JP4132169B2 - Intake device - Google Patents

Intake device Download PDF

Info

Publication number
JP4132169B2
JP4132169B2 JP01118698A JP1118698A JP4132169B2 JP 4132169 B2 JP4132169 B2 JP 4132169B2 JP 01118698 A JP01118698 A JP 01118698A JP 1118698 A JP1118698 A JP 1118698A JP 4132169 B2 JP4132169 B2 JP 4132169B2
Authority
JP
Japan
Prior art keywords
intake
flow
flow path
rectifying
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01118698A
Other languages
Japanese (ja)
Other versions
JPH11211528A (en
Inventor
信一 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP01118698A priority Critical patent/JP4132169B2/en
Publication of JPH11211528A publication Critical patent/JPH11211528A/en
Application granted granted Critical
Publication of JP4132169B2 publication Critical patent/JP4132169B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸気装置に関し、例えば熱式流量計を用いエンジンに導入する吸気流量を測定する吸気装置に関する。
【0002】
【従来の技術】
自動車等のエンジンに空気を導入する吸気装置において、吸気流量を測定する流量計として熱式流量計を用いるものが知られている。熱式流量計は流路径に比べて体格の小さい発熱抵抗体からの熱伝達量の変化により流路断面の一部の流速を感知し、全体の吸気流量を測定するものである。熱式流量計は直接空気の質量が検出できるので、吸気流量を高精度に測定できる利点がある。
【0003】
【発明が解決しようとする課題】
熱式流量計は吸気流れの僅かな乱れも吸気流量の変化として測定するので、熱式流量計の上流側で吸気流れに乱れが生じると出力変動が増大し高精度に吸気流量を測定することができない。熱式流量計の上流側近傍にエアクリーナを配設する吸気装置では、クリーナエレメントを通過する際に吸気流れに乱れが生じ易いので吸気流量を高精度に測定することが困難である。熱式流量計の上流側近傍にエアクリーナを配設しない場合でも、熱式流量計の上流側に配設された流路部材の形状により吸気流れに乱れが生じる。このような吸気流れの乱れを低減するために、特開昭57−103016号公報および特開平7−128107号公報に開示される吸気装置では、熱式流量計の上流側においてエアクリーナの出口管に吸気流れを整流する整流部材を設けている。ここで吸気流れを整流するとは、不規則な方向に流れている吸気流れを同一方向に流れるように整流することをいう。
【0004】
しかしながら、エアクリーナの出口管の流路面積は小さいので、整流部材を配設することにより吸気抵抗が増大する。したがって、エンジンに導入される吸気流量が減少し、エンジン出力が低下するという問題がある。
特開平7−128107号公報に開示される吸気装置では、流路内に直接露出するセンサ部に対し直交するように整流板が配置されている。つまり、整流板に沿って整流された整流板の下流方向延長上の吸気流れがセンサ部と直交している。
【0005】
このような吸気装置では、整流板は流路の直径上に設けられており、整流板に沿った下流方向延長上の吸気流れに近いほど乱れをより低減されている。センサ部は通常流路の直径上に位置しているが、加工誤差や組付け誤差等により直径方向に位置がずれ易い。センサ部と整流板とが直交していると、整流板の下流方向延長上の吸気流れからセンサ部が離れ易くなり、乱れの大きな吸気流れを測定することになるので、吸気流量を高精度に測定することが困難になる。
【0006】
流路内にセンサ部を露出させずバイパス流路内にセンサ部を配置する場合も、バイパス流路を形成するバイパス部材と整流板とが直交していると、加工誤差や組付け誤差等により整流板の下流方向延長上の吸気流れからバイパス流路の吸気入口が離れ易くなり、乱れの大きな吸気流れがバイパス流路内に流入することになるので、吸気流量を高精度に測定することが困難になる。
【0007】
本発明の目的は、吸気流量を低減することなく流量計の上流側における吸気流れの乱れを低減し、吸気流量を高精度に測定可能にする吸気装置を提供することにある。
本発明の他の目的は、整流板の下流方向延長上の吸気流れと流量計の張出部との位置ずれを低減し、吸気流量を高精度に測定可能にする吸気装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明の請求項1記載の吸気装置によると、吸気流路を形成する流路部材であって、第1の流路部と、前記第1の流路部の上流側に位置し前記第1の流路部よりも大きい流路面積を有し、第1の流路部に接続される拡径部を有する第2の流路部とを有する流路部材と、前記第2の流路部内において拡径部の上流側に設置されるクリーナエレメントと、前記第1の流路部に配設され、吸気流量を測定する流量計と、前記拡径部から前記流量計への吸気流れを同一方向に整流する整流部を前記第2の流路部内の前記クリーナエレメントの下流側に有し、前記第1の流路部の上流側、かつ前記整流部の下流側に前記整流部を通過した吸気流れが合流する連通部を設けている整流部材とを備え、前記整流部材は整流板であり、前記整流板の下流側に切欠を設けることにより前記連通部を形成していることを特徴とする。
【0009】
上記構成によると、クリーナエレメントの下流側に整流部材を配設するので、クリーナエレメントを通過する際に発生し易い吸気流れの乱れを低減することができる。さらに、整流部を通過した吸気流れが第1の流路部の上流側に合流するので、流路面積の大きな流路内で整流部が吸気流れを整流することができる。これにより整流部による吸気抵抗を低減し、エンジンに導入する吸気流量の減少を防止することができる。
また、上記構成の吸気装置によると、整流板で吸気流れを整流しているので、整流板に沿って吸気流れの乱れを容易に整流することができる。
【0010】
さらに、上記構成の吸気装置によると、整流板の下流側に切欠を設けることにより容易に連通部を形成することができる。
本発明の請求項2記載の吸気装置によると、流量計の吸気入口と吸気出口との整列方向に沿い、かつ流量計の張出部の張出方向に沿う仮想平面上に整流板が配設されているので、加工誤差や組付け誤差等があっても、整流板に沿って整流された整流板の下流方向延長上の吸気流れと流量計の張出部との位置ずれを抑制することができる。ここで流量計の張出部とは、流路にセンサ部が直接露出している場合はセンサ部を表し、バイパス流路を形成するバイパス部材が流路に張出している場合はバイパス部材を表す。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を示す一実施例について図1、図2および図3に基づいて説明する。
図1に示すように、吸気装置1のエアクリーナ10のクリーナケース11は、第1の流路部としての出口管15の上流側に接続されている。第2の流路部としてのクリーナケース11の流路面積は出口管15の流路面積よりも大きい。クリーナケース11と出口管15とは吸気流路を形成する流路部材を構成しており、クリーナケース11と出口管15との間は、図3に示すように溶着部25でシールされている。クリーナケース11は、同径部12および出口管15から同径部12に向けて拡径する拡径部13を有し、同径部12内にクリーナエレメント14が装着されている。
【0012】
図1に示すように、流量計20は出口管15に取付けられており、出口管15の流路内に張出部としてのバイパス部材21が張出している。バイパス部材21は図1の点線で示すU字状のバイパス流路21aを形成しており、バイパス流路21a内に図示しない一対の発熱抵抗体が取付けられている。回路部22は、一対の発熱抵抗体の発熱量の差から吸気流量を検知する。
【0013】
図1および図2に示すように、整流部材としての整流板30はクリーナエレメント14と流量計20との間に配設されている。さらに、整流板30はバイパス流路21aの吸気入口と吸気出口との整列方向に沿い、かつバイパス部材21の張出方向に沿う仮想平面100上に配設されている。図3に示すように、整流板30は整流部31および取付部32を有しコ字状に形成されている。整流部31は一対の取付け部32の間に設けられた矩形状の板であり、出力管15よりも上流側のエアクリーナ11内に配置されている。整流部31に沿った吸気流れの下流側延長上にバイパス流路21aの吸気入口および吸気出口がある。
【0014】
整流板30は出口管15のエアクリーナ10側の開口部に一体形成されている。整流板30の2つの取付部32は、出口管15の円形開口部の直径上の2箇所にそれぞれ連結しており、この開口部からエアクリーナ10側に延び出している。
整流板30は下流側に切欠30aが形成されており、この切欠30aにより出口管15の上流側、かつ整流部31の下流側に長さLの連通部35が形成されている。連通部35は整流部31を通過した吸気流れが合流する空間であり、クリーナケース11の拡径部13内に位置している。
【0015】
クリーナエレメント14で吸気中の異物を除去された吸気流れには、図1に示すように吸気流れ方向が不規則な乱れ40が生じている。この乱れ40が整流板30に沿って流れることにより、同一方向に整流される。整流された吸気流れがバイパス流路21aに流入することにより、高精度に吸気流量を測定することができる。
【0016】
図4に示すように、連通部35の長さLが長くなると流量計20で測定する吸気流量の出力変動のピーク値が大きくなり、測定精度が低下する。これは、吸気流れが整流部31を通過し連通部35で合流してから出口管15に流入するまでの距離が長くなることにより、整流部31で乱れを低減された吸気流れに再び乱れが生じるからである。
【0017】
また図5に示すように、連通部35の長さLが短くなり整流部31が出口管15に近づくと圧力損失が大きくなる。これは、整流部31が出口管15に近づくと整流部31の配設される位置の流路面積が出口管15の流路面積に近づき吸気抵抗が増加するからである。
出力変動のピーク値および圧力損失を所定値以下に低減するには、図4および図5から判るように、5mm≦L≦15mmの範囲内に整流部を配設すればよい。このように配設した整流板30により、整流板を設けない吸気装置に比べ図6に示すように吸気流量に関わらず流量計の出力変動を低減することができる。
【0018】
以上説明した本発明の実施の形態を示す上記実施例では、整流部31が流路面積の大きなクリーナケース11内に配置されているので、整流部31による吸気抵抗が減少する。したがって、エンジンに導入される吸気流量の減少を防止できるので、エンジン出力の低下を防止できる。
さらに、整流板30が仮想平面100上に配設されているので、整流部31を通過した吸気流れの内最も乱れを低減された吸気流れがバイパス流路21aに流入する。したがって、吸気流量を高精度に測定することができる。さらに、加工誤差および組付誤差等によりバイパス流路21aの吸気入口が整流板30と平行にずれてもバイパス流路21aの吸気入口が整流板30の延長上に位置するので、測定のばらつきを低減することができる。
【0019】
上記実施例では、第1の流路部である出口管15に整流部材である整流板30を取付けたが、クリーナエレメント14の下流側に位置する第2の流路部であるクリーナケース11に整流部材を取付けてもよい。また一枚の板で整流部材を構成したが、クリーナエレメント14の下流側に位置するクリーナケース11に配設されるのであれば、格子状に組んだ板材で整流部材を構成してもよい。
【0020】
また、流量計20の吸気入口と吸気出口との整列方向に沿い、かつバイパス部材21の張出方向に沿う仮想平面100上に配設されるのであれば、バイパス部材21の上流側の出口管15内に整流板を配設してもよい。また上記実施例では、第1の流路部である出口管15とクリーナエレメント14を収容している第2の流路部であるクリーナケース11とを接続したが、参考例として、クリーナエレメントを収容していない第2の流路部を第1の流路部に接続する構成にしてもよい。第2の流路部にクリーナエレメントが収容されていなくても、流路の曲がり、流路の角部等で吸気流れに乱れが生じるので、整流板30により吸気流れの乱れを低減し、流量計20で高精度に吸気流量を測定することができる。
【0021】
上記実施例では、車両等のエンジンに空気を導入する吸気装置に本発明を適用したが、吸気流量を測定する流量計を流路内に配設可能にする吸気装置であればエンジン用に限らずどのような分野に本発明を適用することも可能である。
【図面の簡単な説明】
【図1】本発明の一実施例による吸気装置を示す模式的断面図である。
【図2】図1のII方向矢視図である。
【図3】本実施例の整流板周辺を示す部分断面図である。
【図4】本実施例の連通部の長さLと出力変動ピーク値との関係を示す特性図である。
【図5】本実施例の連通部の長さLと圧力損失との関係を示す特性図である。
【図6】本実施例と整流板を配設していない従来例との吸気流量に対する出力変動の関係を示す特性図である。
【符号の説明】
1 吸気装置
10 エアクリーナ
11 クリーナケース(第2の流路部、流路部材)
12 同径部
13 拡径部
14 クリーナエレメント
15 出口管(第1の流路部、流路部材)
20 流量計
21 バイパス部材
30 整流板(整流部材)
30a 切欠
31 整流部
32 取付け部
35 連通部
40 吸気乱れ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an intake device, for example, an intake device that measures an intake flow rate introduced into an engine using a thermal flow meter.
[0002]
[Prior art]
2. Description of the Related Art An intake device that introduces air into an engine such as an automobile uses a thermal flow meter as a flow meter for measuring an intake flow rate. The thermal flow meter senses the flow velocity at a part of the flow path cross section based on a change in the amount of heat transfer from the heating resistor having a smaller physique than the flow path diameter, and measures the entire intake flow rate. Since the thermal flow meter can directly detect the mass of air, there is an advantage that the intake flow rate can be measured with high accuracy.
[0003]
[Problems to be solved by the invention]
Since the thermal flow meter measures even a slight disturbance in the intake flow as a change in the intake flow rate, if disturbance occurs in the intake flow upstream of the thermal flow meter, the output fluctuation increases and the intake flow rate is measured with high accuracy. I can't. In an intake device in which an air cleaner is disposed in the vicinity of the upstream side of the thermal flow meter, it is difficult to measure the intake flow rate with high accuracy because the intake flow tends to be disturbed when passing through the cleaner element. Even when the air cleaner is not disposed in the vicinity of the upstream side of the thermal flow meter, the intake flow is disturbed by the shape of the flow path member disposed on the upstream side of the thermal flow meter. In order to reduce such disturbance of the intake flow, in the intake devices disclosed in Japanese Patent Application Laid-Open No. 57-103016 and Japanese Patent Application Laid-Open No. 7-128107, the outlet pipe of the air cleaner is provided upstream of the thermal flow meter. A rectifying member for rectifying the intake flow is provided. Here, rectifying the intake flow means to rectify the intake flow flowing in an irregular direction so as to flow in the same direction.
[0004]
However, since the flow passage area of the outlet pipe of the air cleaner is small, the intake resistance is increased by providing the rectifying member. Therefore, there is a problem that the intake flow rate introduced into the engine decreases and the engine output decreases.
In the air intake apparatus disclosed in Japanese Patent Application Laid-Open No. 7-128107, the rectifying plate is disposed so as to be orthogonal to the sensor portion that is directly exposed in the flow path. That is, the intake flow on the downstream extension of the rectifying plate rectified along the rectifying plate is orthogonal to the sensor unit.
[0005]
In such an intake device, the rectifying plate is provided on the diameter of the flow path, and the turbulence is further reduced as the intake flow is closer to the downstream extension along the rectifying plate. Although the sensor unit is usually located on the diameter of the flow path, the position is easily displaced in the diameter direction due to a processing error, an assembly error, or the like. If the sensor unit and the flow straightening plate are orthogonal, the sensor unit will be easily separated from the intake flow on the downstream extension of the flow straightening plate, and the highly disturbed intake flow will be measured. It becomes difficult to measure.
[0006]
Even when the sensor unit is arranged in the bypass channel without exposing the sensor unit in the channel, if the bypass member forming the bypass channel and the rectifying plate are orthogonal to each other, processing errors, assembly errors, etc. Since the intake inlet of the bypass flow path is easily separated from the intake flow on the downstream extension of the rectifying plate, and the turbulent intake flow flows into the bypass flow path, the intake flow rate can be measured with high accuracy. It becomes difficult.
[0007]
An object of the present invention is to provide an intake device that can reduce the disturbance of the intake flow upstream of the flow meter without reducing the intake flow rate and can measure the intake flow rate with high accuracy.
Another object of the present invention is to provide an intake device that can reduce the displacement of the intake flow on the extension in the downstream direction of the rectifying plate and the protruding portion of the flowmeter, and can measure the intake flow rate with high accuracy. is there.
[0008]
[Means for Solving the Problems]
According to the intake device of the first aspect of the present invention, the flow path member forms the intake flow path, and is located on the upstream side of the first flow path portion and the first flow path portion. A channel member having a larger channel area than the first channel unit and having a second channel unit having an enlarged diameter portion connected to the first channel unit; and in the second channel unit In the same manner, the cleaner element installed on the upstream side of the enlarged diameter portion, the flow meter disposed in the first flow path portion for measuring the intake flow rate, and the intake flow from the enlarged diameter portion to the flow meter are the same. A rectifying unit that rectifies in the direction is provided on the downstream side of the cleaner element in the second flow path unit, and passes through the rectification unit on the upstream side of the first flow path unit and on the downstream side of the rectification unit. e Bei a straightener member intake flow is provided communicating unit for merging, wherein the rectifying member is a rectifying plate, switching on the downstream side of the rectifier plate And wherein the forming the communicating portion by providing the.
[0009]
According to the above configuration, since the rectifying member is disposed on the downstream side of the cleaner element, it is possible to reduce the disturbance of the intake air flow that is likely to occur when passing through the cleaner element. Furthermore, since the intake flow that has passed through the rectification unit joins the upstream side of the first flow channel unit, the rectification unit can rectify the intake flow in the flow channel having a large flow channel area. As a result, the intake resistance due to the rectification unit can be reduced, and the reduction of the intake flow rate introduced into the engine can be prevented.
Moreover, according to the intake device having the above-described configuration , since the intake flow is rectified by the rectifying plate, the disturbance of the intake flow can be easily rectified along the rectifying plate.
[0010]
Furthermore, according to the intake device having the above-described configuration, the communication portion can be easily formed by providing a notch on the downstream side of the rectifying plate.
According to the intake device of the second aspect of the present invention, the rectifying plate is disposed on a virtual plane along the alignment direction of the intake port and the intake port of the flow meter and along the protruding direction of the protruding portion of the flow meter. Therefore, even if there are processing errors, assembly errors, etc., the displacement of the intake flow on the extension in the downstream direction of the rectifying plate rectified along the rectifying plate and the overhanging part of the flow meter is suppressed. Can do. Here, the overhang portion of the flow meter represents the sensor portion when the sensor portion is directly exposed to the flow path, and represents the bypass member when the bypass member that forms the bypass flow path projects over the flow path. .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example showing an embodiment of the present invention will be described with reference to FIG. 1, FIG. 2, and FIG.
As shown in FIG. 1, the cleaner case 11 of the air cleaner 10 of the intake device 1 is connected to the upstream side of the outlet pipe 15 as the first flow path portion. The flow passage area of the cleaner case 11 as the second flow passage portion is larger than the flow passage area of the outlet pipe 15. The cleaner case 11 and the outlet pipe 15 constitute a flow path member that forms an intake flow path, and the cleaner case 11 and the outlet pipe 15 are sealed with a welded portion 25 as shown in FIG. . The cleaner case 11 has the same diameter part 12 and an enlarged diameter part 13 that expands from the outlet pipe 15 toward the same diameter part 12, and a cleaner element 14 is mounted in the same diameter part 12.
[0012]
As shown in FIG. 1, the flow meter 20 is attached to the outlet pipe 15, and a bypass member 21 as an overhanging part projects from the flow path of the outlet pipe 15. The bypass member 21 forms a U-shaped bypass passage 21a indicated by a dotted line in FIG. 1, and a pair of heating resistors (not shown) are attached in the bypass passage 21a. The circuit unit 22 detects the intake air flow rate from the difference between the heat generation amounts of the pair of heating resistors.
[0013]
As shown in FIGS. 1 and 2, the rectifying plate 30 as a rectifying member is disposed between the cleaner element 14 and the flow meter 20. Further, the rectifying plate 30 is disposed on a virtual plane 100 along the alignment direction of the intake inlet and the intake outlet of the bypass channel 21 a and along the extending direction of the bypass member 21. As shown in FIG. 3, the rectifying plate 30 has a rectifying portion 31 and an attachment portion 32 and is formed in a U shape. The rectifying unit 31 is a rectangular plate provided between the pair of attachment units 32, and is disposed in the air cleaner 11 on the upstream side of the output pipe 15. There are an intake inlet and an intake outlet of the bypass channel 21 a on the downstream side extension of the intake flow along the rectifying unit 31.
[0014]
The rectifying plate 30 is integrally formed in the opening of the outlet pipe 15 on the air cleaner 10 side. The two attachment portions 32 of the rectifying plate 30 are respectively connected to two places on the diameter of the circular opening of the outlet pipe 15 and extend from the opening to the air cleaner 10 side.
The rectifying plate 30 has a notch 30a formed on the downstream side, and a communication portion 35 having a length L is formed on the upstream side of the outlet pipe 15 and on the downstream side of the rectifying unit 31 by the notch 30a. The communicating portion 35 is a space where the intake air flow that has passed through the rectifying portion 31 is merged, and is located in the enlarged diameter portion 13 of the cleaner case 11.
[0015]
As shown in FIG. 1, the intake air flow from which foreign substances in the intake air are removed by the cleaner element 14 has a disorder 40 in which the intake air flow direction is irregular. When this disturbance 40 flows along the current plate 30, the current is rectified in the same direction. Since the rectified intake flow flows into the bypass channel 21a, the intake flow rate can be measured with high accuracy.
[0016]
As shown in FIG. 4, when the length L of the communication portion 35 is increased, the peak value of the output fluctuation of the intake flow rate measured by the flow meter 20 is increased, and the measurement accuracy is lowered. This is because the intake flow whose turbulence is reduced by the rectification unit 31 is disturbed again by increasing the distance from when the intake flow passes through the rectification unit 31 and merges at the communication unit 35 to flow into the outlet pipe 15. Because it occurs.
[0017]
Further, as shown in FIG. 5, when the length L of the communication portion 35 is shortened and the rectifying portion 31 approaches the outlet pipe 15, the pressure loss increases. This is because when the rectifying unit 31 approaches the outlet pipe 15, the flow passage area at the position where the rectifying unit 31 is disposed approaches the flow passage area of the outlet pipe 15 and the intake resistance increases.
In order to reduce the peak value of the output fluctuation and the pressure loss to a predetermined value or less, as can be seen from FIGS. 4 and 5, the rectifying unit may be disposed within the range of 5 mm ≦ L ≦ 15 mm. With the rectifying plate 30 arranged in this way, the output fluctuation of the flow meter can be reduced regardless of the intake flow rate as shown in FIG.
[0018]
In the above-described example showing the embodiment of the present invention described above, since the rectifying unit 31 is disposed in the cleaner case 11 having a large flow path area, the intake resistance by the rectifying unit 31 is reduced. Therefore, a decrease in the intake flow rate introduced into the engine can be prevented, and a decrease in engine output can be prevented.
Further, since the rectifying plate 30 is disposed on the virtual plane 100, the intake flow with the least turbulence in the intake flow that has passed through the rectifying unit 31 flows into the bypass flow path 21a. Therefore, the intake flow rate can be measured with high accuracy. Furthermore, even if the intake inlet of the bypass flow passage 21a is displaced in parallel with the rectifying plate 30 due to processing errors, assembly errors, etc., the intake inlet of the bypass flow passage 21a is located on the extension of the rectifying plate 30, so that the measurement variation is reduced. Can be reduced.
[0019]
In the above embodiment, the flow straightening plate 30 as the flow straightening member is attached to the outlet pipe 15 as the first flow path, but the cleaner case 11 as the second flow path located on the downstream side of the cleaner element 14 is attached. A rectifying member may be attached. Further, although the flow straightening member is constituted by a single plate, the flow straightening member may be constituted by a plate material assembled in a lattice form as long as it is disposed in the cleaner case 11 located on the downstream side of the cleaner element 14.
[0020]
Further, if the flowmeter 20 is disposed on the virtual plane 100 along the alignment direction of the intake inlet and the intake outlet of the flow meter 20 and along the protruding direction of the bypass member 21, the outlet pipe on the upstream side of the bypass member 21. A rectifying plate may be disposed in the 15. Moreover, in the said Example, although the outlet pipe 15 which is a 1st flow path part, and the cleaner case 11 which is the 2nd flow path part which accommodates the cleaner element 14, it connected the cleaner element as a reference example. You may make it the structure which connects the 2nd flow path part which is not accommodated to a 1st flow path part. Even if the cleaner element is not accommodated in the second flow path portion, the flow path is bent, and the intake flow is disturbed at the corners of the flow path. The intake flow rate can be measured with high accuracy by the total 20.
[0021]
In the above embodiment, the present invention is applied to an intake device that introduces air into an engine of a vehicle or the like. However, the intake device is not limited to an engine as long as it can arrange a flow meter for measuring an intake flow rate in a flow path. The present invention can be applied to any field.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an intake device according to an embodiment of the present invention.
FIG. 2 is a view taken in the direction of the arrow II in FIG.
FIG. 3 is a partial cross-sectional view showing the periphery of a current plate in the present embodiment.
FIG. 4 is a characteristic diagram showing the relationship between the length L of the communicating portion and the output fluctuation peak value in this embodiment.
FIG. 5 is a characteristic diagram showing the relationship between the length L of the communicating portion and the pressure loss in this example.
FIG. 6 is a characteristic diagram showing the relationship of the output fluctuation with respect to the intake air flow rate between the present embodiment and a conventional example in which a rectifying plate is not provided.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Intake device 10 Air cleaner 11 Cleaner case (2nd flow-path part, flow-path member)
12 same diameter part 13 enlarged diameter part 14 cleaner element 15 outlet pipe (first flow path part, flow path member)
20 Flowmeter 21 Bypass member 30 Rectifier plate (rectifier member)
30a Notch 31 Rectification part 32 Attachment part 35 Communication part 40 Air intake turbulence

Claims (2)

吸気流路を形成する流路部材であって、第1の流路部と、前記第1の流路部の上流側に位置し前記第1の流路部よりも大きい流路面積を有し、第1の流路部に接続される拡径部を有する第2の流路部とを有する流路部材と、
前記第2の流路部内において拡径部の上流側に設置されるクリーナエレメントと、
前記第1の流路部に配設され、吸気流量を測定する流量計と、
前記拡径部から前記第1の流路部への吸気流れを同一方向に整流する整流部を前記第2の流路部内の前記クリーナエレメントの下流側に有し、前記第1の流路部の上流側、かつ前記整流部の下流側に前記整流部を通過した吸気流れが合流する連通部を設けている整流部材と、を備え、
前記整流部材は整流板であり、
前記整流板の下流側に切欠を設けることにより前記連通部を形成していることを特徴とする吸気装置。
A flow path member that forms an intake flow path, and has a first flow path portion and a flow path area that is located upstream of the first flow path portion and is larger than the first flow path portion. A flow path member having a second flow path portion having an enlarged diameter portion connected to the first flow path portion;
A cleaner element installed on the upstream side of the enlarged diameter portion in the second flow path portion;
A flow meter disposed in the first flow path portion for measuring an intake flow rate;
A rectifying unit that rectifies the intake air flow from the enlarged-diameter portion to the first flow path portion in the same direction on the downstream side of the cleaner element in the second flow path portion; upstream and e Bei and a rectifying member in which the intake flow is provided communicating unit for merging which has passed through the rectifying portion on the downstream side of the rectification section of,
The rectifying member is a rectifying plate,
An air intake apparatus characterized in that the communication portion is formed by providing a notch on the downstream side of the rectifying plate .
前記流量計は前記第1の流路部の流路内に張出す張出部を有し、前記整流板は、前記流量計の吸気入口と吸気出口との整列方向に沿い、かつ前記張出部の張出方向に沿う仮想平面上に配設されていることを特徴とする請求項1記載の吸気装置。 The flow meter has a projecting portion that projects into the flow channel of the first flow channel unit, and the rectifying plate is along an alignment direction between the intake inlet and the intake outlet of the flow meter, and the projecting The intake device according to claim 1 , wherein the intake device is disposed on a virtual plane along a protruding direction of the portion .
JP01118698A 1998-01-23 1998-01-23 Intake device Expired - Fee Related JP4132169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01118698A JP4132169B2 (en) 1998-01-23 1998-01-23 Intake device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01118698A JP4132169B2 (en) 1998-01-23 1998-01-23 Intake device

Publications (2)

Publication Number Publication Date
JPH11211528A JPH11211528A (en) 1999-08-06
JP4132169B2 true JP4132169B2 (en) 2008-08-13

Family

ID=11771049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01118698A Expired - Fee Related JP4132169B2 (en) 1998-01-23 1998-01-23 Intake device

Country Status (1)

Country Link
JP (1) JP4132169B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5751533B2 (en) 2012-08-21 2015-07-22 株式会社デンソー Intake device

Also Published As

Publication number Publication date
JPH11211528A (en) 1999-08-06

Similar Documents

Publication Publication Date Title
EP0708315B1 (en) Thermal-type air flow measuring instrument
EP1160546B1 (en) Fluid flow meter unit having thermal flow sensor
US8590368B2 (en) Airflow measuring device
EP0908704B1 (en) Air flow amount measuring apparatus having flow rectifier
EP0940657B1 (en) Air flow meter
JP4106224B2 (en) Flow measuring device
JP4752472B2 (en) Air flow measurement device
JP3995386B2 (en) Intake device
US20010037678A1 (en) Air flow meter having turbulence reduction member
JP4132169B2 (en) Intake device
JP3345994B2 (en) Engine intake system
JP3782650B2 (en) Air flow measurement device
JP2001033288A (en) Air flow rate measuring device
JP3443324B2 (en) Flow measurement device and air cleaner
JP3975556B2 (en) Air cleaner
JPH11229979A (en) Air cleaner
JPH09236460A (en) Karman vortex type flowmeter
JPH04344424A (en) Hot wire type air flow meter
JPH0320619A (en) Hot-wire type air flowmeter
JP2007121221A (en) Fluid flow detector
JPH04355329A (en) Hot wire type air flowmeter
JPH04290918A (en) Structure of flow straightening element for air flow meter
JPH06317442A (en) Hot-wire air flowmeter
JPH11118558A (en) Air flow rate measuring apparatus
JPH05340779A (en) Air flow rate measuring instrument and engine fuel control system using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060418

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060518

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees