JP4135265B2 - Manufacturing method of chip-type electronic component - Google Patents

Manufacturing method of chip-type electronic component Download PDF

Info

Publication number
JP4135265B2
JP4135265B2 JP23585199A JP23585199A JP4135265B2 JP 4135265 B2 JP4135265 B2 JP 4135265B2 JP 23585199 A JP23585199 A JP 23585199A JP 23585199 A JP23585199 A JP 23585199A JP 4135265 B2 JP4135265 B2 JP 4135265B2
Authority
JP
Japan
Prior art keywords
chip
external electrodes
electronic component
type electronic
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23585199A
Other languages
Japanese (ja)
Other versions
JP2001060503A (en
Inventor
範光 鬼頭
政彦 川瀬
英伸 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP23585199A priority Critical patent/JP4135265B2/en
Publication of JP2001060503A publication Critical patent/JP2001060503A/en
Application granted granted Critical
Publication of JP4135265B2 publication Critical patent/JP4135265B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、セラミック焼結体に外部電極を形成してなるチップ型電子部品の製造方法に関し、より詳細には、電気特性の精度が高いチップ型電子部品の製造方法に関するものである。
【0002】
【従来の技術】
従来より周知のチップ型電子部品、例えばチップ型サーミスタを、図5に断面図で示す。チップ型電子部品11は、遷移金属酸化物を主原料として構成された負の抵抗温度係数を有するセラミックからなる焼結体12と、焼結体12の両端部に設けられた外部電極13,13とからなる。
【0003】
焼結体12は、複数枚のセラミックグリーンシートを所定の厚みになるよう積層して圧着し、所定の寸法に切断した後、焼成して形成される。外部電極13,13は、焼結体12の両端部に電極ペーストを塗布し焼付けして、厚膜電極として形成される。なお、図示していないが、前記チップ型電子部品11において、例えば、内部電極が焼結体12の内部に形成され、内部電極の一端が外部電極13,13の一方に導通する構造を備えるものもある。
【0004】
ところで、チップ型電子部品11の電気特性、例えば抵抗値は、焼結体12の材料が持つ比抵抗のバラツキ、焼結体2の寸法バラツキ、外部電極13,13の端縁13a,13bの位置バラツキ等の要因により変動する。そこで、比抵抗のバラツキ低減や、カット寸法精度の向上が図られているにもかかわらず、チップ型サーミスタの場合、抵抗値のバラツキは±6%ないし±8%発生する。
【0005】
そこで、このような問題を解決する方法として、スパッタリング法で薄膜形成した外部電極を備えるチップ型電子部品が、特開平10−226704号公報に開示されており、これを図6に断面図で示し説明する。なお、焼結体22は前述のチップ型電子部品11に用いた焼結体12と同一のものを用いた。
【0006】
チップ型電子部品21は、焼結体22の両端部に、例えばNiからなる第1層外部電極24,24、同じくNiからなる第2層外部電極25,25、Ni−Cu合金からなる第3層外部電極26,26、Ag合金からなる第4層外部電極27,27が設けられた構造を備える。
【0007】
まず、焼結体22の両端部に第1層外部電極24,24を形成する。次に、第1層外部電極24,24間の抵抗値を測定し、測定結果に基づいて焼結体22を層別する。次に、層別した焼結体22の両端部に、第1層外部電極24,24を完全に覆うように第2層外部電極25,25を形成する。このとき、第2層外部電極25,25の電極間の間隔は、層別に基づく所定の間隔L4となるように形成する。次に、第2層外部電極25,25の対向する端縁25a,25bを露出させて、順に第3層外部電極26,26および第4層外部電極27,27を形成する。このようなチップ型電子部品21は、焼結体22の材料が持つ比抵抗のバラツキについては、焼結体22を層別し、層別結果に基づいて第2層外部電極25,25間の間隔L4を決定することによって解決し、外部電極13,13の端縁13a,13bの位置バラツキについては、第2層外部電極25,25の寸法を高精度に設定可能な薄膜で形成することによって解決したことから、チップ型電子部品11に比べて抵抗値バラツキを大幅に減少した。
【0008】
【発明が解決しようとする課題】
しかしながら、薄膜による外部電極は膜厚が薄く、酸化されやすくなるため、前述のように複数の薄膜を重ね合せて外部電極24,24ないし26,26を形成し、マイグレーション防止のために、最上層にSn−Pbからなる第4層外部電極27,27を形成する必要があり、厚膜で外部電極を形成したチップ型電子部品31と比べて製造工程が煩雑となる問題がある。
【0009】
また、従来の発明によれば、第1層外部電極を覆うように第2層外部電極を形成するため、抵抗値バラツキの修正は外部電極間の間隔を縮める方向、すなわち抵抗値を減少させる方向のみ可能であって、抵抗値を増大させる修正を行うためにはエッチング処理を行う等、別途異なる技術を適用する必要があった。
【0010】
本発明の目的は、上述の問題点を解消するべくなされたもので、外部電極を1層の厚膜材料のみで形成し、焼結体の材料に起因する電気特性のバラツキを減少させたチップ型電子部品を、比較的簡易な製造工程で製造する方法を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明のチップ型電子部品の製造方法は、焼結体に一対の仮外部電極を形成してセラミック素体を得る工程と、前記仮外部電極間の電気特性を測定し、測定結果に基づいて前記セラミック素体を層別する工程と、前記セラミック素体の両端部に形成された一対の仮外部電極を除去する工程と、前記層別に基づいて、前記仮外部電極を除去した前記焼結体に一対の外部電極を形成する工程と、を備えることを特徴とする。
【0012】
【発明の実施の形態】
本発明による一つの実施形態のチップ型電子部品について、図2に基づいて詳細に説明する。
【0013】
チップ型電子部品1は、焼結体2と、内部電極3,3と、外部電極5,5からなる。焼結体2は、Mn、Ni、Coの酸化物を主原料として、負の抵抗温度係数を有するセラミックからなる。内部電極3,3は、主にAg,Ag/Pd等の導電成分からなり、一端が所定間隔をあけて対向するように焼結体2の内部に形成され、他端が焼結体2の両端部において外部電極5,5とそれぞれ電気的に接続されている。外部電極5,5は、主にAg,Ag/Pd等の導電成分からなり焼結体2の両端部に形成されている
次に、チップ型電子部品1の製造方法について、図1ないし図4に基づいて詳細に説明する。
【0014】
まず、Mn,Ni,Coなどの複数の遷移金属酸化物、有機バインダー、分散剤、表面活性剤、消泡剤、溶剤を所定量加えて、厚さ50μmのセラミックグリーンシート(図示せず)を作製し、これを所定サイズにカットしてセル(図示せず)を得る。次に、所定枚数のセルに電極ペーストを印刷して一対の内部電極3,3を形成し、内部電極3,3を印刷したセルの上下に内部電極を印刷しないダミーセルを重ねて油圧プレス機で圧着し一体化させ、所定のサイズにカットした後にこれを焼成して焼結体2を得る。
【0015】
次に、図3に示すようにサーミスタ素体の両端部に電極間の間隔がL1となるように、例えばAg−Pd合金からなる電極ペーストを塗布し焼付けして仮外部電極4,4を形成し、セラミック素体1aを得る。なお、仮外部電極4,4の膜構成および膜厚は特に限定しないが、電極間の抵抗値を測定した後に容易に除去できることが好ましい。
【0016】
次に、セラミック素体1aの電気特性、つまり仮外部電極4,4間の抵抗値を測定する。測定したセラミック素体1aの抵抗値分布は図4に示す曲線aとなる。なお、図4に示したグラフの横軸は抵抗値(KΩ)を、縦軸はその抵抗値を有するセラミック素体1aの数量(n)を示す。
【0017】
次に、図4のグラフに基づいて、セラミック素体1aを層別する。すなわち、セラミック素体1aを層別するにあたり、最も抵抗値の低い抵抗値範囲をランクb1とし、以降、所定の抵抗値範囲毎に順にランクb2、ランクb3としてランクb7まで抵抗ランクを決定し、セラミック素体1aを層別する。
【0018】
次に、この抵抗ランクb1ないしb7に層別されたセラミック素体1aの仮外部電極4,4を除去して、層別された焼結体2を得る。なお、仮外部電極4,4の除去方法として、硝酸洗浄などによる化学的除去等が挙げられるが、特に限定はしない。
【0019】
次に、仮外部電極4,4を除去した焼結体2の両端部に、層別結果に基づいて外部電極5,5を形成して、図2に示すチップ型電子部品1を得る。なお、この外部電極5,5は、焼結体2の主面並びに側面に延びて、それぞれの端縁5a,5aが所定の位置に達するように、例えば焼結体2をAg−Pd合金からなる電極ペースト中に浸漬し、焼付けすることにより形成する。
【0020】
セラミック素体1aに形成する外部電極5,5の端縁5a,5a間の間隔L2は、抵抗ランクb1ないしb7毎に決定される。すなわち、チップ型電子部品1の抵抗値は外部電極5,5間の間隔L2によって決定され、間隔L1<間隔L2とすれば、チップ型電子部品1の抵抗値はセラミック素体1aの抵抗値より大きくなり、間隔L1>間隔L2とすれば、チップ型電子部品1の抵抗値はセラミック素体1aの抵抗値よりも小さくなる。そこで本発明において、例えば目標とする抵抗値の範囲を抵抗ランクb4とした場合、抵抗ランクb1ないしb3のチップ型電子部品1はセラミック素体1aの抵抗値よりも大きくするために、間隔L1<間隔L2となるように外部電極5,5が形成される。他方、抵抗ランクb5ないしb7のチップ型電子部品1はセラミック素体1aの抵抗値よりも抵抗値を下げるために、間隔L1>間隔L2となるように外部電極5,5が形成される。なお、抵抗ランクb4のセラミック素体1aについては、既に目標とする抵抗値範囲に入っているが、仮外部電極4,4をスパッタリング等による薄膜で形成した場合は厚膜で形成し直す必要があるため、間隔L2=間隔L1となるように外部電極5,5を形成する。
【0021】
こうして得られたチップ型電子部品1の抵抗値分布は、図4に示す曲線cのようになる。目標とする抵抗値10KΩを中心として抵抗値のばらつく範囲が小さくなり、抵抗ランクb1ないしb7毎に外部電極5,5を形成する工程の実施により、チップ型電子部品の抵抗値のばらつきを大幅に狭め得ることがわかる。
【0022】
なお、抵抗ランクb1ないしb7をより細分化して、細分化された抵抗ランク毎にきめ細かく外部電極5,5間の間隔L2を設定することで、より抵抗値のバラツキを小さくすることができる。また、本実施形態のチップ型電子部品は、目標とする抵抗値の範囲を抵抗ランクb4としたが、任意の範囲とすることができる。
【0023】
【実施例】
図1および図2に示すチップ型電子部品を用いて、本発明に基づく実験を行った。
【0024】
長さが1.80mm、高さが1.00mmの焼結体2の両端部に、仮外部電極4,4の電極間の間隔L1が1.0mmとなるように仮外部電極4,4を形成して、抵抗値を測定した。次に、測定した抵抗値に基づき図4に示すように抵抗値範囲を9.3KΩないし10.7KΩとし、各ランク幅を0.2KΩとなる抵抗ランクb1ないしb7に層別した。次に、仮外部電極4,4を除去して、抵抗ランクb1ないしb7毎に外部電極5,5を形成した。チップ型電子部品1の寸法は、外部電極5,5を含む長さが2.00mm、高さが1.25mmとした。そこで、外部電極5,5の電極間の間隔L2およびチップ型電子部品1の平均抵抗値を、抵抗ランク毎に表1にまとめた。
【0025】
【表1】

