JP2007120397A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2007120397A
JP2007120397A JP2005313322A JP2005313322A JP2007120397A JP 2007120397 A JP2007120397 A JP 2007120397A JP 2005313322 A JP2005313322 A JP 2005313322A JP 2005313322 A JP2005313322 A JP 2005313322A JP 2007120397 A JP2007120397 A JP 2007120397A
Authority
JP
Japan
Prior art keywords
egr
passage
internal combustion
combustion engine
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005313322A
Other languages
Japanese (ja)
Other versions
JP2007120397A5 (en
JP4692220B2 (en
Inventor
Kotaro Hayashi
孝太郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005313322A priority Critical patent/JP4692220B2/en
Publication of JP2007120397A publication Critical patent/JP2007120397A/en
Publication of JP2007120397A5 publication Critical patent/JP2007120397A5/ja
Application granted granted Critical
Publication of JP4692220B2 publication Critical patent/JP4692220B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/10Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/36Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for adding fluids other than exhaust gas to the recirculation passage; with reformers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/38Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an ozone (O3) generator, e.g. for adding ozone after generation of ozone from air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine capable of inhibiting deleterious change of exhaust emission by quickly eliminating fixing of an EGR valve and clogging of an EGR cooler. <P>SOLUTION: The exhaust mission control device provided with an EGR passage 10 connecting an intake passage 3 and an exhaust passage 4 of the engine 1, the EGR valve 12 provided in the EGR passage 10 and adjusting flow rate of exhaust gas passing through the EGR passage 10, and the EGR cooler 11 provided in the EGR passage 10 and cooling exhaust gas passing through the EGR passage 10, is provided with an ozone supply device 21 and an ozone supply passage 20 connecting the ozone supply device 21 to the EGR passage 10 in an upstream side of the EGR valve 12 and the EGR cooler 11. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

排気通路に設けられたフィルタの目詰まりが発生した場合に吸気通路又は排気通路に添加するオゾンの量を増加させて、フィルタに堆積しているパティキュレートを酸化除去する排気浄化装置が知られている(特許文献1参照)。その他、本発明に関連する先行技術文献として特許文献2、3が存在する。   There is known an exhaust emission control device that oxidizes and removes particulates accumulated in a filter by increasing the amount of ozone added to the intake passage or the exhaust passage when a filter provided in the exhaust passage is clogged. (See Patent Document 1). In addition, Patent Documents 2 and 3 exist as prior art documents related to the present invention.

特開2002−129936号公報JP 2002-129936 A 特表2005−502823号公報JP 2005-502823 A 特開2004−204828号公報Japanese Patent Laid-Open No. 2004-204828

排気中のNOxなどを低減するために排気の一部を吸気通路に戻すEGR装置を備えた内燃機関が知られている。このEGR装置は、吸気通路に戻される排気の流量を調整するEGR弁、及び排気を冷却するためのEGRクーラを備えている。これらEGR弁、EGRクーラに排気中の未燃燃料やパティキュレートなどが付着及び炭化してEGR弁の固着やEGRクーラの詰まりなどが生じると高温の排気が吸気通路に戻されたり、吸気通路に戻される排気流量の調整が適切に行えずに内燃機関の排気エミッションが悪化するおそれがある。また、可変ノズル付きターボ過給機を備えた内燃機関では、排気中の未燃燃料やパティキュレートなどが付着、炭化して可変ノズルが固着すると吸気量の調整が適切に行えずに内燃機関の排気エミッションが悪化するおそれがある。吸気通路にインタークーラを備えた内燃機関では、未燃燃料やパティキュレートなどの付着、炭化によってインタークーラに詰まりが生じるとインタークーラの冷却効率が低下するので、高温の吸気が内燃機関に送られて排気エミッションが悪化するおそれがある。従来の排気浄化装置は、排気中及びフィルタに堆積したパティキュレートの酸化除去を目的としており、EGR装置、ターボ過給機の可変ノズル、及びインタークーラに付着して炭化した未燃燃料やパティキュレートなどの除去に関しては何ら考慮されていない。   There is known an internal combustion engine including an EGR device that returns a part of exhaust gas to an intake passage in order to reduce NOx and the like in the exhaust gas. The EGR device includes an EGR valve that adjusts the flow rate of exhaust gas that is returned to the intake passage, and an EGR cooler that cools the exhaust gas. If unburned fuel or particulates in the exhaust adhere to and carbonize these EGR valves and EGR coolers, and the EGR valve is stuck or the EGR cooler is clogged, hot exhaust gas is returned to the intake passage or There is a possibility that the exhaust emission of the internal combustion engine may be deteriorated because the exhaust flow rate to be returned cannot be adjusted appropriately. In addition, in an internal combustion engine equipped with a turbocharger with a variable nozzle, if the unburned fuel or particulates in the exhaust adhere and carbonize and the variable nozzle sticks, the intake air amount cannot be adjusted properly and the internal combustion engine Exhaust emissions may deteriorate. In an internal combustion engine equipped with an intercooler in the intake passage, if the intercooler becomes clogged due to adhesion or carbonization of unburned fuel, particulates, etc., the cooling efficiency of the intercooler decreases, so hot intake air is sent to the internal combustion engine. Exhaust emissions may deteriorate. The conventional exhaust purification device is intended to oxidize and remove particulates accumulated in the exhaust gas and the filter. The unburned fuel and particulates carbonized by adhering to the EGR device, the variable nozzle of the turbocharger, and the intercooler. No consideration is given to the removal of the above.

そこで、本発明は、EGR弁の固着やEGRクーラの詰まり、可変ノズルの固着、及びインタークーラの詰まりを速やかに解消し、排気エミッションの悪化を抑制可能な内燃機関の排気浄化装置を提供することを目的とする。   Accordingly, the present invention provides an exhaust emission control device for an internal combustion engine that can quickly eliminate sticking of an EGR valve, clogging of an EGR cooler, sticking of a variable nozzle, and clogging of an intercooler, and suppress deterioration of exhaust emission. With the goal.

本発明の第1の排気浄化装置は、内燃機関の吸気通路と排気通路とを接続するEGR通路と、前記EGR通路に設けられて前記EGR通路を通過する排気の流量を調整するEGR弁と、前記EGR通路に設けられて前記EGR通路を通過する排気を冷却するEGRクーラと、を備えた内燃機関の排気浄化装置において、オゾン供給手段と、前記EGR弁及び前記EGRクーラよりも上流側のEGR通路と前記オゾン供給手段とを接続するオゾン供給通路と、を備えていることにより、上述した課題を解決する(請求項1)。   A first exhaust purification device of the present invention includes an EGR passage that connects an intake passage and an exhaust passage of an internal combustion engine, an EGR valve that is provided in the EGR passage and adjusts a flow rate of exhaust gas that passes through the EGR passage, An exhaust gas purifying apparatus for an internal combustion engine, comprising an EGR cooler provided in the EGR passage and configured to cool exhaust gas passing through the EGR passage. An ozone supply means, an EGR upstream of the EGR valve and the EGR cooler The above-described problem is solved by providing an ozone supply passage that connects the passage and the ozone supply means.

本発明の第1の排気浄化装置によれば、EGR弁及びEGRクーラにオゾンを供給できるので、このオゾンによってEGR弁やEGRクーラに付着して炭化した未燃燃焼やパティキュレート(以下、カーボンデポジットと称することもある。)を酸化除去し、EGR弁の固着やEGRクーラの詰まりを速やかに解消できる。そのため、排気エミッションの悪化を抑制できる。   According to the first exhaust gas purification apparatus of the present invention, ozone can be supplied to the EGR valve and the EGR cooler. Therefore, unburned combustion and particulates (hereinafter referred to as carbon deposit) carbonized by the ozone attached to the EGR valve and the EGR cooler. EGR valve sticking and EGR cooler clogging can be quickly eliminated. Therefore, deterioration of exhaust emission can be suppressed.

本発明の第1の排気浄化装置の一形態は、前記内燃機関のアイドル運転時又は前記内燃機関の停止時のうちの少なくとも一方の時期に、前記EGR弁及び前記EGRクーラよりも上流側のEGR通路にオゾンが供給されるように前記オゾン供給手段の動作を制御する動作制御手段を備えていてもよい(請求項2)。アイドル運転時の排気流量は負荷運転時の排気流量よりも少ない。内燃機関の停止時は、排気が発生しない。EGR通路に供給されたオゾンは排気によって希釈されたり、排気中の炭化水素などによって消費されたりするので、このような排気流量の少ない時期にオゾンを供給することにより、オゾンの使用量を減少することができる。また、内燃機関の停止直後やアイドル運転時は排気の温度が100°C程度である。オゾンによるカーボンデポジットの酸化は、このような温度域において促進されるため、より速やかにカーボンデポジットを除去できる。   One form of the first exhaust gas purification apparatus of the present invention is an EGR upstream of the EGR valve and the EGR cooler at least at one of the idle operation time of the internal combustion engine and the stop time of the internal combustion engine. You may provide the operation control means which controls operation | movement of the said ozone supply means so that ozone may be supplied to a channel | path (Claim 2). The exhaust flow rate during idle operation is less than the exhaust flow rate during load operation. Exhaust is not generated when the internal combustion engine is stopped. Since ozone supplied to the EGR passage is diluted by exhaust gas or consumed by hydrocarbons in the exhaust gas, the amount of ozone used is reduced by supplying ozone at such a low exhaust flow rate. be able to. Further, the exhaust gas temperature is about 100 ° C. immediately after the internal combustion engine is stopped or during idle operation. Since the oxidation of the carbon deposit by ozone is promoted in such a temperature range, the carbon deposit can be removed more rapidly.

また、この形態の第1の排気浄化装置は、前記EGR弁が固着しているか否か及び前記EGRクーラの詰まりが生じているか否かを判定するEGR異常判定手段をさらに備え、前記動作制御手段は、前記EGR異常判定手段により前記EGR弁が固着していると判断された場合又は前記EGRクーラの詰まりが生じていると判断された場合に前記EGR弁及び前記EGRクーラよりも上流側のEGR通路にオゾンが供給すべく前記オゾン供給手段を動作させてもよい(請求項3)。この場合、EGR弁が固着していると判断された場合又はEGRクーラの詰まりが生じていると判断された場合にオゾンが供給されるので、オゾンの使用量を低減することができる。   Further, the first exhaust gas purification apparatus of this embodiment further includes an EGR abnormality determining means for determining whether or not the EGR valve is stuck and whether or not the EGR cooler is clogged, and the operation control means EGR upstream of the EGR valve and the EGR cooler when the EGR abnormality determination means determines that the EGR valve is stuck or when it is determined that the EGR cooler is clogged The ozone supply means may be operated so that ozone is supplied to the passage. In this case, since ozone is supplied when it is determined that the EGR valve is stuck or when it is determined that the EGR cooler is clogged, the amount of ozone used can be reduced.

本発明の第2の排気浄化装置は、内燃機関の排気通路にタービンが設けられるとともに前記タービンの入口部分の流路断面積を変更可能な可変ノズルを有するターボ過給機を備えた内燃機関に適用される排気浄化装置において、オゾン供給手段と、前記タービンよりも上流側の排気通路と前記オゾン供給手段とを接続するオゾン供給通路と、を備えていることにより、上述した課題を解決する(請求項4)。   A second exhaust emission control device according to the present invention is an internal combustion engine provided with a turbocharger having a variable nozzle capable of changing a flow cross-sectional area of an inlet portion of the turbine while being provided with a turbine in an exhaust passage of the internal combustion engine. In the applied exhaust purification apparatus, the above-described problem is solved by including ozone supply means, and an ozone supply passage that connects the exhaust gas passage upstream of the turbine and the ozone supply means ( Claim 4).

本発明の第2の排気浄化装置によれば、可変ノズルにオゾンを供給できるので、このオゾンによって可変ノズルに付着したカーボンデポジットを酸化除去し、可変ノズルの固着を速やかに解消できる。そのため、排気エミッションの悪化を抑制できる。   According to the second exhaust gas purification apparatus of the present invention, ozone can be supplied to the variable nozzle, so that the carbon deposit attached to the variable nozzle can be oxidized and removed by this ozone, and the sticking of the variable nozzle can be quickly eliminated. Therefore, deterioration of exhaust emission can be suppressed.

本発明の第2の排気浄化装置の一形態は、前記内燃機関のアイドル運転時又は前記内燃機関の停止時のうちの少なくとも一方の時期に、前記タービンよりも上流側の排気通路にオゾンが供給されるように前記オゾン供給手段の動作を制御する動作制御手段を備えていてもよい(請求項5)。また、前記可変ノズルが固着しているか否か判定する固着判定手段をさらに備え、前記動作制御手段は、前記固着判定手段により前記可変ノズルが固着していると判断された場合に前記タービンよりも上流側の排気通路にオゾンを供給すべく前記オゾン供給手段を動作させてもよい(請求項6)。この形態によれば、上述した第1の排気浄化装置の一形態と同様に、オゾンの使用量を低減することができる。   According to one aspect of the second exhaust purification apparatus of the present invention, ozone is supplied to an exhaust passage upstream of the turbine during at least one of the idle operation of the internal combustion engine and the stop of the internal combustion engine. As described above, operation control means for controlling the operation of the ozone supply means may be provided (Claim 5). In addition, it further includes a sticking determination unit that determines whether or not the variable nozzle is stuck, and the operation control unit is more than the turbine when the sticking judgment unit determines that the variable nozzle is stuck. The ozone supply means may be operated to supply ozone to the upstream exhaust passage. According to this embodiment, the amount of ozone used can be reduced as in the above-described one embodiment of the first exhaust purification device.

本発明の第3の排気浄化装置は、内燃機関の排気通路にタービンが設けられるとともに前記内燃機関の吸気通路にコンプレッサが設けられるターボ過給機と、前記コンプレッサよりも下流側の吸気通路に設けられるインタークーラと、前記インタークーラよりも上流側の吸気通路と前記排気通路とを接続するEGR通路と、を備えた内燃機関に適用される排気浄化装置において、オゾン供給手段と、前記インタークーラよりも上流側の吸気通路と前記オゾン供給手段とを接続するオゾン供給通路と、を備えていることにより、上述した課題を解決する(請求項7)。   A third exhaust emission control device of the present invention is provided with a turbocharger in which a turbine is provided in an exhaust passage of an internal combustion engine and a compressor is provided in an intake passage of the internal combustion engine, and in an intake passage downstream of the compressor. And an EGR passage that connects the intake passage upstream of the intercooler and the exhaust passage, an ozone purifier that is applied to an internal combustion engine, an ozone supply means, and an intercooler The above-described problem is solved by providing an ozone supply passage that connects the intake passage on the upstream side and the ozone supply means (claim 7).

本発明の第3の排気浄化装置によれば、インタークーラにオゾンを供給できるので、インタークーラに付着したカーボンデポジットを酸化除去し、インタークーラの詰まりを速やかに解消できる。そのため、排気エミッションの悪化を抑制できる   According to the third exhaust purification apparatus of the present invention, ozone can be supplied to the intercooler, so that carbon deposits adhering to the intercooler can be oxidized and removed, and the blockage of the intercooler can be quickly eliminated. Therefore, deterioration of exhaust emission can be suppressed.

本発明の第3の排気浄化装置の一形態は、前記内燃機関のアイドル運転時又は前記内燃機関の停止時のうちの少なくとも一方の時期に、前記インタークーラよりも上流側の吸気通路にオゾンが供給されるように前記オゾン供給手段の動作を制御する動作制御手段を備えていてもよい(請求項8)。また、前記インタークーラの詰まりが生じているか否か判定する詰まり判定手段をさらに備え、前記動作制御手段は、前記詰まり判定手段により前記インタークーラの詰まりが生じていると判断された場合に前記インタークーラよりも上流側の吸気通路にオゾンを供給すべく前記オゾン供給手段を動作させてもよい(請求項9)。この場合、上述した第1の排気浄化装置の一形態と同様に、オゾンの使用量を低減することができる。   According to one aspect of the third exhaust gas purification apparatus of the present invention, ozone is introduced into the intake passage upstream of the intercooler during at least one of the idle operation time of the internal combustion engine and the stop time of the internal combustion engine. You may provide the operation control means which controls operation | movement of the said ozone supply means so that it may be supplied (Claim 8). Further, the apparatus further comprises clogging determining means for determining whether or not the intercooler is clogged, and the operation control means detects the intercooler when the clogging determining means determines that the intercooler is clogged. The ozone supply means may be operated to supply ozone to the intake passage upstream of the cooler. In this case, the amount of ozone used can be reduced as in the above-described form of the first exhaust purification device.

本発明の排気浄化装置の一形態において、前記オゾン供給手段は、空気からオゾンを生成するオゾン生成手段を備えていてもよい(請求項10)。この場合、オゾンを貯留するための手段を備えていなくてもよいので、オゾン生成手段をコンパクトにできる。   In one form of the exhaust emission control device of the present invention, the ozone supply means may include ozone generation means for generating ozone from the air (claim 10). In this case, since it is not necessary to provide a means for storing ozone, the ozone generating means can be made compact.

以上に説明したように、本発明によれば、EGR弁、EGRクーラ、ターボ過給機の可変ノズル、及びインタークーラにオゾンを供給できるので、EGR弁の固着、EGRクーラの詰まり、可変ノズルの固着、及びインタークーラの詰まりの原因となるカーボンデポジットを酸化除去し、速やかにこれらの異常を解消できる。そのため、排気エミッションの悪化を抑制できる。   As described above, according to the present invention, ozone can be supplied to the EGR valve, the EGR cooler, the variable nozzle of the turbocharger, and the intercooler, so that the EGR valve is fixed, the EGR cooler is clogged, The carbon deposits that cause sticking and clogging of the intercooler can be oxidized and removed to quickly eliminate these abnormalities. Therefore, deterioration of exhaust emission can be suppressed.

[第1の形態]
図1は、本発明の第1の形態に係る排気浄化装置が組み込まれた内燃機関としてのディーゼルエンジン(以下、エンジンと略称する。)を示している。図1のエンジン1は車両に走行用動力源として搭載されるもので、その気筒2には吸気通路3及び排気通路4が接続されている。吸気通路3には、吸入空気量を調整するためのスロットルバルブ5、ターボ過給機6のコンプレッサ6a、及び吸気を冷却するインタークーラ7が設けられている。排気通路4には、ターボ過給機6のタービン6b、排気を浄化するための排気浄化触媒8及び、排気中をパティキュレートを捕捉するためのフィルタ9が設けられている。ターボ過給機6は、タービン6bの入口部分の流路断面積を変更可能な可変ノズル6cを備えている。排気通路4と吸気通路3とはEGR通路10で接続され、EGR通路10には排気を冷却するためのEGRクーラ11と吸気通路3に戻される排気の流量を調整するEGR弁12とが設けられている。また、エンジン1には、各気筒2内に燃料を噴射するインジェクタ13と、インジェクタ13から噴射する高圧の燃料を蓄えるコモンレール14と、不図示の燃料タンクからコモンレール14に燃料を供給する燃料ポンプ15と、を備えた燃料供給装置16が設けられている。また、燃料供給装置16は、排気通路4に燃料を供給するための燃料添加インジェクタ17を備えている。
[First embodiment]
FIG. 1 shows a diesel engine (hereinafter abbreviated as an engine) as an internal combustion engine in which an exhaust emission control device according to a first embodiment of the present invention is incorporated. An engine 1 shown in FIG. 1 is mounted on a vehicle as a driving power source, and an intake passage 3 and an exhaust passage 4 are connected to a cylinder 2 thereof. The intake passage 3 is provided with a throttle valve 5 for adjusting the intake air amount, a compressor 6a of the turbocharger 6, and an intercooler 7 for cooling the intake air. The exhaust passage 4 is provided with a turbine 6b of the turbocharger 6, an exhaust purification catalyst 8 for purifying the exhaust, and a filter 9 for capturing particulates in the exhaust. The turbocharger 6 includes a variable nozzle 6c that can change the flow path cross-sectional area of the inlet portion of the turbine 6b. The exhaust passage 4 and the intake passage 3 are connected by an EGR passage 10, and the EGR passage 10 is provided with an EGR cooler 11 for cooling the exhaust and an EGR valve 12 for adjusting the flow rate of the exhaust gas returned to the intake passage 3. ing. The engine 1 includes an injector 13 that injects fuel into each cylinder 2, a common rail 14 that stores high-pressure fuel that is injected from the injector 13, and a fuel pump 15 that supplies fuel to the common rail 14 from a fuel tank (not shown). A fuel supply device 16 is provided. The fuel supply device 16 includes a fuel addition injector 17 for supplying fuel to the exhaust passage 4.

図1に示したように、エンジン1のEGRクーラ11及びEGR弁12よりも上流側のEGR通路10には、オゾン供給通路20を介してオゾン供給手段としてのオゾン供給装置21が接続されている。オゾン供給装置21は、オゾン生成器22と、オゾン生成器22に空気を供給するエアーポンプ23と、備えている。オゾン生成器22は交流電源24と複数の電極25とを備え、交流電源24によって電極25間に無声放電などの放電を発生させ、その放電によって空気中の酸素からオゾンを生成する周知のものである。そのため、オゾン生成器22の詳細な説明は省略する。オゾン供給通路20には、EGR通路10からオゾン供給装置21への排気の流入を防止すべく逆止弁26が設けられている。   As shown in FIG. 1, an ozone supply device 21 as an ozone supply means is connected to an EGR passage 10 upstream of the EGR cooler 11 and the EGR valve 12 of the engine 1 via an ozone supply passage 20. . The ozone supply device 21 includes an ozone generator 22 and an air pump 23 that supplies air to the ozone generator 22. The ozone generator 22 includes an AC power source 24 and a plurality of electrodes 25. The ozone generator 22 generates a discharge such as silent discharge between the electrodes 25 by the AC power source 24, and generates ozone from oxygen in the air by the discharge. is there. Therefore, detailed description of the ozone generator 22 is omitted. In the ozone supply passage 20, a check valve 26 is provided to prevent inflow of exhaust gas from the EGR passage 10 to the ozone supply device 21.

オゾン生成器22の交流電源24及びエアーポンプ23の動作は、エンジンコントロールユニット(ECU)30によって制御されている。ECU30は、マイクロプロセッサ、及びその動作に必要なRAM、ROM等の周辺機器を含んだコンピュータとして構成され、可変ノズル6cの動作及びEGR弁12の動作などを制御してエンジン1の運転状態を制御する周知のコンピュータユニットである。図2は、ECU30がオゾン生成器22の交流電源24及びエアーポンプ23の動作を制御するために実行するオゾン供給制御ルーチンを示している。図2の制御ルーチンは、ECU30の動作中に所定の周期で繰り返し実行される。   The operations of the AC power supply 24 and the air pump 23 of the ozone generator 22 are controlled by an engine control unit (ECU) 30. The ECU 30 is configured as a computer including a microprocessor and peripheral devices such as RAM and ROM necessary for its operation, and controls the operation state of the engine 1 by controlling the operation of the variable nozzle 6c and the operation of the EGR valve 12. It is a well-known computer unit. FIG. 2 shows an ozone supply control routine executed by the ECU 30 to control the operation of the AC power supply 24 and the air pump 23 of the ozone generator 22. The control routine of FIG. 2 is repeatedly executed at a predetermined cycle during the operation of the ECU 30.

図2の制御ルーチンにおいてECU30は、まずステップS11でEGR通路10にオゾンを供給するオゾン供給条件が成立したか否か判断する。EGRクーラ11及びEGR弁12には排気中の未燃燃料やパティキュレートに起因するカーボンデポジットが付着する。このカーボンデポジットは、EGRクーラ11の詰まりやEGR弁12の固着を生じさせるおそれがある。そこで、この付着したカーボンデポジットを酸化除去すべくEGR通路10にオゾンを供給する。オゾン供給条件は、例えばEGRクーラ11の上流と下流にEGR通路10内の圧力を検出する圧力センサをそれぞれ設け、これらの圧力センサによって検出されるEGRクーラ11の前後の圧力差に基づいて判断する。EGRクーラ11に詰まりが生じると圧力差が拡大する。そこで、圧力差が予め設定した許容値を超えた場合にEGRクーラ11の詰まりが生じたと判断し、オゾン供給条件が成立したと判断する。EGR弁12が固着した場合、EGR弁12の開度を変更する制御が行われてもEGR弁12の前後の圧力差が殆ど変化しない。そこで、EGR弁12の前後の圧力差を検出し、EGR弁12の開度を変更する制御が行われてもこの圧力差が殆ど変化しない場合にEGR弁12が固着したと判断し、オゾン供給条件が成立したと判断してもよい。さらに、エンジン1が高負荷低回転で運転されるなど排気中の未燃燃料又はパティキュレートが増加するような条件で運転された時間の積算値が予め設定した判定値以上になった場合にオゾン供給条件が成立したと判断してもよい。このようにEGRクーラ11の詰まりが生じているか否か、及びEGR弁12が固着しているか否か判定することにより、ECU30は本発明のEGR異常判定手段として機能する。   In the control routine of FIG. 2, the ECU 30 first determines whether or not an ozone supply condition for supplying ozone to the EGR passage 10 is satisfied in step S11. Carbon deposits resulting from unburned fuel and particulates in the exhaust adhere to the EGR cooler 11 and the EGR valve 12. This carbon deposit may cause clogging of the EGR cooler 11 and sticking of the EGR valve 12. Therefore, ozone is supplied to the EGR passage 10 in order to oxidize and remove the attached carbon deposit. The ozone supply condition is determined based on, for example, pressure sensors that detect pressure in the EGR passage 10 upstream and downstream of the EGR cooler 11, and the pressure difference before and after the EGR cooler 11 detected by these pressure sensors. . When the EGR cooler 11 is clogged, the pressure difference increases. Therefore, when the pressure difference exceeds a preset allowable value, it is determined that the EGR cooler 11 is clogged, and it is determined that the ozone supply condition is satisfied. When the EGR valve 12 is fixed, the pressure difference before and after the EGR valve 12 hardly changes even if the control for changing the opening degree of the EGR valve 12 is performed. Therefore, the pressure difference before and after the EGR valve 12 is detected, and it is determined that the EGR valve 12 is fixed when the pressure difference hardly changes even when the opening degree of the EGR valve 12 is changed. It may be determined that the condition is satisfied. Further, when the integrated value of the time during which the engine 1 is operated under a condition in which the unburned fuel or particulates in the exhaust increases, such as when the engine 1 is operated at a high load and low rotation, becomes equal to or greater than a predetermined determination value, It may be determined that the supply condition is satisfied. Thus, by determining whether or not the EGR cooler 11 is clogged and whether or not the EGR valve 12 is fixed, the ECU 30 functions as an EGR abnormality determination unit of the present invention.

EGR通路10へのオゾン供給条件が成立していないと判断した場合はステップS14に進み、ECU30はオゾン供給装置21を停止させてオゾンの供給を停止する。その後、今回の制御ルーチンを終了する。一方、EGR通路10へのオゾン供給条件が成立していると判断した場合はステップS12に進み、ECU30はエンジン1がアイドル運転中か、又はエンジン1が停止された直後であるか否か判定する。エンジン1の運転状態は、例えばエンジン1の回転数及びアクセル開度に基づいて判定し、エンジン1の回転数が所定のアイドリング回転数域内で、かつアクセル開度が0%、即ちアクセルが踏み込まれていない場合にエンジン1の運転状態がアイドル運転であると判断する。エンジン1がアイドル運転中ではない、又はエンジン1が停止された直後ではないと判断した場合はステップS14に進み、ECU30はオゾンの供給を停止する。その後、今回の制御ルーチンを終了する。   When it is determined that the conditions for supplying ozone to the EGR passage 10 are not satisfied, the process proceeds to step S14, where the ECU 30 stops the ozone supply device 21 and stops supplying ozone. Thereafter, the current control routine is terminated. On the other hand, if it is determined that the condition for supplying ozone to the EGR passage 10 is satisfied, the process proceeds to step S12, and the ECU 30 determines whether the engine 1 is in an idle operation or just after the engine 1 is stopped. . The operating state of the engine 1 is determined based on, for example, the rotational speed of the engine 1 and the accelerator opening, and the rotational speed of the engine 1 is within a predetermined idling rotational speed range and the accelerator opening is 0%, that is, the accelerator is depressed. If not, it is determined that the operating state of the engine 1 is idle operation. When it is determined that the engine 1 is not idling or not immediately after the engine 1 is stopped, the process proceeds to step S14, and the ECU 30 stops the supply of ozone. Thereafter, the current control routine is terminated.

一方、エンジン1がアイドル運転中、又はエンジン1が停止された直後であると判断した場合はステップS13に進み、ECU30はオゾン生成器22にて放電を発生させるとともにエアーポンプ23を起動して図1に矢印Aで示したようにEGR通路10にオゾンを供給する。その後、今回の制御ルーチンを終了する。   On the other hand, when it is determined that the engine 1 is idling or immediately after the engine 1 is stopped, the process proceeds to step S13, where the ECU 30 generates a discharge in the ozone generator 22 and activates the air pump 23. 1, ozone is supplied to the EGR passage 10 as indicated by an arrow A. Thereafter, the current control routine is terminated.

第1の形態の排気浄化装置によれば、EGRクーラ11及びEGR弁12にオゾンを供給できるので、これらの部分に付着したカーボンデポジットを酸化除去し、EGRクーラ11の詰まり、及びEGR弁12の固着を速やかに解消できる。そのため、排気エミッションの悪化を抑制できる。オゾンは、エンジン1の排気流量の少ないアイドル運転中、又はエンジン1の停止直後に供給されるので、オゾンの使用量を低減できる。また、このような時期は排気温度が100°C程度でるため、オゾンによるカーボンデポジットの酸化除去を促進できる。EGRクーラ11の詰まり又はEGR弁12の固着が生じていると判断された場合にオゾンを供給するので、オゾンの使用量をさらに低減できる。なお、図1の制御ルーチンを実行してオゾン供給装置21の動作を制御することにより、ECU30は本発明の動作制御手段として機能する。   According to the exhaust gas purification apparatus of the first embodiment, ozone can be supplied to the EGR cooler 11 and the EGR valve 12, so that the carbon deposits adhering to these parts are removed by oxidation, the EGR cooler 11 is clogged, and the EGR valve 12 Fixation can be quickly eliminated. Therefore, deterioration of exhaust emission can be suppressed. Since ozone is supplied during idle operation with a small exhaust flow rate of the engine 1 or immediately after the engine 1 is stopped, the amount of ozone used can be reduced. Further, since the exhaust temperature is about 100 ° C. at such a time, the oxidative removal of the carbon deposit by ozone can be promoted. Since ozone is supplied when it is determined that the EGR cooler 11 is clogged or the EGR valve 12 is stuck, the amount of ozone used can be further reduced. The ECU 30 functions as an operation control means of the present invention by executing the control routine of FIG. 1 and controlling the operation of the ozone supply device 21.

[第2の形態]
図3及び図4を参照して本発明の第2の形態について説明する。なお、図3及び図4において上述した第1の形態の図1及び図2と共通する部分には同一の参照符号を付し、それらの説明を省略する。図3に示したように、本形態ではタービン6bよりも上流側の排気通路4とオゾン供給装置21とがオゾン供給通路20によって接続される点が第1の形態と異なる。図4は、図3のECU30が実行するオゾン供給制御ルーチンを示している。図4の制御ルーチンもECU30の動作中に所定の周期で繰り返し実行される。
[Second form]
A second embodiment of the present invention will be described with reference to FIGS. 3 and FIG. 4, the same reference numerals are given to the portions common to FIG. 1 and FIG. 2 of the first embodiment described above, and the description thereof is omitted. As shown in FIG. 3, the present embodiment is different from the first embodiment in that the exhaust passage 4 upstream of the turbine 6 b and the ozone supply device 21 are connected by the ozone supply passage 20. FIG. 4 shows an ozone supply control routine executed by the ECU 30 of FIG. The control routine of FIG. 4 is also repeatedly executed at a predetermined cycle during the operation of the ECU 30.

図4の制御ルーチンにおいてECU30は、まずステップS21で排気通路4にオゾンを供給するオゾン供給条件が成立したか否か判断する。可変ノズル6cに排気中の未燃燃料やパティキュレートに起因するカーボンデポジットが付着すると可変ノズル6cの固着が生じるおそれがある。そこで、可変ノズル6cに付着したカーボンデポジットを除去すべく排気通路4にオゾンを供給する。排気通路4へのオゾン供給条件は、例えばコンプレッサ6aよりも下流の吸気通路3の圧力を検出する吸気圧センサを設け、この吸気圧センサによって検出される吸気圧に基づいて判断する。可変ノズル6cが固着すると可変ノズル6cの開度を変更する制御が行われても、この吸気圧センサの検出値が殆ど変化しない。そこで、可変ノズル6cの制御が行われても、コンプレッサ6cよりも下流の吸気圧が殆ど変化しない場合に可変ノズル6cが固着していると判断し、オゾン供給条件が成立したと判断する。また、排気中の未燃燃料又はパティキュレートが増加するような条件で運転された時間の積算値が予め設定した判定値以上になった場合にオゾン供給条件が成立したと判断してもよい。このように可変ノズル6cが固着しているか否か判定することにより、ECU30は本発明の固着判定手段して機能する。   In the control routine of FIG. 4, the ECU 30 first determines whether or not an ozone supply condition for supplying ozone to the exhaust passage 4 is satisfied in step S21. If carbon deposits caused by unburned fuel or particulates in the exhaust adhere to the variable nozzle 6c, the variable nozzle 6c may be fixed. Therefore, ozone is supplied to the exhaust passage 4 to remove the carbon deposits adhering to the variable nozzle 6c. The condition for supplying ozone to the exhaust passage 4 is determined based on the intake pressure detected by the intake pressure sensor provided with an intake pressure sensor that detects the pressure in the intake passage 3 downstream of the compressor 6a, for example. When the variable nozzle 6c is fixed, the detection value of the intake pressure sensor hardly changes even if control is performed to change the opening of the variable nozzle 6c. Therefore, even if control of the variable nozzle 6c is performed, when the intake pressure downstream of the compressor 6c hardly changes, it is determined that the variable nozzle 6c is fixed, and it is determined that the ozone supply condition is satisfied. Further, it may be determined that the ozone supply condition is satisfied when the integrated value of the time during which the engine is operated under such a condition that the unburned fuel or particulates in the exhaust increases becomes equal to or greater than a predetermined determination value. Thus, by determining whether or not the variable nozzle 6c is fixed, the ECU 30 functions as the fixing determination means of the present invention.

排気通路4へのオゾン供給条件が成立していると判断した場合はステップS12に進み、以降図2の制御ルーチンと同様の処理を行う。その後、今回の制御ルーチンを終了する。一方、排気通路4へのオゾン供給条件が成立していないと判断した場合はステップS14に進み、ECU30はオゾンの供給を停止する。その後、今回の制御ルーチンを終了する。   When it is determined that the condition for supplying ozone to the exhaust passage 4 is established, the process proceeds to step S12, and thereafter, the same processing as the control routine of FIG. 2 is performed. Thereafter, the current control routine is terminated. On the other hand, when it is determined that the condition for supplying ozone to the exhaust passage 4 is not satisfied, the process proceeds to step S14, and the ECU 30 stops supplying ozone. Thereafter, the current control routine is terminated.

この形態の排気浄化装置によれば、図3に矢印Bで示したようにターボ過給機6の可変ノズル6cにオゾンを供給できるので、カーボンデポジットに起因する可変ノズル6cの固着を速やかに解消できる。そのため、エンジン1の吸気量を適切に調整して排気エミッションの悪化を抑制できる。   According to the exhaust gas purification apparatus of this embodiment, ozone can be supplied to the variable nozzle 6c of the turbocharger 6 as shown by the arrow B in FIG. 3, so that the sticking of the variable nozzle 6c due to the carbon deposit can be quickly eliminated. it can. Therefore, it is possible to appropriately adjust the intake air amount of the engine 1 and suppress deterioration of exhaust emission.

[第3の形態]
図5及び図6を参照して本発明の第3の形態について説明する。なお、図5及び図6において上述した第1の形態の図1及び図2と共通する部分には同一の参照符号を付し、それらの説明を省略する。図5に示したように、本形態では、EGR通路10がインタークーラ7よりも上流側の吸気通路3と排気通路4とを接続している。また、本形態では、インタークーラ7よりも上流側の吸気通路3とオゾン供給装置21とがオゾン供給通路20によって接続される点が他の形態と異なる。図6は、図5のECU30が実行するオゾン供給制御ルーチンを示している。図6の制御ルーチンもECU30の動作中に所定の周期で繰り返し実行される。
[Third embodiment]
A third embodiment of the present invention will be described with reference to FIGS. 5 and 6, the same reference numerals are given to the portions common to FIGS. 1 and 2 of the first embodiment described above, and the description thereof will be omitted. As shown in FIG. 5, in this embodiment, the EGR passage 10 connects the intake passage 3 and the exhaust passage 4 upstream of the intercooler 7. Further, the present embodiment is different from the other embodiments in that the intake passage 3 upstream of the intercooler 7 and the ozone supply device 21 are connected by the ozone supply passage 20. FIG. 6 shows an ozone supply control routine executed by the ECU 30 of FIG. The control routine of FIG. 6 is also repeatedly executed at a predetermined cycle during the operation of the ECU 30.

図6の制御ルーチンにおいてECU30は、まずステップS31で吸気通路3にオゾンを供給するオゾン供給条件が成立したか否か判断する。インタークーラ7に排気中の未燃燃料やパティキュレートに起因するカーボンデポジットが付着するとインタークーラ7の詰まりが生じるおそれがある。そこで、インタークーラ7に付着したカーボンデポジットを除去すべく吸気通路3にオゾンを供給する。吸気通路3へのオゾン供給条件は、例えば
インタークーラ7の前後の吸気圧の差を検出する圧力差センサを設け、この圧力差センサの検出値に基づいて判断する。インタークーラ7の詰まりが生じるとインタークーラ7の前後の吸気圧の差が拡大する。そこで、この吸気圧の差が予め設定した許容値を超えた場合にインタークーラ7の詰まりが生じたと判断し、吸気通路3へのオゾン供給条件が成立したと判断する。また、インタークーラ7に詰まりが生じるとインタークーラ7の冷却効率が低下するので、例えばインタークーラ7よりも下流の吸気の温度を検出し、この温度が予め設定した判定温度以上に上昇した場合にインタークーラ7に詰まりが生じたと判断し、吸気通路3へのオゾン供給条件が成立したと判断してもよい。さらに、排気中の未燃燃料又はパティキュレートが増加するような条件で運転された時間の積算値が予め設定した判定値以上になった場合にオゾン供給条件が成立したと判断してもよい。このようにインタークーラ7の詰まりが生じているか否か判定することにより、ECU30は本発明の詰まり判定手段して機能する。
In the control routine of FIG. 6, the ECU 30 first determines in step S31 whether or not an ozone supply condition for supplying ozone to the intake passage 3 is satisfied. If carbon deposits resulting from unburned fuel or particulates in the exhaust adhere to the intercooler 7, the intercooler 7 may be clogged. Therefore, ozone is supplied to the intake passage 3 to remove the carbon deposits adhering to the intercooler 7. The condition for supplying ozone to the intake passage 3 is determined based on, for example, a pressure difference sensor that detects a difference in intake pressure before and after the intercooler 7 and detected by the pressure difference sensor. When the intercooler 7 is clogged, the difference in intake pressure before and after the intercooler 7 increases. Therefore, when the difference in the intake pressure exceeds a preset allowable value, it is determined that the intercooler 7 is clogged, and it is determined that the condition for supplying ozone to the intake passage 3 is satisfied. Further, when the intercooler 7 is clogged, the cooling efficiency of the intercooler 7 is lowered. For example, when the temperature of the intake air downstream from the intercooler 7 is detected and this temperature rises above a predetermined determination temperature, It may be determined that the intercooler 7 is clogged and the condition for supplying ozone to the intake passage 3 is satisfied. Furthermore, it may be determined that the ozone supply condition is satisfied when the integrated value of the time during which the engine is operated under such a condition that unburned fuel or particulates in the exhaust increases is equal to or greater than a predetermined determination value. Thus, by determining whether or not the intercooler 7 is clogged, the ECU 30 functions as the clogging determining means of the present invention.

吸気通路3へのオゾン供給条件が成立していると判断した場合はステップS12に進み、以降図2の制御ルーチンと同様の処理を行う。その後、今回の制御ルーチンを終了する。一方、吸気通路3へのオゾン供給条件が成立していないと判断した場合はステップS14に進み、ECU30はオゾンの供給を停止する。その後、今回の制御ルーチンを終了する。   When it is determined that the condition for supplying ozone to the intake passage 3 is established, the process proceeds to step S12, and thereafter the same processing as the control routine of FIG. 2 is performed. Thereafter, the current control routine is terminated. On the other hand, if it is determined that the condition for supplying ozone to the intake passage 3 is not satisfied, the process proceeds to step S14, and the ECU 30 stops supplying ozone. Thereafter, the current control routine is terminated.

この形態の排気浄化装置によれば、図5に矢印Cで示したようにインタークーラ7にオゾンを供給できるので、カーボンデポジットに起因するインタークーラ7の詰まりを速やかに解消できる。そのため、インタークーラ7によって吸気の冷却を適切に実施し、排気エミッションの悪化を抑制できる。   According to the exhaust emission control device of this embodiment, ozone can be supplied to the intercooler 7 as indicated by an arrow C in FIG. 5, so that the clogging of the intercooler 7 caused by the carbon deposit can be quickly eliminated. Therefore, the intercooler 7 can appropriately cool the intake air and suppress the deterioration of exhaust emission.

本発明は、上述した形態に限定されることなく、種々の形態にて実施することができる。例えば、本発明はディーゼルエンジンに限らず、ガソリンその他の燃料を利用する各種の内燃機関に適用してよい。オゾン供給手段はオゾン生成器とエアーポンプに限定されない。例えば、オゾンを貯留可能なタンクを設け、このタンクからEGR通路などにオゾンを供給してもよい。上述した形態においてはオゾン供給装置がEGR通路、排気通路、又は吸気通路のうちの一つの通路と接続されていたが、オゾン供給装置はこれらの通路のうちの複数の通路と接続されていてもよい。例えば、オゾン供給通路によってオゾン供給装置がEGR通路と排気通路の両方に接続されていてもよい。このように複数の通路とオゾン供給装置を接続する場合は、オゾン供給通路にオゾンの供給先を変更する供給先切替弁を設けてもよい。この場合、一台のオゾン供給装置から複数の通路にオゾンを供給できるので、装置をコンパクトにできる。   The present invention is not limited to the above-described form and can be implemented in various forms. For example, the present invention is not limited to a diesel engine, and may be applied to various internal combustion engines that use gasoline or other fuels. The ozone supply means is not limited to the ozone generator and the air pump. For example, a tank capable of storing ozone may be provided, and ozone may be supplied from this tank to the EGR passage or the like. In the embodiment described above, the ozone supply device is connected to one of the EGR passage, the exhaust passage, or the intake passage. However, the ozone supply device may be connected to a plurality of passages of these passages. Good. For example, the ozone supply device may be connected to both the EGR passage and the exhaust passage by the ozone supply passage. Thus, when connecting a some channel | path and an ozone supply apparatus, you may provide the supply destination switching valve which changes the supply destination of ozone in an ozone supply channel. In this case, since ozone can be supplied to a plurality of passages from one ozone supply device, the device can be made compact.

本発明の第1の形態に係る排気浄化装置が組み込まれたディーゼルエンジンを示す図。The figure which shows the diesel engine in which the exhaust gas purification apparatus which concerns on the 1st form of this invention was integrated. 図1のECUが実行するオゾン供給制御ルーチンを示すフローチャート。The flowchart which shows the ozone supply control routine which ECU of FIG. 1 performs. 本発明の第2の形態に係る排気浄化装置が組み込まれたディーゼルエンジンを示す図。The figure which shows the diesel engine in which the exhaust gas purification apparatus which concerns on the 2nd form of this invention was integrated. 図3のECUが実行するオゾン供給制御ルーチンを示すフローチャート。The flowchart which shows the ozone supply control routine which ECU of FIG. 3 performs. 本発明の第3の形態に係る排気浄化装置が組み込まれたディーゼルエンジンを示す図。The figure which shows the diesel engine in which the exhaust gas purification apparatus which concerns on the 3rd form of this invention was integrated. 図5のECUが実行するオゾン供給制御ルーチンを示すフローチャート。The flowchart which shows the ozone supply control routine which ECU of FIG. 5 performs.

符号の説明Explanation of symbols

1 ディーゼルエンジン(内燃機関)
3 吸気通路
4 排気通路
6 ターボ過給機
6a コンプレッサ
6b タービン
6c 可変ノズル
7 インタークーラ
10 EGR通路
11 EGRクーラ
12 EGR弁
20 オゾン供給通路
21 オゾン供給装置(オゾン供給手段)
30 エンジンコントロールユニット(動作制御手段、EGR異常判定手段、固着判定手段、詰まり判定手段)
1 Diesel engine (internal combustion engine)
DESCRIPTION OF SYMBOLS 3 Intake passage 4 Exhaust passage 6 Turbocharger 6a Compressor 6b Turbine 6c Variable nozzle 7 Intercooler 10 EGR passage 11 EGR cooler 12 EGR valve 20 Ozone supply passage 21 Ozone supply device (ozone supply means)
30 Engine control unit (operation control means, EGR abnormality determination means, adhesion determination means, clogging determination means)

Claims (10)

内燃機関の吸気通路と排気通路とを接続するEGR通路と、前記EGR通路に設けられて前記EGR通路を通過する排気の流量を調整するEGR弁と、前記EGR通路に設けられて前記EGR通路を通過する排気を冷却するEGRクーラと、を備えた内燃機関の排気浄化装置において、
オゾン供給手段と、前記EGR弁及び前記EGRクーラよりも上流側のEGR通路と前記オゾン供給手段とを接続するオゾン供給通路と、を備えていることを特徴とする内燃機関の排気浄化装置。
An EGR passage connecting an intake passage and an exhaust passage of the internal combustion engine, an EGR valve provided in the EGR passage for adjusting a flow rate of exhaust gas passing through the EGR passage, and an EGR passage provided in the EGR passage. An exhaust gas purifying device for an internal combustion engine comprising an EGR cooler that cools exhaust gas that passes through
An exhaust gas purification apparatus for an internal combustion engine, comprising: an ozone supply means; and an ozone supply passage that connects the EGR passage upstream of the EGR valve and the EGR cooler and the ozone supply means.
前記内燃機関のアイドル運転時又は前記内燃機関の停止時のうちの少なくとも一方の時期に、前記EGR弁及び前記EGRクーラよりも上流側のEGR通路にオゾンが供給されるように前記オゾン供給手段の動作を制御する動作制御手段を備えていることを特徴とする請求項1に記載の内燃機関の排気浄化装置。   The ozone supply means is configured so that ozone is supplied to the EGR passage upstream of the EGR valve and the EGR cooler during at least one of the idle operation of the internal combustion engine and the stop of the internal combustion engine. The exhaust emission control device for an internal combustion engine according to claim 1, further comprising operation control means for controlling the operation. 前記EGR弁が固着しているか否か及び前記EGRクーラの詰まりが生じているか否かを判定するEGR異常判定手段をさらに備え、
前記動作制御手段は、前記EGR異常判定手段により前記EGR弁が固着していると判断された場合又は前記EGRクーラの詰まりが生じていると判断された場合に前記EGR弁及び前記EGRクーラよりも上流側のEGR通路にオゾンが供給すべく前記オゾン供給手段を動作させることを特徴とする請求項2に記載の内燃機関の排気浄化装置。
EGR abnormality determination means for determining whether or not the EGR valve is fixed and whether or not the EGR cooler is clogged,
When the EGR abnormality determination unit determines that the EGR valve is stuck or when the EGR abnormality determination unit determines that the EGR cooler is clogged, the operation control unit is more than the EGR valve and the EGR cooler. The exhaust gas purification apparatus for an internal combustion engine according to claim 2, wherein the ozone supply means is operated so that ozone is supplied to the upstream EGR passage.
内燃機関の排気通路にタービンが設けられるとともに前記タービンの入口部分の流路断面積を変更可能な可変ノズルを有するターボ過給機を備えた内燃機関に適用される排気浄化装置において、
オゾン供給手段と、前記タービンよりも上流側の排気通路と前記オゾン供給手段とを接続するオゾン供給通路と、を備えていることを特徴とする内燃機関の排気浄化装置。
In an exhaust emission control device applied to an internal combustion engine having a turbocharger having a turbine provided in an exhaust passage of the internal combustion engine and having a variable nozzle capable of changing a flow passage cross-sectional area of an inlet portion of the turbine
An exhaust purification device for an internal combustion engine, comprising: ozone supply means; and an ozone supply passage connecting the exhaust passage upstream of the turbine and the ozone supply means.
前記内燃機関のアイドル運転時又は前記内燃機関の停止時のうちの少なくとも一方の時期に、前記タービンよりも上流側の排気通路にオゾンが供給されるように前記オゾン供給手段の動作を制御する動作制御手段を備えていることを特徴とする請求項4に記載の内燃機関の排気浄化装置。   Operation for controlling the operation of the ozone supply means so that ozone is supplied to the exhaust passage upstream of the turbine at least one of the idle operation of the internal combustion engine and the stop of the internal combustion engine. The exhaust emission control device for an internal combustion engine according to claim 4, further comprising a control means. 前記可変ノズルが固着しているか否か判定する固着判定手段をさらに備え、
前記動作制御手段は、前記固着判定手段により前記可変ノズルが固着していると判断された場合に前記タービンよりも上流側の排気通路にオゾンを供給すべく前記オゾン供給手段を動作させることを特徴とする請求項5に記載の内燃機関の排気浄化装置。
It further comprises a sticking judgment means for judging whether or not the variable nozzle is stuck,
The operation control means operates the ozone supply means to supply ozone to an exhaust passage upstream of the turbine when the sticking determining means determines that the variable nozzle is stuck. An exhaust emission control device for an internal combustion engine according to claim 5.
内燃機関の排気通路にタービンが設けられるとともに前記内燃機関の吸気通路にコンプレッサが設けられるターボ過給機と、前記コンプレッサよりも下流側の吸気通路に設けられるインタークーラと、前記インタークーラよりも上流側の吸気通路と前記排気通路とを接続するEGR通路と、を備えた内燃機関に適用される排気浄化装置において、
オゾン供給手段と、前記インタークーラよりも上流側の吸気通路と前記オゾン供給手段とを接続するオゾン供給通路と、を備えていることを特徴とする内燃機関の排気浄化装置。
A turbocharger in which a turbine is provided in an exhaust passage of the internal combustion engine and a compressor is provided in an intake passage of the internal combustion engine, an intercooler provided in an intake passage downstream of the compressor, and upstream of the intercooler In an exhaust emission control device applied to an internal combustion engine comprising an EGR passage connecting the intake passage on the side and the exhaust passage,
An exhaust gas purification apparatus for an internal combustion engine, comprising: ozone supply means; and an ozone supply passage connecting the intake passage upstream of the intercooler and the ozone supply means.
前記内燃機関のアイドル運転時又は前記内燃機関の停止時のうちの少なくとも一方の時期に、前記インタークーラよりも上流側の吸気通路にオゾンが供給されるように前記オゾン供給手段の動作を制御する動作制御手段を備えていることを特徴とする請求項7に記載の内燃機関の排気浄化装置。   The operation of the ozone supply means is controlled so that ozone is supplied to the intake passage upstream of the intercooler during at least one of the idle operation of the internal combustion engine and the stop of the internal combustion engine. The exhaust emission control device for an internal combustion engine according to claim 7, further comprising an operation control means. 前記インタークーラの詰まりが生じているか否か判定する詰まり判定手段をさらに備え、
前記動作制御手段は、前記詰まり判定手段により前記インタークーラの詰まりが生じていると判断された場合に前記インタークーラよりも上流側の吸気通路にオゾンを供給すべく前記オゾン供給手段を動作させることを特徴とする請求項7に記載の内燃機関の排気浄化装置。
Clogging determination means for determining whether clogging of the intercooler has occurred,
The operation control means operates the ozone supply means to supply ozone to an intake passage upstream of the intercooler when the clogging determining means determines that the intercooler is clogged. The exhaust emission control device for an internal combustion engine according to claim 7, wherein:
前記オゾン供給手段は、空気からオゾンを生成するオゾン生成手段を備えていることを特徴とする請求項1〜9のいずれか一項に記載の内燃機関の排気浄化装置。   The exhaust purification device for an internal combustion engine according to any one of claims 1 to 9, wherein the ozone supply means includes ozone generation means for generating ozone from air.
JP2005313322A 2005-10-27 2005-10-27 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4692220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005313322A JP4692220B2 (en) 2005-10-27 2005-10-27 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005313322A JP4692220B2 (en) 2005-10-27 2005-10-27 Exhaust gas purification device for internal combustion engine

Publications (3)

Publication Number Publication Date
JP2007120397A true JP2007120397A (en) 2007-05-17
JP2007120397A5 JP2007120397A5 (en) 2009-09-03
JP4692220B2 JP4692220B2 (en) 2011-06-01

Family

ID=38144496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005313322A Expired - Fee Related JP4692220B2 (en) 2005-10-27 2005-10-27 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4692220B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093114A1 (en) * 2008-01-23 2009-07-30 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine
JP2010185395A (en) * 2009-02-13 2010-08-26 Toyota Motor Corp Controller for internal combustion engine
JP2010270613A (en) * 2009-05-19 2010-12-02 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2012026302A1 (en) * 2010-08-24 2012-03-01 三菱重工業株式会社 Engine exhaust-gas purification device
FR3014486A1 (en) * 2013-12-11 2015-06-12 Cotaver METHOD FOR COMBUSTING HYDROCARBON MATERIALS IN A THERMAL MOTOR, THERMAL ENGINE AND ENERGY GENERATION SYSTEM USING SUCH A METHOD
WO2015185914A1 (en) * 2014-06-02 2015-12-10 Chinook End-Stage Recycling Limited Method and apparatus for cleaning gas engine
US20160032873A1 (en) * 2013-03-15 2016-02-04 Richard Eckhardt Reducing fuel consumption of spark ignition engines
JP2019002288A (en) * 2017-06-12 2019-01-10 マツダ株式会社 Combustion chamber of engine
JP2019002289A (en) * 2017-06-12 2019-01-10 マツダ株式会社 Combustion chamber of engine
JP2019199821A (en) * 2018-05-15 2019-11-21 マツダ株式会社 Combustion control device of internal combustion engine
US10947896B1 (en) * 2020-05-29 2021-03-16 Philip Owen Jung Internal cleaning of an internal combustion engine after-treatment system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309941A (en) * 2001-04-16 2002-10-23 Nissan Motor Co Ltd Self-ignition type engine
JP2003155957A (en) * 2001-09-04 2003-05-30 Mitsubishi Motors Corp Egr control device and egr control method
JP2004340048A (en) * 2003-05-16 2004-12-02 Hino Motors Ltd Egr device
JP2005083346A (en) * 2003-09-11 2005-03-31 Hino Motors Ltd Exhaust emission control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309941A (en) * 2001-04-16 2002-10-23 Nissan Motor Co Ltd Self-ignition type engine
JP2003155957A (en) * 2001-09-04 2003-05-30 Mitsubishi Motors Corp Egr control device and egr control method
JP2004340048A (en) * 2003-05-16 2004-12-02 Hino Motors Ltd Egr device
JP2005083346A (en) * 2003-09-11 2005-03-31 Hino Motors Ltd Exhaust emission control device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093114A1 (en) * 2008-01-23 2009-07-30 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine
US20100294252A1 (en) * 2008-01-23 2010-11-25 Toyota Jidosha Kabushiki Kaisha Exhaust gas control apparatus for internal combustion engine
CN101925730A (en) * 2008-01-23 2010-12-22 丰田自动车株式会社 Exhaust gas control apparatus for internal combustion engine
JP2010185395A (en) * 2009-02-13 2010-08-26 Toyota Motor Corp Controller for internal combustion engine
JP2010270613A (en) * 2009-05-19 2010-12-02 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2012026302A1 (en) * 2010-08-24 2012-03-01 三菱重工業株式会社 Engine exhaust-gas purification device
JP2012047056A (en) * 2010-08-24 2012-03-08 Mitsubishi Heavy Ind Ltd Engine exhaust-gas cleaning device
CN103052790A (en) * 2010-08-24 2013-04-17 三菱重工业株式会社 Engine exhaust-gas purification device
US20180128216A1 (en) * 2013-03-15 2018-05-10 Combustion 8 Technologies Llc Reducing fuel consumption of spark ignition engines
US20160032873A1 (en) * 2013-03-15 2016-02-04 Richard Eckhardt Reducing fuel consumption of spark ignition engines
US20190226431A1 (en) * 2013-03-15 2019-07-25 Combustion 8 Technologies Llc Reducing fuel consumption of spark ignition engines
EP3081289A4 (en) * 2013-12-11 2017-11-22 See - Soluções, Energia E Meio Ambiente LTDA. A process of combustion of solid, liquid or gaseous hydrocarbon (hc) raw materials in a heat engine, heat engine and system for producing energy from hydrocarbon (hc) materials
FR3014486A1 (en) * 2013-12-11 2015-06-12 Cotaver METHOD FOR COMBUSTING HYDROCARBON MATERIALS IN A THERMAL MOTOR, THERMAL ENGINE AND ENERGY GENERATION SYSTEM USING SUCH A METHOD
WO2015185914A1 (en) * 2014-06-02 2015-12-10 Chinook End-Stage Recycling Limited Method and apparatus for cleaning gas engine
JP2019002288A (en) * 2017-06-12 2019-01-10 マツダ株式会社 Combustion chamber of engine
JP2019002289A (en) * 2017-06-12 2019-01-10 マツダ株式会社 Combustion chamber of engine
JP2019199821A (en) * 2018-05-15 2019-11-21 マツダ株式会社 Combustion control device of internal combustion engine
US10947896B1 (en) * 2020-05-29 2021-03-16 Philip Owen Jung Internal cleaning of an internal combustion engine after-treatment system
US10947895B1 (en) * 2020-05-29 2021-03-16 Philip Owen Jung Internal cleaning of an internal combustion engine and its after-treatment system

Also Published As

Publication number Publication date
JP4692220B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP4692220B2 (en) Exhaust gas purification device for internal combustion engine
JP2007120397A5 (en)
JP4442459B2 (en) Internal combustion engine having supercharger with electric motor
KR100674248B1 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
EP2123875B1 (en) Exhaust purification apparatus for compression-ignition internal combustion engine
EP2737192B1 (en) Exhaust gas control apparatus for internal combustion engines, and control method for exhaust gas control apparatus for internal combustion engines
JP4044908B2 (en) Exhaust gas purification device for internal combustion engine
EP1925799B1 (en) Exhaust gas purification system for internal combustion engine
JP2008138638A (en) Exhaust recirculating device of internal combustion engine
WO2012081462A1 (en) Exhaust-pipe injection system
JP2008163794A (en) Exhaust gas recirculation device for internal combustion engine
EP2143919B1 (en) Particulate filter regeneration system
JP2006242098A (en) Exhaust emission control device for internal combustion engine
JP4710815B2 (en) Exhaust gas purification device for internal combustion engine
JP5310166B2 (en) Engine exhaust purification system
JP2008050946A (en) Exhaust gas recirculation system for internal combustion engine
JP2006274979A (en) Exhaust emission control device
JP2007107474A (en) Exhaust emission control device for internal combustion engine
JP6112297B2 (en) Engine exhaust purification system
JP5516888B2 (en) Exhaust gas purification device for internal combustion engine
EP1512849B1 (en) Exhaust purifying apparatus and method for purifying exhaust
JP2006274980A (en) Exhaust emission control device
JP2006266221A (en) Rising temperature controller of aftertreatment device
JP2010281312A (en) Diesel engine
JP4356583B2 (en) Fuel injection control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees