JP4132577B2 - Internal processing method - Google Patents

Internal processing method Download PDF

Info

Publication number
JP4132577B2
JP4132577B2 JP2000149850A JP2000149850A JP4132577B2 JP 4132577 B2 JP4132577 B2 JP 4132577B2 JP 2000149850 A JP2000149850 A JP 2000149850A JP 2000149850 A JP2000149850 A JP 2000149850A JP 4132577 B2 JP4132577 B2 JP 4132577B2
Authority
JP
Japan
Prior art keywords
inner peripheral
peripheral surface
tool
cutting
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000149850A
Other languages
Japanese (ja)
Other versions
JP2001328040A (en
Inventor
聡一 辰重
竜俊 水馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Advanced Technologies Co Ltd
Original Assignee
Toyo Advanced Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Advanced Technologies Co Ltd filed Critical Toyo Advanced Technologies Co Ltd
Priority to JP2000149850A priority Critical patent/JP4132577B2/en
Publication of JP2001328040A publication Critical patent/JP2001328040A/en
Application granted granted Critical
Publication of JP4132577B2 publication Critical patent/JP4132577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、円筒状内周面をもつワークの当該内周面を加工するための方法及び工具に関するものである。
【0002】
【従来の技術】
従来、ワークの円筒状内周面を切削加工する手段として、次のようなものが知られている。
【0003】
A)内面切削加工:工具軸の端部に切削加工用のバイトを固定し、当該工具軸を高速回転させながらワーク内周面に接触させ、かつ、切削送りすることにより、当該内周面を切削加工する(例えば特開平10−156610号公報参照)。
【0004】
B)研削加工:砥石車が固定された砥石軸を高速回転させながら当該砥石車の外周面をワーク内周面に接触させ、当該内周面を研削加工する。
【0005】
【発明が解決しようとする課題】
ワークの中には、互いに材質の異なる内周面をもつものが存在する。その一例を図5に示す。図示のワーク20は、車両の自動変速機に設けられる遊星歯車装置のサンギアであり、その本体が例えば炭素鋼といった比較的硬質の鉄鋼材料により一体に形成され、その外周面に歯22が形成されている。このワーク20の内周面のうち、前半部の内周面24は前記本体の材質がそのまま露出し、この内周面24の内側に図略のクラッチが固定されるように当該内周面24の内径が設定されている。一方、後半部の内周面26の内側には銅合金やホワイトメタル(鉛系軸受合金)といった非鉄金属材料からなる筒状の軸受28が圧入等の手段で固定され、この軸受28の内側に前記自動変速機の入力軸が相対回転可能に挿入されるようになっている。
【0006】
このようなワーク20において、前記鉄鋼材料からなる内周面24及び非鉄金属からなる軸受28の内周面29の双方を前記A)の切削加工で加工しようとすると、内周面24が硬すぎるためにバイトの摩耗が早くてバイトの交換を頻繁に行わねばならず、場合によっては折損等が生じるおそれがある。一方、前記両内周面をB)の研削加工で加工しようとすると、軸受28の材料である非鉄金属合金が軟らかくて粘着性が高いために砥石が目詰まりしやすく、また、砥粒による切削痕が著しくて当該切削痕の周囲の盛り上がりにより表面精度が低下する不都合がある。
【0007】
従って、前記従来方法を用いて両内周面24,29を良好に加工するには、まずボーリング盤にワーク20をセットしてその軸受28の内周面29を切削加工した後、当該ワーク20をボーリング盤から取り外して今度は内面研削盤にセットし、ここで内周面24を研削加工するという手順を踏まなければならず、きわめて作業効率が悪い。また、2つの工作機械に加えて、両機械の間に設置されるワーク搬送装置を具備しなければならず、設備も大掛かりとなる。さらに、両内周面をそれぞれ別の工作機械で加工するために、両内周面24,29間で高い同心度が得られにくいという欠点もある。
【0008】
本発明は、このような事情に鑑み、互いに材質の異なるワーク内周面を簡単な設備で効率良く高精度で加工できる内面加工方法及び内面加工用工具を提供することを目的とする。
【0009】
【課題を解決するための手段】
前記課題を解決するための手段として、本発明は、第1の材料からなる円筒状の第1の内周面と、前記第1の材料よりも硬度が低くて粘着性の高い第2の材料からなる、前記第1の内周面と径の異なる円筒状の第2の内周面とをもつワークの両内周面を加工するための方法であって、単一の工具軸に当該工具軸から径方向に突出する状態で砥石車と切削用チップとを軸方向に相互位置をずらしかつ前記砥石車及び切削用チップのうち径方向寸法が小さいものが前記工具軸の先端側に位置するように固定しておき、前記ワークを主軸先端に保持したまま、当該主軸及び前記工具軸を回転させながら、前記第1の内周面及び前記第2の内周面のうち大径の内周面の側から前記工具軸を挿入することにより、前記第1の内周面に前記砥石車の外周面を接触させて当該第1の内周面を研削加工する研削工程と、前記主軸及び前記工具軸を回転させながら、前記第1の内周面及び前記第2の内周面のうち大径の内周面の側から前記工具軸を挿入することにより、前記第2の内周面に前記切削工具を接触させて当該第2の内周面を切削加工する切削工程とを行うものである。
【0010】
この方法によれば、主軸からワークを外すことなく、単一の工作機械及び工具を用いて、比較的硬くて粘着性の低い第1の内周面と比較的軟らかくて粘着性の高い第2の内周面とを、それぞれ研削、切削によって精度良く加工することができる。
【0011】
本発明は、例えば、鉄鋼材料からなる本体を有し、この本体の内周面の一部に前記鉄鋼材料よりも硬度が低くて粘着性の高い非鉄金属合金からなる筒状の軸受が固定されたワークの加工に特に好適である。このワークに対しては、前記軸受の内周面を前記切削工程により切削加工し、当該軸受が固定されている部分以外の前記本体が露出している内周面を前記研削工程により研削加工することで、各内周面を精度良く加工することができる。
【0013】
【発明の実施の形態】
本発明の第1の実施の形態を図1〜図3に基づいて説明する。この実施の形態は、前記図5に示したワーク20を加工するものである。
【0014】
図1は、本発明方法を実施するための工作機械の一例を示したものである。この工作機械は、ベッド10を備え、このベッド10上にワーク駆動装置12及び工具駆動装置14が相対向する状態で配設されている。
【0015】
ワーク駆動装置12は、主軸台15を備え、この主軸台15に図略の主軸がZ軸方向(図1の左右方向)に延びる状態で回転可能に支持されている。この主軸の後端(図1では左端)には主軸駆動モータ16が連結され、前端(同図右端)には前記図5に示したワーク20を把持するチャック18が設けられている。そして、このワーク20の本体が前記チャック18に把持された状態で主軸駆動モータ16が作動することにより、図略の主軸と一体にワーク20がその中心軸Xw(図3参照)回りに回転駆動されるようになっている。
【0016】
工具駆動装置14は、固定台30を備え、この固定台30はベッド10上に固定されている。固定台30上には、X軸テーブル32が前記主軸と直交するX軸方向(図1では上下方向)にスライド可能に設置され、このX軸テーブル32はX軸駆動モータ34及び図略の送りねじ機構によってX軸方向にスライド駆動されるようになっている。
【0017】
X軸テーブル32上には、Z軸テーブル36が前記主軸と平行なZ軸方向(図1では左右方向)にスライド可能に設置され、このZ軸テーブル36はZ軸駆動モータ38及び図略の送りねじ機構によってZ軸方向にスライド駆動されるようになっている。そして、このZ軸テーブル36上に工具支持台40が設けられている。
【0018】
この工具支持台40には、スピンドルが回転可能に支持され、このスピンドルも前記主軸と同様にZ軸方向に延びている。このスピンドルの後端(図1では右端)には工具駆動モータ44が連結され、前端(同図左端)には工具把持部42が設けられている。そして、この工具把持部42に本発明にかかる内面加工用工具Tが着脱可能に把持されるようになっている。
【0019】
図2に示すように、内面加工用工具Tは、単一の工具軸46を備え、その後端側が前記工具把持部42に把持される一方、前端側に切削用バイト47及び砥石車50が固定されるようになっている。
【0020】
詳しくは、前記工具軸46の先端側に他の部分よりも小径の砥石装着部46aが形成され、さらにその外側に前記砥石装着部46aよりもさらに小径の先端軸部46bが形成されており、この先端軸部46bの先端面の一部に先端側かつ径方向外側に向く傾斜面46dが形成されている。そして、この傾斜面46dに当該傾斜面46dの法線方向に切削用バイト(図例では剣バイト)47が立設され、その先端の切削刃48が工具軸46の先端側でかつ径方向外側を向いた状態となっている。
【0021】
砥石車50は、中央に貫通穴をもつリング状をなし、当該貫通穴の前側部周囲には前方に開口する凹部50aが形成されている。一方、工具軸46においては、その砥石装着部46aの前方部分(すなわち小径軸46bのつけ根部分)に雄ねじ46cが刻まれており、前記砥石装着部46aの外側に前記砥石車50が嵌合された状態で、前記雄ねじ46cにナット51を螺合し、凹部50aの奥側へ締め付けることにより、このナット51と砥石装着部46aの後端側段部との間に砥石車50が挟み込まれるようになっている。
【0022】
なお、前記工具軸46の中心軸Xtから切削用バイト47の先端(切削刃)48までの径方向寸法は、前記図5に示したワーク20における軸受29の内径の半分(内側半径)よりも小さい寸法に設定され、前記砥石車50の外径(ドレスする前の新品の状態での外径)は前記ワーク20の内周面24の内径よりも小さい寸法に設定されている。
【0023】
一方、前記ワーク駆動装置12側には、図1に示すようなアーム52を介してドレス用工具54が支持されている。アーム52は、前記ワーク駆動装置12側から工具駆動装置14側に延び、かつ、その先端から径方向内側に延びる平面視略L字状をなし、その先端面に内向きに前記ドレス用工具54が固定されている。このドレス用工具54は、前記砥石車50の整形を行うためのもので、周知のドレス用ダイヤモンド等が適用可能である。
【0024】
次に、この工作機械を用いた内面加工方法を説明する。
【0025】
▲1▼ 初期段階ではワーク20からスピンドルを後退させ、ワーク20の中心軸とスピンドルの中心軸とをほぼ合致させておく。そして、主軸前端のチャック18にワーク20を、スピンドル前端の工具把持部42に内面加工用工具Tの工具軸46を、それぞれ装着する。
【0026】
▲2▼ ワーク20及びスピンドルをそれぞれについて設定された目標回転数で各々回転駆動し、かつ、Z軸駆動モータ38によって内面加工用工具先端の切削用バイト48をワーク20における軸受28の直前位置まで早送りする。なお、この時のワーク20の回転の向きとスピンドルの回転の向き(図3(a)矢印)とは同じでもよいし、逆でもよい。
【0027】
▲3▼ X軸駆動モータ34によりスピンドルをX軸方向に静かに移動させ(切込み送り)、バイト先端の切削刃48をワーク20の軸受内周面29に接触するような径方向位置に位置決めする。そして、Z軸駆動モータ38によってバイト47を図3(a)の矢印方向に所定の送り速度で切削送りする。この動作により、ワーク中心軸Xwと工具中心軸Xtとが所定量e(図3(a))だけ偏心した状態で、軸受内周面29の切削加工を行うことができる。
【0028】
▲4▼ 切削加工終了後、ワーク20をチャック18に装着したままの状態で、一旦工具中心軸Xtをワーク中心軸Xwにほぼ合致する位置まで戻し、次いで、内面加工用工具Tをさらに前進させてその砥石車50をワーク内周面24の内側に位置させる。そして、スピンドル回転数を予め設定された研削用回転数に切換えた後、今度は砥石車50の外周面を内周面24に内側から接触させて当該内周面の研削加工を行う(図3(b))。このとき、砥石車50を工具軸46と一体にオシレートする(軸方向に微振動させる)ことにより、面精度をさらに高めることが可能である。
【0029】
▲5▼ 加工終了後、スピンドル及びその先端の内面加工用工具Tを初期位置に戻し、主軸及びスピンドルの回転駆動を停止して、ワーク20の取替えを行う。
【0030】
▲6▼ 前記研削加工により砥石車50が摩耗した場合、あるいは形状が崩れた場合には、X軸駆動モータ34及びZ軸駆動モータ38を駆使して砥石車50をドレス用工具54に接触させ、そのドレスを行う。ドレス後は、そのドレス量と同じ量だけ研削加工時における砥石の切込み量を増加方向に補正する。また、切削刃48についても、その摩耗量と同じ量だけ切削加工時におけるバイト47の切込み量を増加方向に補正する。この補正は、経験値に基づき、所定個数のワークを加工するたびに所定の補正量を切込み量に増加させるようなものでもよいし、加工後のワーク内径を測定してその測定値と目標寸法との差分から補正値を算出するようにしてもよい。
【0031】
以上の方法によれば、ワーク20の内周面のうち、その本体材料である鉄鋼材料が露出している内周面24、すなわち、比較的硬度が高くて粘着性の低い第1の内周面については、これに砥石車50の外周面を接触させることにより、当該内周面を精度良く研削加工することができる一方、非鉄金属合金からなる軸受内周面29、すなわち、比較的硬度が低くて粘着性の高い第2の内周面については、これに切削用バイト47の切削刃48を接触させることにより、当該内周面29を精度良く切削加工することができる。
【0032】
しかも、前記切削加工及び研削加工は、チャック18及び工具把持部42にそれぞれワーク20及び内面加工用工具Tを把持したまま、単一の工作機械で行うことができるので、簡単な設備でしかも効率良く両加工が実行でき、かつ、両内周面24,29について高い同心度を得ることができる。
【0033】
また、内周面24,29の内径が異なったワークであっても、内径に応じて切削時及び研削時における、ワーク中心軸Xwと工具中心軸Xtとの偏心量eを変えるのみで両内周面24,29の加工を、工具を交換することなく行うことができる。
【0034】
さらに、切削刃48の摩耗や砥石車50の摩耗・ドレスによって切削刃48の径方向突出寸法や砥石車50の外径が変化しても、これに応じて切込み量を補正するだけで、高い加工精度を維持できる利点もある。
【0035】
この第1の実施の形態では、ワーク20の本体に形成された2つの内周面24,26のうち、小径側の内周面26の内側に軸受28が固定されたものを示したが、第2の実施の形態として図4(a)(b)に示すように、大径側の内周面24に軸受28が固定された場合(すなわち小径側の内周面26が第1の内周面である場合)についても、本発明を適用することが可能である。
【0036】
この場合は、例えば同図に示すように、工具軸46の先端側に小径軸部46eを形成し、さらにその先端側にさらに小径の砥石装着部46aを形成してこの砥石装着部46aの外側に小径の砥石車50を固定する一方、前記小径軸部46eよりも後側の大径軸部分に前記第1の実施の形態と同様の傾斜面46dを形成し、これに切削用バイト47を固定するようにすればよい。この場合も、工具軸46の中心から切削刃48までの径方向寸法を軸受28の内径の半分(内側半径)よりも小さく設定し、砥石車50の外径をワーク内周面26の内径の半分よりも小さく設定しておくことが、より好ましい。
【0037】
その他、本発明は例えば次のような実施形態をとることも可能である。
【0038】
・本発明では切削用バイト47の具体的な形状を問わず、図示のような剣バイトの他、曲がりバイト、片刃バイト、穴ぐりバイト、クランプバイトなど、種々の切削用バイトが適用可能である。
【0039】
・本発明にかかるワーク内周面の材質は前記のものに限らず、研削加工に適した第1の材料からなる第1の内周面(すなわち比較的硬度が高くて粘着性の低い内周面)と、切削加工に適した第2の材料からなる第2の内周面(すなわち比較的硬度が低くて粘着性の高い内周面)とを併せもつワークの加工について広く本発明を適用できる。例えば、前記第2の材料としては、前記銅合金や鉛合金、あるいはアルミニウム合金といった非鉄金属材料の他、カーボン等の非金属材料であっても本発明の適用が可能である。
【0040】
ワークの種類についても、前記のような自動変速機のサンギアにかかわらず、互いに材質の異なる複数の内周面をもつワークに本発明を広く適用することができる。
【0041】
・前記実施形態では、切削工程を行ってから研削工程を行うようにしているが、その順序は問わず、研削工程を行ってから切削工程を行うようにしてもよい。
【0042】
【発明の効果】
以上のように本発明は、単一の工具軸に砥石車と切削用バイトとを固定しておき、第1の内周面及びそれよりも硬度が低くて粘着性の高い第2の内周面をもつワークを主軸に保持したまま、その第1の内周面を前記砥石車で、第2の内周面を前記切削用バイトでそれぞれ加工するようにしたものであるので、互いに材質の異なる両内周面を簡単な設備で効率良く高精度で加工することができる効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態にかかる内面加工方法を実施するための工作機械を示す平面図である。
【図2】前記第1の実施の形態にかかる内面加工用工具の要部を示す断面正面図である。
【図3】(a)は前記第1の実施の形態にかかる切削工程を示す断面正面図、(b)は研削工程を示す断面正面図である。
【図4】(a)は第2の実施の形態にかかる切削工程を示す断面正面図、(b)は研削工程を示す断面正面図である。
【図5】第1の内周面と第2の内周面とを併せもつワークの一例を示す断面正面図である。
【符号の説明】
20 ワーク
24,26 本体部分が露出したワーク内周面
28 軸受
29 軸受内周面
46 工具軸
47 切削用バイト
50 砥石車
T 内面加工用工具
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and a tool for machining an inner peripheral surface of a workpiece having a cylindrical inner peripheral surface.
[0002]
[Prior art]
Conventionally, the following are known as means for cutting the cylindrical inner peripheral surface of a workpiece.
[0003]
A) Internal cutting: A cutting tool is fixed to the end of the tool shaft, and the tool shaft is brought into contact with the inner peripheral surface of the workpiece while rotating the tool shaft at a high speed. Cutting is performed (see, for example, JP-A-10-156610).
[0004]
B) Grinding: While rotating the grinding wheel shaft to which the grinding wheel is fixed at high speed, the outer circumferential surface of the grinding wheel is brought into contact with the inner circumferential surface of the workpiece, and the inner circumferential surface is ground.
[0005]
[Problems to be solved by the invention]
Some workpieces have inner peripheral surfaces made of different materials. An example is shown in FIG. The illustrated workpiece 20 is a sun gear of a planetary gear device provided in an automatic transmission of a vehicle, and its main body is integrally formed of a relatively hard steel material such as carbon steel, and teeth 22 are formed on its outer peripheral surface. ing. Of the inner peripheral surface of the workpiece 20, the inner peripheral surface 24 of the front half is exposed as it is, and the inner peripheral surface 24 is so fixed that a clutch (not shown) is fixed inside the inner peripheral surface 24. The inner diameter is set. On the other hand, a cylindrical bearing 28 made of a non-ferrous metal material such as copper alloy or white metal (lead-based bearing alloy) is fixed inside the inner peripheral surface 26 of the latter half by means such as press-fitting. The input shaft of the automatic transmission is inserted so as to be relatively rotatable.