Figure 0004135265
【0026】
表1から明らかなように、チップ型電子部品1の平均抵抗値は、抵抗値のバラツキが大きかった抵抗ランクb1ないしb7のすべてについて、目標とするバラツキが小さい抵抗値範囲9.9KΩないし10.1KΩ内に入った。また、本発明の製造方法によることで、抵抗ランクb1ないしb3のセラミック素体1aについては、抵抗値を増大させて目標とする抵抗値範囲に、抵抗ランクb5ないしb7のセラミック素体1aについては、抵抗値を減少させて目標とする抵抗値範囲に入れることができた。
【0027】
なお、上記実施例において焼結体2は負特性サーミスタを用いて説明したが、BaTiO3系半導体セラミック等を主原料とする正特性サーミスタ、あるいはセラミックコンデンサ、バリスタにも適用することができる。
【0028】
なお、本実施例のチップ型電子部品は、焼結体2の内部に外部電極5,5とそれぞれ電気的に接続された内部電極3,3を備えるが、内部電極3,3は焼結体2の内部にとどまり、何れの外部電極とも電気的に接続されなくてもよい。また、必ずしも内部電極3,3を備えていなくてもよい。
【0029】
また、本実施例のチップ型電子部品は、仮外部電極4,4ならびに外部電極5,5の導電成分としてAg−Pdを用いたが、本発明は特にこれに限定されることなく、Ni、Cu、Cr、Zn、Au等の金属あるいは合金を適宜選択して用いることができる。
【0030】
【発明の効果】
以上述べたように、本発明によるチップ型電子部品の製造方法によれば、焼結体の持つ電気特性に基づいて外部電極を形成するため、焼結体の材料に起因する電気特性のバラツキを減少させたチップ型電子部品を、比較的簡易な製造工程で製造することができる。
【0031】
また、本発明によるチップ型電子部品の製造方法によれば、抵抗値の減少と増大の双方について同一方法によって抵抗値を修正することができ、より自由度の高い目標抵抗値の設定を実現できる。
【図面の簡単な説明】
【図1】本発明に係わる一つの実施形態のチップ型電子部品の製造工程を示した説明図である。
【図2】本発明に係る一つの実施形態のチップ型電子部品の断面図である。
【図3】図2のチップ型電子部品の製造工程におけるセラミック素体の断面図である。
【図4】図2に示したチップ型電子部品の抵抗値分布を示す説明図である。
【図5】従来のチップ型電子部品の断面図である。
【図6】従来の他のチップ型電子部品の断面図である。
【符号の説明】
1 チップ型電子部品
1a セラミック素体
2 焼結体
3 内部電極
4 仮外部電極
5 外部電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a chip-type electronic component in which an external electrode is formed on a ceramic sintered body, and more particularly to a method for manufacturing a chip-type electronic component having high electrical property accuracy.
[0002]
[Prior art]
FIG. 5 shows a cross-sectional view of a conventionally known chip electronic component such as a chip thermistor. The chip-type electronic component 11 includes a sintered body 12 made of a ceramic having a negative resistance temperature coefficient composed of a transition metal oxide as a main raw material, and external electrodes 13 and 13 provided at both ends of the sintered body 12. It consists of.
[0003]
The sintered body 12 is formed by laminating a plurality of ceramic green sheets so as to have a predetermined thickness, pressing them, cutting them into predetermined dimensions, and then firing them. The external electrodes 13 and 13 are formed as thick film electrodes by applying and baking an electrode paste on both ends of the sintered body 12. Although not shown, the chip-type electronic component 11 has a structure in which, for example, an internal electrode is formed inside the sintered body 12 and one end of the internal electrode is electrically connected to one of the external electrodes 13 and 13. There is also.
[0004]
By the way, the electrical characteristics of the chip-type electronic component 11, for example, the resistance value, is the variation in specific resistance of the material of the sintered body 12, the dimensional variation of the sintered body 2, and the positions of the edges 13 a and 13 b of the external electrodes 13 and 13. It varies depending on factors such as variation. Therefore, in the case of a chip-type thermistor, variation in resistance value occurs between ± 6% and ± 8%, even though specific resistance variation is reduced and cut dimensional accuracy is improved.
[0005]
Therefore, as a method for solving such a problem, a chip-type electronic component having an external electrode formed into a thin film by a sputtering method is disclosed in Japanese Patent Laid-Open No. 10-226704, which is shown in a sectional view in FIG. explain. The sintered body 22 was the same as the sintered body 12 used in the chip-type electronic component 11 described above.
[0006]
The chip-type electronic component 21 includes, for example, first layer external electrodes 24 and 24 made of Ni, second layer external electrodes 25 and 25 made of Ni, and a third layer made of Ni—Cu alloy at both ends of the sintered body 22. The external layer electrodes 26 and 26 and the fourth external layer electrodes 27 and 27 made of an Ag alloy are provided.
[0007]
First, the first layer external electrodes 24 and 24 are formed on both ends of the sintered body 22. Next, the resistance value between the first layer external electrodes 24, 24 is measured, and the sintered bodies 22 are layered based on the measurement results. Next, second layer external electrodes 25 and 25 are formed at both ends of the layered sintered body 22 so as to completely cover the first layer external electrodes 24 and 24. At this time, the distance between the electrodes of the second layer external electrodes 25, 25 is formed to be a predetermined distance L4 based on each layer. Next, the opposing edges 25a and 25b of the second layer external electrodes 25 and 25 are exposed, and third layer external electrodes 26 and 26 and fourth layer external electrodes 27 and 27 are formed in this order. In such a chip-type electronic component 21, regarding the variation in specific resistance of the material of the sintered body 22, the sintered body 22 is divided into layers, and between the second layer external electrodes 25, 25 based on the layered result. By solving the problem by determining the distance L4, the position variations of the end edges 13a, 13b of the external electrodes 13, 13 are formed by a thin film in which the dimensions of the second layer external electrodes 25, 25 can be set with high accuracy. Since the problem was solved, the resistance value variation was significantly reduced as compared with the chip-type electronic component 11.
[0008]
[Problems to be solved by the invention]
However, since the thin film external electrode is thin and easily oxidized, a plurality of thin films are overlapped to form the external electrodes 24, 24 to 26, 26 as described above, and the uppermost layer is formed to prevent migration. In addition, it is necessary to form the fourth layer external electrodes 27, 27 made of Sn-Pb, and there is a problem that the manufacturing process becomes complicated as compared with the chip-type electronic component 31 in which the external electrodes are formed with a thick film.
[0009]
Further, according to the conventional invention, since the second layer external electrode is formed so as to cover the first layer external electrode, the resistance value variation is corrected in the direction of reducing the interval between the external electrodes, that is, in the direction of decreasing the resistance value. However, in order to perform correction to increase the resistance value, it is necessary to apply a different technique such as etching.
[0010]
An object of the present invention is to solve the above-mentioned problems, and a chip in which an external electrode is formed by only one layer of a thick film material and variation in electrical characteristics caused by a sintered body material is reduced. An object of the present invention is to provide a method for manufacturing a mold electronic component by a relatively simple manufacturing process.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, a method for manufacturing a chip-type electronic component according to the present invention includes a step of obtaining a ceramic body by forming a pair of temporary external electrodes on a sintered body, and electrical characteristics between the temporary external electrodes. Measuring and layering the ceramic body based on the measurement results; removing a pair of temporary external electrodes formed at both ends of the ceramic body; and And a step of forming a pair of external electrodes on the sintered body from which the electrodes have been removed.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
A chip-type electronic component according to one embodiment of the present invention will be described in detail with reference to FIG.
[0013]
The chip-type electronic component 1 includes a sintered body 2, internal electrodes 3 and 3, and external electrodes 5 and 5. The sintered body 2 is made of a ceramic having a negative resistance temperature coefficient using an oxide of Mn, Ni, and Co as a main raw material. The internal electrodes 3 and 3 are mainly made of a conductive component such as Ag, Ag / Pd, etc., and are formed inside the sintered body 2 so that one ends thereof are opposed to each other with a predetermined interval, and the other end is formed of the sintered body 2. The both ends are electrically connected to the external electrodes 5 and 5, respectively. The external electrodes 5 and 5 are mainly composed of conductive components such as Ag and Ag / Pd, and are formed at both ends of the sintered body 2. Next, a manufacturing method of the chip-type electronic component 1 will be described with reference to FIGS. This will be described in detail based on the above.
[0014]
First, a predetermined amount of a plurality of transition metal oxides such as Mn, Ni and Co, an organic binder, a dispersing agent, a surfactant, an antifoaming agent and a solvent are added to form a ceramic green sheet (not shown) having a thickness of 50 μm. This is manufactured and cut into a predetermined size to obtain a cell (not shown). Next, electrode paste is printed on a predetermined number of cells to form a pair of internal electrodes 3, 3, and dummy cells that do not print internal electrodes are stacked above and below the cells on which the internal electrodes 3, 3 are printed. The sintered body 2 is obtained by calcining and integrating them, cutting them to a predetermined size, and firing them.
[0015]
Next, as shown in FIG. 3, an electrode paste made of, for example, an Ag—Pd alloy is applied and baked on both ends of the thermistor body so that the distance between the electrodes is L1, and temporary external electrodes 4 and 4 are formed. As a result, the ceramic body 1a is obtained. In addition, although the film | membrane structure and film thickness of the temporary external electrodes 4 and 4 are not specifically limited, It is preferable that it can remove easily after measuring the resistance value between electrodes.
[0016]
Next, the electrical characteristics of the ceramic body 1a, that is, the resistance value between the temporary external electrodes 4 and 4 are measured. The measured resistance distribution of the ceramic body 1a is a curve a shown in FIG. The horizontal axis of the graph shown in FIG. 4 indicates the resistance value (KΩ), and the vertical axis indicates the quantity (n) of the ceramic body 1a having the resistance value.
[0017]
Next, the ceramic body 1a is layered based on the graph of FIG. That is, when stratifying the ceramic body 1a, the resistance value range having the lowest resistance value is set as rank b1, and thereafter, the resistance rank is determined up to rank b7 as rank b2 and rank b3 for each predetermined resistance value range, The ceramic body 1a is layered.
[0018]
Next, the temporary external electrodes 4 and 4 of the ceramic body 1a layered in the resistance ranks b1 to b7 are removed, and the layered sintered body 2 is obtained. The removal method of the temporary external electrodes 4 and 4 includes chemical removal by nitric acid cleaning or the like, but is not particularly limited.
[0019]
Next, the external electrodes 5 and 5 are formed on both ends of the sintered body 2 from which the temporary external electrodes 4 and 4 have been removed based on the layered result, and the chip electronic component 1 shown in FIG. 2 is obtained. The external electrodes 5 and 5 extend to the main surface and side surfaces of the sintered body 2 so that the end edges 5a and 5a reach predetermined positions, for example, the sintered body 2 is made of an Ag—Pd alloy. It is formed by dipping in an electrode paste and baking.
[0020]
An interval L2 between the edges 5a and 5a of the external electrodes 5 and 5 formed on the ceramic body 1a is determined for each resistance rank b1 to b7. That is, the resistance value of the chip-type electronic component 1 is determined by the interval L2 between the external electrodes 5 and 5, and if the interval L1 <the interval L2, the resistance value of the chip-type electronic component 1 is greater than the resistance value of the ceramic body 1a. If the distance L1 is greater than the distance L2, the resistance value of the chip-type electronic component 1 is smaller than the resistance value of the ceramic body 1a. Therefore, in the present invention, for example, when the target resistance value range is the resistance rank b4, the chip-type electronic component 1 having the resistance ranks b1 to b3 is larger than the resistance value of the ceramic body 1a. External electrodes 5 and 5 are formed so as to have a distance L2. On the other hand, in order to lower the resistance value of the chip-type electronic component 1 having the resistance ranks b5 to b7 to be lower than the resistance value of the ceramic body 1a, the external electrodes 5 and 5 are formed so that the interval L1> the interval L2. The ceramic element body 1a having the resistance rank b4 is already within the target resistance value range. However, if the temporary external electrodes 4 and 4 are formed as a thin film by sputtering or the like, it is necessary to form a thick film again. Therefore, the external electrodes 5 and 5 are formed so that the distance L2 = the distance L1.
[0021]
The resistance value distribution of the chip-type electronic component 1 obtained in this way is as shown by a curve c shown in FIG. The range in which the resistance value varies around the target resistance value of 10 KΩ is reduced, and by performing the process of forming the external electrodes 5 and 5 for each of the resistance ranks b1 to b7, variation in the resistance value of the chip-type electronic component is greatly increased. It turns out that it can narrow.
[0022]
In addition, by further subdividing the resistance ranks b1 to b7 and finely setting the distance L2 between the external electrodes 5 and 5 for each of the subdivided resistance ranks, it is possible to further reduce the resistance value variation. Further, in the chip-type electronic component of the present embodiment, the target resistance value range is the resistance rank b4, but can be an arbitrary range.
[0023]
【Example】
Experiments based on the present invention were conducted using the chip-type electronic components shown in FIGS.
[0024]
Temporary external electrodes 4 and 4 are placed on both ends of sintered body 2 having a length of 1.80 mm and a height of 1.00 mm so that the distance L1 between the electrodes of temporary external electrodes 4 and 4 is 1.0 mm. After forming, the resistance value was measured. Next, based on the measured resistance value, as shown in FIG. 4, the resistance value range was set to 9.3 KΩ to 10.7 KΩ, and each rank width was divided into resistance ranks b1 to b7 having 0.2 KΩ. Next, the temporary external electrodes 4 and 4 were removed, and external electrodes 5 and 5 were formed for each of the resistance ranks b1 to b7. The dimensions of the chip-type electronic component 1 were 2.00 mm in length including the external electrodes 5 and 5 and 1.25 mm in height. Therefore, the distance L2 between the external electrodes 5 and 5 and the average resistance value of the chip-type electronic component 1 are summarized in Table 1 for each resistance rank.
[0025]
[Table 1]
Figure 0004135265
[0026]
As is clear from Table 1, the average resistance value of the chip-type electronic component 1 is a resistance value range of 9.9 KΩ to 10.10 with a small target variation for all of the resistance ranks b1 to b7 where the variation of the resistance value was large. It was within 1KΩ. Further, according to the manufacturing method of the present invention, the ceramic element body 1a having the resistance ranks b1 to b3 is increased in resistance value to a target resistance value range, and the ceramic element body 1a having the resistance ranks b5 to b7 is used. Then, the resistance value was decreased to be within the target resistance value range.
[0027]
In the above embodiment, the sintered body 2 has been described using a negative characteristic thermistor, but it can also be applied to a positive characteristic thermistor mainly made of BaTiO 3 based semiconductor ceramic or the like, a ceramic capacitor, or a varistor.
[0028]
Note that the chip-type electronic component of this example includes internal electrodes 3 and 3 that are electrically connected to the external electrodes 5 and 5, respectively, inside the sintered body 2. 2 does not need to be electrically connected to any external electrode. Further, the internal electrodes 3 and 3 are not necessarily provided.
[0029]
Moreover, although the chip-type electronic component of this example used Ag-Pd as the conductive component of the temporary external electrodes 4 and 4 and the external electrodes 5 and 5, the present invention is not particularly limited to this, A metal or alloy such as Cu, Cr, Zn, or Au can be appropriately selected and used.
[0030]
【The invention's effect】
As described above, according to the chip-type electronic component manufacturing method of the present invention, the external electrode is formed based on the electrical characteristics of the sintered body. The reduced chip type electronic component can be manufactured by a relatively simple manufacturing process.
[0031]
Further, according to the chip type electronic component manufacturing method of the present invention, the resistance value can be corrected by the same method for both the decrease and increase of the resistance value, and the setting of the target resistance value with a higher degree of freedom can be realized. .
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a manufacturing process of a chip-type electronic component according to one embodiment of the present invention.
FIG. 2 is a cross-sectional view of a chip-type electronic component according to one embodiment of the present invention.
3 is a cross-sectional view of the ceramic body in the manufacturing process of the chip-type electronic component of FIG. 2;
4 is an explanatory diagram showing a resistance value distribution of the chip-type electronic component shown in FIG. 2; FIG.
FIG. 5 is a cross-sectional view of a conventional chip type electronic component.
FIG. 6 is a cross-sectional view of another conventional chip-type electronic component.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Chip-type electronic component 1a Ceramic body 2 Sintered body 3 Internal electrode 4 Temporary external electrode 5 External electrode

Claims (1)

焼結体に一対の仮外部電極を形成してセラミック素体を得る工程と、
前記仮外部電極間の電気特性を測定し、測定結果に基づいて前記セラミック素体を層別する工程と、
前記セラミック素体の両端部に形成された一対の仮外部電極を除去する工程と、
前記層別に基づいて、前記仮外部電極を除去した前記焼結体に一対の外部電極を形成する工程と、
を備えることを特徴とするチップ型電子部品の製造方法。
Forming a pair of temporary external electrodes on the sintered body to obtain a ceramic body; and
Measuring electrical characteristics between the temporary external electrodes, and stratifying the ceramic body based on the measurement results;
Removing a pair of temporary external electrodes formed at both ends of the ceramic body;
Forming a pair of external electrodes on the sintered body from which the temporary external electrodes have been removed based on the layers;
A method for manufacturing a chip-type electronic component, comprising:
JP23585199A 1999-08-23 1999-08-23 Manufacturing method of chip-type electronic component Expired - Fee Related JP4135265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23585199A JP4135265B2 (en) 1999-08-23 1999-08-23 Manufacturing method of chip-type electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23585199A JP4135265B2 (en) 1999-08-23 1999-08-23 Manufacturing method of chip-type electronic component

Publications (2)

Publication Number Publication Date
JP2001060503A JP2001060503A (en) 2001-03-06
JP4135265B2 true JP4135265B2 (en) 2008-08-20

Family

ID=16992204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23585199A Expired - Fee Related JP4135265B2 (en) 1999-08-23 1999-08-23 Manufacturing method of chip-type electronic component

Country Status (1)

Country Link
JP (1) JP4135265B2 (en)

Also Published As

Publication number Publication date
JP2001060503A (en) 2001-03-06

Similar Documents

Publication Publication Date Title
US9328014B2 (en) Ceramic electronic component and glass paste
US5548474A (en) Electrical components such as capacitors having electrodes with an insulating edge
JP2015035581A (en) Ceramic electronic component and method for manufacturing the same
KR101535838B1 (en) Ceramic electronic component
KR101547677B1 (en) Ceramic electronic component
KR101471829B1 (en) Chip thermistor and method of manufacturing same
KR101925286B1 (en) Laminated ceramic electronic component
KR20190011219A (en) Multilayer ceramic capacitor
KR102048322B1 (en) Multilayer ceramic capacitor
KR102572462B1 (en) Multilayer ceramic capacitor
JP2018060875A (en) Multilayer ceramic capacitor and method for manufacturing the same
WO2013108533A1 (en) Ceramic electronic component
JPH11340089A (en) Manufacture of multilayer ceramic electronic component multilayer ceramic electronic component
US9633784B2 (en) Electronic component
US9230718B2 (en) Chip thermistor
JP6338011B2 (en) NTC thermistor for substrate embedding and manufacturing method thereof
JP4135265B2 (en) Manufacturing method of chip-type electronic component
JP4907138B2 (en) Chip type NTC element
KR102366439B1 (en) Electronic component
KR102433615B1 (en) Electronic Component
JP2004128221A (en) Method of manufacturing chip ceramic electronic component
JP3528972B2 (en) NTC thermistor
JPH06314602A (en) Ceramic electronic component
JP4660922B2 (en) Thermistor and manufacturing method thereof
JPH08250307A (en) Chip thermistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080526

R150 Certificate of patent or registration of utility model

Ref document number: 4135265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees