JP4140560B2 - Fuel fractionator for internal combustion engine - Google Patents

Fuel fractionator for internal combustion engine Download PDF

Info

Publication number
JP4140560B2
JP4140560B2 JP2004179950A JP2004179950A JP4140560B2 JP 4140560 B2 JP4140560 B2 JP 4140560B2 JP 2004179950 A JP2004179950 A JP 2004179950A JP 2004179950 A JP2004179950 A JP 2004179950A JP 4140560 B2 JP4140560 B2 JP 4140560B2
Authority
JP
Japan
Prior art keywords
fuel
passage
liquid phase
tank
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004179950A
Other languages
Japanese (ja)
Other versions
JP2006002669A (en
Inventor
貴宣 植田
信也 広田
富久 小田
晃 見上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004179950A priority Critical patent/JP4140560B2/en
Publication of JP2006002669A publication Critical patent/JP2006002669A/en
Application granted granted Critical
Publication of JP4140560B2 publication Critical patent/JP4140560B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、内燃機関の燃料分留装置に関する。   The present invention relates to a fuel fractionator for an internal combustion engine.

排気管の排気熱を利用して燃料を液相と気相とに分離して、分離した気相を吸蔵還元型のNOx触媒にその還元剤として添加する燃料分留装置が知られている(特許文献1)。その他本発明に関連する先行技術文献として、特許文献2及び3が存在する。   A fuel fractionation device is known in which fuel is separated into a liquid phase and a gas phase using the exhaust heat of the exhaust pipe, and the separated gas phase is added as a reducing agent to an NOx storage reduction catalyst ( Patent Document 1). Other prior art documents relating to the present invention include Patent Documents 2 and 3.

特開平6−272539号公報JP-A-6-272539 特開2001−193525号公報JP 2001-193525 A 特許2850547号公報Japanese Patent No. 2850547

この種の装置では排気熱を利用して液相と気相に分離するため、排気管の温度によって気相として取り出される燃料の性状が変化する。特に、排気管の温度が高温状態のときには不必要な高沸点成分(重質分)までもが気相として分留され、その結果還元剤の性状が悪化するおそれがある。   In this type of apparatus, exhaust heat is used to separate the liquid phase and the gas phase, so that the properties of the fuel taken out as the gas phase change depending on the temperature of the exhaust pipe. In particular, when the temperature of the exhaust pipe is high, even unnecessary high boiling point components (heavy components) are fractionated as a gas phase, with the result that the properties of the reducing agent may deteriorate.

そこで、本発明は気相として分留される燃料の性状の悪化を抑制するとともに、良質な燃料を効率的に分留可能な内燃機関の燃料分留装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a fuel fractionation device for an internal combustion engine capable of efficiently fractionating high-quality fuel while suppressing deterioration of the properties of fuel fractionated as a gas phase.

本発明の燃料分留装置は、内燃機関の排気熱を利用して燃料を気相と液相とに分留する分留区間を経て分岐点に至る分留通路と、前記分岐点から分岐された気相通路と、前記分岐点から分岐された液相通路と、前記気相通路及び前記液相通路のそれぞれに対する燃料の分配に影響する条件の少なくとも一つを変化させる条件変更手段と、前記分留区間の温度が高い場合に前記液相通路への燃料の分配を促す操作と前記分留区間の温度が低い場合に前記気相通路への燃料の分配を促す操作の少なくともいずれか一方の操作が実行されるように前記条件変更手段を制御する燃料分配制御手段と、を具備することにより、上述した課題を解決する(請求項1)。   The fuel fractionating device of the present invention is branched from a branching passage that reaches a branching point through a fractionation section in which fuel is fractionated into a gas phase and a liquid phase using exhaust heat of an internal combustion engine. A gas phase passage, a liquid phase passage branched from the branch point, condition changing means for changing at least one of the conditions affecting fuel distribution to each of the gas phase passage and the liquid phase passage, and At least one of an operation for promoting the distribution of fuel to the liquid phase passage when the temperature of the fractionation section is high and an operation for prompting the distribution of fuel to the gas phase passage when the temperature of the fractionation section is low. The above-described problem is solved by including a fuel distribution control unit that controls the condition changing unit so that the operation is performed.

分留区間の温度が高い場合には、低い場合よりも気相となる燃料が増える。分岐点に導かれた燃料は気相通路及び液相通路のそれぞれに対する燃料の分配に影響する条件に応じて、気相通路と液相通路とに分配される。この分配に影響する条件を分留区間の温度に応じて変化させなければ、分留区間の温度が高くなるほど不必要な高沸点成分(重質分)を多く含んだ状態で気相通路に導かれる。このため、気相通路に導かれる燃料の性状が悪化する。この問題は、分留区間の過熱を抑制する目的で分留区間の温度が高いほど分留通路に導く燃料を増量した場合により顕著なものとなる。一方、分留区間の温度が低い場合には、高い場合のように燃料の性状が悪化することはないが、分留区間で気相となる燃料の絶対量が少なくなるので、分留区間の温度が低いほど気相通路に導かれる燃料が減少して低沸点成分(軽質分)の回収の効率性が悪化する。   When the temperature of the fractionation section is high, the amount of fuel that is in the gas phase increases more than when the temperature is low. The fuel guided to the branch point is distributed to the gas phase passage and the liquid phase passage according to conditions that affect the fuel distribution to the gas phase passage and the liquid phase passage. Unless the conditions affecting this distribution are changed according to the temperature of the fractionation section, the higher the fractionation section temperature, the more high-boiling components (heavy components) that are unnecessary are introduced into the gas phase passage. It is burned. For this reason, the property of the fuel led to the gas phase passage is deteriorated. This problem becomes more conspicuous when the amount of fuel led to the fractionation passage is increased as the temperature of the fractionation section is higher in order to suppress overheating of the fractionation section. On the other hand, when the temperature of the fractionation section is low, the properties of the fuel are not deteriorated as in the case of a high fraction, but the absolute amount of fuel that becomes a gas phase in the fractionation section decreases, so The lower the temperature is, the less fuel is led to the gas phase passage and the lower the efficiency of recovering low-boiling components (light components).

この発明によれば、分留区間の温度が高い場合には液相通路への燃料の分配を促す操作が実行されるので、分留区間を経た燃料が液相通路へ導かれやすくなる。その結果、高沸点成分(重質分)を多く含んだ燃料が気相通路へ導かれることを抑制でき、燃料の性状悪化を抑えることができる。他方、分留区間の温度が低い場合には、気相通路への燃料の分配を促す操作が実行されるので、分留区間を経た燃料が気相通路へ導かれやすくなり、多くの燃料を気相通路へ導くことができる。このため、軽質分の回収の効率性が向上する。   According to the present invention, when the temperature of the fractionation section is high, an operation for urging the fuel to be distributed to the liquid phase passage is executed, so that the fuel that has passed through the fractionation section is easily guided to the liquid phase passage. As a result, the fuel containing a large amount of high-boiling components (heavy components) can be prevented from being led to the gas phase passage, and deterioration of the properties of the fuel can be suppressed. On the other hand, when the temperature of the fractionation section is low, an operation for urging the fuel to be distributed to the gas phase passage is performed, so that the fuel that has passed through the fractionation section is easily guided to the gas phase passage, and much fuel is consumed. It can lead to the gas phase passage. For this reason, the efficiency of collection | recovery of a light part improves.

本発明の燃料分留装置において、前記条件変更手段として、前記液相通路に導かれた燃料を蓄える液相用タンクと、前記液相用タンク内の燃料を前記内燃機関の燃料タンクに戻す液相用リターン通路と、前記液相用タンク内の燃料を前記液相用リターン通路に導いて前記液相用タンクの液面レベルを調整する液面調整手段と、が設けられ、前記燃料分配制御手段は、前記液相通路への燃料の分配を促す操作として、前記分留区間の温度が高いときにはその温度が低いときよりも前記液相用タンクの液面レベルが低くなるように前記液面調整手段を制御してもよい(請求項2)。この形態によれば、分留区間の温度が高い場合は、その温度が低い場合よりも液相用タンク内に形成される空間が広くなるので、液相通路へ燃料が導かれやすくなる。液相通路へ導かれた気相の燃料は、液相通路又は液相用タンク内で冷却され液化する。気相の燃料が液化することにより体積が急激に減少する。これにより液相用タンク内は一時的に負圧となり、気相の燃料が連続的に液相用タンクへ引き込まれ液相通路への燃料の分配が促される。   In the fuel fractionating device of the present invention, as the condition changing means, a liquid phase tank for storing fuel introduced into the liquid phase passage, and a liquid for returning the fuel in the liquid phase tank to the fuel tank of the internal combustion engine. A phase return passage and liquid level adjusting means for adjusting the liquid level of the liquid phase tank by introducing the fuel in the liquid phase tank to the liquid phase return passage, and the fuel distribution control As an operation for urging fuel to be distributed to the liquid phase passage, the liquid surface level of the liquid phase tank is lower when the temperature of the fractionation section is higher than when the temperature is low. The adjusting means may be controlled (claim 2). According to this embodiment, when the temperature of the fractionation section is high, the space formed in the liquid phase tank becomes wider than when the temperature is low, and thus the fuel is easily guided to the liquid phase passage. The gas phase fuel guided to the liquid phase passage is cooled and liquefied in the liquid phase passage or the liquid phase tank. As the gas phase fuel is liquefied, the volume rapidly decreases. As a result, the inside of the liquid phase tank temporarily becomes a negative pressure, and the gas phase fuel is continuously drawn into the liquid phase tank to promote the distribution of the fuel to the liquid phase passage.

液面レベルの制御として、前記燃料分配制御手段は、前記分留区間の温度が高いほど前記液相用タンクの液面レベル低くなるように前記液面調整手段を制御してもよい(請求項3)。この場合は、より正確かつきめ細かな液面レベルの制御が可能となるので、気相通路へ導かれる燃料の性状悪化の程度を考慮しつつ、効率的に軽質分の燃料を回収することができる。   As the liquid level control, the fuel distribution control means may control the liquid level adjustment means so that the liquid level of the liquid phase tank becomes lower as the temperature of the fractionation section becomes higher. 3). In this case, since it is possible to control the liquid level more accurately and finely, it is possible to efficiently recover the light fuel while considering the degree of deterioration of the properties of the fuel guided to the gas phase passage. .

本発明の燃料分留装置において、前記条件変更手段として、前記液相用タンク内に入口の高さが互いに異なるようにして配置され、それぞれの出口が前記液相用リターン通路と接続された複数の液面調整通路を更に具備し、前記液面調整手段として、前記複数の液面調整通路のうち少なくともいずれか一つを選択的に経由させて前記液相用タンク内の燃料を前記液相用リターン通路に導いて前記液相用タンクの液面レベルを変化させる通路切替バルブが設けられ、前記燃料分配制御手段は、前記液相通路への燃料の分配を促す操作として、前記分留区間の温度が高いときにはその温度が低いときよりも前記液相用タンクの液面レベルが低くなるように前記通路切替バルブを制御してもよい(請求項4)。この場合は、液面レベルを検出する検出手段や、その検出結果に応じた開度制御を行う制御バルブ等の手段を設けなくても簡素な構成で液面レベルを制御できるので、装置の製作コストを低減できる。   In the fuel fractionating apparatus of the present invention, as the condition changing means, a plurality of inlets are arranged in the liquid phase tank so that the heights of the inlets are different from each other, and each outlet is connected to the liquid phase return passage. The liquid level adjustment passage is further provided, and as the liquid level adjustment means, the fuel in the liquid phase tank is selectively passed through at least one of the plurality of liquid level adjustment passages. A passage switching valve that leads to the return passage for changing the liquid level of the liquid phase tank is provided, and the fuel distribution control means performs the fractionation section as an operation for urging distribution of the fuel to the liquid phase passage. When the temperature is high, the passage switching valve may be controlled so that the liquid level of the liquid phase tank is lower than when the temperature is low. In this case, the liquid level can be controlled with a simple configuration without providing a detecting means for detecting the liquid level and a control valve for controlling the opening degree according to the detection result. Cost can be reduced.

本発明の燃料分留装置において、前記条件変更手段として、前記気相通路に導かれた燃料を蓄える気相用タンクと、前記気相用タンク内に負圧を発生させる負圧発生手段と、が設けられ、前記燃料分配制御手段は、前記気相通路への燃料の分配を促す操作として、前記気相用タンク内に負圧が発生するように前記負圧発生手段を制御してもよい(請求項5)。この形態によれば、気相用タンク内の圧力バランスが一時的に崩れて負圧が発生して気相用タンク内に燃料が引き込まれるので、気相通路へ燃料が導かれやすくなり気相通路への燃料の分配が促される。   In the fuel fractionating apparatus of the present invention, as the condition changing means, a gas phase tank for storing fuel introduced into the gas phase passage, a negative pressure generating means for generating a negative pressure in the gas phase tank, The fuel distribution control means may control the negative pressure generating means so as to generate a negative pressure in the gas phase tank as an operation for prompting the fuel to be distributed to the gas phase passage. (Claim 5). According to this embodiment, the pressure balance in the gas phase tank is temporarily lost, negative pressure is generated, and the fuel is drawn into the gas phase tank, so that the fuel is easily guided to the gas phase passage. Fuel distribution to the aisle is encouraged.

以上説明したように、本発明によれば、分留区間の温度が高い場合に液相通路への燃料の分配を促す操作と分留区間の温度が低い場合に気相通路への燃料の分配を促す操作の少なくともいずれか一方の操作を実行して気相通路及び前記液相通路のそれぞれに対する燃料の分配に影響する条件の少なくとも一つを変化させるので、気相として分留される燃料の性状の悪化を抑制するとともに、良質な燃料を効率的に分留可能な内燃機関の燃料分留装置を提供することができる。   As described above, according to the present invention, the operation for prompting the fuel to be distributed to the liquid phase passage when the temperature of the fractionation section is high and the distribution of the fuel to the gas phase passage when the temperature of the fractionation section is low. And at least one of the conditions affecting the distribution of fuel to each of the gas phase passage and the liquid phase passage is changed to execute at least one of the operations for prompting the fuel. It is possible to provide a fuel fractionating device for an internal combustion engine that can suppress the deterioration of properties and efficiently fractionate a high-quality fuel.

図1は、本発明の燃料分留装置を内燃機関としてのディーゼルエンジン1に適用した一実施形態を示している。この図に示したように、エンジン1には吸気通路2及び排気通路3が接続されている。吸気通路2には、排気エネルギを利用して吸気圧を高める過給機4のコンプレッサ4a、吸気量調整量用のスロットルバルブ5がそれぞれ設けられ、排気通路3には、排気マニホールド3aの下流側に配置された過給機4のタービン4b、タービン4bよりも下流側に配置された排気浄化装置6がそれぞれ設けられている。排気浄化装置6は、例えば吸蔵還元型のNOx触媒や、パティキュレートを捕集するためのフィルタ基材に吸蔵還元型NOx触媒物質を坦持させた公知のものである。なお、NOxの吸蔵はNOxを保持できればよく、その形態は問わない。   FIG. 1 shows an embodiment in which the fuel fractionation device of the present invention is applied to a diesel engine 1 as an internal combustion engine. As shown in this figure, an intake passage 2 and an exhaust passage 3 are connected to the engine 1. The intake passage 2 is provided with a compressor 4a of a supercharger 4 that uses exhaust energy to increase the intake pressure, and a throttle valve 5 for adjusting the intake air amount. The exhaust passage 3 is provided downstream of the exhaust manifold 3a. The exhaust gas purification device 6 disposed downstream of the turbine 4b and the turbine 4b of the turbocharger 4 disposed in the turbine 4 is provided. The exhaust purification device 6 is a known device in which, for example, an NOx storage reduction catalyst or a NOx storage reduction catalyst material is carried on a filter base material for collecting particulates. The NOx occlusion is not limited as long as it can hold NOx.

エンジン1には、燃料(軽油)を貯留する燃料タンク7、燃料タンク7から延びるフィード通路8、燃料タンク7の燃料をフィード通路8を介してコモンレール9に圧送するサプライポンプユニット10、コモンレール9に接続された複数(図では4つ)のインジェクタ11、燃料タンク7から汲み上げた燃料を燃料タンク7に戻すリターン通路12がそれぞれ設けられている。リターン通路12には、コモンレール9及びインジェクタ11から戻される燃料等の余分な燃料が導かれる。   The engine 1 includes a fuel tank 7 that stores fuel (light oil), a feed passage 8 extending from the fuel tank 7, a supply pump unit 10 that pumps fuel from the fuel tank 7 to the common rail 9 through the feed passage 8, and a common rail 9. A plurality of (four in the figure) connected injectors 11 and return passages 12 for returning the fuel pumped from the fuel tank 7 to the fuel tank 7 are provided. Excess fuel such as fuel returned from the common rail 9 and the injector 11 is guided to the return passage 12.

リターン通路12の途中には、燃料を気相と液相とに分留する分留部13へ燃料を導くための分留通路14が接続されている。リターン通路12と分留通路14との接続部には、圧力バランスを調整するための圧力調整バルブ15が設けられている。圧力調整バルブ15の下流側の分留通路14には、分留部13へ導かれる燃料の流量を制御する流量制御バルブ16が設けられている。これらのバルブ15,16はいずれも開度調整が可能な電磁制御バルブである。   In the middle of the return passage 12, there is connected a fractionation passage 14 for guiding the fuel to a fractionation section 13 for fractionating the fuel into a gas phase and a liquid phase. A pressure adjusting valve 15 for adjusting the pressure balance is provided at a connection portion between the return passage 12 and the fractionation passage 14. A flow rate control valve 16 that controls the flow rate of the fuel guided to the fractionation unit 13 is provided in the fractionation passage 14 on the downstream side of the pressure adjustment valve 15. These valves 15 and 16 are both electromagnetic control valves whose opening degree can be adjusted.

図2に詳しく示したように、分留通路14は分留区間14a、水平部14bを経て、分岐点14cに至り、液相通路17と気相通路18とに分岐する。分留区間14aは水平方向に対して傾斜しつつ、排気浄化装置6の下流側の排気通路3内を斜めに通過している。これにより分留区間14aは排気通路3内の排気によって加熱され、リターン通路12から分留部13に供給された燃料は液相燃料f1と気相燃料f2とに分けられる。水平部14b及び分岐点14cはそれぞれ排気通路3の外側に設けられている。分留通路14は全体として下方に向かって延びており、液相燃料f1は、重力により分岐点14cに向かって流れる。   As shown in detail in FIG. 2, the fractionation passage 14 passes through the fractionation section 14 a and the horizontal portion 14 b, reaches the branch point 14 c, and branches into the liquid phase passage 17 and the gas phase passage 18. While the fractionation section 14a is inclined with respect to the horizontal direction, it passes through the exhaust passage 3 on the downstream side of the exhaust purification device 6 obliquely. Thereby, the fractionation section 14a is heated by the exhaust gas in the exhaust passage 3, and the fuel supplied from the return passage 12 to the fractionation section 13 is divided into the liquid phase fuel f1 and the gas phase fuel f2. The horizontal portion 14b and the branch point 14c are provided outside the exhaust passage 3, respectively. The fractionation passage 14 extends downward as a whole, and the liquid phase fuel f1 flows toward the branch point 14c by gravity.

液相通路17は、分岐点14cから鉛直下方に延びるとともに、その下流側は液相通路17に導かれた燃料を一時的に貯留するための液相用タンク19と接続されている。液相用タンク19の底部には液相用リターン通路20が接続され、液相用タンク19内の燃料は調整バルブ21を介して、燃料タンク7へ導かれる。調整バルブ21は液相用リターン通路20へ導かれる燃料量を調整可能な電磁制御弁である。この調整バルブ21の開度を調整することにより、液相用タンク19の液面レベルLを変更する液面調整手段として機能させることができる。液相用タンク19の液面レベルLが下がると、液相用タンク19の空間Sが広くなり、分留区間14aで気相として分留された燃料が液相用タンク19に導かれやすくなる。つまり、液相用タンク19の液面レベルLは液相通路17及び気相通路18のそれぞれに対する燃料の分配に影響する条件の一つであり、液面レベルLの変更を実現する液相用タンク19、液相用リターン通路20、及び調整バルブ21は本発明の条件変更手段として機能する。   The liquid phase passage 17 extends vertically downward from the branch point 14c, and its downstream side is connected to a liquid phase tank 19 for temporarily storing the fuel guided to the liquid phase passage 17. A liquid-phase return passage 20 is connected to the bottom of the liquid-phase tank 19, and the fuel in the liquid-phase tank 19 is guided to the fuel tank 7 via the adjustment valve 21. The adjusting valve 21 is an electromagnetic control valve capable of adjusting the amount of fuel guided to the liquid phase return passage 20. By adjusting the opening degree of the adjusting valve 21, it can function as a liquid level adjusting means for changing the liquid level L of the liquid phase tank 19. When the liquid level L of the liquid phase tank 19 is lowered, the space S of the liquid phase tank 19 is widened, and the fuel fractionated as a gas phase in the fractionation section 14 a is easily guided to the liquid phase tank 19. . That is, the liquid level L of the liquid phase tank 19 is one of the conditions that affect the distribution of fuel to each of the liquid phase passage 17 and the gas phase passage 18. The tank 19, the liquid phase return passage 20, and the adjusting valve 21 function as condition changing means of the present invention.

気相通路18は、分岐点14cから水平方向に延びるとともに、その下流側は気相通路18に導かれた燃料を貯留するための気相用タンク22(図1)と接続されている。図1に示したように、気相用タンク22には吸気通路2と連通する吸気連通管23が設けられている。気相用燃料タンク22側の吸気連通管23には負圧調整バルブ24が設けられている。負圧調整バルブ24を開弁することにより吸気連通管23を負圧発生手段として機能させることができる。気相用タンク22内に負圧が発生して圧力バランスが崩れると、気相の状態で気相タンク22に導かれた燃料の液化が促進される。このため、分留区間14aを経て分岐点14cに導かれた気相の燃料が気相用タンク22に導かれやすくなる。従って、気相用タンク22内の圧力は液相通路17及び気相通路18のそれぞれに対する燃料の分配に影響する条件の一つとなる。気相タンク22内に負圧を発生させる吸気連通管23及び負圧調整バルブ24は本発明の条件変更手段として機能する。   The gas phase passage 18 extends in the horizontal direction from the branch point 14c, and the downstream side thereof is connected to a gas phase tank 22 (FIG. 1) for storing the fuel guided to the gas phase passage 18. As shown in FIG. 1, the gas phase tank 22 is provided with an intake communication pipe 23 that communicates with the intake passage 2. A negative pressure adjusting valve 24 is provided in the intake communication pipe 23 on the gas-phase fuel tank 22 side. By opening the negative pressure adjusting valve 24, the intake communication pipe 23 can function as a negative pressure generating means. When a negative pressure is generated in the gas phase tank 22 and the pressure balance is lost, liquefaction of the fuel guided to the gas phase tank 22 in the gas phase state is promoted. For this reason, the gas-phase fuel guided to the branching point 14 c through the fractionation section 14 a is easily guided to the gas-phase tank 22. Therefore, the pressure in the gas phase tank 22 is one of the conditions that affect the fuel distribution to the liquid phase passage 17 and the gas phase passage 18. The intake communication pipe 23 and the negative pressure adjusting valve 24 that generate a negative pressure in the gas phase tank 22 function as the condition changing means of the present invention.

気相用タンク22に貯留された燃料は添加用インジェクタ25によって排気浄化装置6の上流側の排気通路3内に添加される。添加用インジェクタ25に対する燃料の供給は添加用フィード通路26の途中に設けられたサプライポンプユニット10により行われる。添加用インジェクタ25へ送り出された燃料のうち余分な燃料は添加用リターン通路(不図示)を介して気相用タンク22へ戻される。   The fuel stored in the gas phase tank 22 is added into the exhaust passage 3 upstream of the exhaust purification device 6 by the addition injector 25. The supply of fuel to the addition injector 25 is performed by a supply pump unit 10 provided in the middle of the addition feed passage 26. Excess fuel out of the fuel sent to the addition injector 25 is returned to the gas phase tank 22 through an addition return passage (not shown).

図1及び図2に示したように、上述した圧力調整バルブ15、流量制御バルブ16、調整バルブ21、及び負圧調整バルブ24は、エンジンコントロールユニット(ECU)27によりそれぞれ制御される。ECU27は燃料噴射量や燃料噴射時期等を制御してエンジン1を適正に運転するためのコンピュータであるが、本実施形態では、この他に本発明の燃料分留装置を制御する制御手段として機能する。図3は、ECU27がこれらのバルブ15,16,21,24の開閉動作を制御するために実行する制御ルーチンの手順を示すフローチャートである。このルーチンは所定の周期で繰り返し実行される。   As shown in FIGS. 1 and 2, the pressure adjustment valve 15, the flow rate control valve 16, the adjustment valve 21, and the negative pressure adjustment valve 24 described above are controlled by an engine control unit (ECU) 27. The ECU 27 is a computer for properly operating the engine 1 by controlling the fuel injection amount, the fuel injection timing, etc. In this embodiment, the ECU 27 functions as a control means for controlling the fuel fractionation device of the present invention. To do. FIG. 3 is a flowchart showing the procedure of a control routine executed by the ECU 27 to control the opening / closing operation of these valves 15, 16, 21, 24. This routine is repeatedly executed at a predetermined cycle.

ECU27は、まずステップS1において分留区間14aの温度を検出する。分留区間14aの温度検出は、図1及び図2に示したように、分留区間14aの上流側の排気通路3に設けられた排気温センサ28の入力値から推定することにより実現できる。次に、ECU27は、ステップS2において、分留区間14aの温度が第1所定値以上であるか否かを判定する。第1所定値は、使用目的に適した性状の燃料を分留可能な温度の下限値として適宜に設定される。本実施形態では排気浄化装置6上流への燃料添加に分留した燃料を用いるため、第1所定値として例えば230°Cに設定される。分留区間14aの温度が第1所定値以上であると判定した場合は、ECU27は処理をステップS3に進める。一方、第1所定値未満と判定した場合は、以後の処理をスキップして今回のルーチンを終了する。   The ECU 27 first detects the temperature of the fractionation section 14a in step S1. As shown in FIGS. 1 and 2, the temperature detection of the fractionation section 14a can be realized by estimating from the input value of the exhaust temperature sensor 28 provided in the exhaust passage 3 upstream of the fractionation section 14a. Next, in step S2, the ECU 27 determines whether or not the temperature of the fractionation section 14a is equal to or higher than a first predetermined value. The first predetermined value is appropriately set as a lower limit value of the temperature at which the fuel having properties suitable for the purpose of use can be fractionated. In the present embodiment, since the fractionated fuel is used for fuel addition upstream of the exhaust purification device 6, the first predetermined value is set to, for example, 230 ° C. If the ECU 27 determines that the temperature of the fractionation section 14a is equal to or higher than the first predetermined value, the ECU 27 advances the process to step S3. On the other hand, if it is determined that the value is less than the first predetermined value, the subsequent processing is skipped and the current routine is terminated.

ステップS3では、圧力調整バルブ15及び流量制御バルブ16のそれぞれの開度を制御して分留部13に適正量の燃料を供給する。この場合、分留区間14aの過熱を抑制するため、分留区間14aの温度が高いほど分留部13に供給する燃料を増量することが好ましい。適正量の算出は、例えば、分留区間14aの温度及びバルブ15,16の開度を燃料供給量に対応付けたマップをECU27のROMに予め記憶させ、これを参照することにより実現できる。次に、ECU27は、ステップS4において、分留区間14aの温度に応じた液相用タンク19の液面レベルLの制御を実行する。ECU27がこのステップを実行することにより、ECU27は本発明の燃料分配制御手段として機能する。ECU27は、液相通路17へ燃料の分配を促す操作として、分留区間14aの温度が高い場合は低い場合よりも液面レベルLが低くなるように、そして分留区間14aの温度が高いほど液面レベルLが低くなるように調整バルブ21の動作を制御する。このような調整バルブ21の制御は、例えば分留区間14aの温度に応じた適正な液面レベルLが得られるデューティー比を予め設定しておき、分留区間14aの温度及び液面レベルLの現在値に応じたデューティー比にて調整バルブ21をデューティー制御することにより実現できる。液面レベルLは、図1及び図2に示したように、液相用タンク19に差圧式の液面レベルセンサ29を設け、この入力値から検出できる。   In step S <b> 3, the respective opening amounts of the pressure adjustment valve 15 and the flow rate control valve 16 are controlled to supply an appropriate amount of fuel to the fractionation unit 13. In this case, in order to suppress overheating of the fractionation section 14a, it is preferable to increase the amount of fuel supplied to the fractionation section 13 as the temperature of the fractionation section 14a increases. The calculation of the appropriate amount can be realized, for example, by previously storing a map in which the temperature of the fractionation section 14a and the opening degree of the valves 15 and 16 are associated with the fuel supply amount in the ROM of the ECU 27 and referring to this. Next, in step S4, the ECU 27 controls the liquid level L of the liquid phase tank 19 according to the temperature of the fractionation section 14a. When the ECU 27 executes this step, the ECU 27 functions as the fuel distribution control means of the present invention. As an operation for urging fuel distribution to the liquid phase passage 17, the ECU 27 causes the liquid level L to be lower when the temperature of the fractionation section 14a is higher than when it is low, and the higher the temperature of the fractionation section 14a. The operation of the adjustment valve 21 is controlled so that the liquid level L is lowered. For such control of the adjusting valve 21, for example, a duty ratio for obtaining an appropriate liquid level L according to the temperature of the fractionation section 14a is set in advance, and the temperature and the liquid level L of the fractionation section 14a are set. This can be realized by duty-controlling the adjustment valve 21 at a duty ratio corresponding to the current value. As shown in FIGS. 1 and 2, the liquid level L can be detected from this input value by providing a liquid pressure level sensor 29 in the liquid phase tank 19.

次にECU27は、ステップS5にて分留区間14aの温度が第2所定値以下であるか否かを判定する。第2所定値は、気相タンク22内に上記負圧を発生させて気相通路18への燃料の導入を促すことが必要な温度域で適宜に設定すればよい。ステップS5にて第2所定値以下であると判定した場合には、ECU27は処理をステップS6に進める。一方、第2所定値を超えていると判定したときは、ステップS6をスキップして今回のルーチンを終了する。   Next, the ECU 27 determines whether or not the temperature of the fractionation section 14a is equal to or lower than a second predetermined value in step S5. The second predetermined value may be appropriately set in a temperature range where it is necessary to generate the negative pressure in the gas phase tank 22 and prompt the introduction of fuel into the gas phase passage 18. If it is determined in step S5 that it is equal to or smaller than the second predetermined value, the ECU 27 advances the process to step S6. On the other hand, when it is determined that the second predetermined value is exceeded, step S6 is skipped and the current routine is terminated.

ステップS6では、ECU27は負圧調整バルブ24を開弁し、気相用タンク22内に負圧を発生させて今回のルーチンを終了する。吸気連通管23によって気相タンク22内の圧力バランスを崩す契機を付与すればよいので、負圧調整バルブ24の開弁は一時的なものでよい。ECU27がこのステップを実行することにより、ECU27は本発明の燃料分配制御手段として機能する。   In step S6, the ECU 27 opens the negative pressure adjusting valve 24, generates a negative pressure in the gas phase tank 22, and ends the current routine. Since it is only necessary to give an opportunity to break the pressure balance in the gas phase tank 22 by the intake communication pipe 23, the opening of the negative pressure adjusting valve 24 may be temporary. When the ECU 27 executes this step, the ECU 27 functions as the fuel distribution control means of the present invention.

本発明は以上の実施形態に限定されず、種々の形態で実施してよい。液相用タンク19の液面レベルLを変化させる構成は上述した実施形態に限定されず、適宜の構成を採用すればよい。例えば、図4(a)及び(b)に示したように、液相用タンク19内に、入口29a,30aの高さが互いに異なるように配置され、それぞれの出口29b,30bが液相用リターン通路20に接続された液面調整通路29,30と、液相用タンク19内の燃料がこれらの通路29,30のいずれか一方を経由して液相用リターン通路20に導かれるように通路29,30の切替が可能な通路切替バルブ31とを設けてもよい。   The present invention is not limited to the above embodiment, and may be implemented in various forms. The configuration for changing the liquid level L of the liquid phase tank 19 is not limited to the above-described embodiment, and an appropriate configuration may be adopted. For example, as shown in FIGS. 4A and 4B, the inlets 29a and 30a are arranged in the liquid phase tank 19 so that their heights are different from each other, and the outlets 29b and 30b are used for the liquid phase. The liquid level adjusting passages 29 and 30 connected to the return passage 20 and the fuel in the liquid phase tank 19 are guided to the liquid phase return passage 20 via one of these passages 29 and 30. A passage switching valve 31 capable of switching the passages 29 and 30 may be provided.

この場合、液相通路17への燃料の分配を促す操作として、通路切替バルブ31を制御して、図4(a)のように液相用タンク19の燃料を液面調整通路29を経由させた状態から、図4(b)のように液面調整通路30を経由させた状態に変更し、液面レベルLを下げる。これにより、燃料タンク19、液面調整通路29,30、及び通路切替バルブ31を本発明の条件変更手段として機能させることができる。この形態によれば、液面レベルLを制御する際には、ECU27が分留区間14aの温度に応じて通路切替バルブ31を操作して液面調整通路29,30を選択的に切り替えれば足りるので、上記形態のように現在の液面レベルLを検出して通路切替バルブ31をデューティー制御する必要はない。このため、図1の液面レベルセンサ29が不要となり、構成を簡素化できる。なお、液面調整通路29,30は2つに限らず、3つ以上設けてもよい。この場合、調整通路の増加に応じて通路切替バルブ31を増設すればよい。   In this case, as an operation for urging the fuel to be distributed to the liquid phase passage 17, the passage switching valve 31 is controlled so that the fuel in the liquid phase tank 19 passes through the liquid level adjustment passage 29 as shown in FIG. 4 is changed to a state of passing through the liquid level adjustment passage 30 as shown in FIG. 4B, and the liquid level L is lowered. Thereby, the fuel tank 19, the liquid level adjustment passages 29 and 30, and the passage switching valve 31 can function as the condition changing means of the present invention. According to this embodiment, when the liquid level L is controlled, it is sufficient for the ECU 27 to selectively switch the liquid level adjustment passages 29 and 30 by operating the passage switching valve 31 according to the temperature of the fractionation section 14a. Therefore, it is not necessary to detect the current liquid level L and duty control the passage switching valve 31 as in the above embodiment. For this reason, the liquid level sensor 29 of FIG. 1 becomes unnecessary, and the configuration can be simplified. The liquid level adjusting passages 29 and 30 are not limited to two, and may be three or more. In this case, the passage switching valve 31 may be added according to the increase of the adjustment passage.

上述した実施形態では、液相通路17への燃料の分配を促す操作及び気相通路18への燃料の分配を促す操作の両者を行う実施形態について説明したが、これらの操作のうちいずれか一方のみを行ってもよい。また、本発明の燃料分留装置を適用する内燃機関はディーゼルエンジンに限定されず、ガソリンエンジンでもよい。気相用タンク22に貯留した燃料の用途は限定されず、エンジン1の筒内への噴射に用いてもよい。   In the above-described embodiment, the embodiment for performing both the operation for prompting the distribution of the fuel to the liquid phase passage 17 and the operation for the prompting the distribution of the fuel to the gas phase passage 18 has been described. May only do. Moreover, the internal combustion engine to which the fuel fractionation device of the present invention is applied is not limited to a diesel engine, and may be a gasoline engine. The use of the fuel stored in the gas phase tank 22 is not limited and may be used for injection into the cylinder of the engine 1.

本発明の燃料分留装置を内燃機関としてのディーゼルエンジン1に適用した一実施形態を示した図。The figure which showed one Embodiment which applied the fuel fractionation apparatus of this invention to the diesel engine 1 as an internal combustion engine. 分留部及び液相用タンクの詳細を示した図。The figure which showed the detail of the fractionation part and the tank for liquid phases. 各種バルブの開閉動作を制御するために実行する制御ルーチンの手順を示したフローチャート。The flowchart which showed the procedure of the control routine performed in order to control the opening / closing operation | movement of various valves. 本発明の他の実施形態に係る分留部及び液相タンクの詳細を示した図。The figure which showed the detail of the fractionation part and liquid phase tank which concern on other embodiment of this invention.

符号の説明Explanation of symbols

1 ディーゼルエンジン(内燃機関)
14 分留通路
14a 分留区間
14c 分岐点
17 液相通路
18 気相通路
19 液相用タンク
20 液相用リターン通路
21 調整バルブ(液面調整手段)
22 気相用タンク
23 吸気連通管(負圧発生手段)
24 負圧調整バルブ
29,30 液面調整通路
29a,30a 入口
29b,30b 出口
31 通路切替バルブ(液面調整手段)
L 液面レベル
1 Diesel engine (internal combustion engine)
14 fractionation passage 14a fractionation zone 14c branch point 17 liquid phase passage 18 gas phase passage 19 liquid phase tank 20 liquid phase return passage 21 adjustment valve (liquid level adjustment means)
22 Gas phase tank 23 Intake communication pipe (negative pressure generating means)
24 Negative pressure adjusting valve 29, 30 Liquid level adjusting passage 29a, 30a Inlet 29b, 30b Outlet 31 Passage switching valve (liquid level adjusting means)
L Liquid level

Claims (5)

内燃機関の排気熱を利用して燃料を気相と液相とに分留する分留区間を経て分岐点に至る分留通路と、前記分岐点から分岐された気相通路と、前記分岐点から分岐された液相通路と、前記気相通路及び前記液相通路のそれぞれに対する燃料の分配に影響する条件の少なくとも一つを変化させる条件変更手段と、前記分留区間の温度が高い場合に前記液相通路への燃料の分配を促す操作と前記分留区間の温度が低い場合に前記気相通路への燃料の分配を促す操作の少なくともいずれか一方の操作が実行されるように前記条件変更手段を制御する燃料分配制御手段と、を具備することを特徴とする内燃機関の燃料分留装置。   A fractionation passage that reaches a branch point through a fractionation section that fractionates fuel into a gas phase and a liquid phase using exhaust heat of an internal combustion engine, a gas phase passage that branches from the branch point, and the branch point When the temperature of the fractionation section is high, the liquid phase passage branched from the liquid phase passage, the condition changing means for changing at least one of the conditions affecting the distribution of fuel to the gas phase passage and the liquid phase passage, respectively. The condition is set so that at least one of an operation for prompting fuel distribution to the liquid phase passage and an operation for prompting fuel distribution to the gas phase passage when the temperature of the fractionation section is low is executed. And a fuel distribution control means for controlling the changing means. 前記条件変更手段として、前記液相通路に導かれた燃料を蓄える液相用タンクと、前記液相用タンク内の燃料を前記内燃機関の燃料タンクに戻す液相用リターン通路と、前記液相用タンク内の燃料を前記液相用リターン通路に導いて前記液相用タンクの液面レベルを調整する液面調整手段と、が設けられ、
前記燃料分配制御手段は、前記液相通路への燃料の分配を促す操作として、前記分留区間の温度が高いときにはその温度が低いときよりも前記液相用タンクの液面レベルが低くなるように前記液面調整手段を制御することを特徴とする請求項1に記載の内燃機関の燃料分留装置。
As the condition changing means, a liquid phase tank for storing fuel introduced into the liquid phase passage, a liquid phase return passage for returning the fuel in the liquid phase tank to the fuel tank of the internal combustion engine, and the liquid phase Liquid level adjustment means for guiding the fuel in the liquid phase tank to the liquid phase return passage and adjusting the liquid level of the liquid phase tank; and
The fuel distribution control means, as an operation for urging fuel distribution to the liquid phase passage, is such that the liquid level of the liquid phase tank is lower when the temperature of the fractionation section is high than when the temperature is low. 2. The fuel fractionating device for an internal combustion engine according to claim 1, wherein the liquid level adjusting means is controlled.
前記燃料分配制御手段は、前記分留区間の温度が高いほど前記液相用タンクの液面レベル低くなるように前記液面調整手段を制御することを特徴とする請求項2に記載の内燃機関の燃料分留装置。   The internal combustion engine according to claim 2, wherein the fuel distribution control means controls the liquid level adjustment means so that the liquid level of the liquid phase tank becomes lower as the temperature of the fractionation section becomes higher. Fuel fractionator. 前記条件変更手段として、前記液相用タンク内に入口の高さが互いに異なるようにして配置され、それぞれの出口が前記液相用リターン通路と接続された複数の液面調整通路を更に具備し、
前記液面調整手段として、前記複数の液面調整通路のうち少なくともいずれか一つを選択的に経由させて前記液相用タンク内の燃料を前記液相用リターン通路に導いて前記液相用タンクの液面レベルを変化させる通路切替バルブが設けられ、
前記燃料分配制御手段は、前記液相通路への燃料の分配を促す操作として、前記分留区間の温度が高いときにはその温度が低いときよりも前記液相用タンクの液面レベルが低くなるように前記通路切替バルブを制御することを特徴とする請求項2に記載の内燃機関の燃料分留装置。
As the condition changing means, the liquid phase tank further includes a plurality of liquid level adjusting passages arranged at different inlet heights, each outlet being connected to the liquid phase return passage. ,
As the liquid level adjusting means, the fuel in the liquid phase tank is led to the liquid phase return path by selectively passing at least one of the plurality of liquid level adjusting paths, and is used for the liquid phase. A passage switching valve is provided to change the liquid level of the tank.
The fuel distribution control means, as an operation for urging fuel distribution to the liquid phase passage, is such that the liquid level of the liquid phase tank is lower when the temperature of the fractionation section is high than when the temperature is low. 3. The fuel fractionating device for an internal combustion engine according to claim 2, wherein the passage switching valve is controlled.
前記条件変更手段として、前記気相通路に導かれた燃料を蓄える気相用タンクと、前記気相用タンク内に負圧を発生させる負圧発生手段と、前記負圧発生手段による負圧の発生及びその停止を切り替える負圧調整バルブが設けられ、
前記燃料分配制御手段は、前記気相通路への燃料の分配を促す操作として、前記気相用タンク内に負圧が発生するように前記負圧調整バルブを制御することを特徴とする請求項1に記載の内燃機関の燃料分留装置。
As the condition changing means, a gas phase tank for storing fuel introduced into the gas phase passage, a negative pressure generating means for generating a negative pressure in the gas phase tank, and a negative pressure generated by the negative pressure generating means. A negative pressure adjustment valve that switches between generation and stoppage is provided,
The fuel distribution control means controls the negative pressure adjusting valve so as to generate a negative pressure in the gas phase tank as an operation for prompting the fuel distribution to the gas phase passage. 2. A fuel fractionating device for an internal combustion engine according to 1.
JP2004179950A 2004-06-17 2004-06-17 Fuel fractionator for internal combustion engine Expired - Fee Related JP4140560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004179950A JP4140560B2 (en) 2004-06-17 2004-06-17 Fuel fractionator for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004179950A JP4140560B2 (en) 2004-06-17 2004-06-17 Fuel fractionator for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006002669A JP2006002669A (en) 2006-01-05
JP4140560B2 true JP4140560B2 (en) 2008-08-27

Family

ID=35771271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004179950A Expired - Fee Related JP4140560B2 (en) 2004-06-17 2004-06-17 Fuel fractionator for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4140560B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5369747B2 (en) * 2009-02-16 2013-12-18 トヨタ自動車株式会社 Fuel supply device
JP5485825B2 (en) * 2010-07-20 2014-05-07 株式会社日本自動車部品総合研究所 Fuel supply device

Also Published As

Publication number Publication date
JP2006002669A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP5340134B2 (en) In-vehicle fuel separator
JP6079877B2 (en) Condensate treatment device for internal combustion engine
JP5424857B2 (en) In-vehicle fuel separator
JP4057549B2 (en) Exhaust gas purification device in internal combustion engine
JP4415987B2 (en) Internal combustion engine fuel supply device
JP2007120397A (en) Exhaust emission control device for internal combustion engine
JP2007120397A5 (en)
JP2008138638A (en) Exhaust recirculating device of internal combustion engine
JP3951995B2 (en) Fuel fractionation method and fuel fractionation apparatus for internal combustion engine
JP4140560B2 (en) Fuel fractionator for internal combustion engine
JP5856530B2 (en) Fuel supply device
GB2474514A (en) Method of regulating the flow rate of EGR gas through short and long EGR routes of a turbocharged i.c. engine
JP4807327B2 (en) Control device for internal combustion engine
JP4200915B2 (en) Fuel fractionator for internal combustion engine
JP7385353B2 (en) internal combustion engine
JP4293012B2 (en) Exhaust gas purification device for internal combustion engine
JP4428172B2 (en) Fuel fractionator for internal combustion engine
CN100396906C (en) Fuel fractionation method and fuel fractionation apparatus for internal combustion engine
JP4196849B2 (en) Fuel fractionator for internal combustion engine
JP2005163626A (en) Fuel fractional distillation device for internal combustion engine
JP4498760B2 (en) Fuel fractionator for internal combustion engine
JP4200916B2 (en) Fuel reformer for internal combustion engine
JP4200944B2 (en) Fuel fractionator for internal combustion engine
JP2010043628A (en) Engine control device
JP2019167825A (en) Internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees