JP4137719B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4137719B2
JP4137719B2 JP2003181493A JP2003181493A JP4137719B2 JP 4137719 B2 JP4137719 B2 JP 4137719B2 JP 2003181493 A JP2003181493 A JP 2003181493A JP 2003181493 A JP2003181493 A JP 2003181493A JP 4137719 B2 JP4137719 B2 JP 4137719B2
Authority
JP
Japan
Prior art keywords
gold film
semiconductor
substrate
gold
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003181493A
Other languages
Japanese (ja)
Other versions
JP2005019633A (en
Inventor
朋宏 玉城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2003181493A priority Critical patent/JP4137719B2/en
Publication of JP2005019633A publication Critical patent/JP2005019633A/en
Application granted granted Critical
Publication of JP4137719B2 publication Critical patent/JP4137719B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]

Abstract

<P>PROBLEM TO BE SOLVED: To improve bonding performance between a pellet and a die pad by preventing diffusion of Si on the surface of a backside electrode. <P>SOLUTION: A gold film 15a is vacuum-evaporated about 0.3 &mu;m on the rear surface of a semiconductor substrate 1 on which a semiconductor element such as a power MISFET is formed. Then, after a gold film 15b is vacuum-evaporated about 0.6 &mu;m, the temperature of the substrate is raised to 435&deg;C for about 40 minutes, and after the substrate is left for a predetermined time, the substrate is cooled for about 40 minutes, thereby alloying the entire of the gold films 15a, 15b or a part thereof on the substrate 1 side with the Si (Au-Si alloying) constituting the substrate. Then a gold film 15c is further vacuum-evaporated about 0.3 &mu;m, and the substrate is cooled. As described above, since film forming is performed for 50% or more (preferably, 75% or more) of the evaporated gold film in total before thermal treatment (alloying), thereby shortening a film forming time thereafter and reducing the diffusion of the Si due to a radiant heat. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の製造方法に関するものであって、特に、その裏面に金(Au)配線を有する半導体装置に適用して有効な技術に関するものである。
【0002】
【従来の技術】
半導体装置の中には、その表面に形成された半導体素子の各部位と電気的に接続される電極を裏面に形成するものがある。
【0003】
例えば小信号MISFET(Metal Insulator Semiconductor Field Effect Transistor)の裏面電極についての開発が行われている。
【0004】
【発明が解決しようとする課題】
例えば、上記小信号MISFETにおいては、(1)ペレットに金箔を敷く工程を廃止しコストの低減を図る、また、(2)ボンディング時のスクラブを廃止しスループットの向上を図るため、裏面電極を構成する金(Au)の蒸着時に当該装置内で合金化(アロイ)できるプロセスが検討されている。
【0005】
しかしながら、上記開発技術においては、裏面電極を構成する金の蒸着後の熱負荷等に関する対策が施されていなかった。
【0006】
本発明者は、小信号MISFETやパワーMISFETの研究、開発に従事しており、これらの製品に関し、例えば0.9μm程度の厚さの金膜を用いて裏面電極を形成している。
【0007】
しかしながら、これらの製品に関し、裏面電極形成後に長期間放置した装置やプロービング工程においてマーキングしたインクのベーク処理を施した装置において剪断強度不良が見られた。
【0008】
この剪断強度とは、半導体チップ(ペレット、タブ)をダイパッド(タブフレーム)上に接着した後、ペレットに横方向から応力を加えペレットが剥離に至る強度をいう。
【0009】
剪断強度不良品は良品に比べて裏面電極−ダイパッド間抵抗が大きく、オーミック性が損なわれており、選別時の電気的特性不良となる可能性が高い。
【0010】
このような不良について本発明者が検討した結果、長期放置の製品や熱負荷が加わった製品においては、裏面電極表面にSi(シリコン)が拡散しやすく、拡散したSiやその酸化物がダイパッドとペレットとの接着の際の阻害膜となっていることが分かった。
【0011】
また、剪断強度の小さいものは、Si残り率が小さい。即ち、ペレットに横方向から応力を加え剥離させた場合、ペレットを構成する半導体であるSiがダイパッド上に残存する。しかしながら、剪断強度の小さいものは、裏面電極部が剥離の起点となり、ダイパッド上に残存するSiの面積が小さくなる。ペレット面積に対するダイパッド上に残存するSiの面積の割合をSi残り率という。
【0012】
さらに、上記不良は、結晶軸が(100)の半導体基板で確認され、例えば、結晶軸が(111)の半導体基板の裏面電極においては、半導体(Si)の拡散は問題となっていないため、裏面電極を構成する金属(合金)の結晶成長の状態も関与していると思われる。
【0013】
本発明の目的は、裏面電極表面への半導体、特に、Siの拡散を防止することにある。また、ペレットとダイパッドとの接着性を向上することにある。
【0014】
また、本発明の他の目的は、半導体装置の信頼性を向上させることにある。
【0015】
本発明の前記目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
【0016】
【課題を解決するための手段】
本願において開示される発明のうち代表的なものの概要を簡単に説明すれば、下記のとおりである。
【0017】
本発明の半導体装置の製造方法は、半導体基板の表面に半導体素子が形成され、前記半導体基板の裏面に金(Au)を含む電極が形成された半導体装置の製造方法であって、前記電極の形成工程は、(a)前記半導体基板の前記裏面に前記電極の厚さの50%以上の厚さの第1金膜を形成する工程と、(b)前記(a)工程の後、前記第1金膜に熱処理を施す工程と、(c)前記(b)工程の後、前記第1金膜の上部に第2金膜を形成する工程と、を有するものである。
【0018】
本発明の半導体装置の製造方法は、半導体基板の表面に半導体素子が形成され、前記半導体基板の裏面に金(Au)を含む電極が形成された半導体装置の製造方法であって、前記電極の形成工程は、前記半導体基板の前記裏面を粗面化した後、その上部に金膜を形成することにより形成されるものである。
【0019】
前記半導体基板は、例えば結晶軸が(100)である。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には同一の符号を付し、その繰り返しの説明は省略する。
【0021】
(実施の形態1)
以下、本実施の形態の半導体装置の製造方法を図面を参照しながら説明する。図1および図2は、本実施の形態の半導体装置の製造方法を示す基板の要部断面図である。
【0022】
まず、図1に示すように、パワーMISFET等の半導体素子が形成された半導体基板1を準備する。
【0023】
このパワーMISFETを形成する工程を簡単に説明する。
【0024】
まず、例えばp型の単結晶シリコンからなる半導体基板(以下、単に「基板」という)1を用意し、基板1を熱酸化することによって、その表面に清浄なゲート酸化膜(ゲート絶縁膜)5を形成する。なお、必要に応じて、素子分離やウエルを形成してもよい。また、あらかじめチャネルインプラを行い、チャネル領域3を形成する。
【0025】
次いで、基板1上に多結晶シリコン膜を形成し、エッチングすることにより、ゲート電極7を形成する。次に、ゲート電極7の両側の基板1にn型不純物をイオン打込みし、n型半導体領域(ソース、ドレイン領域)9を形成する。
【0026】
次に、例えば酸化シリコン膜をCVD法により堆積することにより、層間絶縁膜11を形成し、n型半導体領域9上の層間絶縁膜11を適宜エッチングにより除去することによりコンタクトホールを形成する。
【0027】
次に、コンタクトホール内を含む層間絶縁膜11上に、導電性膜を埋め込むことによりプラグ13を形成する。
【0028】
この後、プラグ13上に必要に応じて配線や絶縁膜を形成してもよいが、ここではそれらの図示を省略する。また、最上層配線上には保護膜が形成される。
【0029】
その後、基板の表面(パワーMISFET形成側、保護膜側)を下側とし、基板の裏面を研磨し基板1を薄膜化する。次いで、基板の裏面をスピンエッチングした後、真空ベーク(熱処理)を施す。
【0030】
次いで、基板1の裏面に裏面電極15を形成する。この裏面電極15の形成工程を図2および図3を参照しながら詳細に説明する。
【0031】
まず、図2に示すように、金膜15aを0.3μm程度真空蒸着する。次いで、金膜15bを0.6μm程度を真空蒸着する。なお、ここでは制御性良く金膜を形成するため、2回の真空蒸着により合計0.9μmの金膜を形成したが、1回の蒸着で0.9μmの金膜を形成してもよい。
【0032】
次いで、図3に示すように、基板を例えば40分程度かけて435℃まで昇温する。次いで、435℃で10分程放置した後、40分程度かけて放冷する。この熱処理により金膜15aおよび15bのすべて、もしくは基板1側の一部が基板を構成するSi(シリコン)と合金化(Au−Siアロイ化)する。なお、図2において合金化した部分の図示は省略してある。
【0033】
次いで、金膜15b上にさらに金膜15cを0.3μm程度真空蒸着し、放冷する。なお、図3は、金膜の蒸着パワーと蒸着時間の関係、加熱温度と加熱時間の関係を示す図である。また、Aは加熱温度、Bは昇温時間、Cはアロイ前の蒸着金の膜厚、Dは放冷時間である(図4および図10において同じ)。
【0034】
このように、本実施の形態によれば、金膜をある程度の厚さ(この場合、0.9μm)堆積した後、熱処理(合金化)を施したので、Siの拡散を低減でき、後述するようにペレットの剪断強度を確保することができる。この場合、剪断試験におけるSi残り率は98.6%であった。
【0035】
ここで熱処理(合金化)前の金膜の厚さは、金膜の蒸着膜厚計(この場合、0.3+0.9+0.3=1.2μm)の50%以上であることが望ましい。また、より好ましくは75%以上である。
【0036】
これに対して、図4に示す条件で金の蒸着を行った場合は、剪断試験におけるSi残り率が低かった。図4は、本実施の形態の効果を示すための金膜の蒸着パワーと蒸着時間の関係、加熱温度と加熱時間の関係を示す図である。
【0037】
即ち、図4に示すように、金膜15aを0.3μm程度真空蒸着した後、熱処理(合金化)を施し、その後、金膜15bを0.3μm程度真空蒸着し、さらに、金膜15cを0.6μm程度を真空蒸着した場合は、剪断試験におけるSi残り率が低かった。
【0038】
具体的には、金膜15aを0.3μm程度真空蒸着した後、基板を例えば20分程度かけて340℃まで昇温する。次いで、340℃で10分程放置した後、20分程度かけて放冷する。この熱処理により金膜15aのすべて、もしくは基板1側の一部が基板を構成するSi(シリコン)と合金化(アロイ化)する。
【0039】
次いで、金膜15a上にさらに金膜15bおよび15cを、それぞれ0.3μm、0.6μm程度真空蒸着し、放冷する。この場合は、剪断試験におけるSi残り率が低かった。
【0040】
従って、熱処理(合金化)前の金膜の膜厚を大きくすることによりSiの拡散が抑制されることが分かる。この理由について考察すると、以下の2点が挙げられる。
【0041】
まず、熱処理(合金化)後の金膜の蒸着時の輻射熱の低減が考えられる。即ち、図3に示すように、金膜15cの蒸着時には、ヒーターのスイッチはオフ(OFF)状態となり基板自身に熱負荷は加わっていないが、金のターゲットには、金粒子が蒸発(飛散)し易いように熱が加わっている。このターゲットからの輻射熱の影響により基板温度が上昇し、Siが金や金とSiの合金の粒界を介して拡散することが考えられる。
【0042】
従って、熱処理(合金化)後の金膜の蒸着時間が長い、言い換えれば、熱処理(合金化)後に蒸着すべき金膜の膜厚が大きいほど、輻射熱の影響を受けSiが拡散し易くなる。
【0043】
これに対し、本実施の形態においては、熱処理(合金化)前にトータル金膜の50%以上(より好ましくは75%以上)の成膜を行っているので、その後の成膜時間を短縮でき、輻射熱によるSiの拡散を低減できる。
【0044】
さらに、連続する蒸着の膜厚が大きいほど、金膜の表面に拡散するSi量は少なくなると考えられる。
【0045】
まず、結晶軸が(100)のSi基板からの金膜の蒸着成長は、Volmer−Weber型の成長をしているものと考えられる。図5の(a)〜(d)に、Volmer−Weber型の成長の様子を模式的に示す。Volmer−Weber型の成長は、図示するように、まず、金の粒子が基板上に到達した後、表面拡散し核が形成され(a)、その核を中心に金が成長し島状となり、また、各島が合体する(b)。その後、個々の島がさらに成長し(c)、基板に対しほぼ垂直の粒界を有する結晶粒(グレイン)が複数形成される(d)。
【0046】
このような成長に際し、蒸着(デポ)中はグレインの粒界に比べ、金の表面のエネルギー(化学ポテンシャル)が大きい。従って、Auはエネルギーの低いグレイン粒界に拡散し、ストレスを緩和させる。
【0047】
しかし、蒸着を中止するとAuの表面エネルギーが低下し、グレイン粒界からAuが沸き上がる。
【0048】
従って、粒界拡散するSiも、蒸着中は、グレイン粒界へ、蒸着の中止後は、Au膜の表面に拡散すると考えられる。
【0049】
従って、熱処理(合金化)前に薄いAu膜しか形成されていないと、その表面には、多数のSiが沸き出ていると考えられる。
【0050】
これに対し、本実施の形態においては、2度の蒸着を行っているとはいえ、熱処理(合金化)前にトータル金膜の50%以上(より好ましくは75%以上)の成膜を行っているので、Siの拡散を低減できる。
【0051】
ここで、トータル膜厚とは、蒸着金の膜厚の総和で、裏面電極の厚さとほぼ同程度である。
【0052】
このように、金膜15a、15bおよび15cからなる裏面電極15を形成した後、ウエハ状態の基板1の各チップにプローブ試験を施し、不良チップをマーキングする。このマーキングインクを定着させるため熱処理(インクベーク)を行う。このインクベークの際にもSiが拡散する恐れがあるが、本実施の形態によれば、あらかじめSiの拡散が抑制されているため、インクベークの際のSiの拡散も低減できる。
【0053】
次いで、ウエハ状態の基板1をダイシング(個片化)することにより複数の半導体チップ(ペレット)23を形成する。
【0054】
次いで、図6および図7に示すように、リードフレーム20上にペレット23を接着する。このリードフレームはダイパッド部20aとリード部20bよりなり、それぞれの表面には銀(Ag)メッキ21が施されている(図7参照)。図6は、本実施の形態の半導体装置の製造方法を示す基板の要部斜視図であり、図7は、本実施の形態の半導体装置の製造方法を示す基板の要部断面図であり、図6のA−A断面部に対応する。
【0055】
リードフレーム20を400℃〜460℃に加熱しながら、ダイパッド部20a上にペレットを押しつけ、Si、AuおよびAgを共晶合金化し、ペレットをダイパッド部20a上に溶着する(ダイボンディング)。25は、共晶合金化部である。
【0056】
次いで、ペレットの表面のパッド部とリード部とをワイヤ27で接続する(ワイヤボンディング)。このパッド部は、最上層配線が保護膜から露出した部分である。
【0057】
ダイボンディングを行った後、例えば、ペレットに横方向から力を加えペレットが剥離に至る応力を測定する。また、剥離した際のダイパッド部20a上の剥離痕を検証する。
【0058】
即ち、ペレットがその厚さの途中で剥離した場合は、剥離痕がSiとなり、Si残り率が100%となる。それに対し、裏面配線(15a、15b、15c)部で剥離した場合は、剥離痕が金となりSi残り率が0%となる。このSi残り率が大きいと剪断強度が大きくなる。
【0059】
裏面電極表面や裏面電極中にSiもしくはその酸化物が析出している場合には、これらが阻害膜となりSi残り率が低下する。図8にペレット裏面のSiおよび酸素(O)のペレット裏面のオージェ分析強度とSi濡れ率(残り率)の関係を示す。(a)は、Siについて、(b)は、酸素についてのグラフである。Si残り率が大きいほど、Siや酸素の表面濃度が小さくなることが分かる。ちなみに、Si残り率の規格は例えば50%以上である。
【0060】
このように、本実施の形態によれば、Siの拡散を抑制できるため、Si残り率を大きくでき、規格を遵守することができる。
【0061】
次いで、インクベーク温度とペレット裏面のSiのオージェ分析強度との関係を図9に示す。図に示すように、インクベーク温度が上昇するに従ってSiの強度が大きくなっている。また、一定のインクベーク温度について比較するとベーク時間が長い方がSiの強度が大きい。インクベーク時間は、70分、90分および110分の各仕様のものについて検討した。
【0062】
しかしながら、本実施の形態によれば、Siの拡散を抑制できるため、インクベークを行っても、Si残り率を大きくでき、剪断強度を確保することができる。
【0063】
次いで、熱処理(合金化)温度と昇温速度等について考察する。図10は、熱処理(合金化)温度および昇温速度等とSi残り率等の関係を示す図表である。
【0064】
(a)は、上記実施の形態の場合に対応する。(b)は、昇温時間および放冷時間を20分と短くした場合、(c)は、昇温時間および放冷時間を20分と短くし、さらに、加熱温度を280℃と低くした場合を示す。なお、金膜15a、15bおよび15cの膜厚と熱処理(合金化)のタイミングは、(a)の場合と同様である。
【0065】
(a)において、インクベークを行わなかった場合は、Si残り率は98.6%であり、インクベークを行った場合は、Si残り率は98.7%であった。即ち、本実施の形態の裏面電極の蒸着方法によれば、インクベークの有無に関わらず、Si残り率を大きくすることができた。また、この場合、歩留まりは99.30%であり、VSDF不良率は0%であった。このVSDFは裏面電極をソース電極として使用する小信号MISFETにおける電気的特性検査項目の一つで、あるドレイン電流値におけるソース−ドレイン間順方向電圧である。剪断強度不良品は良品に比べ、裏面電極−ダイパッド間抵抗が大きいため、VSDF不良率が高くなる。即ち、このVSDF不良率とは、剪断強度不良の程度を反映すると考えられる。
【0066】
(b)において、インクベークを行わなかった場合は、Si残り率は97.5%であり、インクベークを行った場合は、Si残り率は96.3%であった。また、歩留まりは99.10%であり、VSDF不良率は0%であった。従って、ゆっくりと昇温し、また、放冷時間を長く確保した(a)の方が装置の特性が向上していることがわかる。
【0067】
(c)において、インクベークを行わなかった場合は、Si残り率は98.0%であり、インクベークを行った場合は、Si残り率は97.7%であった。また、歩留まりは98.70%であり、VSDF不良率は0%であった。
【0068】
これらの比較試験から、加熱温度が高い方が歩留まりは向上するが、この場合は、昇温時間および放冷時間を長く確保し、ゆっくり昇温し、また、完全に冷ます方が良いことが分かる。
【0069】
(実施の形態2)
本実施の形態においては、裏面電極の形成前に基板の裏面を粗面化し、金膜の成長状態を変えることにより、Siの拡散の通路となる結晶粒界を低減する。なお、基板1の裏面のスピンエッチング後の真空ベーク(熱処理)の工程までは、実施の形態1と同様であるため、その説明を省略する。
【0070】
上記真空ベーク後、基板1の裏面を粗面化する。具体的には、CF4(四フッ化炭素)処理を行うことにより粗面化する。
【0071】
次いで、粗面化された基板の裏面上に、金膜15aを例えば0.3μm程度蒸着する。この際、基板の裏面は粗面化されているため、金膜の成長方向が、結晶軸が(100)の基板(Si)の影響を受けず、ランダムな方向に成長すると考えられる。
【0072】
例えば、結晶軸(100)の基板上に成長する場合のAuのエピタキシィ関係が崩れ、アモルファスに近い状態でAuが成長すると考えられる。
【0073】
その結果、Siの拡散経路となる結晶粒界(図5を参照しながら説明したデンドライド間の経路)が減少し、Siの拡散を抑制できる。
【0074】
その後、例えば熱処理(合金化)を施し、さらに、0.6μm程度の金膜15bおよび0.3μm程度の金膜15cを蒸着する。
【0075】
この際の金膜の成長も、下層の金膜15aのエピタキシィ関係が崩れているため、アモルファスに近い状態でAuが成長すると考えられる。
【0076】
このように、本実施の形態によれば、裏面電極を構成する金属の成長の前に基板の裏面を粗面化し、その結晶軸の影響を低減したので、成長する金属の結晶粒界を低減でき、基板を構成する半導体の裏面電極表面への拡散を防止することができる。
【0077】
以上、発明者によってなされた本発明を、実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。
【0078】
特に、前述の実施の形態においては、パワーMISFETを例に説明したが、かかる素子に限定されるものではなく、ペレットの裏面電極側をダイパッドに接着させる半導体装置に広く適用することができる。
【0079】
【発明の効果】
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば、下記のとおりである。
【0080】
裏面電極を有する半導体装置の形成において、半導体基板の裏面に裏面電極の厚さの50%以上の厚さの第1金膜を形成した後、熱処理を施し、さらに、第1金膜の上部に第2金膜を形成したので、裏面電極表面への半導体、特に、Siの拡散を防止することができる。その結果、ペレットとダイパッドの接着性を向上させることができる。また、半導体装置の信頼性を向上させることができる。また、半導体装置の歩留まりを向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1である半導体装置の製造方法を示す基板の要部断面図である。
【図2】本発明の実施の形態1である半導体装置の製造方法を示す基板の要部断面図である。
【図3】金膜の蒸着パワーと蒸着時間の関係、加熱温度と加熱時間の関係を示す図である。
【図4】本発明の実施の形態1の効果を示すための金膜の蒸着パワーと蒸着時間の関係、加熱温度と加熱時間の関係を示す図である。
【図5】(a)〜(d)は、Volmer−Weber型の成長の様子を模式的に示す図である。
【図6】本発明の実施の形態1である半導体装置の製造方法を示す基板の要部斜視図である。
【図7】本発明の実施の形態1である半導体装置の製造方法を示す基板の要部断面図である。
【図8】ペレット裏面のSiおよび酸素(O)のペレット裏面のオージェ分析強度とSi濡れ率(残り率)の関係を示す図(グラフ)である。
【図9】インクベーク温度とペレット裏面のSiのオージェ分析強度との関係を示す図(グラフ)である。
【図10】熱処理(合金化)温度および昇温速度等とSi残り率等の関係を示す図表である。
【符号の説明】
1 半導体基板(基板)
3 チャネル領域
5 ゲート酸化膜
7 ゲート電極
9 n型半導体領域
11 層間絶縁膜
13 プラグ
15 裏面電極
15a 金膜
15b 金膜
15c 金膜
20 リードフレーム
20a ダイパッド部
20b リード部
21 銀メッキ
23 ペレット
25 共晶合金化部
27 ワイヤ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a technique that is effective when applied to a semiconductor device having a gold (Au) wiring on its back surface.
[0002]
[Prior art]
Some semiconductor devices form electrodes on the back surface that are electrically connected to the respective portions of the semiconductor elements formed on the front surface.
[0003]
For example, a back electrode of a small signal MISFET (Metal Insulator Semiconductor Field Effect Transistor) has been developed.
[0004]
[Problems to be solved by the invention]
For example, in the small signal MISFET, the back electrode is configured in order to (1) eliminate the step of placing the gold foil on the pellet to reduce the cost, and (2) eliminate scrubbing during bonding and improve the throughput. A process that can be alloyed in the apparatus during the deposition of gold (Au) is being studied.
[0005]
However, in the developed technology, no measures have been taken regarding the thermal load after the deposition of gold constituting the back electrode.
[0006]
The present inventor is engaged in research and development of small signal MISFETs and power MISFETs, and for these products, for example, a back electrode is formed using a gold film having a thickness of about 0.9 μm.
[0007]
However, regarding these products, poor shear strength was observed in an apparatus that was left for a long time after the formation of the back electrode and an apparatus that was baked with ink marked in the probing process.
[0008]
This shear strength refers to the strength at which a pellet is peeled by applying stress to the pellet from the lateral direction after the semiconductor chip (pellet, tab) is bonded onto the die pad (tab frame).
[0009]
A product with poor shear strength has a higher resistance between the back electrode and the die pad than a good product, and ohmic properties are impaired, and there is a high possibility that electrical characteristics will be poor during sorting.
[0010]
As a result of examination of such defects by the present inventors, in products left for a long time or products subjected to thermal load, Si (silicon) tends to diffuse on the surface of the back electrode, and diffused Si and its oxide are It was found to be an inhibitory film during adhesion with the pellet.
[0011]
In addition, a material having a low shear strength has a small Si residual ratio. That is, when stress is applied to the pellets from the lateral direction and the pellets are peeled off, Si that is a semiconductor constituting the pellets remains on the die pad. However, when the shear strength is low, the back electrode portion is the starting point of peeling, and the area of Si remaining on the die pad is small. The ratio of the area of Si remaining on the die pad to the pellet area is referred to as the Si remaining ratio.
[0012]
Furthermore, the defect is confirmed in a semiconductor substrate having a crystal axis of (100). For example, in the back electrode of the semiconductor substrate having a crystal axis of (111), diffusion of the semiconductor (Si) is not a problem. It seems that the state of crystal growth of the metal (alloy) constituting the back electrode is also involved.
[0013]
An object of the present invention is to prevent the diffusion of a semiconductor, particularly Si, into the surface of the back electrode. Moreover, it exists in improving the adhesiveness of a pellet and a die pad.
[0014]
Another object of the present invention is to improve the reliability of a semiconductor device.
[0015]
The above object and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.
[0016]
[Means for Solving the Problems]
The following is a brief description of an outline of typical inventions disclosed in the present application.
[0017]
A method for manufacturing a semiconductor device according to the present invention is a method for manufacturing a semiconductor device in which a semiconductor element is formed on a surface of a semiconductor substrate, and an electrode including gold (Au) is formed on the back surface of the semiconductor substrate, The forming step includes: (a) forming a first gold film having a thickness of 50% or more of the thickness of the electrode on the back surface of the semiconductor substrate; and (b) after the step (a), And (c) after the step (b), a step of forming a second gold film on the upper portion of the first gold film.
[0018]
A method for manufacturing a semiconductor device according to the present invention is a method for manufacturing a semiconductor device in which a semiconductor element is formed on a surface of a semiconductor substrate, and an electrode including gold (Au) is formed on the back surface of the semiconductor substrate, The forming step is performed by roughening the back surface of the semiconductor substrate and then forming a gold film on the top surface.
[0019]
For example, the semiconductor substrate has a crystal axis of (100).
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that in all the drawings for describing the embodiments, the same members are denoted by the same reference numerals, and the repeated description thereof is omitted.
[0021]
(Embodiment 1)
Hereinafter, a method for manufacturing the semiconductor device of the present embodiment will be described with reference to the drawings. 1 and 2 are cross-sectional views of the main part of the substrate showing the method of manufacturing the semiconductor device of the present embodiment.
[0022]
First, as shown in FIG. 1, a semiconductor substrate 1 on which a semiconductor element such as a power MISFET is formed is prepared.
[0023]
A process for forming the power MISFET will be briefly described.
[0024]
First, a semiconductor substrate (hereinafter simply referred to as a “substrate”) 1 made of, for example, p-type single crystal silicon is prepared, and the substrate 1 is thermally oxidized to provide a clean gate oxide film (gate insulating film) 5 on its surface. Form. Note that element isolation and wells may be formed as necessary. Further, channel implantation is performed in advance to form the channel region 3.
[0025]
Next, a polycrystalline silicon film is formed on the substrate 1 and etched to form the gate electrode 7. Next, n-type impurities are ion-implanted into the substrate 1 on both sides of the gate electrode 7 to form n-type semiconductor regions (source and drain regions) 9.
[0026]
Next, for example, an interlayer insulating film 11 is formed by depositing a silicon oxide film by a CVD method, and a contact hole is formed by appropriately removing the interlayer insulating film 11 on the n-type semiconductor region 9 by etching.
[0027]
Next, a plug 13 is formed by embedding a conductive film on the interlayer insulating film 11 including the inside of the contact hole.
[0028]
Thereafter, a wiring or an insulating film may be formed on the plug 13 as necessary, but the illustration thereof is omitted here. A protective film is formed on the uppermost layer wiring.
[0029]
Thereafter, the front surface of the substrate (power MISFET formation side, protective film side) is the lower side, and the back surface of the substrate is polished to thin the substrate 1. Next, after spin-etching the back surface of the substrate, vacuum baking (heat treatment) is performed.
[0030]
Next, the back electrode 15 is formed on the back surface of the substrate 1. The process of forming the back electrode 15 will be described in detail with reference to FIGS.
[0031]
First, as shown in FIG. 2, a gold film 15a is vacuum-deposited by about 0.3 μm. Next, the gold film 15b is vacuum-deposited to about 0.6 μm. Here, in order to form a gold film with good controllability, a gold film having a total thickness of 0.9 μm was formed by two vacuum depositions, but a 0.9 μm gold film may be formed by one deposition.
[0032]
Next, as shown in FIG. 3, the temperature of the substrate is raised to 435 ° C., for example, over about 40 minutes. Next, after standing at 435 ° C. for about 10 minutes, it is allowed to cool for about 40 minutes. By this heat treatment, all of the gold films 15a and 15b or a part on the substrate 1 side is alloyed (Au—Si alloy) with Si (silicon) constituting the substrate. In FIG. 2, illustration of the alloyed portion is omitted.
[0033]
Next, a gold film 15c is further vacuum-deposited by about 0.3 μm on the gold film 15b and allowed to cool. FIG. 3 is a diagram showing the relationship between the deposition power of the gold film and the deposition time, and the relationship between the heating temperature and the heating time. A is the heating temperature, B is the heating time, C is the thickness of the deposited gold before alloying, and D is the cooling time (same in FIGS. 4 and 10).
[0034]
As described above, according to the present embodiment, since a gold film is deposited to a certain thickness (in this case, 0.9 μm) and then subjected to heat treatment (alloying), Si diffusion can be reduced, which will be described later. Thus, the shear strength of the pellet can be ensured. In this case, the Si residual ratio in the shear test was 98.6%.
[0035]
Here, the thickness of the gold film before the heat treatment (alloying) is desirably 50% or more of the deposited film thickness gauge of the gold film (in this case, 0.3 + 0.9 + 0.3 = 1.2 μm). More preferably, it is 75% or more.
[0036]
On the other hand, when gold was deposited under the conditions shown in FIG. 4, the Si remaining rate in the shear test was low. FIG. 4 is a diagram showing the relationship between the deposition power of the gold film and the deposition time and the relationship between the heating temperature and the heating time in order to show the effect of the present embodiment.
[0037]
That is, as shown in FIG. 4, after the gold film 15a is vacuum-deposited by about 0.3 μm, heat treatment (alloying) is performed, and then the gold film 15b is vacuum-deposited by about 0.3 μm, and the gold film 15c is further formed. When vacuum deposition of about 0.6 μm was performed, the Si remaining rate in the shear test was low.
[0038]
Specifically, after the gold film 15a is vacuum-deposited by about 0.3 μm, the temperature of the substrate is raised to 340 ° C., for example, over about 20 minutes. Next, after standing at 340 ° C. for about 10 minutes, it is allowed to cool for about 20 minutes. By this heat treatment, all of the gold film 15a or part of the substrate 1 side is alloyed (alloyed) with Si (silicon) constituting the substrate.
[0039]
Next, gold films 15b and 15c are further vacuum deposited on the gold film 15a by about 0.3 μm and 0.6 μm, respectively, and allowed to cool. In this case, the Si residual ratio in the shear test was low.
[0040]
Therefore, it can be seen that the diffusion of Si is suppressed by increasing the thickness of the gold film before heat treatment (alloying). Considering this reason, there are the following two points.
[0041]
First, reduction of radiant heat at the time of vapor deposition of the gold film after heat treatment (alloying) can be considered. That is, as shown in FIG. 3, when the gold film 15c is deposited, the heater switch is turned off and no thermal load is applied to the substrate itself, but gold particles evaporate (scatter) on the gold target. Heat is applied to make it easier. It is conceivable that the substrate temperature rises due to the influence of radiant heat from the target, and Si diffuses through the grain boundaries of gold or an alloy of gold and Si.
[0042]
Accordingly, the deposition time of the gold film after heat treatment (alloying) is longer, in other words, the greater the film thickness of the gold film to be deposited after heat treatment (alloying), the more easily Si diffuses due to the influence of radiant heat.
[0043]
On the other hand, in this embodiment, the film formation of 50% or more (more preferably 75% or more) of the total gold film is performed before the heat treatment (alloying), so that the subsequent film formation time can be shortened. Si diffusion due to radiant heat can be reduced.
[0044]
Furthermore, it is considered that the larger the film thickness of the continuous vapor deposition, the smaller the amount of Si diffusing on the surface of the gold film.
[0045]
First, the vapor deposition growth of a gold film from a Si substrate having a crystal axis of (100) is considered to be a Volmer-Weber type growth. 5A to 5D schematically show the growth of the Volmer-Weber type. In the growth of the Volmer-Weber type, as shown in the figure, first, after the gold particles reach the substrate, the surface diffuses and nuclei are formed (a), and gold grows around the nuclei to form islands. Moreover, each island unites (b). Thereafter, individual islands further grow (c), and a plurality of crystal grains (grains) having a grain boundary substantially perpendicular to the substrate are formed (d).
[0046]
During such growth, the energy (chemical potential) of the gold surface is larger during vapor deposition (deposition) than the grain boundaries of grains. Therefore, Au diffuses into the grain boundaries with low energy and relieves stress.
[0047]
However, when the deposition is stopped, the surface energy of Au decreases, and Au boils from the grain boundary.
[0048]
Accordingly, it is considered that Si that diffuses at the grain boundary also diffuses to the grain grain boundary during the vapor deposition and to the surface of the Au film after the vapor deposition is stopped.
[0049]
Therefore, if only a thin Au film is formed before heat treatment (alloying), it is considered that a large amount of Si is boiling on the surface.
[0050]
On the other hand, in the present embodiment, although the vapor deposition is performed twice, a film of 50% or more (more preferably 75% or more) of the total gold film is formed before the heat treatment (alloying). Therefore, Si diffusion can be reduced.
[0051]
Here, the total film thickness is the sum of the film thicknesses of the deposited gold and is approximately the same as the thickness of the back electrode.
[0052]
Thus, after forming the back surface electrode 15 consisting of the gold films 15a, 15b and 15c, a probe test is performed on each chip of the substrate 1 in the wafer state to mark defective chips. A heat treatment (ink bake) is performed to fix the marking ink. Although Si may be diffused during the ink baking, according to the present embodiment, since the diffusion of Si is suppressed in advance, the diffusion of Si during the ink baking can also be reduced.
[0053]
Next, a plurality of semiconductor chips (pellets) 23 are formed by dicing the substrate 1 in a wafer state.
[0054]
Next, as shown in FIGS. 6 and 7, the pellet 23 is bonded onto the lead frame 20. This lead frame is composed of a die pad portion 20a and a lead portion 20b, and silver (Ag) plating 21 is applied to the respective surfaces (see FIG. 7). FIG. 6 is a perspective view of main parts of the substrate showing the method for manufacturing the semiconductor device of the present embodiment, and FIG. 7 is a cross-sectional view of main parts of the substrate showing the method of manufacturing the semiconductor device of the present embodiment. This corresponds to the AA cross section of FIG.
[0055]
While heating the lead frame 20 to 400 ° C. to 460 ° C., the pellet is pressed onto the die pad portion 20a, Si, Au and Ag are eutectic alloyed, and the pellet is welded onto the die pad portion 20a (die bonding). Reference numeral 25 denotes a eutectic alloying part.
[0056]
Next, the pad portion on the surface of the pellet and the lead portion are connected by a wire 27 (wire bonding). The pad portion is a portion where the uppermost layer wiring is exposed from the protective film.
[0057]
After die bonding, for example, a stress is applied to the pellet from the lateral direction to measure the stress at which the pellet peels. Moreover, the peeling trace on the die pad part 20a at the time of peeling is verified.
[0058]
That is, when the pellet peels in the middle of its thickness, the peeling trace becomes Si and the Si remaining rate becomes 100%. On the other hand, when peeling off at the back wiring (15a, 15b, 15c) part, the peeling trace becomes gold and the Si remaining rate becomes 0%. If this Si residual ratio is large, the shear strength increases.
[0059]
When Si or its oxide is deposited on the back electrode surface or the back electrode, these serve as an inhibition film, and the Si residual ratio decreases. FIG. 8 shows the relationship between the Auger analysis strength of the Si and oxygen (O) pellet back surface and the Si wetting rate (residual rate) on the pellet back surface. (A) is a graph about Si, (b) is a graph about oxygen. It can be seen that the surface concentration of Si and oxygen decreases as the Si residual ratio increases. Incidentally, the standard of the Si remaining rate is, for example, 50% or more.
[0060]
Thus, according to the present embodiment, since the diffusion of Si can be suppressed, the Si remaining rate can be increased and the standard can be observed.
[0061]
Next, FIG. 9 shows the relationship between the ink baking temperature and the Auger analysis intensity of Si on the back of the pellet. As shown in the figure, the strength of Si increases as the ink baking temperature rises. Further, when compared with a constant ink baking temperature, the strength of Si is larger when the baking time is longer. The ink bake time was examined for each specification of 70 minutes, 90 minutes and 110 minutes.
[0062]
However, according to the present embodiment, since the diffusion of Si can be suppressed, even if ink baking is performed, the Si remaining rate can be increased and the shear strength can be ensured.
[0063]
Next, the heat treatment (alloying) temperature, the heating rate, etc. will be considered. FIG. 10 is a chart showing the relationship between the heat treatment (alloying) temperature, the heating rate, etc., and the Si residual rate.
[0064]
(A) corresponds to the case of the above embodiment. (B) When the heating time and the cooling time are shortened to 20 minutes, (c) When the heating temperature and the cooling time are shortened to 20 minutes and the heating temperature is lowered to 280 ° C. Indicates. The film thickness of the gold films 15a, 15b and 15c and the timing of heat treatment (alloying) are the same as in the case of (a).
[0065]
In (a), when ink baking was not performed, the Si remaining rate was 98.6%, and when ink baking was performed, the Si remaining rate was 98.7%. That is, according to the back electrode deposition method of the present embodiment, it was possible to increase the Si remaining rate regardless of whether or not ink baking was performed. In this case, the yield was 99.30%, and the VSDF defect rate was 0%. This VSDF is one of the electrical characteristic inspection items in a small signal MISFET using the back electrode as a source electrode, and is a source-drain forward voltage at a certain drain current value. Since a product having a poor shear strength has a higher resistance between the back electrode and the die pad than a good product, the VSDF defect rate is high. That is, this VSDF defect rate is considered to reflect the degree of shear strength defect.
[0066]
In (b), when ink baking was not performed, the Si remaining rate was 97.5%, and when ink baking was performed, the Si remaining rate was 96.3%. Moreover, the yield was 99.10% and the VSDF defect rate was 0%. Therefore, it can be seen that the characteristics of the apparatus are improved in the case of (a) in which the temperature is increased slowly and the cooling time is kept long.
[0067]
In (c), when ink baking was not performed, the Si remaining rate was 98.0%, and when ink baking was performed, the Si remaining rate was 97.7%. Moreover, the yield was 98.70% and the VSDF defect rate was 0%.
[0068]
From these comparative tests, the higher the heating temperature, the better the yield, but in this case, it is better to secure a longer heating and cooling time, raise the temperature slowly, and cool completely. I understand.
[0069]
(Embodiment 2)
In the present embodiment, before forming the back electrode, the back surface of the substrate is roughened to change the growth state of the gold film, thereby reducing the crystal grain boundary that becomes the diffusion path of Si. Note that the steps up to the vacuum baking (heat treatment) after spin etching on the back surface of the substrate 1 are the same as those in the first embodiment, and thus the description thereof is omitted.
[0070]
After the vacuum baking, the back surface of the substrate 1 is roughened. Specifically, the surface is roughened by performing CF 4 (carbon tetrafluoride) treatment.
[0071]
Next, a gold film 15a is deposited on the back surface of the roughened substrate by about 0.3 μm, for example. At this time, since the back surface of the substrate is roughened, it is considered that the growth direction of the gold film is not affected by the substrate (Si) having a crystal axis of (100) and grows in a random direction.
[0072]
For example, it is considered that the epitaxy relationship of Au when growing on the substrate with the crystal axis (100) is broken, and Au grows in a state close to amorphous.
[0073]
As a result, crystal grain boundaries (paths between dendrites described with reference to FIG. 5) serving as Si diffusion paths are reduced, and Si diffusion can be suppressed.
[0074]
Thereafter, for example, heat treatment (alloying) is performed, and a gold film 15b of about 0.6 μm and a gold film 15c of about 0.3 μm are deposited.
[0075]
The growth of the gold film at this time is also considered to be that Au grows in a state close to amorphous because the epitaxy relationship of the underlying gold film 15a is broken.
[0076]
Thus, according to the present embodiment, the back surface of the substrate is roughened before the growth of the metal constituting the back electrode, and the influence of the crystal axis is reduced, so that the grain boundaries of the growing metal are reduced. In addition, diffusion of the semiconductor constituting the substrate to the surface of the back electrode can be prevented.
[0077]
The present invention made by the inventor has been specifically described above based on the embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. Needless to say.
[0078]
In particular, in the above-described embodiments, the power MISFET has been described as an example. However, the present invention is not limited to this element, and can be widely applied to semiconductor devices in which the back electrode side of the pellet is bonded to the die pad.
[0079]
【The invention's effect】
The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows.
[0080]
In the formation of a semiconductor device having a back electrode, a first gold film having a thickness of 50% or more of the thickness of the back electrode is formed on the back surface of the semiconductor substrate, and then heat treatment is performed. Since the second gold film is formed, it is possible to prevent the diffusion of the semiconductor, particularly Si, to the surface of the back electrode. As a result, the adhesion between the pellet and the die pad can be improved. In addition, the reliability of the semiconductor device can be improved. In addition, the yield of the semiconductor device can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of main parts of a substrate showing a method for manufacturing a semiconductor device according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of a principal part of the substrate, illustrating the method for manufacturing the semiconductor device according to the first embodiment of the present invention.
FIG. 3 is a diagram showing the relationship between the deposition power and deposition time of a gold film, and the relationship between the heating temperature and the heating time.
FIG. 4 is a diagram showing the relationship between the deposition power and deposition time of a gold film and the relationship between the heating temperature and the heating time in order to show the effect of the first embodiment of the present invention.
FIGS. 5A to 5D are diagrams schematically showing a growth state of a Volmer-Weber type. FIG.
6 is a perspective view of the essential part of the substrate, illustrating the method for manufacturing the semiconductor device according to the first embodiment of the present invention; FIG.
7 is a fragmentary cross-sectional view of a substrate, illustrating a method for manufacturing a semiconductor device according to a first embodiment of the present invention; FIG.
FIG. 8 is a graph (graph) showing the relationship between the Auger analysis intensity of Si and oxygen (O) on the pellet back surface and the Si wetting rate (residual rate) on the pellet back surface.
FIG. 9 is a graph (graph) showing the relationship between the ink baking temperature and the Auger analysis intensity of Si on the pellet back surface.
FIG. 10 is a chart showing the relationship between the heat treatment (alloying) temperature, the rate of temperature increase, and the Si residual rate.
[Explanation of symbols]
1 Semiconductor substrate (substrate)
3 channel region 5 gate oxide film 7 gate electrode 9 n-type semiconductor region 11 interlayer insulating film 13 plug 15 back electrode 15a gold film 15b gold film 15c gold film 20 lead frame 20a die pad part 20b lead part 21 silver plating 23 pellet 25 eutectic Alloying part 27 wire

Claims (12)

半導体基板の表面に半導体素子が形成され、前記半導体基板の裏面に金(Au)を含む電極が形成された半導体装置の製造方法であって、
前記電極の形成工程は、
(a)前記半導体基板の前記裏面に前記電極の厚さの50%以上の厚さの第1金膜を形成する工程と、
(b)前記(a)工程の後、前記第1金膜に熱処理を施す工程と、
(c)前記(b)工程の後、前記第1金膜の上部に第2金膜を形成する工程と、
(d)前記(c)工程の後、前記半導体基板を個片化し、半導体チップを形成する工程と、
(e)前記半導体チップをリードフレームのダイパッド上に溶着する工程と、
を有することを特徴とする半導体装置の製造方法。
A semiconductor device manufacturing method in which a semiconductor element is formed on a surface of a semiconductor substrate, and an electrode including gold (Au) is formed on a back surface of the semiconductor substrate,
The electrode forming step includes:
(A) forming a first gold film having a thickness of 50% or more of the thickness of the electrode on the back surface of the semiconductor substrate;
(B) after the step (a), performing a heat treatment on the first gold film;
(C) after the step (b), forming a second gold film on the first gold film;
(D) After the step (c), dividing the semiconductor substrate into pieces and forming a semiconductor chip;
(E) welding the semiconductor chip onto a die pad of a lead frame;
A method for manufacturing a semiconductor device, comprising:
シリコンを含む半導体基板の表面に半導体素子が形成され、前記半導体基板の裏面に金を含む電極が形成された半導体装置の製造方法であって、A method of manufacturing a semiconductor device in which a semiconductor element is formed on a surface of a semiconductor substrate containing silicon, and an electrode containing gold is formed on the back surface of the semiconductor substrate,
前記電極の形成工程は、The electrode forming step includes:
(a)前記半導体基板の前記裏面に前記電極を構成する第1金膜を蒸着する工程と、(A) depositing a first gold film constituting the electrode on the back surface of the semiconductor substrate;
(b)前記(a)工程の後、熱処理を施し、前記半導体基板に含まれるシリコンと前記第(B) After the step (a), heat treatment is performed, and silicon contained in the semiconductor substrate and the first 11 金膜とを合金化させる工程と、Alloying the gold film;
(c)前記(b)工程の後、前記第1金膜の上に前記電極を構成する第2金膜を蒸着する工程と、(C) after the step (b), depositing a second gold film constituting the electrode on the first gold film;
(d)前記(c)工程の後、前記半導体基板を個片化し、半導体チップを形成する工程と、(D) After the step (c), dividing the semiconductor substrate into pieces and forming a semiconductor chip;
(e)前記半導体チップをリードフレームのダイパッド上に溶着する工程と、(E) welding the semiconductor chip onto a die pad of a lead frame;
を有し、Have
前記第1金膜の厚さは前記電極の厚さの50%以上であることを特徴とする半導体装置の製造方法。The method of manufacturing a semiconductor device, wherein the thickness of the first gold film is 50% or more of the thickness of the electrode.
前記リードフレームの表面には銀メッキが形成されていることを特徴とする請求項2記載の半導体装置の製造方法。3. The method of manufacturing a semiconductor device according to claim 2, wherein silver plating is formed on a surface of the lead frame. 前記半導体チップの裏面に形成された前記第2金膜と前記リードフレーム表面の銀メッキとが直接接触することを特徴とする請求項3記載の半導体装置の製造方法。4. The method of manufacturing a semiconductor device according to claim 3, wherein the second gold film formed on the back surface of the semiconductor chip is in direct contact with silver plating on the surface of the lead frame. 前記(e)工程において、前記第2金膜、前記銀メッキおよび前記半導体基板中のシリコンの共晶合金が形成されることを特徴とする請求項3記載の半導体装置の製造方法。4. The method of manufacturing a semiconductor device according to claim 3, wherein in the step (e), a eutectic alloy of the second gold film, the silver plating, and silicon in the semiconductor substrate is formed. 前記半導体素子はパワーMISFETであることを特徴とする請求項2記載の半導体装置の製造方法。The method of manufacturing a semiconductor device according to claim 2, wherein the semiconductor element is a power MISFET. 前記第1金膜の厚さは前記電極の厚さの75%以上であることを特徴とする請求項2記載の半導体装置の製造方法。3. The method of manufacturing a semiconductor device according to claim 2, wherein the thickness of the first gold film is 75% or more of the thickness of the electrode. シリコンを含む半導体基板の表面に半導体素子が形成され、前記半導体基板の裏面に金を含む電極が形成された半導体装置の製造方法であって、
前記電極の形成工程は、
(a)前記半導体基板の前記裏面に前記電極を構成する第1金膜を蒸着する工程と、
(b)前記第1金膜上に前記電極を構成する第2金膜を蒸着する工程と、
(c)前記(b)工程の後、熱処理を施し、前記半導体基板に含まれるシリコンと前記第1金膜および第2金膜とを合金化させる工程と、
(d)前記(c)工程の後、前記第2金膜の上に前記電極を構成する第3金膜を蒸着する工程と、
(e)前記(d)工程の後、前記半導体基板を個片化し、半導体チップを形成する工程と、
(f)前記半導体チップをリードフレームのダイパッド上に溶着する工程と、
を有し、
前記第1金膜および第2金膜の厚さの合計は前記電極の厚さの50%以上であることを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device in which a semiconductor element is formed on a surface of a semiconductor substrate containing silicon, and an electrode containing gold is formed on the back surface of the semiconductor substrate,
The electrode forming step includes:
(A) depositing a first gold film constituting the electrode on the back surface of the semiconductor substrate;
(B) depositing a second gold film constituting the electrode on the first gold film;
(C) after the step (b), performing a heat treatment to alloy the silicon contained in the semiconductor substrate with the first gold film and the second gold film ;
(D) After the step (c), depositing a third gold film constituting the electrode on the second gold film;
(E) After the step (d), the step of separating the semiconductor substrate and forming a semiconductor chip;
(F) welding the semiconductor chip on a die pad of a lead frame;
Have
The total thickness of the first gold film and the second gold film is 50% or more of the thickness of the electrode.
前記リードフレームの表面には銀メッキが形成されていることを特徴とする請求項8記載の半導体装置の製造方法。9. The method of manufacturing a semiconductor device according to claim 8, wherein a silver plating is formed on a surface of the lead frame. 前記(f)工程において、前記第3金膜、前記銀メッキおよび前記半導体基板中のシリコンの共晶合金が形成されることを特徴とする請求項9記載の半導体装置の製造方法。10. The method for manufacturing a semiconductor device according to claim 9, wherein in the step (f), a eutectic alloy of the third gold film, the silver plating, and silicon in the semiconductor substrate is formed. 前記半導体素子はパワーMISFETであることを特徴とする請求項8記載の半導体装置の製造方法。9. The method of manufacturing a semiconductor device according to claim 8, wherein the semiconductor element is a power MISFET. 前記第1金膜および第2金膜の厚さの合計は前記電極の厚さの75%以上であることを特徴とする請求項8記載の半導体装置の製造方法。9. The method of manufacturing a semiconductor device according to claim 8, wherein the total thickness of the first gold film and the second gold film is 75% or more of the thickness of the electrode.
JP2003181493A 2003-06-25 2003-06-25 Manufacturing method of semiconductor device Expired - Fee Related JP4137719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003181493A JP4137719B2 (en) 2003-06-25 2003-06-25 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003181493A JP4137719B2 (en) 2003-06-25 2003-06-25 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2005019633A JP2005019633A (en) 2005-01-20
JP4137719B2 true JP4137719B2 (en) 2008-08-20

Family

ID=34182193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003181493A Expired - Fee Related JP4137719B2 (en) 2003-06-25 2003-06-25 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4137719B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266347A (en) * 2006-03-29 2007-10-11 Renesas Technology Corp Method of manufacturing semiconductor device
JP6634117B2 (en) 2013-04-16 2020-01-22 ローム株式会社 Semiconductor device
JP6352009B2 (en) 2013-04-16 2018-07-04 ローム株式会社 Semiconductor device
CN108400227B (en) * 2018-05-04 2023-08-15 佛山市国星半导体技术有限公司 Flip LED chip and manufacturing method thereof

Also Published As

Publication number Publication date
JP2005019633A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP3871607B2 (en) Semiconductor device and manufacturing method thereof
US8324044B2 (en) Method of producing a semiconductor device with an aluminum or aluminum alloy electrode
US20080076238A1 (en) Manufacturing method of a semiconductor device
TWI705570B (en) Semiconductor device and manufacturing method thereof
US7521757B2 (en) Semiconductor device with back surface electrode including a stress relaxation film
JP3339552B2 (en) Semiconductor device and manufacturing method thereof
JP2007036211A (en) Method of manufacturing semiconductor device
JP5160001B2 (en) Manufacturing method of semiconductor device
JP4137719B2 (en) Manufacturing method of semiconductor device
JP2008147294A (en) Electronic device
US6927167B2 (en) Method for manufacturing semiconductor device having controlled surface roughness
JPH06252091A (en) Semiconductor device and its manufacture
JP6442800B2 (en) Semiconductor device and method of manufacturing the semiconductor device
JP2020145316A (en) Semiconductor device
JP2006237374A (en) Semiconductor integrated circuit device and manufacturing method thereof
JPS609159A (en) Semiconductor device
JP3310127B2 (en) Semiconductor device and manufacturing method thereof
JP2022017930A (en) Method for manufacturing semiconductor device
JP3858693B2 (en) Manufacturing method of semiconductor device
JP4788017B2 (en) Film forming method and electrode or wiring forming method
JP5445563B2 (en) Manufacturing method of semiconductor device
JP2004103919A (en) Semiconductor wafer and its manufacturing method, and semiconductor device
JP2005217012A (en) Semiconductor device and manufacturing method therefor
JPS62298168A (en) Semiconductor device
JP3688335B2 (en) Semiconductor integrated circuit device, manufacturing method thereof, and semiconductor wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees