業時には炉を傾転して炉側面下方から空気あるいは酸素富化空気を吹き込む数十本の羽口を有している。
In general, there are various treatment methods for the copper smelting process, but the typical process is to oxidize and smelt copper concentrate in a flash smelting furnace to produce river, which is then processed in a converter. To obtain crude copper with a copper content of about 98.5 mass%, further refine the crude copper to raise the copper content to about 99.3 mass% to 99.5 mass%, cast the anode, and finally electrolytically refine Is a process.
The copper converter generally uses a cylindrical horizontal furnace called Pierce-Smith converter (hereinafter referred to as PS converter). During operation, the furnace is tilted to enrich air or oxygen from below the side of the furnace. It has dozens of tuyere for blowing air.
PS転炉の操業はバッチ式であり、前工程の自溶炉において各バッチに必要な量のカワをレードルに抜き出し、天井クレーンにより銅転炉内に装入されるが、転炉内に装入された1バッチ分のカワの吹錬には、造カン期と造銅期の異なる吹錬が存在する。
造カン期では、カワ中のFeとSを酸化除去する過程であり、酸化されたSはSO2ガスとして排ガス中に除去され、酸化されたFeは溶剤である珪酸鉱と結合させ、低融点のカラミを生成させて第1造カン期の終了後に炉外に除去する。
The operation of the PS converter is a batch type. In the flash smelting furnace in the previous process, the amount of river necessary for each batch is extracted into a ladle and charged into a copper converter by an overhead crane. There are different types of blown kawabuki for different batches and copper making periods.
In the can-making stage, it is a process of oxidizing and removing Fe and S in the river. The oxidized S is removed into the exhaust gas as SO 2 gas, and the oxidized Fe is combined with the silicate ore, which is a solvent, and has a low melting point. Is generated and removed outside the furnace after the first canning period.
第1造カン期の終了後にカラミを排出し、炉内の溶体が減少し、湯面が下がるので、追加のカワを装入し、第2造カン期が行われる。造カン期を終了してカラミを炉外に排出した溶体は白カワと呼ばれ、銅品位は75
mass %前後であり、若干除いたFeを除いてはCu2Sである。造カン期終了後に造銅期に移行し、ここではCu2SのSを酸化除去し、最終的には、98.5
mass %程度の転炉粗銅に仕上げる。
After the end of the first canning period, the waste is discharged, the melt in the furnace is reduced, and the molten metal level is lowered, so an additional river is charged and the second canning period is performed. The solution that has discharged calami out of the furnace after finishing the can-making period is called white river, and the copper grade is 75
It is around mass%, and it is Cu 2 S except for Fe that is slightly removed. After the completion of the can-making stage, the process proceeds to the copper-making stage, where Cu 2 S is oxidized and removed, and finally 98.5
Finishes in converter mass copper of about mass%.
銅転炉の操業において造カン期及び造銅期いずれも酸化反応であり、SO2ガスが発生する。環境保護の観点から、この排ガスは、導入ファン等により、通常、硫酸工場に運ばれ、濃硫酸を製造するのが一般的である。硫酸工場では、除塵、洗浄、乾燥後、転化器でSO2をSO3とし、吸収塔にて濃硫酸を製造する。通常、除塵装置の耐久温度は、200〜350℃が一般的である。
In the operation of a copper converter, both the can-making stage and the copper-making stage are oxidation reactions, and SO 2 gas is generated. From the viewpoint of environmental protection, this exhaust gas is usually transported to a sulfuric acid factory by an introduction fan or the like to produce concentrated sulfuric acid. In the sulfuric acid factory, after removing dust, washing and drying, SO 2 is converted to SO 3 with a converter, and concentrated sulfuric acid is produced with an absorption tower. Usually, the endurance temperature of the dust remover is generally 200 to 350 ° C.
造カン期及び造銅期に発生する排ガスは、800℃以上である為、ガス冷却が必要である。また、廃熱回収の観点から、硫酸工場までの排ガス道間に、廃熱ボイラーを設置するのが一般的である。
例えば、公知の文献には、銅製錬炉用排熱回収装置(特公昭62-14203号)(特許文献1)がある。
これは、転炉毎に水冷壁等で構成したフードの後にチャンバーを設置し、その後部に共通のガス道を設け、その後部に2基の廃熱ボイラーを設置している。また、コットレル入口温度を一定に保つ為、各ボイラーにバイパスガス道が設置されている。その為、共通のガス道の距離が長くなり、経年劣化の際に、多大な修繕費が掛かっていた。
また、共通ガス道入口側では、ガス温度が800℃近くある為、転炉からのスプラッシュによるダストが溶着をし、ガス道を閉塞させるという問題があった。
また、非特許文献1(米川・浜本:資源と素材 114,347-351(1998))に示されているように、転炉毎に水冷壁等で構成したフードの直後に廃熱ボイラーを設置する考え方もある。
本文献に示されるボイラーは前半の輻射部と後半の対流部から構成されている。輻射部に到達するダストは、主として転炉吹錬に起因する溶湯のスプラッシュと推定される。
一方、ボイラー蒸発管には圧力4MPa、温度250℃程度の飽和水が流れており、表面温度は250℃以上であると推定されるため、転炉からのスプラッシュを主体とするダストがボイラー輻射部に付着した場合、融着しやすく、除去が困難な為、排ガス道の閉塞を惹起し、操業維持が困難となることがあった。また、高温ダストとボイラーチューブの反応によるチューブ肉厚の減肉の危険も有していた。さらに、転炉には、銅スクラップ等の固形物を装入するが、キャリーオーバーによりボイラーへ到達することがあり、機械的衝撃によりチューブに損傷を与えることがあった。チューブが破損した場合は、高温・高圧の蒸気が噴射する為、操業の継続は困難であり、長時間炉を停止し、冷却した後、補修を行う必要があった。
特公昭62-14203号 銅製錬炉用排熱回収装置 米川・浜本:資源と素材 114,347-351(1998)
Since the exhaust gas generated in the can-making stage and the copper-making stage is 800 ° C. or higher, gas cooling is necessary. From the viewpoint of waste heat recovery, it is common to install a waste heat boiler between the exhaust gas passages to the sulfuric acid factory.
For example, as a known document, there is a waste heat recovery device for a copper smelting furnace (Japanese Patent Publication No. 62-14203) (Patent Document 1).
In this converter, a chamber is installed after a hood composed of water-cooled walls for each converter, a common gas passage is provided in the rear part, and two waste heat boilers are installed in the rear part. In order to keep the cottrel inlet temperature constant, a bypass gas passage is installed in each boiler. For this reason, the distance of the common gas passage is increased, and a large amount of repair costs are incurred when it deteriorates over time.
Further, since the gas temperature is close to 800 ° C. on the common gas passage inlet side, there is a problem that dust due to splash from the converter is welded and the gas passage is blocked.
In addition, as shown in Non-Patent Document 1 (Yonekawa / Hamamoto: Resources and Materials 114,347-351 (1998)), the idea of installing a waste heat boiler immediately after the hood composed of water-cooled walls for each converter There is also.
The boiler shown in this document is composed of a first half radiation section and a second half convection section. The dust that reaches the radiant part is presumed to be a splash of molten metal mainly resulting from converter blowing.
On the other hand, saturated water with a pressure of 4MPa and a temperature of about 250 ° C flows through the boiler evaporator tube, and the surface temperature is estimated to be 250 ° C or higher. When adhering to the gas, it is easy to fuse and difficult to remove, which may cause the exhaust gas passage to be blocked and make it difficult to maintain the operation. In addition, there was a risk of thinning of the tube thickness due to the reaction between the high temperature dust and the boiler tube. Furthermore, solid materials such as copper scrap are charged into the converter, but sometimes the boiler reaches the boiler due to carry over, and the tube may be damaged due to mechanical impact. When the tube is damaged, high-temperature and high-pressure steam is injected, so it is difficult to continue the operation, and it is necessary to repair the furnace after it has been shut down and cooled for a long time.
Japanese Patent Publication No.62-14203 Waste heat recovery equipment for copper smelting furnace Yonekawa / Hamamoto: Resources and Materials 114,347-351 (1998)
本発明は、ボイラーチューブへのダスト溶着を防止すると共に、ボイラーチューブの損傷を防止しうる転炉排ガス処理設備を提供する。   The present invention provides a converter exhaust gas treatment facility capable of preventing dust welding to a boiler tube and preventing damage to the boiler tube.
前記目的を達成するため本発明者等は、以下の本発明を成した。
(1)銅製錬転炉排ガスの冷却及び廃熱回収を目的として、水冷壁で構成したフード部の後に廃熱ボイラーを設置した転炉排ガス処理装置であって、当該フードと廃熱ボイラーの間に壁面がボイラー構造ではなく、かつ内部が空洞構造であり、その空洞部の断面積が、入口側より中央部のほうが、大きいチャンバーを配置するとともに、チャンバーの少なくとも前壁部が強制循環ジャケットであり、少なくとも天井部が蒸発型ジャケットとした転炉排ガス処理装置。
In order to achieve the above object, the present inventors made the following present invention.
(1) A converter exhaust gas treatment apparatus in which a waste heat boiler is installed after a hood part composed of water-cooled walls for the purpose of cooling and waste heat recovery of copper smelting converter exhaust gas, between the hood and waste heat boiler. The wall is not a boiler structure and the inside is a hollow structure, and the chamber has a cross-sectional area that is larger in the center than in the inlet , and at least the front wall of the chamber is a forced circulation jacket. There is a converter exhaust gas treatment device with an evaporative jacket at least on the ceiling .
本発明によれば、転炉でのCu2S、FeSを主体としたカワに硅酸鉱を投入し、炉体の側面下部に設置された多数の羽口から空気または酸素富化空気を吹き込む際に発生する排ガス(SO2ガスを含む)を処理する際に、排ガス冷却及び廃熱回収を目的に廃熱ボイラーを設置する場合において、
1)
ボイラー蒸発管への溶湯スプラッシュの付着及びそれに起因する前記蒸発管の減肉を防止することができる。
2)投入固形物のキャリアオーバー時に発生するボイラー蒸発管の損傷が、全くなくなる。
3)上記の問題解決されたことにより、操業を制限・停止し、補修作業を長時間することがなくなり、転炉の稼働時間が、大幅に伸びる。
即ち、増産が可能となった。年間500トンの増産となり、約4.5億円の増益となる。

効果が得られる。
According to the present invention, oxalic acid ore is introduced into a copper mainly composed of Cu 2 S and FeS in a converter, and air or oxygen-enriched air is blown from a number of tuyere installed at the lower side of the furnace body. When installing exhaust heat boiler for the purpose of exhaust gas cooling and waste heat recovery when processing exhaust gas (including SO 2 gas) generated at the time,
1)
It is possible to prevent the molten metal splash from adhering to the boiler evaporation pipe and the thickness reduction of the evaporation pipe due to the adhesion.
2) No damage to the boiler evaporator tube that occurs when the charged solids are over the carrier.
3) By solving the above problems, the operation is limited / stopped, the repair work is not prolonged, and the operating time of the converter is greatly increased.
In other words, production can be increased. The annual production will increase by 500 tons, which will increase the profit by about 450 million yen.

An effect is obtained.
以下、本発明の実施形態を図面1及び2に基づいて説明する。自溶炉で産出されたCu2S,FeSを主体とした溶融カワ200〜230t(Cu:63〜70 mass %,Fe:14〜6 mass
%,S:20〜15 mass %)を円筒横型PS式の転炉に装入して酸化吹錬する場合について説明する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 200 to 230 tons of molten metal mainly composed of Cu 2 S and FeS produced in flash furnace (Cu: 63 to 70 mass%, Fe: 14 to 6 mass
%, S: 20 to 15 mass%) is charged into a cylindrical horizontal PS converter and subjected to oxidation blowing.
図1に示すように、レードルによって運ばれたカワは、転炉炉体1の装入口2から炉内に装入される。 その後、羽口4より送風しつつ転炉炉体1を起こして、炉内に装入されているカワに、酸素富化空気を吹き込む。カワ中の組成・量に応じてSiO2を主成分とする硅酸鉱を炉内に装入してカワ中の鉄と硫黄の酸化を行う。 As shown in FIG. 1, the river carried by the ladle is charged into the furnace through the charging port 2 of the converter furnace body 1. Thereafter, the converter furnace body 1 is raised while blowing air from the tuyere 4, and oxygen-enriched air is blown into the river charged in the furnace. Depending on the composition and amount in the river, oxalic acid ore containing SiO 2 as the main component is charged into the furnace to oxidize iron and sulfur in the river.
第1造カン期で生成したカラミは炉外に排出されるが、カラミが取り除かれると炉内の溶体が減少するので、その後、追加のカワを炉内に装入し、第2造カン期を行う。第2造カン期にも同様に羽口4からカワ中に酸素富化空気を吹き込み、硅酸鉱を炉内に装入してカワ中の鉄と硫黄の酸化を行う。
第2造カン期で生成した酸化鉄とSiO2を結合させてカラミを炉外に取り出し、銅品位75 mass %程度の白カワとなし、次の造銅期に入る。
Karami produced in the 1st canning period is discharged outside the furnace, but when it is removed, the solution in the furnace will decrease. I do. Similarly, in the 2nd can-making stage, oxygen-enriched air is blown into the river from the tuyere 4 and oxalic acid ore is charged into the furnace to oxidize iron and sulfur in the river.
The iron oxide produced in the second canning stage and SiO 2 are combined and the calami is taken out of the furnace, and the white copper with a copper grade of about 75 mass% is formed, and the next copper making stage is entered.
銅転炉の操業において造カン期及び造銅期いずれも酸化反応であり、SO2ガスが発生する。環境保護の観点から、この排ガスは、導入ファン等により、通常、硫酸工場に運ばれ、濃硫酸を製造するのが一般的である。
硫酸工場では、除塵、洗浄、乾燥後、転化器でSO2をSO3とし、吸収塔にて濃硫酸を製造する。通常、除塵装置の耐久温度は、200〜350℃が一般的である。
In the operation of a copper converter, both the can-making stage and the copper-making stage are oxidation reactions, and SO 2 gas is generated. From the viewpoint of environmental protection, this exhaust gas is usually transported to a sulfuric acid factory by an introduction fan or the like to produce concentrated sulfuric acid.
In the sulfuric acid factory, after removing dust, washing and drying, SO 2 is converted to SO 3 with a converter, and concentrated sulfuric acid is produced with an absorption tower. Usually, the endurance temperature of the dust remover is generally 200 to 350 ° C.
造カン期及び造銅期に発生する排ガスは、800℃以上である為、ガス冷却が必要である。また、廃熱回収の観点から、硫酸工場までの排ガス道間に廃熱ボイラーを設置するのが一般的である。 Since the exhaust gas generated in the can-making stage and the copper-making stage is 800 ° C. or higher, gas cooling is necessary. From the viewpoint of waste heat recovery, it is common to install a waste heat boiler between the exhaust gas passages to the sulfuric acid factory.
銅製錬転炉排ガスの冷却及び廃熱回収を目的として、水冷壁等で構成したフード部の後に廃熱ボイラーを設置する場合において、当該フードと廃熱ボイラーの間に壁面がボイラー構造ではなく、かつ内部が空洞構造であるチャンバーを配置することにより、ボイラーチューブへのダスト溶着を防止すると共に、ボイラーチューブの損傷を防止する。
そうすることにより、安定生産することができるようになった。
チャンバーの内部構造は、内側部は、例えば、前壁(全体の約30から50%)に強制循環ジャケットを設置し、後部(全体の約50から70%)は、キャスター構造とし、天井部に蒸発型ジャケットを設置した。
空洞部は、約5〜10m長径とする。5〜10m程度の長さがないと排ガス中の荒いダスト(0.1〜5mmφ程度)が落下しないためである。
また、前記記載の空洞部の断面積は、入口側が7〜12m2、中央部が18〜26m2とする。余りにも狭いとダストの溶着が、生じるからであり、余りに広いと構造上の問題等を生じるからである。
For the purpose of cooling the exhaust gas from the copper smelting converter and recovering waste heat, when installing a waste heat boiler after the hood part composed of water-cooled walls, the wall surface is not a boiler structure between the hood and the waste heat boiler, In addition, by disposing the chamber having a hollow structure, dust welding to the boiler tube is prevented and damage to the boiler tube is prevented.
By doing so, stable production has become possible.
For the internal structure of the chamber, for example, a forced circulation jacket is installed on the front wall (about 30 to 50% of the whole), and the rear part (about 50 to 70% of the whole) has a caster structure. An evaporative jacket was installed.
The hollow portion has a major axis of about 5 to 10 m. This is because rough dust (about 0.1 to 5 mmφ) in the exhaust gas does not fall unless the length is about 5 to 10 m.
Further, the cross-sectional area of the cavity portion of the description, the inlet side 7~12M 2, the central portion is to 18~26m 2. This is because if it is too narrow, dust will be welded, and if it is too wide, structural problems will occur.
(実施例1)
図2に、水冷壁等で構成したフード(5)部の後にチャンバー(6)を配置し、その後部に廃熱ボイラー(7)を設置した、例を示す。
チャンバー(6)の前壁に強制循環ジャケット(9)(循環水量は、約40t/h)を設置し、天井部全面に蒸発型ジャケット(8)(蒸気は、排蒸気管を介し、棄却)を設置した。空洞部は7m、チャンバー(6)入口部は10m2、中央部は22m2とした。
本条件では、350回操業後においても、ボイラーチューブへのダスト溶着を防止するができ、削岩機等での除去作業が全く不要であった。
(比較例1)方式の転炉排ガス処理構造とした場合は、約200回操業において、ボイラチューブへダストが溶着し、操業継続が困難となり、1から2日間操業を制限し、ボイラチューブ間のダスト除去が必要であった。
また、排ガス道の一部に、強固な溶着物が堆積し、削岩機等により除去作業が必要であった。
Example 1
FIG. 2 shows an example in which a chamber (6) is disposed after a hood (5) composed of a water-cooled wall or the like, and a waste heat boiler (7) is disposed at the rear thereof.
A forced circulation jacket (9) is installed on the front wall of the chamber (6) (circulation water volume is about 40 t / h), and the evaporation jacket (8) is placed on the entire ceiling (the steam is rejected through the exhaust steam pipe) Was installed. The cavity was 7 m, the chamber (6) inlet was 10 m 2 , and the center was 22 m 2 .
Under these conditions, dust welding to the boiler tube could be prevented even after 350 operations, and no removal work with a rock drill or the like was required.
(Comparative Example 1) When the converter exhaust gas treatment structure of the method is used, in about 200 operations, dust is deposited on the boiler tube, making it difficult to continue the operation, limiting the operation for 1 to 2 days, and between the boiler tubes Dust removal was necessary.
In addition, a strong deposit was deposited on a part of the exhaust gas passage, and it was necessary to remove it with a rock drill or the like.
本発明及び従来に係わる転炉を示す側面図及び断面図を示す。The side view and sectional drawing which show the converter concerning this invention and the past are shown. 本発明の排ガス処理装置の断面図を示す。Sectional drawing of the waste gas processing apparatus of this invention is shown.
符号の説明Explanation of symbols
1 転炉炉体
2 装入口
3 装入シュート
4 羽口
5 フード
6 チャンバー
7 廃熱ボイラー
8 天井ジャケット(蒸発型)
9 強制循環ジャケット
DESCRIPTION OF SYMBOLS 1 Converter furnace body 2 Charging inlet 3 Charging chute 4 Tuyere 5 Hood 6 Chamber 7 Waste heat boiler 8 Ceiling jacket (evaporation type)
9 Forced circulation jacket

Claims (1)

  1. 銅製錬転炉排ガスの冷却及び廃熱回収を目的として、水冷壁で構成したフード部の後に廃熱ボイラーを設置した転炉排ガス処理装置であって、
    当該フードと廃熱ボイラーの間に壁面がボイラー構造ではなく、かつ内部が空洞構造であり、その空洞部の断面積が、入口側より中央部のほうが、大きいチャンバーを配置するとともに、
    チャンバーの少なくとも前壁部が強制循環ジャケットであり、少なくとも天井部が蒸発型ジャケットとしたことを特徴とする転炉排ガス処理装置。
    For the purpose of cooling the copper smelting converter exhaust gas and recovering waste heat, it is a converter exhaust gas treatment device in which a waste heat boiler is installed after the hood part composed of water-cooled walls,
    Between the hood and the waste heat boiler, the wall surface is not a boiler structure, and the inside is a hollow structure, and the cross-sectional area of the hollow portion is larger in the central portion than the inlet side, and a chamber is disposed .
    A converter exhaust gas treatment apparatus , wherein at least a front wall portion of the chamber is a forced circulation jacket and at least a ceiling portion is an evaporation type jacket .
JP2006142583A 2006-05-23 2006-05-23 Converter exhaust gas treatment equipment Active JP5198741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006142583A JP5198741B2 (en) 2006-05-23 2006-05-23 Converter exhaust gas treatment equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006142583A JP5198741B2 (en) 2006-05-23 2006-05-23 Converter exhaust gas treatment equipment
CNB2006101630795A CN100478465C (en) 2006-05-23 2006-11-30 Treatment device for converter waste gas

Publications (2)

Publication Number Publication Date
JP2007314814A JP2007314814A (en) 2007-12-06
JP5198741B2 true JP5198741B2 (en) 2013-05-15

Family

ID=38848949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006142583A Active JP5198741B2 (en) 2006-05-23 2006-05-23 Converter exhaust gas treatment equipment

Country Status (2)

Country Link
JP (1) JP5198741B2 (en)
CN (1) CN100478465C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9190463B2 (en) 2010-12-09 2015-11-17 Tessera, Inc. High density three-dimensional integrated capacitors
US9431475B2 (en) 2010-12-09 2016-08-30 Tessera, Inc. High density three-dimensional integrated capacitors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5335845B2 (en) * 2010-03-30 2013-11-06 パンパシフィック・カッパー株式会社 Apparatus for recovering copper contained in exhaust gas dust and method for recovering copper contained in exhaust gas dust

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815649U (en) * 1981-07-20 1983-01-31

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9190463B2 (en) 2010-12-09 2015-11-17 Tessera, Inc. High density three-dimensional integrated capacitors
US9431475B2 (en) 2010-12-09 2016-08-30 Tessera, Inc. High density three-dimensional integrated capacitors
US10157978B2 (en) 2010-12-09 2018-12-18 Tessera, Inc. High density three-dimensional integrated capacitors

Also Published As

Publication number Publication date
JP2007314814A (en) 2007-12-06
CN100478465C (en) 2009-04-15
CN101078060A (en) 2007-11-28

Similar Documents

Publication Publication Date Title
JP5434934B2 (en) Valuable metal recovery method
KR20130116926A (en) Valuable metal recovery method
CN108504875B (en) Short-process copper smelting method
JP5360135B2 (en) Valuable metal recovery method
JP2011506777A (en) Method for refining copper concentrate
JP5198741B2 (en) Converter exhaust gas treatment equipment
JP5569457B2 (en) Valuable metal recovery method
EA031689B1 (en) Method for producing cathode copper
CN105087961B (en) Utilize the method for vanadium, iron, titanium in electric arc furnaces high efficiente callback vanadium titanium pellet
JP2012172175A (en) Valuable metal recovery method
US7993467B2 (en) Apparatus for removing matte-sticking and method for using the apparatus
JP4140730B2 (en) Control method of converter boiler
WO2018228073A1 (en) Anode copper production method and device
TWI515301B (en) Method for manufacturing ultra low carbon steel by using vacuum-degassing system
CN113249591B (en) Continuous copper smelting equipment and two-stage continuous copper smelting process
KR102015720B1 (en) Scrap melting in anode furnace processes
JP2002038223A (en) Operating method of copper smelting furnace and draft lance used therefor
US323365A (en) Process of making wrought-iron
SU759606A1 (en) Method of pyrorefining of crude copper
KR20040110897A (en) Full tapping method of electric furnace
JP5749546B2 (en) Method for removing bottom deposits of iron and tin-containing copper processing furnaces
KR20050037075A (en) Method for continuous-continuous-casting molten steel
JP5575026B2 (en) Iron / tin-containing copper processing apparatus and iron / tin-containing copper processing method
George-Kennedy et al. Flash Converting after 10 Years
JPH11256250A (en) Production of crude copper with converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090311

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100910

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130207

R150 Certificate of patent or registration of utility model

Ref document number: 5198741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250