[0006]
In such a workpiece 20, if both the inner peripheral surface 24 made of the steel material and the inner peripheral surface 29 of the bearing 28 made of non-ferrous metal are to be machined by the cutting process of A), the inner peripheral surface 24 is too hard. For this reason, the tool is worn out quickly and the tool must be replaced frequently. In some cases, the tool may be broken. On the other hand, if the inner peripheral surfaces are to be processed by the grinding process of B), the non-ferrous metal alloy that is the material of the bearing 28 is soft and has high adhesiveness, so that the grindstone is easily clogged, and the cutting by the abrasive grains is performed. There is an inconvenience that the surface accuracy is lowered due to the remarkable marks and the rise around the cutting marks.
[0007]
Therefore, in order to satisfactorily machine both the inner peripheral surfaces 24 and 29 using the conventional method, the work 20 is first set on a boring machine and the inner peripheral surface 29 of the bearing 28 is cut, and then the work 20 Is removed from the boring machine and this time is set on the internal grinding machine, and the inner peripheral surface 24 is ground here, which is extremely inefficient. Further, in addition to the two machine tools, a work transfer device installed between the two machines must be provided, and the facility becomes large. Furthermore, since both inner peripheral surfaces are machined by different machine tools, there is a drawback that it is difficult to obtain a high concentricity between the inner peripheral surfaces 24 and 29.
[0008]
In view of such circumstances, an object of the present invention is to provide an inner surface machining method and an inner surface machining tool capable of efficiently and highly accurately machining workpiece inner peripheral surfaces of different materials with simple equipment.
[0009]
[Means for Solving the Problems]
As means for solving the above problems, the present invention provides a cylindrical first inner peripheral surface made of a first material, and a second material having a lower hardness and a higher adhesiveness than the first material. A method for machining both inner peripheral surfaces of a work having the first inner peripheral surface and a cylindrical second inner peripheral surface having a different diameter , the single tool shaft , The grinding wheel and the cutting tip are shifted in the axial direction while projecting in the radial direction from the tool shaft, and the grinding wheel and the cutting tip having a smaller radial dimension are positioned on the tip side of the tool shaft. fixed advance to, while maintaining the workpiece in the spindle tip, while rotating the spindle and the tool axis, of the large diameter of the first inner peripheral surface and said second inner circumferential surface by inserting the tool axis from the side of the peripheral surface, the outer circumference of the grinding wheel to said first inner circumferential surface Are contacted and the grinding step of grinding the first inner circumferential surface, while rotating the spindle and the tool axis, the diameter of the first inner peripheral surface and said second inner circumferential surface By inserting the tool shaft from the inner peripheral surface side, the cutting tool is brought into contact with the second inner peripheral surface to perform a cutting process of cutting the second inner peripheral surface.
[0010]
According to this method, the first inner peripheral surface that is relatively hard and has low adhesion and the second that is relatively soft and has high adhesion using a single machine tool and tool without removing the workpiece from the spindle. Can be machined with high precision by grinding and cutting, respectively.
[0011]
The present invention has, for example, a main body made of a steel material, and a cylindrical bearing made of a non-ferrous metal alloy having a lower hardness and higher adhesion than the steel material is fixed to a part of the inner peripheral surface of the main body. It is particularly suitable for machining of workpieces. For this workpiece, the inner peripheral surface of the bearing is cut by the cutting step, and the inner peripheral surface where the main body other than the portion where the bearing is fixed is exposed is ground by the grinding step. Thus, each inner peripheral surface can be processed with high accuracy.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described with reference to FIGS. In this embodiment, the workpiece 20 shown in FIG. 5 is processed.
[0014]
FIG. 1 shows an example of a machine tool for carrying out the method of the present invention. The machine tool includes a bed 10 on which a work driving device 12 and a tool driving device 14 are arranged in opposition to each other.
[0015]
The work drive device 12 includes a head stock 15, and a main shaft (not shown) is rotatably supported on the head stock 15 in a state of extending in the Z-axis direction (left-right direction in FIG. 1). A main shaft drive motor 16 is connected to the rear end (left end in FIG. 1) of the main shaft, and a chuck 18 for gripping the workpiece 20 shown in FIG. 5 is provided at the front end (right end in the figure). Then, when the main shaft drive motor 16 operates in a state where the main body of the work 20 is held by the chuck 18, the work 20 is rotationally driven around the central axis Xw (see FIG. 3) integrally with the main shaft (not shown). It has come to be.
[0016]
The tool driving device 14 includes a fixed base 30, and the fixed base 30 is fixed on the bed 10. An X-axis table 32 is installed on the fixed base 30 so as to be slidable in the X-axis direction (vertical direction in FIG. 1) orthogonal to the main shaft. The X-axis table 32 is provided with an X-axis drive motor 34 and a feed not shown. The screw mechanism is slid in the X-axis direction.
[0017]
On the X-axis table 32, a Z-axis table 36 is installed so as to be slidable in the Z-axis direction (left-right direction in FIG. 1) parallel to the main axis, and this Z-axis table 36 includes a Z-axis drive motor 38 and a not-shown illustration. The feed screw mechanism is slidably driven in the Z-axis direction. A tool support base 40 is provided on the Z-axis table 36.
[0018]
A spindle is rotatably supported on the tool support 40, and the spindle also extends in the Z-axis direction like the main shaft. A tool driving motor 44 is connected to the rear end (right end in FIG. 1) of the spindle, and a tool gripping portion 42 is provided at the front end (left end in the figure). The inner surface processing tool T according to the present invention is detachably held by the tool holding portion 42.
[0019]
As shown in FIG. 2, the inner surface machining tool T includes a single tool shaft 46, the rear end side of which is gripped by the tool gripping portion 42, and the cutting tool 47 and the grinding wheel 50 are fixed to the front end side. It has come to be.
[0020]
Specifically, a grindstone mounting portion 46a having a smaller diameter than other portions is formed on the tip side of the tool shaft 46, and a tip shaft portion 46b having a smaller diameter than the grindstone mounting portion 46a is further formed on the outer side thereof. An inclined surface 46d is formed on a part of the distal end surface of the distal end shaft portion 46b so as to face the distal end side and radially outward. A cutting tool 47 (sword tool in the illustrated example) 47 is erected on the inclined surface 46d in the normal direction of the inclined surface 46d, and the cutting blade 48 at the tip is on the tip side of the tool shaft 46 and radially outside. It is in a state facing.
[0021]
The grinding wheel 50 has a ring shape with a through hole in the center, and a recess 50a that opens forward is formed around the front side portion of the through hole. On the other hand, in the tool shaft 46, a male screw 46c is carved in a front portion of the grindstone mounting portion 46a (that is, a root portion of the small diameter shaft 46b), and the grinding wheel 50 is fitted to the outside of the grindstone mounting portion 46a. In this state, the nut 51 is screwed onto the male screw 46c and tightened to the back side of the recess 50a, so that the grinding wheel 50 is sandwiched between the nut 51 and the rear end side stepped portion of the grindstone mounting portion 46a. It has become.
[0022]
The radial dimension from the center axis Xt of the tool shaft 46 to the tip (cutting blade) 48 of the cutting tool 47 is larger than half the inner diameter (inner radius) of the bearing 29 in the workpiece 20 shown in FIG. The outer diameter of the grinding wheel 50 (the outer diameter in a new state before dressing) is set to be smaller than the inner diameter of the inner peripheral surface 24 of the workpiece 20.
[0023]
On the other hand, a dressing tool 54 is supported on the workpiece driving device 12 side via an arm 52 as shown in FIG. The arm 52 extends from the workpiece driving device 12 side to the tool driving device 14 side and has a substantially L shape in plan view extending radially inward from the tip thereof, and the dressing tool 54 faces inwardly to the tip surface. Is fixed. The dressing tool 54 is for shaping the grinding wheel 50, and a well-known dressing diamond or the like is applicable.
[0024]
Next, an inner surface machining method using this machine tool will be described.
[0025]
{Circle around (1)} In the initial stage, the spindle is retracted from the workpiece 20 so that the central axis of the workpiece 20 and the central axis of the spindle are substantially matched. Then, the workpiece 20 is mounted on the chuck 18 at the front end of the main spindle, and the tool shaft 46 of the inner surface processing tool T is mounted on the tool gripping portion 42 at the front end of the spindle.
[0026]
(2) The workpiece 20 and the spindle are respectively rotated at a set target rotational speed, and the cutting tool 48 at the tip of the inner surface machining tool is moved to the position just before the bearing 28 in the workpiece 20 by the Z-axis drive motor 38. Fast forward. At this time, the direction of rotation of the workpiece 20 and the direction of rotation of the spindle (arrows in FIG. 3A) may be the same or opposite.
[0027]
(3) The spindle is gently moved in the X-axis direction by the X-axis drive motor 34 (cut feed), and the cutting blade 48 at the tip of the cutting tool is positioned at a radial position so as to contact the bearing inner peripheral surface 29 of the workpiece 20. . Then, the cutting tool 47 is cut and fed by the Z-axis drive motor 38 at a predetermined feed speed in the direction of the arrow in FIG. By this operation, the bearing inner peripheral surface 29 can be cut in a state where the workpiece center axis Xw and the tool center axis Xt are eccentric by a predetermined amount e (FIG. 3A).
[0028]
(4) After the cutting process is completed, with the workpiece 20 still mounted on the chuck 18, the tool center axis Xt is once returned to a position substantially matching the workpiece center axis Xw, and then the inner surface machining tool T is further advanced. The grinding wheel 50 is positioned inside the work inner peripheral surface 24. Then, after switching the spindle rotational speed to a preset grinding rotational speed, this time, the outer peripheral surface of the grinding wheel 50 is brought into contact with the inner peripheral surface 24 from the inside, and the inner peripheral surface is ground (FIG. 3). (B)). At this time, it is possible to further improve the surface accuracy by oscillating the grinding wheel 50 integrally with the tool shaft 46 (slightly vibrating in the axial direction).
[0029]
(5) After the machining is completed, the spindle and the inner surface machining tool T at the tip thereof are returned to their initial positions, the rotation of the spindle and spindle is stopped, and the workpiece 20 is replaced.
[0030]
(6) When the grinding wheel 50 is worn by the grinding process or when the shape is broken, the grinding wheel 50 is brought into contact with the dressing tool 54 using the X-axis drive motor 34 and the Z-axis drive motor 38. Do that dress. After dressing, the cutting amount of the grindstone at the time of grinding is corrected in the increasing direction by the same amount as the dress amount. Further, the cutting blade 48 also corrects the cutting amount of the cutting tool 47 in the increasing direction by the same amount as the wear amount. This correction may be based on empirical values such that the predetermined correction amount is increased to the cutting amount every time a predetermined number of workpieces are processed, or the measured workpiece inner diameter is measured and the measured value and target dimension are measured. The correction value may be calculated from the difference between.
[0031]
According to the above method, of the inner peripheral surface of the workpiece 20, the inner peripheral surface 24 where the steel material as the main body material is exposed, that is, the first inner periphery having a relatively high hardness and low adhesiveness. As for the surface, by contacting the outer peripheral surface of the grinding wheel 50 with this, the inner peripheral surface can be ground with high precision, while the bearing inner peripheral surface 29 made of a non-ferrous metal alloy, that is, relatively hard. With respect to the second inner peripheral surface which is low and has high adhesiveness, the inner peripheral surface 29 can be precisely machined by bringing the cutting blade 48 of the cutting tool 47 into contact therewith.
[0032]
Moreover, since the cutting and grinding can be performed with a single machine tool while the workpiece 20 and the inner surface machining tool T are held on the chuck 18 and the tool holding portion 42, respectively, simple equipment and efficiency are achieved. Both processes can be performed well, and high concentricity can be obtained for both inner peripheral surfaces 24 and 29.
[0033]
Even if the inner peripheral surfaces 24 and 29 have different inner diameters, both the inner and outer surfaces 24 and 29 can be changed by changing the eccentric amount e between the workpiece center axis Xw and the tool center axis Xt during cutting and grinding according to the inner diameter. The peripheral surfaces 24 and 29 can be processed without changing the tool.
[0034]
Furthermore, even if the radial protrusion dimension of the cutting blade 48 and the outer diameter of the grinding wheel 50 change due to wear of the cutting blade 48 or wear / dress of the grinding wheel 50, it is only necessary to correct the cutting amount accordingly. There is also an advantage that processing accuracy can be maintained.
[0035]
In the first embodiment, among the two inner peripheral surfaces 24 and 26 formed on the main body of the workpiece 20, the bearing 28 is fixed inside the inner peripheral surface 26 on the small diameter side. As shown in FIGS. 4A and 4B as the second embodiment, when the bearing 28 is fixed to the inner peripheral surface 24 on the large diameter side (that is, the inner peripheral surface 26 on the small diameter side is the first inner surface 26). The present invention can also be applied to the case of a peripheral surface.
[0036]
In this case, as shown in the figure, for example, a small-diameter shaft portion 46e is formed on the tip end side of the tool shaft 46, and a further smaller-diameter grindstone mounting portion 46a is formed on the tip end side of the tool shaft 46. On the other hand, a small-diameter grinding wheel 50 is fixed to the large-diameter shaft portion on the rear side of the small-diameter shaft portion 46e, and an inclined surface 46d similar to that of the first embodiment is formed. What is necessary is just to fix. Also in this case, the radial dimension from the center of the tool shaft 46 to the cutting blade 48 is set to be smaller than half the inner diameter (inner radius) of the bearing 28, and the outer diameter of the grinding wheel 50 is set to the inner diameter of the work inner peripheral surface 26. It is more preferable to set it smaller than half.
[0037]
In addition, for example, the present invention can take the following embodiments.
[0038]
In the present invention, regardless of the specific shape of the cutting tool 47, various cutting tools such as a bending tool, a single-edged tool, a boring tool, a clamp tool, etc. can be applied in addition to the sword tool as shown in the figure. .
[0039]
The material of the inner peripheral surface of the workpiece according to the present invention is not limited to the above, but the first inner peripheral surface made of the first material suitable for grinding (that is, the inner periphery having relatively high hardness and low adhesion) The present invention is widely applied to machining of a workpiece having both a surface and a second inner peripheral surface made of a second material suitable for cutting (that is, an inner peripheral surface having relatively low hardness and high adhesiveness). it can. For example, as the second material, the present invention can be applied to non-ferrous metal materials such as the copper alloy, lead alloy, and aluminum alloy as well as non-metal materials such as carbon.
[0040]
Regarding the types of workpieces, the present invention can be widely applied to workpieces having a plurality of inner peripheral surfaces made of different materials regardless of the sun gear of the automatic transmission as described above.
[0041]
In the above-described embodiment, the grinding process is performed after the cutting process is performed, but the cutting process may be performed after the grinding process is performed regardless of the order.
[0042]
【The invention's effect】
As described above, according to the present invention, the grinding wheel and the cutting tool are fixed to a single tool shaft, and the first inner peripheral surface and the second inner periphery having a lower hardness and higher adhesiveness. While the workpiece having a surface is held on the main shaft, the first inner circumferential surface is machined by the grinding wheel and the second inner circumferential surface is machined by the cutting tool. There is an effect that both inner peripheral surfaces can be machined efficiently and accurately with simple equipment.
[Brief description of the drawings]
FIG. 1 is a plan view showing a machine tool for carrying out an inner surface machining method according to a first embodiment of the present invention.
FIG. 2 is a sectional front view showing a main part of the inner surface processing tool according to the first embodiment.
3A is a cross-sectional front view showing a cutting process according to the first embodiment, and FIG. 3B is a cross-sectional front view showing a grinding process.
FIG. 4A is a sectional front view showing a cutting process according to the second embodiment, and FIG. 4B is a sectional front view showing a grinding process.
FIG. 5 is a cross-sectional front view showing an example of a workpiece having both a first inner peripheral surface and a second inner peripheral surface.
[Explanation of symbols]
20 Workpieces 24 and 26 Workpiece inner peripheral surface 28 with exposed main body portion Bearing 29 Bearing inner peripheral surface 46 Tool shaft 47 Cutting tool 50 Grinding wheel T Internal surface machining tool

Claims (2)

第1の材料からなる円筒状の第1の内周面と、前記第1の材料よりも硬度が低くて粘着性の高い第2の材料からなる、前記第1の内周面と径の異なる円筒状の第2の内周面とが軸方向に並ぶワークの両内周面を加工するための方法であって、
単一の工具軸に当該工具軸から径方向に突出する状態で砥石車と切削用チップとを軸方向に相互位置をずらしかつ前記砥石車及び切削用チップのうち径方向寸法が小さいものが前記工具軸の先端側に位置するように固定しておき、
前記ワークを主軸先端に保持したまま、当該主軸及び前記工具軸を回転させながら、前記第1の内周面及び前記第2の内周面のうち大径の内周面の側から前記工具軸を挿入することにより、前記第1の内周面に前記砥石車の外周面を接触させて当該第1の内周面を研削加工する研削工程と、
前記主軸及び前記工具軸を回転させながら、前記第1の内周面及び前記第2の内周面のうち大径の内周面の側から前記工具軸を挿入することにより、前記第2の内周面に前記切削工具を接触させて当該第2の内周面を切削加工する切削工程とを行うことを特徴とする内面加工方法。
A cylindrical first inner peripheral surface made of a first material and a diameter different from that of the first inner peripheral surface made of a second material having a lower hardness and higher adhesiveness than the first material. A method for machining both inner peripheral surfaces of a workpiece in which a cylindrical second inner peripheral surface is aligned in the axial direction ,
A single tool shaft having a small radial dimension between the grinding wheel and the cutting tip, wherein the grinding wheel and the cutting tip are displaced in the axial direction while projecting radially from the tool shaft. It is fixed so that it is located on the tip side of the tool axis ,
While rotating the spindle and the tool axis while holding the workpiece at the tip of the spindle, the tool axis is rotated from the large inner diameter side of the first inner peripheral surface and the second inner peripheral surface. by inserting a grinding step of the contacting the outer peripheral surface of the grinding wheel to the first inner circumferential surface grinding the first inner peripheral surface,
By rotating the main shaft and the tool shaft, the tool shaft is inserted from the large-diameter inner peripheral surface side of the first inner peripheral surface and the second inner peripheral surface, whereby the second An inner surface machining method comprising: performing a cutting process of cutting the second inner circumferential surface by bringing the cutting tool into contact with the inner circumferential surface.
請求項1記載の内面加工方法において、前記ワークは、鉄鋼材料からなる本体を有し、この本体の内周面の一部に前記鉄鋼材料よりも硬度が低くて粘着性の高い非鉄金属合金からなる筒状の軸受が固定されたものであり、この軸受の内周面を前記切削工程により切削加工し、当該軸受が固定されている部分以外の前記本体が露出している内周面を前記研削工程により研削加工することを特徴とする内面加工方法。  2. The inner surface processing method according to claim 1, wherein the workpiece has a main body made of a steel material, and a part of an inner peripheral surface of the main body is made of a non-ferrous metal alloy having lower hardness and higher adhesion than the steel material. A cylindrical bearing is fixed, the inner peripheral surface of this bearing is cut by the cutting step, and the inner peripheral surface where the main body other than the portion where the bearing is fixed is exposed is the An inner surface processing method characterized by grinding by a grinding process.
JP2000149850A 2000-05-22 2000-05-22 Internal processing method Expired - Fee Related JP4132577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000149850A JP4132577B2 (en) 2000-05-22 2000-05-22 Internal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000149850A JP4132577B2 (en) 2000-05-22 2000-05-22 Internal processing method

Publications (2)

Publication Number Publication Date
JP2001328040A JP2001328040A (en) 2001-11-27
JP4132577B2 true JP4132577B2 (en) 2008-08-13

Family

ID=18655643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000149850A Expired - Fee Related JP4132577B2 (en) 2000-05-22 2000-05-22 Internal processing method

Country Status (1)

Country Link
JP (1) JP4132577B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106078375A (en) * 2016-08-11 2016-11-09 朱政 Waste and old lining inner surface of tubes with plastics layer automatic grinding cleaning plant
CN111408952A (en) * 2020-05-29 2020-07-14 吉林大学 Annular workpiece milling, grinding and measuring hybrid processing machine tool and control method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005089987A1 (en) * 2004-03-19 2005-09-29 Citizen Watch Co. Ltd. Machine tool with work spindle and material machining method by the same
JP2009034783A (en) * 2007-08-02 2009-02-19 Denso Corp Inner face grinding pattern setting device, inner face grinding device, inner face grinding pattern setting method, and inner face grinding method and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106078375A (en) * 2016-08-11 2016-11-09 朱政 Waste and old lining inner surface of tubes with plastics layer automatic grinding cleaning plant
CN111408952A (en) * 2020-05-29 2020-07-14 吉林大学 Annular workpiece milling, grinding and measuring hybrid processing machine tool and control method thereof

Also Published As

Publication number Publication date
JP2001328040A (en) 2001-11-27

Similar Documents

Publication Publication Date Title
RU2312002C2 (en) Circular grinding method for making tools of hard alloy and circular grinding machine for grinding initial cylindrical blanks at making tool of hard alloy
KR100766588B1 (en) method for satining a ring of rigid material and jig therefor
KR20050038009A (en) Method and device for grinding the outside and inside of a rotationally symmetric machine part comprising a longitudinal borehole
JPH03117348A (en) Method and apparatus for finishing com- mutator
JP4132577B2 (en) Internal processing method
CN108127128A (en) A kind of thin-walled gear ring periphery smart car method
JP3918894B2 (en) Rotating processing apparatus and rotating processing method for ring-shaped workpiece
JP4330277B2 (en) Rotating guide bush
JP4929790B2 (en) Truing method of grinding wheel
JPH07121448B2 (en) Cutting method of feeder for vehicle wheel
JPH1177528A (en) Mounting device and mounting method for sharp-edged grinding wheel
JP2007260880A (en) Method of truing grinding wheel, and grinding machine
JP2019188488A (en) Polygon cutter unit and machine tool
JPH0919857A (en) Chamfering method and device for wafer cut-out by slicing device and grinding wheel for chamfering
JPH04240061A (en) Method and device for machining small hole internal surface
JP2004090175A (en) Burnishing device, automatic lathe loaded with burnishing device and burnishing method using automatic lathe
JPS63237810A (en) Turning broaching machine
JPS6140456Y2 (en)
JPS6031872Y2 (en) Fine feed adjustment mechanism for cutting tools
JP2001219351A (en) Die polishing machine
JP2003170309A (en) Deburring tool, and removing method of burr on hollow member inner surface occurring by drilling or the like
JP2003025130A (en) Large-diameter deep groove machining device and method
JP2003165011A (en) Machining method of non-circular part
JPS62282852A (en) Grinding method
JPH02139108A (en) Copying method for inner wall of pipe and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees