JP6665693B2 - Reduction method in copper refining furnace - Google Patents

Reduction method in copper refining furnace Download PDF

Info

Publication number
JP6665693B2
JP6665693B2 JP2016110573A JP2016110573A JP6665693B2 JP 6665693 B2 JP6665693 B2 JP 6665693B2 JP 2016110573 A JP2016110573 A JP 2016110573A JP 2016110573 A JP2016110573 A JP 2016110573A JP 6665693 B2 JP6665693 B2 JP 6665693B2
Authority
JP
Japan
Prior art keywords
reducing agent
molten
blister copper
copper
refining furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016110573A
Other languages
Japanese (ja)
Other versions
JP2017214631A (en
Inventor
陽介 星野
陽介 星野
明久 谷
明久 谷
恵介 山本
恵介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016110573A priority Critical patent/JP6665693B2/en
Publication of JP2017214631A publication Critical patent/JP2017214631A/en
Application granted granted Critical
Publication of JP6665693B2 publication Critical patent/JP6665693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、銅製錬設備の精製炉において行われる粗銅の還元方法に関する。   The present invention relates to a method for reducing blister copper performed in a refining furnace of a copper smelting facility.

銅の乾式製錬設備においては、原料としての銅精鉱を自溶炉などで酸化処理して主に硫化銅からなるカワを酸化鉄や珪酸等からなるスラグから分離し、カワについては更に転炉で酸化処理を行って純度98%程度の熔融状態の粗銅にする。得られた熔融粗銅は次に精製炉で還元処理を行って熔融粗銅中の酸素や硫黄などの不純物濃度の調整を行った後、鋳造機に供給して電解精製用の銅アノードに鋳造する。   In copper smelting and refining equipment, copper concentrate as a raw material is oxidized in a flash furnace, etc., to separate Kawa mainly composed of copper sulfide from slag composed of iron oxide, silica, etc. Oxidation treatment is performed in a furnace to obtain a blister copper in a molten state having a purity of about 98%. The obtained molten copper is then subjected to a reduction treatment in a refining furnace to adjust the concentration of impurities such as oxygen and sulfur in the molten copper, and then supplied to a casting machine to be cast on a copper anode for electrolytic refining.

上記精製炉では、一般的に還元剤として重油、天然ガス、ブタンガスなどの流体状の炭化水素が使用される。これら流体状の還元剤は流動性に富んでいるので熔融粗銅に効率よく混合させることができるものの、流体状の炭化水素は一般的に高い揮発性を有しているため、還元剤として作用せずにそのまま熔融粗銅の湯面から放散しやすく、消費コストがかさむことが問題になっていた。その対策として、特許文献1には、精製炉内の熔融粗銅の湯面を覆うように粉粒状のコークスや石炭などの固体状の炭素質還元剤を炉内に装入した後、気体状の還元剤を湯面下に吹き込む技術が提案されている。   In the refining furnace, generally, fluid hydrocarbons such as heavy oil, natural gas, and butane gas are used as a reducing agent. Although these fluid reducing agents are rich in fluidity, they can be efficiently mixed with molten blister copper, but since fluid hydrocarbons generally have high volatility, they act as reducing agents. However, it is easy to dissipate directly from the surface of the molten blister copper without increasing the consumption cost. As a countermeasure, Patent Document 1 discloses a method in which a solid carbonaceous reducing agent such as powdered coke or coal is charged into a furnace so as to cover a molten copper surface in a refining furnace and then a gaseous state. A technique of blowing a reducing agent below the surface of a bath has been proposed.

特開昭59−205428JP-A-59-205428

しかしながら、上記したコークスや石炭等の固体炭素質還元剤は、湯面上で局所的に山状の大きな塊となって浮遊しやすく、この場合は流体状還元剤の節約にあまり寄与しないばかりか、燃え尽きずに残留して不純物になったり炉口やタップ口を詰まらせたりする問題を生じることがあった。その対策として、固体炭素質還元剤を細かく粉砕して粉粒状にしてから装入したり、少量ずつ投入したりといった工夫が試みられているが、依然として上記の問題が生じることがあった。特に、バッチで操業される精製炉では、同様にバッチで操業される前段の転炉との操業上の兼ね合いのため、そして後段の鋳造機との操業上の兼ね合いのため、酸化されやすい熔融粗銅をそのままの状態で長時間に亘って精製炉内に保持する場合が多い。この保持している間の熔融粗銅の酸化を防ぐために精製炉内に過剰の還元剤を投入することがあり、上記の問題がより一層生じやすかった。   However, the solid carbonaceous reducing agent such as coke or coal described above tends to float locally as a large mountain-like lump on the surface of the molten metal, and in this case, it does not contribute much to saving of the fluidic reducing agent. However, there is a problem in that it remains without being burned out and becomes an impurity, and the furnace port and the tap port are clogged. As a countermeasure, attempts have been made to finely pulverize the solid carbonaceous reducing agent into powder and then charge it, or charge it little by little. However, the above problem still occurs. In particular, in a refining furnace operated in batch, molten blister copper which is easily oxidized due to an operational balance with a converter in the preceding stage which is also operated in batch, and an operational balance with a casting machine in the subsequent stage. Is often kept in a refining furnace for a long time as it is. In order to prevent the oxidation of the molten blister copper during the holding, an excessive reducing agent may be introduced into the refining furnace, so that the above problem is more likely to occur.

本発明は、上記した従来の精製炉の還元方法が抱える問題に鑑みてなされたものであり、還元工程における流体状還元剤の使用量の削減及び精製炉内に長時間に亘って粗銅を待機させる場合が生じた時、該待機中の粗銅の酸化を抑制することを目的としている。   The present invention has been made in view of the above-described problems of the conventional method for reducing a refining furnace, and reduces the amount of a fluid reducing agent used in a reduction step and waits for blister copper in a refining furnace for a long time. It is intended to suppress the oxidation of the blister copper during the standby when a case occurs.

本発明者らは上記目的を達成するために鋭意検討を行った結果、転炉で処理した熔融粗銅を精製炉に装入してその通常の液レベルまで満たす前に、精製炉内にコークスを投入することで、投入したコークスを熔融粗銅の表面に浮遊した状態でほぼ均一に覆うことが可能となり、これにより還元中に使用する流体状還元剤の使用量を削減できる上、精製炉内で待機中の粗銅の酸化を抑制できることを見出し、本発明を完成するに至った。   The present inventors have conducted intensive studies to achieve the above object, and as a result, before charging the molten blister copper treated in the converter into the refining furnace and filling it to the usual liquid level, coke was introduced into the refining furnace. By charging, it becomes possible to cover the charged coke almost uniformly while floating on the surface of the molten blister copper, thereby reducing the amount of the fluid reducing agent used during the reduction, and in the refining furnace. The inventors have found that oxidation of blister copper during standby can be suppressed, and have completed the present invention.

すなわち、本発明の銅製錬方法は、転炉で処理された熔融粗銅を精製炉の有効容量の一部分を満たすように装入する第1の粗銅装入工程と、前記第1の粗銅装入工程の前又は後に固体炭素質還元剤を精製炉内に装入する還元剤装入工程と、前記還元剤装入工程で装入した固体炭素質還元剤の挙動が定常的になるまで待機した後、熔融粗銅を固体炭素質還元剤の上から精製炉内に装入する第2の粗銅装入工程と、精製炉内の熔融粗銅の湯面の下に流体状還元剤を吹き込んで熔融粗銅を還元する還元工程と、精製炉を一方向に傾転させてその炉口から固体炭素質還元剤を排出する還元剤排出工程と、精製炉を他方向に傾転させてそのタップ口からアノード鋳造用の熔融粗銅を排出すると共に、前記排出した固体炭素質還元剤を転炉に装入する熔融粗銅排出工程とからなることを特徴としている。   That is, the copper smelting method of the present invention comprises: a first blister loading step in which the molten blister treated in the converter is charged so as to partially fill the effective capacity of the refining furnace; and the first blister loading step. Before or after the reducing agent charging step of charging the solid carbonaceous reducing agent into the refining furnace, and after waiting until the behavior of the solid carbonaceous reducing agent charged in the reducing agent charging step becomes steady A second blister charging step of charging the molten blister copper into the refining furnace from above the solid carbonaceous reducing agent; and blowing the fluid bleaching agent under the molten blister copper surface in the refining furnace to remove the molten blister copper. A reducing step for reducing, a reducing agent discharging step for tilting the refining furnace in one direction and discharging the solid carbonaceous reducing agent from the furnace port, and an anode casting from the tap port for tilting the refining furnace in the other direction To discharge the molten blister copper for use and charge the discharged solid carbonaceous reducing agent into a converter. It is characterized by comprising a copper discharge step.

本発明によれば、精製炉における従来の銅製精方法に比べて流体状還元剤の使用量を削減できる上、精製炉内に粗銅を長時間に亘って待機させる場合はその酸化を抑制することができる。   According to the present invention, the amount of the fluid reducing agent used can be reduced as compared with the conventional copper refining method in the refining furnace, and when the blister copper is kept in the refining furnace for a long time, its oxidation is suppressed. Can be.

銅製錬の熔錬に用いる一般的な設備の概略の断面図である。It is an outline sectional view of general equipment used for smelting of copper smelting. 銅製錬の精製炉の概略の正面図である。It is a schematic front view of the refinery furnace of copper smelting.

銅の乾式製錬では、原料としての銅精鉱を図1に示すような自溶炉10、転炉20及び精製炉30で順に処理してアノード鋳造用の熔融粗銅の作製を行っている。具体的には、先ず自溶炉10において銅精鉱に酸素富化空気を吹き込んで酸化処理することで、銅品位65%程度のカワ(マット)と酸化鉄や珪酸等からなるカラミ(スラグ)とに分離する。カラミは自溶炉10から抜き出し、図示しない練かん炉で静置後、水冷して水砕スラグとする。一方、自溶炉10で分離したカワはカラミとは別の抜出口から抜き出した後、レードルや樋などのカワ移送手段によって転炉20に移送する。   In the dry smelting of copper, copper concentrate as a raw material is sequentially processed in a flash smelting furnace 10, a converter 20 and a refining furnace 30 as shown in FIG. 1 to produce a molten crude copper for anode casting. Specifically, first, oxygen-enriched air is blown into the copper concentrate in the flash smelting furnace 10 to oxidize the copper concentrate. And separated into Karami is extracted from the flash smelting furnace 10, left in a kneading furnace (not shown), and then cooled with water to obtain granulated slag. On the other hand, the Kawa separated in the flash smelting furnace 10 is extracted from an outlet different from Karami and then transferred to the converter 20 by a Kawa transfer means such as a ladle or a gutter.

転炉20は中心軸が水平方向に延在する円筒形状の容器からなり、該中心軸を中心として回動可能となるように複数のローラー21に支持されている。この円筒形の容器の軸方向略中央部に処理前と処理後のカワの出し入れ口となる炉口22が設けられており、この炉口22から装入したカワに対してその湯面より下側に設けられている羽口23から酸素富化空気を吹き込んで酸化処理を行う。これにより、スラグと銅品位98%程度の熔融粗銅とに分離する。分離後はローラー21の上で転炉20を傾転させ、炉口22から先ず上層部のスラグを排出した後、熔融粗銅を排出する。排出された熔融粗銅はレードルや樋などの粗銅移送手段によって精製炉30に移送される。   The converter 20 is formed of a cylindrical container having a central axis extending in a horizontal direction, and is supported by a plurality of rollers 21 so as to be rotatable about the central axis. At a substantially central portion in the axial direction of the cylindrical container, there is provided a furnace port 22 serving as an inlet and outlet of the raw material before and after the treatment. The oxidation treatment is performed by blowing oxygen-enriched air from the tuyere 23 provided on the side. Thereby, it is separated into slag and molten blister copper having a copper grade of about 98%. After the separation, the converter 20 is tilted on the rollers 21, the slag in the upper layer is first discharged from the furnace port 22, and then the molten blister copper is discharged. The discharged blister copper is transferred to the refining furnace 30 by a blister transfer means such as a ladle or a gutter.

精製炉30も、中心軸が水平方向に延在する円筒形状の容器からなり、該中心軸を中心として回動可能となるように複数のローラー31に支持されている。この円筒形状の容器の軸方向略中央部に熔融粗銅及び後述する固体炭素質還元剤の装入口となる炉口32、及び処理後の熔融粗銅の排出口となるタップ口33が設けられている。また、空気や流体状還元剤の吹き込みを行う羽口34が湯面よりも下側の位置に設けられている。   The refining furnace 30 is also formed of a cylindrical container whose central axis extends in the horizontal direction, and is supported by a plurality of rollers 31 so as to be rotatable about the central axis. A furnace port 32 serving as a loading port for the molten blister copper and a solid carbonaceous reducing agent described later, and a tap port 33 serving as an outlet for the treated molten blister copper are provided at a substantially central portion in the axial direction of the cylindrical container. . In addition, a tuyere 34 for blowing air or a fluid reducing agent is provided at a position below the surface of the molten metal.

かかる構造を有する精製炉30において、転炉20で処理された熔融粗銅を精製炉の有効容量の一部分を満たすように装入する第1の粗銅装入工程と、第1の装入工程の前又は後に固体炭素質還元剤を精製炉内に装入する還元剤装入工程と、該還元剤装入工程で装入した固体炭素質還元剤の挙動が定常的になるまで待機した後、熔融粗銅を固体炭素質還元剤の上から精製炉30内に装入する第2の粗銅装入工程と、精製炉30内の熔融粗銅の湯面の下に流体状還元剤を吹き込んで熔融粗銅を還元する還元工程と、精製炉30を一方向に傾転させて炉口32から固体炭素質還元剤を排出する還元剤排出工程と、精製炉30を他方側(還元剤排出工程の際の傾転方向とは逆方向)に傾転させてタップ口33からアノード鋳造用の熔融粗銅を排出すると共に、上記の排出した固体炭素質還元剤を転炉20に装入する熔融粗銅排出工程とからなる一連の処理を行うことで、熔融粗銅の還元が行われる。   In the refining furnace 30 having such a structure, a first blister copper charging step of charging the molten blister copper treated in the converter 20 so as to fill a part of the effective capacity of the refining furnace, and before the first charging step. Or, after a reducing agent charging step of charging the solid carbonaceous reducing agent into the refining furnace, and waiting until the behavior of the solid carbonaceous reducing agent charged in the reducing agent charging step becomes steady, A second blister loading step in which the blister copper is loaded into the refining furnace 30 from above the solid carbonaceous reducing agent, and a fluid reducing agent is blown under the molten blister copper surface in the refining furnace 30 to melt the blister copper. A reducing step of reducing, purifying the refining furnace 30 in one direction and discharging a solid carbonaceous reducing agent from the furnace port 32, and a refining furnace 30 moving the refining furnace 30 to the other side (in the case of the reducing agent discharging step). (The direction opposite to the turning direction) and discharge the molten blister copper for anode casting from the tap hole 33. Together, by performing a series of processes consisting of a melt blister copper discharged step of loading the solid carbonaceous reducing agent discharged above the converter 20, the reduction of the molten blister copper is performed.

各工程について具体的に説明すると、先ず、第1の粗銅装入工程では前段の転炉20で処理された酸素及び硫黄を含有する熔融粗銅を精製炉30内の有効容量(すなわち、精製炉30内において、熔融粗銅を装入できる最大の容積)の一部分を満たすように装入する。この第1の粗銅装入工程で精製炉30内に装入する熔融粗銅の量は、精製炉30の有効容量の1/5以上1/2以下にするのがよい。この量が1/5以上であれば精製炉30内に装入された熔融粗銅の湯面を十分に広くすることができるので、還元剤装入工程で精製炉30に装入された固体炭素質還元剤を湯面上に良好に広げることができる。   More specifically, in the first blister copper charging step, first, in the first blister copper charging step, the molten blister copper containing oxygen and sulfur, which has been treated in the converter 20 in the preceding stage, is subjected to an effective capacity in the refining furnace 30 (that is, the refining furnace 30). Inside the container, the molten blister copper is charged so as to fill a part of the maximum volume. It is preferable that the amount of molten blister copper charged into the refining furnace 30 in the first blister copper charging step is not less than の and not more than 有効 of the effective capacity of the refining furnace 30. If the amount is 1/5 or more, the surface of the molten blister copper charged into the refining furnace 30 can be sufficiently widened, so that the solid carbon charged into the refining furnace 30 in the reducing agent charging step can be used. The quality reducing agent can be spread well on the surface of the molten metal.

一方、1/2以下とすることで後工程の第2の粗銅装入工程において多くの熔融粗銅を装入できるので、当該装入による撹拌効果を高めることができる。また、当該装入により一時的に湯面下に沈められた固体炭素質還元剤を湯面よりもより深く、よってより長時間に亘って湯面下に滞留させることができる。その結果、固体炭素質還元剤と熔融粗銅との接触効率を高めることができるので、より効率のよい還元処理が可能となる。なお、前述したように、筒状体を横にした容器からなる精製炉30には、熔融粗銅から生じたガスの排出口となる炉口32が軸方向の略中央部に設けられているため、ガスの水平方向の流れのための気相部を設けることが必要になる。そのため、上記の有効容量は、通常は精製炉30内の全体積(すなわち、該有効容量の体積とその湯面より上の気相部の体積との合計)の45〜70%程度である。   On the other hand, when the content is set to 以下 or less, a large amount of molten blister copper can be charged in the second blister charging step in the subsequent step, so that the stirring effect by the charging can be enhanced. In addition, the solid carbonaceous reducing agent temporarily submerged under the surface of the molten metal by the charging can be retained deeper than the surface of the molten metal, and therefore, can remain under the surface of the molten metal for a longer time. As a result, the contact efficiency between the solid carbonaceous reducing agent and the molten blister copper can be increased, so that a more efficient reduction treatment can be performed. In addition, as mentioned above, since the furnace port 32 which becomes the discharge port of the gas produced from the molten blister copper is provided in the substantially central part of the axial direction in the purification furnace 30 which consists of a container with the cylindrical body laid down. , It is necessary to provide a gas phase for the horizontal flow of gas. Therefore, the above-mentioned effective capacity is usually about 45 to 70% of the total volume in the refining furnace 30 (that is, the sum of the volume of the effective capacity and the volume of the gas phase above the surface of the molten metal).

次に還元剤装入工程において、上記熔融粗銅が装入されている精製炉30内に固体の炭素質還元剤を装入する。固体炭素質還元剤の装入量は、上記第1の粗銅装入工程で装入した熔融粗銅の質量の1/1000以上1/300以下にするのが好ましい。この量を1/1000以上とすることで、精製炉30内の熔融粗銅の湯面のほぼ半分以上を固体炭素質還元剤で覆うことができるので、後工程の還元工程において流体状還元剤の消費量を顕著に削減することができる。一方、1/300を超えて装入しても装入の効果をあまり向上させることができず、かえって還元剤のコストが高くなるだけなので好ましくない。なお、第1の粗銅装入工程の前に還元剤装入工程を行ってもよい。この場合は、熔融粗銅を装入する際の炉壁への熱衝撃を緩和することが可能になる。なお、固体炭素質還元剤に含まれている不純物の種類や濃度によっては精製炉30の炉壁に当該不純物が固着するおそれがあるので、第1の粗銅装入工程の前に還元剤装入工程を行う場合は不純物による上記の悪影響に留意しておくのが望ましい。   Next, in the reducing agent charging step, a solid carbonaceous reducing agent is charged into the refining furnace 30 into which the molten blister copper has been charged. The amount of the solid carbonaceous reducing agent to be charged is preferably 1/1000 to 1/300 of the mass of the molten blister copper charged in the first blister copper charging step. By setting this amount to 1/1000 or more, almost half or more of the molten copper surface in the refining furnace 30 can be covered with the solid carbonaceous reducing agent. The consumption can be significantly reduced. On the other hand, even if the charge exceeds 1/300, the effect of the charge cannot be improved so much, and the cost of the reducing agent is rather increased, which is not preferable. The reducing agent charging step may be performed before the first blister copper charging step. In this case, it is possible to reduce the thermal shock to the furnace wall when charging the molten blister copper. Depending on the type and concentration of the impurities contained in the solid carbonaceous reducing agent, the impurities may adhere to the furnace wall of the refining furnace 30. Therefore, the reducing agent is charged before the first blister copper charging step. When performing the process, it is desirable to pay attention to the above-mentioned adverse effects due to impurities.

次に、第2の粗銅装入工程において、上記の装入した固体炭素質還元剤の挙動が定常的になるまで待機した後、精製炉30の有効容量での液レベルを上限として所定の液レベルまで満たすように精製炉30内に熔融粗銅を装入する。上記の待機時間は、一般に熔融粗銅と固体炭素質還元剤の温度差が大きいほど長くし、また、固体炭素質還元剤の含水率が高いほど長くするのが好ましい。通常はこの待機時間は10分〜10時間、好適には1時間〜3時間程度である。この待ち時間が10分未満では固体炭素質還元剤を精製炉30に装入した時に湯面上に形成される当該固体炭素質還元剤の山状の塊をほぐして崩すことができなくなるおそれがある。この時間を1時間以上とすることで、固体炭素質還元剤が湿潤状態にあったり濡れていたりしていても、熔融粗銅の熱で乾燥させることができ、固体炭素質還元剤を確実に湯面上に広げることができる。一方、待機時間が10時間を超えると精製炉からの放熱量が多くなりすぎ、鋳造が困難になるおそれがあり、特に3時間以下とすることで精製炉の稼働率が高くなるのでアノードの生産性を高めることができる。   Next, in the second blister copper charging step, after waiting until the behavior of the charged solid carbonaceous reducing agent becomes steady, the liquid level in the effective volume of the refining furnace 30 is set to an upper limit and The molten blister copper is charged into the refining furnace 30 so as to satisfy the level. In general, it is preferable that the above-mentioned waiting time be longer as the temperature difference between the molten crude copper and the solid carbonaceous reducing agent is larger, and it is longer as the water content of the solid carbonaceous reducing agent is higher. Usually, this waiting time is about 10 minutes to 10 hours, preferably about 1 hour to 3 hours. If the waiting time is less than 10 minutes, there is a possibility that the solid carbonaceous reducing agent cannot be broken down by loosening the mountain-like mass of the solid carbonaceous reducing agent formed on the molten metal surface when the solid carbonaceous reducing agent is charged into the refining furnace 30. is there. By setting the time to 1 hour or more, even if the solid carbonaceous reducing agent is in a wet state or wet, it can be dried by the heat of the molten crude copper, and the solid carbonaceous reducing agent can be reliably removed from the hot water. Can be spread on the surface. On the other hand, if the waiting time exceeds 10 hours, the amount of heat released from the refining furnace may be too large, and casting may be difficult. Can be enhanced.

上記の第2の粗銅装入工程では、固体炭素質還元剤の上から熔融粗銅を注ぐようにする。これにより固体炭素質還元剤が撹拌されるので上記した山状の塊を容易に崩すことができる。すなわち、熔融粗銅を上から注ぐことで溶湯中に固体炭素質還元剤を沈めることができ、固体炭素質還元剤の空隙部には湯面からの深さに応じた圧力差が生じ、固体炭素質還元剤を粉砕するものと考えられる。この第2の粗銅装入工程では、熔融粗銅を複数回に分けて装入してもよい。この場合は、熔融粗銅の装入によって溶湯中に沈んだ炭素質還元剤が湯面に浮上してから次の装入を行うのが好ましく、これにより固体炭素質還元剤を熔融粗銅の溶湯中に効率よく分散させることができ、還元反応を促進することができる。   In the second blister loading step, molten blister copper is poured over the solid carbonaceous reducing agent. As a result, the solid carbonaceous reducing agent is stirred, so that the above-mentioned mountain-like mass can be easily broken. That is, by pouring molten blister copper from above, the solid carbonaceous reducing agent can be submerged in the molten metal, and a pressure difference corresponding to the depth from the molten metal surface occurs in the voids of the solid carbonaceous reducing agent, and It is believed that the reducing agent is crushed. In the second blister loading step, the molten blister may be charged a plurality of times. In this case, it is preferable to perform the next charging after the carbonaceous reducing agent that has settled in the molten metal by the charging of the molten blister copper rises to the surface of the molten metal. Can be efficiently dispersed, and the reduction reaction can be promoted.

次に還元工程において、重油、天然ガス、ブタンガスなどの流体状還元剤を精製炉30内の熔融粗銅の湯面より下側に設けられている羽口34から吹き込んで熔融粗銅の還元処理を行う。この還元工程では必要に応じて羽口34から空気を吹き込んでもよく、これにより流体状還元剤から一酸化炭素を生じさせて還元効率を高めたり、羽口を空気で冷却したりできる。この還元工程では、燃え残りとして一部の固体炭素質還元剤が残存するが、前述したように精製炉30の気相部では熔融粗銅から生じたガスの水平方向の流れが生じているため、このガスの流れに伴って、炉壁近傍や炉の軸方向両端部に浮遊している固体炭素質還元剤は湯面のほぼ中央に位置する炉口32の下方に集められる。   Next, in the reduction step, a fluid reducing agent such as heavy oil, natural gas, or butane gas is blown from a tuyere 34 provided below the molten copper surface in the refining furnace 30 to reduce the molten copper. . In this reduction step, air may be blown from the tuyere 34 as needed, thereby generating carbon monoxide from the fluid reducing agent to increase the reduction efficiency or cooling the tuyere with air. In this reduction step, a part of the solid carbonaceous reducing agent remains as unburned residue. However, as described above, since the gas generated from the molten blister copper flows in the gaseous phase portion of the purification furnace 30 in the horizontal direction, Along with the flow of the gas, the solid carbonaceous reducing agent floating near the furnace wall or at both ends in the axial direction of the furnace is collected below the furnace port 32 located at substantially the center of the molten metal surface.

次に、還元剤排出工程において、精製炉30を一方向に傾転させることによって、上記した炉口32の下方に集められた燃え残りの固体炭素質還元剤を炉口32から排出する。この炉口32から排出された固体炭素質還元剤は、後述するように転炉20に装入されるため、レードルなどの移送手段に一時的に保持される。   Next, in the reducing agent discharging step, the unburned solid carbonaceous reducing agent collected below the furnace port 32 is discharged from the furnace port 32 by tilting the purification furnace 30 in one direction. Since the solid carbonaceous reducing agent discharged from the furnace port 32 is charged into the converter 20 as described later, it is temporarily held by a transfer means such as a ladle.

次に、熔融粗銅排出工程において、精製炉30を他方向に傾転させてそのタップ口33から熔融粗銅を排出すると共に、上記の還元剤排出工程において排出した燃え残りの固体炭素質還元剤を転炉20に装入する。タップ口33から排出された熔融粗銅は直接的に又は樋を通って鋳造機に送られ、アノードとして鋳造される。なお、上記の還元工程で流体状還元剤を吹き込まない場合があり、この場合はこの熔融粗銅排出工程で流体状還元剤を吹き込んでから熔融粗銅を排出してもよい。転炉20に装入された固体炭素質還元剤は、転炉20内の熔融粗銅の保温に用いられた後、燃焼により固体炭素質還元剤由来の灰分となり、スラグと共に回収される。   Next, in the molten blister copper discharging step, the refining furnace 30 is tilted in the other direction to discharge the molten blister copper from the tap port 33, and the unburned solid carbonaceous reducing agent discharged in the reducing agent discharging step is discharged. The converter 20 is charged. The molten blister copper discharged from the tap opening 33 is sent to a casting machine directly or through a gutter, and is cast as an anode. In some cases, the fluid reducing agent is not blown in the above reduction step. In this case, the molten blister may be discharged after the fluid reducing agent is blown in the molten blister discharging step. The solid carbonaceous reducing agent charged into the converter 20 is used for keeping the temperature of the molten blister copper in the converter 20, becomes ash derived from the solid carbonaceous reducing agent by combustion, and is collected together with the slag.

[実施例1]
自熔炉で銅精鉱を酸化処理して得た主に硫化銅からなるカワに対して、後段の転炉で更に酸化処理して銅品位99%の熔融粗銅を得た。この熔融粗銅に含まれる不純物は大部分が酸素であり、残りの不純物は硫黄であった。得られた熔融粗銅の200tを精製炉に装入した後、含水率1%のコークス200kgを精製炉に装入し、コークスの山状の塊がほぐれた後、湯面上のコークスの挙動が定常的になるまで1時間待った。このとき、湯面からコークス上端までの高さはほぼ一定となっていた。その後、精製炉の有効容量の約94%を満たすように400tの熔融粗銅を約40tずつ10回に分けてコークスの上から精製炉内に装入した。その際、装入してから次の装入までそれぞれ10分間の待機時間を設けて、熔融粗銅の装入により湯中に沈んだコークスが湯面上に浮上してから熔融粗銅を装入するようにした。
[Example 1]
The river consisting mainly of copper sulfide obtained by oxidizing copper concentrate in a flash furnace was further oxidized in a converter at a later stage to obtain molten crude copper having a copper grade of 99%. Most of the impurities contained in the molten blister copper were oxygen, and the remaining impurities were sulfur. After charging 200 tons of the obtained molten blister copper into the refining furnace, 200 kg of coke having a moisture content of 1% was charged into the refining furnace, and after the mountain-like lumps of coke were loosened, the behavior of the coke on the molten metal surface was changed. Waited 1 hour until steady. At this time, the height from the molten metal surface to the upper end of the coke was almost constant. Thereafter, 400 tons of molten blister copper were charged into the refining furnace from above the coke in 10 steps of about 40 tons so as to satisfy about 94% of the effective capacity of the refining furnace. At that time, a waiting time of 10 minutes is provided between each charging and the next charging, and the molten blister copper is charged after the coke sinking in the molten metal by the charging of the molten blister floats on the surface of the molten metal. I did it.

定期的に熔融粗銅をサンプリングしながら熔融粗銅の酸素品位が0.5%以下になるまでプロパンガスを羽口から吹き込んで還元処理を行った。コークスはその際、湯面上を浮遊しながら流動し、炉壁から離れて精製炉のほぼ中央部に位置する炉口の下方に集まっていった。次に精製炉を一方向に傾転させることによって、上記した炉口の下方に集まったコークスを少量の熔融粗銅と共に炉口から排出し、レードルに保持した。   While periodically sampling the molten blister copper, propane gas was blown from the tuyere until the oxygen grade of the molten blister copper became 0.5% or less to perform a reduction treatment. At that time, the coke flowed while floating on the surface of the molten metal, and gathered below the furnace opening located at the center of the refining furnace, away from the furnace wall. Next, the refining furnace was tilted in one direction, so that the coke collected under the furnace port was discharged from the furnace port together with a small amount of molten blister copper, and held in a ladle.

続いて精製炉を上記の一方向とは反対側に傾転させることによって、精製炉内に残った熔融粗銅をタップ口から排出した。タップ口から排出した熔融粗銅は樋を介して鋳造機に供給してアノードを鋳造した。得られたアノードは表面の膨れが少なく、銅品位が99%以上であった。一方、炉口から排出したコークスはレードルを介して転炉に装入して転炉内の熔融粗銅の保温に用いた。このコークスは最終的に転炉内で不燃成分の灰分を残してほぼ焼失し、スラグと共に回収した。   Subsequently, the refining furnace was tilted in the direction opposite to the above one direction, so that the molten blister copper remaining in the refining furnace was discharged from the tap opening. The molten blister copper discharged from the tap opening was supplied to a casting machine through a gutter to cast an anode. The obtained anode had little surface swelling and copper quality was 99% or more. On the other hand, the coke discharged from the furnace port was charged into a converter via a ladle and used for keeping the temperature of the molten blister copper in the converter. This coke finally burned off in the converter, leaving the ash of non-combustible components, and was recovered together with the slag.

[実施例2]
コークスの装入前の精製炉への熔融粗銅の装入量を100tとしたこと以外は実施例1と同様にしてアノードとスラグを製造した。コークスの流動状況、アノード及びスラグの品質は実施例1と同様であった。
[Example 2]
An anode and a slag were produced in the same manner as in Example 1 except that the amount of the molten blister copper charged into the refining furnace before charging the coke was 100 t. The flow condition of coke and the quality of anode and slag were the same as in Example 1.

[実施例3]
コークスの装入前の精製炉への熔融粗銅の装入量を320tとし、コークスの装入量を96kgとし、コークスの装入後の熔融粗銅の装入量を320tとしたこと以外は実施例1と同様にしてアノードとスラグを製造した。コークスの流動状況、アノード及びスラグの品質は実施例1と同様であった。
[Example 3]
Example 1 except that the charging amount of the molten blister to the refining furnace before charging the coke was 320 t, the charging amount of the coke was 96 kg, and the charging amount of the molten blister copper after the charging of the coke was 320 t. An anode and a slag were produced in the same manner as in Example 1. The flow condition of coke and the quality of anode and slag were the same as in Example 1.

[実施例4]
コークスの装入前の精製炉への熔融粗銅の装入量を100tとし、コークスの装入量を300kgとしたこと以外は実施例1と同様にしてアノードとスラグを製造した。コークスの流動状況、アノード及びスラグの品質は実施例1と同様であった。
[Example 4]
An anode and a slag were produced in the same manner as in Example 1, except that the amount of the molten blister copper charged into the refining furnace before charging the coke was 100 t, and the amount of the coke charged was 300 kg. The flow condition of coke and the quality of anode and slag were the same as in Example 1.

[比較例1]
熔融粗銅の全量(600t)を精製炉に装入してからコークスを装入したこと以外は実施例1と同様にしてアノードとスラグを製造した。コークスは炉内で一部が山状にかたまったままとなり、炉口からの排出に実施例1の時に比べて時間を要した。また、コークスの排出に伴って多くの熔融粗銅が炉口から排出されてしまった。
[Comparative Example 1]
An anode and a slag were produced in the same manner as in Example 1, except that the entire amount (600 t) of the molten blister copper was charged into the refining furnace and then coke was charged. Part of the coke remained in a mountain shape in the furnace, and it took more time to discharge from the furnace port than in Example 1. Further, a large amount of molten blister copper was discharged from the furnace port with the discharge of coke.

[評価]
実施例1〜4では、プロパン使用量は、精製炉への熔融粗銅の装入合計量に対して質量換算で3.20×10−3〜3.30×10−3倍となった。特に、実施例4では、3.21×10−3倍で済んだ。一方、比較例1では、プロパン使用量は、精製炉への熔融粗銅の装入合計量に対して質量換算で3.40×10−3倍を要した。
[Evaluation]
In Examples 1 to 4, the amount of propane used was 3.20 × 10 −3 to 3.30 × 10 −3 times the total amount of molten blister copper charged into the refining furnace in terms of mass. In particular, in Example 4, it was 3.21 × 10 −3 times. On the other hand, in Comparative Example 1, the amount of propane used was 3.40 × 10 −3 times in terms of mass with respect to the total amount of molten blister copper charged into the refining furnace.

熔融粗銅に含まれる0.5質量%(すなわち、還元処理前の酸素品位1%から還元処理後の酸素品位0.5%を差し引いた値)の酸素と結合するプロパンは、量論上は熔融粗銅の質量の1.38×10−3倍となることを考慮すると、散逸や外来空気で消費されたプロパン量は、実施例1〜4では熔融粗銅の質量の1.82×10−3〜1.92×10−3倍であり、比較例1の2.02×10−3倍に対して、最大で1割の削減ができたことになる。熔融粗銅の待機時間が長い場合(たとえば関連設備の工事や鋳造機の故障時の復旧作業などが生じた場合)は、さらに大きな削減が期待できる。 The propane that binds to 0.5 mass% of oxygen contained in the molten blister copper (that is, a value obtained by subtracting 0.5% of oxygen grade after reduction from 1% of oxygen grade before reduction) is stoichiometrically molten. In consideration of the fact that the mass of blister copper is 1.38 × 10 −3 times, the amount of propane consumed by the dissipated or foreign air is 1.82 × 10 −3 to 1.82 × 10 −3 of the mass of molten blister copper in Examples 1 to 4. It is 1.92 × 10 −3 times, which means that a maximum reduction of 10% has been achieved compared to 2.02 × 10 −3 times of Comparative Example 1. If the waiting time for the molten blister copper is long (for example, when the construction of related facilities or the restoration work at the time of failure of the casting machine occurs), a further reduction can be expected.

10 自溶炉
20 転炉
21 ローラー
22 炉口
23 羽口
30 精製炉
31 ローラー
32 炉口
33 タップ口
34 羽口
DESCRIPTION OF SYMBOLS 10 Flash furnace 20 Converter 21 Roller 22 Furnace port 23 Tuyere 30 Refining furnace 31 Roller 32 Furnace port 33 Tap port 34 Tuyere

Claims (2)

転炉で処理された熔融粗銅を精製炉の有効容量の一部分を満たすように装入する第1の粗銅装入工程と、
前記第1の粗銅装入工程の前又は後に固体炭素質還元剤を精製炉内に装入する還元剤装入工程と、
前記還元剤装入工程で装入した固体炭素質還元剤の挙動が定常的になるまで待機した後、熔融粗銅を固体炭素質還元剤の上から精製炉内に装入する第2の粗銅装入工程と、
精製炉内の熔融粗銅の湯面の下に流体状還元剤を吹き込んで熔融粗銅を還元する還元工程と、
精製炉を一方向に傾転させてその炉口から固体炭素質還元剤を排出する還元剤排出工程と、
精製炉を他方向に傾転させてそのタップ口からアノード鋳造用の熔融粗銅を排出すると共に、前記排出した固体炭素質還元剤を転炉に装入する熔融粗銅排出工程とからなることを特徴とする粗銅の還元方法。
A first blister charging step of charging the molten blister copper treated in the converter to fill a part of the effective capacity of the refining furnace;
A reducing agent charging step of charging the solid carbonaceous reducing agent into the purification furnace before or after the first blister copper charging step;
After waiting until the behavior of the solid carbonaceous reducing agent charged in the reducing agent charging step becomes steady, the second blister copper charging the molten blister copper into the refining furnace from above the solid carbonaceous reducing agent. Input process,
A reduction step of reducing the molten blister by blowing a fluid reducing agent below the surface of the molten blister in the refining furnace,
A reducing agent discharging step of tilting the refining furnace in one direction and discharging a solid carbonaceous reducing agent from the furnace port;
Tilting the refining furnace in the other direction, discharging molten blister copper for anode casting from the tap opening thereof, and discharging the molten blister copper into the converter with the discharged solid carbonaceous reducing agent. Of blister copper.
前記第2の粗銅装入工程では熔融粗銅を複数回に分けて装入し、装入により溶湯中に沈み込んだ炭素質還元剤が浮上してから次の装入を行うことを特徴とする、請求項1に記載のの還元方法。 In the second blister copper charging step, the molten blister copper is charged in a plurality of times, and the next charging is performed after the carbonaceous reducing agent sinking in the molten metal by the charging floats. , reduction method of the crude copper according to claim 1.
JP2016110573A 2016-06-02 2016-06-02 Reduction method in copper refining furnace Active JP6665693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016110573A JP6665693B2 (en) 2016-06-02 2016-06-02 Reduction method in copper refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016110573A JP6665693B2 (en) 2016-06-02 2016-06-02 Reduction method in copper refining furnace

Publications (2)

Publication Number Publication Date
JP2017214631A JP2017214631A (en) 2017-12-07
JP6665693B2 true JP6665693B2 (en) 2020-03-13

Family

ID=60576615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016110573A Active JP6665693B2 (en) 2016-06-02 2016-06-02 Reduction method in copper refining furnace

Country Status (1)

Country Link
JP (1) JP6665693B2 (en)

Also Published As

Publication number Publication date
JP2017214631A (en) 2017-12-07

Similar Documents

Publication Publication Date Title
JPS58224128A (en) Copper and nonferrous mat continuous converting method and device
JP4350711B2 (en) Industrial waste melting process
US4277280A (en) Apparatus and method for removal of alkali and alkaline earth metals from molten aluminium
JP6665693B2 (en) Reduction method in copper refining furnace
JP2527914B2 (en) Smelting of non-ferrous sulfide
PL124716B1 (en) Method of steelmaking in oxygen-blown converter
JP2006206937A (en) Apparatus for recovering metal from metal slag and recovering operation method using it
JP4751100B2 (en) Copper recovery method by flotation
RU2146650C1 (en) Method of refining silicon and its alloys
JP6183753B2 (en) Ferronickel smelting slag
CN109280739B (en) Method for improving molten steel yield of electric furnace
JP7137336B2 (en) Flash smelting furnace and its operation method
JP5726618B2 (en) Method for treating tin-containing copper
RU2209840C2 (en) Method of cleaning slag in electrical furnace
JP2016191120A (en) Non-ferrous smelting slag treatment method
EP1029089A1 (en) Method for continuous smelting of solid metal products
EP0024065B1 (en) Processes for working-up non-phosphorous metallurgical slags
US6174492B1 (en) Forebay for am Metallurgical furnace
JP5575026B2 (en) Iron / tin-containing copper processing apparatus and iron / tin-containing copper processing method
JP2011174150A (en) Method for operating copper refining furnace, and copper refining furnace
JP4632829B2 (en) Desulfurization method of ferronickel
WO2020082726A1 (en) Bottom-blowing refining furnace and use thereof
US806621A (en) Copper-refining furnace.
RU2120488C1 (en) Method of manufacturing nickel anodes
JP4111115B2 (en) Dob treatment method for non-ferrous smelting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6665693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150