JP5751533B2 - Intake device - Google Patents

Intake device Download PDF

Info

Publication number
JP5751533B2
JP5751533B2 JP2012182273A JP2012182273A JP5751533B2 JP 5751533 B2 JP5751533 B2 JP 5751533B2 JP 2012182273 A JP2012182273 A JP 2012182273A JP 2012182273 A JP2012182273 A JP 2012182273A JP 5751533 B2 JP5751533 B2 JP 5751533B2
Authority
JP
Japan
Prior art keywords
intake
duct
intake air
wall surface
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012182273A
Other languages
Japanese (ja)
Other versions
JP2014040779A (en
Inventor
泰 河野
泰 河野
正登 今田
正登 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012182273A priority Critical patent/JP5751533B2/en
Priority to DE201310216348 priority patent/DE102013216348A1/en
Publication of JP2014040779A publication Critical patent/JP2014040779A/en
Application granted granted Critical
Publication of JP5751533B2 publication Critical patent/JP5751533B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/0201Housings; Casings; Frame constructions; Lids; Manufacturing or assembling thereof
    • F02M35/0202Manufacturing or assembling; Materials for air cleaner housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/0201Housings; Casings; Frame constructions; Lids; Manufacturing or assembling thereof
    • F02M35/021Arrangements of air flow meters in or on air cleaner housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/024Air cleaners using filters, e.g. moistened
    • F02M35/02475Air cleaners using filters, e.g. moistened characterised by the shape of the filter element
    • F02M35/02491Flat filter elements, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/02Air cleaners
    • F02M35/08Air cleaners with means for removing dust, particles or liquids from cleaners; with means for indicating clogging; with by-pass means; Regeneration of cleaners
    • F02M35/09Clogging indicators ; Diagnosis or testing of air cleaners

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Volume Flow (AREA)

Description

本発明は、内燃機関に吸入される吸気(以下、吸気)を浄化するエアクリーナと、エアクリーナから排出される吸気量を測定する吸気量測定装置とを備える吸気装置に関する。   The present invention relates to an intake device that includes an air cleaner that purifies intake air (hereinafter referred to as intake air) sucked into an internal combustion engine, and an intake air amount measurement device that measures an intake air amount discharged from the air cleaner.

従来より、エアクリーナのクリーナケースの吸気出口に接続されるダクトに吸気量測定装置を取り付けた吸気装置が周知である(例えば、特許文献1、2参照)。また、吸気量測定装置として、吸気の一部を取り込むバイパス流路と、バイパス流路内に配される流量センサとを備えるものが周知である。   2. Description of the Related Art Conventionally, an intake device in which an intake air amount measuring device is attached to a duct connected to an intake outlet of a cleaner case of an air cleaner is well known (see, for example, Patent Documents 1 and 2). In addition, as an intake air amount measurement device, a device including a bypass flow path for taking in a part of intake air and a flow rate sensor arranged in the bypass flow path is well known.

特許文献1及び特許文献2に示す吸気装置では、クリーナケースとダクトとの間で、吸気の方向を変える曲がり部を形成している。すなわち、クリーナケース内の流れ方向とダクト内での流れ方向が交差しており、クリーナケースからの吸気は吸気出口付近で曲がりながらダクト内へ流れ込む。このため、ダクト内には、曲がりの内側では流速が小さく、曲がりの外側では流速が大きくなるという偏った速度分布が生じる。   In the intake devices shown in Patent Document 1 and Patent Document 2, a bent portion that changes the direction of intake air is formed between the cleaner case and the duct. That is, the flow direction in the cleaner case and the flow direction in the duct intersect, and the intake air from the cleaner case flows into the duct while bending near the intake outlet. For this reason, a biased velocity distribution is generated in the duct such that the flow velocity is small inside the bend and the flow velocity is large outside the bend.

特開平9−88658号公報JP-A-9-88658 特開平11−211528号公報JP-A-11-212528

ところで、吸気量測定装置での流量測定の際、バイパス流路の入口及び出口付近の流速が小さい場合には、流れが安定しにくく、流量を高精度に測定することが困難である。
そのため、バイパス流路の入口または出口のいずれか少なくとも一方を、流速の大きい位置に配置することが求められる。
By the way, when the flow rate is measured by the intake air amount measurement device, if the flow velocity near the inlet and outlet of the bypass flow path is small, the flow is difficult to stabilize and it is difficult to measure the flow rate with high accuracy.
Therefore, it is required to arrange at least one of the inlet and the outlet of the bypass channel at a position where the flow velocity is large.

そこで、特許文献1では、曲がりの外側の流速が大きい位置にバイパス流路の入口が位置するように吸気量測定装置を取り付けている。
しかしながら、他部品との位置の干渉や管の断面形状等によっては、吸気量測定装置の位置を自由に設定できない場合もある。すなわち、バイパス流路の入口または出口の少なくともいずれか一方を曲がりの内側に偏って配置しなければならない場合もある。
Therefore, in Patent Document 1, the intake air amount measurement device is attached so that the inlet of the bypass channel is located at a position where the flow velocity outside the bend is large.
However, the position of the intake air measuring device may not be set freely depending on the interference with the position of other parts, the cross-sectional shape of the pipe, and the like. That is, in some cases, it is necessary to dispose at least one of the inlet and the outlet of the bypass flow channel inward of the bend.

なお、特許文献2では、吸気量測定装置の上流に整流板を設けて、吸気量測定装置の上流での流れの乱れを低減している。しかしながら、この整流板では、偏った流速分布に関しては改善することができない。   In Patent Document 2, a rectifying plate is provided upstream of the intake air amount measuring device to reduce the flow disturbance upstream of the intake air amount measuring device. However, this rectifying plate cannot improve the uneven flow velocity distribution.

そこで、本発明は、上記の問題点を解決するためになされたものであり、その目的は、吸気装置において、吸気量測定装置のバイパス流路入口または出口の少なくともいずれか一方を曲がりの内側に偏って配置する場合に、流量を高精度に測定することを可能とすることにある。   Accordingly, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide at least one of the bypass flow path inlet and the outlet of the intake air amount measuring device inside the bend in the intake device. In the case of being arranged unevenly, it is possible to measure the flow rate with high accuracy.

本発明の吸気装置は、内燃機関に吸入される吸気を浄化するエアクリーナと、エアクリーナで浄化された吸気を下流側へ送るダクトと、ダクトに取り付けられて、ダクト内を流れる吸気量を測定する吸気量測定装置とを備える。
エアクリーナは、吸気をろ過するエレメントと、このエレメントを内蔵するクリーナケースとを有し、クリーナケースには、エレメントを通過する吸気の流れ方向とは異なる方向に吸気出口が開口している。
An intake device of the present invention includes an air cleaner that purifies intake air taken into an internal combustion engine, a duct that sends intake air purified by the air cleaner downstream, and an intake air that is attached to the duct and measures the amount of intake air flowing through the duct A quantity measuring device.
The air cleaner has an element for filtering the intake air and a cleaner case containing the element, and an intake outlet is opened in the cleaner case in a direction different from the flow direction of the intake air passing through the element.

ダクトは、クリーナケースの吸気出口に接続されており、クリーナケース及びダクトによって、エレメントを通過した吸気が曲がって吸気量測定装置に到るように曲がり部を形成している。
吸気量測定装置は、クリーナケースから流出する吸気の一部を取り込むバイパス流路と、バイパス流路内の吸気流量を検出する流量センサとを有する。
The duct is connected to an intake outlet of the cleaner case, and a bent portion is formed by the cleaner case and the duct so that the intake air that has passed through the element is bent and reaches the intake air amount measuring device.
The intake air amount measuring device has a bypass passage that takes in a part of the intake air flowing out from the cleaner case, and a flow rate sensor that detects an intake air flow rate in the bypass passage.

エレメントから吸気量測定装置に到る流路において、曲がり部の曲がりの内側となる方向を内周側、曲がりの外側となる方向を外周側と定義すると、吸気量測定装置は、バイパス流路の入口または出口の少なくともいずれか一方が、ダクトの内周側に偏って位置している。   In the flow path from the element to the intake air amount measuring device, if the direction inside the bend of the bent portion is defined as the inner peripheral side and the direction outside the bend is defined as the outer peripheral side, the intake air amount measuring device At least one of the inlet and the outlet is biased to the inner peripheral side of the duct.

クリーナケースの内部には、吸気量測定装置の上流側で吸気の流れを整流するとともに、バイパス流路内へ吸気を導くように案内する整流板が設けられている。Inside the cleaner case, there is provided a rectifying plate that rectifies the flow of intake air upstream of the intake air amount measuring device and guides the intake air into the bypass flow path.
そして、エレメントを通過する吸気の流れ方向を1次方向とし、曲がり部の内周側に位置するクリーナケースの壁面をケース内周壁面と呼び、曲がり部の外周側に位置するクリーナケースの壁面をケース外周壁面と呼ぶときに、1次方向に直交する方向におけるケース内周壁面とケース外周壁面との間の距離をB1、ケース内周壁面と整流板の上流端との距離をB2とし、吸気出口と吸気量測定装置との間のダクト内の流れ方向を2次方向とし、曲がり部の内周側に位置するダクトの壁面をダクト内周壁面と呼び、曲がり部の外周側に位置するダクトの壁面をダクト外周壁面と呼ぶときに、2次方向に直交する方向におけるダクト内周壁面とダクト外周壁面との距離をA1、ダクト内周壁面と整流板の下流端との距離をA2とすると、A1/A2>B1/B2の関係を満たす。The flow direction of the intake air passing through the element is the primary direction, the wall surface of the cleaner case located on the inner peripheral side of the bent portion is called the case inner peripheral wall surface, and the wall surface of the cleaner case located on the outer peripheral side of the bent portion is When calling the case outer peripheral wall surface, the distance between the case inner peripheral wall surface and the case outer peripheral wall surface in the direction orthogonal to the primary direction is B1, and the distance between the case inner peripheral wall surface and the upstream end of the rectifying plate is B2. The flow direction in the duct between the outlet and the intake air measuring device is the secondary direction, the wall surface of the duct located on the inner peripheral side of the bent portion is called the duct inner peripheral wall surface, and the duct located on the outer peripheral side of the bent portion When the wall surface is called the duct outer peripheral wall surface, the distance between the duct inner peripheral wall surface and the duct outer peripheral wall surface in the direction orthogonal to the secondary direction is A1, and the distance between the duct inner peripheral wall surface and the downstream end of the rectifying plate is A2. , A1 / Satisfy the relationship of 2> B1 / B2.

これによれば、整流板の作用によって、エレメントから吸気量測定装置に到る流路において、内周側の流速が大きくなる。
このため、吸気量測定装置のバイパス流路の入口または出口の少なくともいずれか一方がダクトの内周側に偏って位置している場合でも、高精度に吸気量を測定することができる。
According to this, the flow rate on the inner peripheral side increases in the flow path from the element to the intake air amount measurement device by the action of the rectifying plate.
For this reason, it is possible to measure the intake air with high accuracy even when at least one of the inlet and the outlet of the bypass flow channel of the intake air measuring device is biased to the inner peripheral side of the duct.

吸気装置の模式的断面図である(参考例)。It is a typical sectional view of an intake device ( reference example ). (a)〜(c)は図1のII−II断面図である(参考例)。(A)-(c) is II-II sectional drawing of FIG. 1 ( reference example ). 吸気量測定装置の断面図である(参考例)。It is sectional drawing of an inhalation | air-intake amount measuring apparatus ( reference example ). 吸気装置の模式的断面図である(実施例)。 1 is a schematic cross-sectional view of an intake device (Example 1 ). 吸気流量に対するバイパス流路入口の流速を示す図である(実施例)。(Example 1 ) which is a figure which shows the flow velocity of the bypass flow path inlet with respect to intake flow rate. 吸気流量に対する吸気量測定装置の出力変動を示す図である(実施例)。(Example 1 ) which is a figure which shows the output fluctuation | variation of the intake air amount measuring device with respect to an intake air flow rate. エレメント目詰まり時の吸気量測定装置の出力変化を示す図である(実施例)。(Example 1 ) which shows the output change of the inhalation | air-intake amount measuring apparatus at the time of element clogging. 吸気装置の模式的断面図である(実施例)。(Example 2 ) which is typical sectional drawing of an intake device. 吸気装置の模式的断面図である(実施例)。(Example 3 ) which is typical sectional drawing of an intake device. 吸気装置の模式的断面図である(実施例)。(Example 4 ) which is typical sectional drawing of an intake device.

本発明を実施するための形態を以下の実施例により詳細に説明する。   The mode for carrying out the present invention will be described in detail with reference to the following examples.

参考例の構成〕
参考例の吸気装置1の構成を、図1〜3を用いて説明する。
図1に示すように、吸気装置1は、内燃機関(図示せず)に吸入される吸気を浄化するエアクリーナ2と、エアクリーナ2で浄化された吸気を下流側へ送るダクト3と、ダクト3に取り付けられて、ダクト3内を流れる吸気量を測定する吸気量測定装置(以下、AFM4と呼ぶ)とを備える。
[Configuration of Reference Example ]
The configuration of the intake device 1 of the reference example will be described with reference to FIGS.
As shown in FIG. 1, an intake device 1 includes an air cleaner 2 for purifying intake air sucked into an internal combustion engine (not shown), a duct 3 for sending intake air purified by the air cleaner 2 to the downstream side, and a duct 3. An intake air amount measuring device (hereinafter referred to as AFM 4) that is attached and measures the intake air amount flowing through the duct 3 is provided.

エアクリーナ2は、吸気をろ過するエレメント7と、このエレメント7を内蔵するクリーナケース8とを有している。
クリーナケース8は、樹脂により略直方体に形成されており、クリーナケース8の壁面にはクリーナケース8内への吸気の入口となる吸気入口9と、吸気の出口となる吸気出口10が開口している。
The air cleaner 2 has an element 7 for filtering the intake air and a cleaner case 8 in which the element 7 is built.
The cleaner case 8 is formed in a substantially rectangular parallelepiped shape with resin, and an intake inlet 9 serving as an inlet for intake air into the cleaner case 8 and an intake outlet 10 serving as an intake outlet are opened on the wall surface of the cleaner case 8. Yes.

エレメント7は、例えば例えば合成繊維の不織布や濾紙などの濾材によって構成され、クリーナケース8内の吸気入口9と吸気出口10との間に配置されている。これにより、吸気入口9から入った吸気はエレメント7を通過して吸気出口10へ向かう。
本実施例のクリーナケース8では、エレメント7を通過する吸気の流れ方向とは異なる方向に吸気出口10が開口している。
The element 7 is made of, for example, a filter medium such as a synthetic fiber nonwoven fabric or filter paper, and is disposed between the intake inlet 9 and the intake outlet 10 in the cleaner case 8. As a result, the intake air that has entered from the intake inlet 9 passes through the element 7 and travels toward the intake outlet 10.
In the cleaner case 8 of the present embodiment, the intake outlet 10 opens in a direction different from the flow direction of the intake air passing through the element 7.

すなわち、クリーナケース8の一面8aに吸気入口9が開口しており、一面8aに対向する一面8bに吸気出口10が開口している。しかし、一面8aと一面8bとが対向する方向(対向方向と呼ぶ)と直交する一方向(図示上下方向)において吸気入口9と吸気出口10との位置が異なっている。
そして、エレメント7は、対向方向と直交する一方向において、吸気入口9と吸気出口10との間に設けられている。
このため、エレメント7を通過する吸気の流れ方向と吸気出口10の開口面が向く方向(開口面の法線方向)とは異なっている。
なお、吸気入口9と吸気出口10とは、対向方向と直交する他方向(図示紙面奥行き方向)にも異なっていてもよい。
That is, the intake port 9 is opened on one surface 8a of the cleaner case 8, and the intake port 10 is opened on one surface 8b opposite to the one surface 8a. However, the positions of the intake inlet 9 and the intake outlet 10 are different in one direction (vertical direction in the figure) perpendicular to the direction in which the one surface 8a and the one surface 8b face each other (referred to as the facing direction).
The element 7 is provided between the intake inlet 9 and the intake outlet 10 in one direction orthogonal to the facing direction.
For this reason, the flow direction of the intake air passing through the element 7 and the direction in which the opening surface of the intake outlet 10 faces (the normal direction of the opening surface) are different.
Note that the intake inlet 9 and the intake outlet 10 may be different from each other in the other direction (the depth direction in the drawing) perpendicular to the facing direction.

ダクト3は、吸気出口10から下流側に開口面が向く方向に直線的に延びるように設けられている。そして、ダクト3の吸気出口10下流には、AFM4が組みつけられている。
これにより、クリーナケース8及びダクト3によって、エレメント7を通過した吸気が曲がってAFM4に到るように曲がり部15を形成する。
すなわち、吸気入口9から流入した吸気は、対向方向と直交する一方向(図示上下方向)にエレメント7を通過して流れ、その後、流れの向きを変えて吸気出口10へ向かい、後述するダクト3を流れて、AFM4に向かう。
The duct 3 is provided so as to extend linearly in the direction in which the opening surface faces from the intake outlet 10 to the downstream side. An AFM 4 is assembled downstream of the intake 3 of the duct 3.
As a result, the bent portion 15 is formed by the cleaner case 8 and the duct 3 so that the intake air that has passed through the element 7 is bent and reaches the AFM 4.
That is, the intake air flowing in from the intake inlet 9 flows through the element 7 in one direction (vertical direction in the figure) orthogonal to the opposing direction, and then changes the flow direction to the intake outlet 10 to be described later. And go to AFM4.

ダクト3は、図2(a)に示すような断面円形でもよいし、図2(b)、(c)に示すような断面楕円形状でもよい。また、扁平円形状でもよい。
なお、吸気入口9にもダクト16が接続されており、ダクト16は吸気入口9から上流側に開口面が向く方向に直線的に延びている。
そして、ダクト3及びダクト16は、クリーナケース8と一体的に樹脂で形成されていてもよいし、クリーナケース8と別体に形成されていてもよい。また、例えば、ダクト3の上流側の一部分のみをクリーナケース8と一体とし、下流側を別体としてもよい。
The duct 3 may have a circular cross section as shown in FIG. 2 (a), or may have an elliptical cross section as shown in FIGS. 2 (b) and 2 (c). Moreover, a flat circular shape may be sufficient.
A duct 16 is also connected to the intake inlet 9, and the duct 16 extends linearly from the intake inlet 9 in the direction in which the opening surface faces upstream.
The duct 3 and the duct 16 may be formed of resin integrally with the cleaner case 8, or may be formed separately from the cleaner case 8. Further, for example, only a part of the upstream side of the duct 3 may be integrated with the cleaner case 8 and the downstream side may be separated.

AFM4は、図1、3に示すように、クリーナケース8から流出する吸気(すなわち、ダクト3を流れる吸気)の一部を取り込むバイパス流路18を形成するハウジング19と、バイパス流路18内の吸気流量を検出する流量センサ20とを有する周知の構造を有する。   As shown in FIGS. 1 and 3, the AFM 4 includes a housing 19 that forms a bypass passage 18 that takes in a part of intake air flowing out from the cleaner case 8 (that is, intake air flowing through the duct 3), and a bypass passage 18. It has a known structure having a flow rate sensor 20 for detecting the intake flow rate.

すなわち、ハウジング19の内部にはバイパス流路18が形成されており、ダクト3内の吸気の流れ方向の上流側に向かってバイパス流路18の入口(以下、AFM入口22と呼ぶ)が開口し、ダクト3内の吸気の流れ方向の下流側に向かってバイパス流路18の出口(以下、AFM出口23と呼ぶ)が開口している。
流量センサ20は、バイパス流路18中に配され、バイパス流路18を流れる空気の流量に応じて電気的な信号(例えば電圧信号)を出力するものである。
That is, a bypass channel 18 is formed inside the housing 19, and an inlet (hereinafter referred to as an AFM inlet 22) of the bypass channel 18 opens toward the upstream side in the flow direction of the intake air in the duct 3. The outlet of the bypass channel 18 (hereinafter referred to as AFM outlet 23) is opened toward the downstream side in the flow direction of the intake air in the duct 3.
The flow sensor 20 is arranged in the bypass flow path 18 and outputs an electrical signal (for example, a voltage signal) according to the flow rate of air flowing through the bypass flow path 18.

参考例の特徴〕
ここで、エレメント7から吸気量測定装置に到る流路において、曲がり部15の曲がりの内側となる方向を内周側、曲がりの外側となる方向を外周側と定義する。
すなわち、図1では、ダクト3において図示下方が内周側となり、クリーナケース8において図示左方が内周側となる。
[Features of Reference Example ]
Here, in the flow path from the element 7 to the intake air amount measurement device, a direction that is inside the curve of the bent portion 15 is defined as an inner peripheral side, and a direction that is outside the curve is defined as an outer peripheral side.
That is, in FIG. 1, the lower side of the duct 3 is the inner peripheral side, and the left side of the cleaner case 8 is the inner peripheral side.

AFM4は、AFM入口22が、ダクト3の内周側に偏って位置している。例えば、本実施例では、AFM4がダクト3の内周側に設けられた取付け穴から挿入されて組みつけられており、AFM入口22の開口面積の半分より大きい範囲がダクト3の中心よりも内周側に存在するように配される。   In the AFM 4, the AFM inlet 22 is located biased toward the inner peripheral side of the duct 3. For example, in this embodiment, the AFM 4 is assembled by being inserted from a mounting hole provided on the inner peripheral side of the duct 3, and a range larger than half of the opening area of the AFM inlet 22 is inside the center of the duct 3. Arranged to exist on the circumferential side.

そして、クリーナケース8の内部には、AFM4の上流側で吸気の流れを整流するとともに、バイパス流路18内へ吸気を導くように案内する整流板30が設けられている。
整流板30は、クリーナケース8内のエレメント7の下流に設けられており、吸気の流れ方向に沿って板状に延びている。
Inside the cleaner case 8, there is provided a rectifying plate 30 that rectifies the flow of intake air upstream of the AFM 4 and guides the intake air into the bypass flow path 18.
The current plate 30 is provided downstream of the element 7 in the cleaner case 8 and extends in a plate shape along the flow direction of the intake air.

整流板30の上流端Xは、整流板30の下流端Yよりも外周側に位置しており、整流板30の下流端Yの流れ方向の位置は、ダクト3の上流端位置(吸気出口位置)に位置している。
また、整流板30の上流端Xの位置は、AFM入口22の内周側端よりも外周側で且つAFM入口22の外周側端のより内周側に位置している。すなわち、内外周方向においてAFM入口22の範囲内に上流端Xが位置する。これにより、整流板30によって吸気がAFM4のバイパス流路18内に導かれる。
The upstream end X of the rectifying plate 30 is located on the outer peripheral side with respect to the downstream end Y of the rectifying plate 30, and the position in the flow direction of the downstream end Y of the rectifying plate 30 is the upstream end position (intake outlet position) of the duct 3. ).
Further, the position of the upstream end X of the current plate 30 is located on the outer peripheral side of the inner peripheral side end of the AFM inlet 22 and on the inner peripheral side of the outer peripheral side end of the AFM inlet 22. That is, the upstream end X is located within the range of the AFM inlet 22 in the inner and outer peripheral directions. As a result, the intake air is guided into the bypass flow path 18 of the AFM 4 by the rectifying plate 30.

そして、整流板30の上流端Xと下流端Yとの間は、吸気の流れ方向が変化する方向に湾曲する湾曲形状となっている。すなわち、整流板30は内周側に凹となるように湾曲している。そして、その曲率は、吸気の上流側から下流側に向かって小さくなっている。   And between the upstream end X and the downstream end Y of the baffle plate 30, it has the curved shape which curves in the direction where the flow direction of intake air changes. That is, the current plate 30 is curved so as to be concave toward the inner peripheral side. The curvature decreases from the upstream side to the downstream side of the intake air.

参考例の作用効果〕
参考例によれば、AFM入口22がダクト3の内周側に偏って位置しており、吸気の流れを整流するとともにバイパス流路18内へ吸気を導く整流板30が、吸気の流れ方向が変化する方向に湾曲する湾曲形状を有し、その曲率は、吸気の上流側から下流側に向かって小さくなっている。
[Effects of Reference Example ]
According to this reference example , the AFM inlet 22 is biased toward the inner peripheral side of the duct 3, and the rectifying plate 30 that rectifies the flow of the intake air and guides the intake air into the bypass flow path 18 is provided in the flow direction of the intake air. Has a curved shape that curves in the direction of change, and the curvature decreases from the upstream side to the downstream side of the intake air.

これによれば、整流板30に沿って吸気が流れることによって、エレメント7からAFM4に到る流路において、内周側の流速が大きくなる。また、整流板30の整流効果によって、吸気流れの乱れも低減することができる。
このため、AFM入口22がダクト3の内周側に偏って位置している場合でも、AFM入口22での流速を大きくできるので、流量を高精度に測定することができる。
According to this, when the intake air flows along the rectifying plate 30, the flow velocity on the inner peripheral side increases in the flow path from the element 7 to the AFM 4. Further, the disturbance of the intake air flow can be reduced by the rectifying effect of the rectifying plate 30.
For this reason, even when the AFM inlet 22 is biased to the inner peripheral side of the duct 3, the flow velocity at the AFM inlet 22 can be increased, and thus the flow rate can be measured with high accuracy.

〔実施例
実施例を、参考例とは異なる点を中心に、図4を用いて説明する。
なお、参考例と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
本実施例では、エレメント7を通過する吸気の流れ方向を1次方向とし、曲がり部15の内周側に位置するクリーナケース8の壁面をケース内周壁面31と呼び、曲がり部15の外周側に位置するクリーナケース8の壁面をケース外周壁面32と呼ぶ。そして、吸気出口10とAFM4との間のダクト3内の流れ方向を2次方向とし、曲がり部15の内周側に位置するダクト3の壁面をダクト内周壁面33と呼び、曲がり部15の外周側に位置するダクト3の壁面をダクト外周壁面34と呼ぶ。
[Example 1 ]
Example 1 will be described with reference to FIG. 4 with a focus on differences from the reference example .
The same reference numerals as those in the reference example indicate the same configuration, and the preceding description is referred to.
In this embodiment, the flow direction of the intake air passing through the element 7 is the primary direction, and the wall surface of the cleaner case 8 located on the inner peripheral side of the bent portion 15 is called the case inner peripheral wall surface 31, and the outer peripheral side of the bent portion 15 The wall surface of the cleaner case 8 located at the position is called the case outer peripheral wall surface 32. The flow direction in the duct 3 between the intake outlet 10 and the AFM 4 is a secondary direction, and the wall surface of the duct 3 located on the inner peripheral side of the bent portion 15 is called a duct inner peripheral wall surface 33. The wall surface of the duct 3 located on the outer peripheral side is called a duct outer peripheral wall surface 34.

すなわち、参考例における一面8aの一部がケース外周壁面32であり、一面8bの一部がケース内周壁面31である。
そして、対向方向と直交する一方向(図示上下方向)が1次方向となり、ダクト3の延びる方向が2次方向となる。
That is, a part of the one surface 8 a in the reference example is the case outer peripheral wall surface 32, and a part of the one surface 8 b is the case inner peripheral wall surface 31.
One direction (vertical direction in the figure) perpendicular to the facing direction is the primary direction, and the direction in which the duct 3 extends is the secondary direction.

そして、1次方向に直交する方向におけるケース内周壁面31とケース外周壁面32との間の距離をB1、1次方向に直交する方向におけるケース内周壁面31と整流板30の上流端Xとの距離をB2、2次方向に直交する方向におけるダクト内周壁面33とダクト外周壁面34との距離をA1、2次方向に直交する方向におけるダクト内周壁面33と整流板30の下流端Yとの距離をA2としたときに、以下の式(1)の関係が成り立つように整流板30が設けられている。
A1/A2>B1/B2・・・式(1)
The distance between the case inner peripheral wall surface 31 and the case outer peripheral wall surface 32 in the direction orthogonal to the primary direction is defined as B1, the case inner peripheral wall surface 31 in the direction orthogonal to the primary direction, and the upstream end X of the rectifying plate 30. The distance between the duct inner peripheral wall surface 33 and the duct outer peripheral wall surface 34 in the direction orthogonal to the secondary direction is B2, and the downstream end Y of the duct inner peripheral wall surface 33 and the rectifying plate 30 in the direction orthogonal to the secondary direction. The rectifying plate 30 is provided so that the relationship of the following formula (1) is established, where A2 is the distance to
A1 / A2> B1 / B2 (1)

整流板30の上流端Xと下流端Yとの間は、参考例と同様に、曲率が吸気の上流側から下流側に向かって小さくなる湾曲形状を呈している。なお、式(1)の関係が成立していれば、整流板30の上流端Xと下流端Yとの間は、直線的に延びていてもよいし、参考例の曲率の条件とは異なる条件で湾曲していてもよい。 Between the upstream end X and the downstream end Y of the rectifying plate 30, a curved shape whose curvature decreases from the upstream side to the downstream side of the intake air is exhibited as in the reference example . In addition, if the relationship of Formula (1) is materialized, between the upstream end X and the downstream end Y of the baffle plate 30 may extend linearly, and it differs from the conditions of curvature of a reference example. It may be curved under certain conditions.

〔実施例2の作用効果〕
本実施例の作用効果を図5〜7を用いて説明する。
整流板30を設けない例を比較例1とし、整流板30がA1/A2=B1/B2の条件を満たす例を比較例2とし、実施例2、比較例1、比較例2を比較する。
[Effects of Example 2]
The effect of a present Example is demonstrated using FIGS.
An example in which the rectifying plate 30 is not provided is referred to as Comparative Example 1, an example in which the rectifying plate 30 satisfies the condition of A1 / A2 = B1 / B2 is set as Comparative Example 2, and Example 2, Comparative Example 1, and Comparative Example 2 are compared.

まず、AFM入口22での流速を比較する。
図5に示すように、実施例2では、比較例1及び比較例2よりもAFM入口22での流速が大きい。なお、比較例2でも、比較例1よりは大きい流速を得られるものの、実施例2の方がより大きい流速を得られることがわかる。
First, the flow velocity at the AFM inlet 22 is compared.
As shown in FIG. 5, in Example 2, the flow velocity at the AFM inlet 22 is larger than those in Comparative Example 1 and Comparative Example 2. In Comparative Example 2, although a larger flow rate can be obtained than in Comparative Example 1, it can be seen that Example 2 can obtain a larger flow rate.

次に、AFM4の出力変動を比較する。
図6の縦軸は、AFM4の出力変動を示す指標であり、検出信号の変動幅σ/検出信号の平均値Q×100(%)である。
図6に示すように、比較例2でも比較例1よりは出力変動を小さくできるが、実施例2では、比較例1及び比較例2よりも出力変動が小さい。特に、ダクト流量が小さい範囲では、比較例1及び比較例2では出力変動が大きくなっているが、実施例2では小さく、ダクト流量によらず出力変動を低減できている。すなわち、実施例2では吸気の乱れをより低減できることがわかる。
Next, the output fluctuation of the AFM 4 is compared.
The vertical axis in FIG. 6 is an index indicating the output fluctuation of the AFM 4 and is the fluctuation width σ of the detection signal / the average value Q × 100 (%) of the detection signal.
As shown in FIG. 6, the output fluctuation can be made smaller in Comparative Example 2 than in Comparative Example 1, but the output fluctuation is smaller in Comparative Example 2 than in Comparative Example 1 and Comparative Example 2. In particular, in the range where the duct flow rate is small, the output fluctuation is large in Comparative Example 1 and Comparative Example 2, but in Example 2, it is small and the output fluctuation can be reduced regardless of the duct flow rate. That is, it can be seen that the disturbance of the intake air can be further reduced in the second embodiment.

次に、エレメント目詰まり時のAFM4の出力特性変化を比較する。
図7の縦軸は、エレメント目詰まり無しの場合(初期状態)の出力特性を0として、エレメント目詰まり時のAFM4の出力特性変化を示している。
図7に示すように、実施例2では目詰まり時にも初期状態と同様の出力特性を得ることができる。比較例1では、エレメント目詰まり時には、初期状態よりも出力が小さくなる傾向にある。また、比較例2でも、比較例1よりは良好なものの、初期状態よりも出力が小さくなっている。
Next, the output characteristic change of the AFM 4 when the element is clogged is compared.
The vertical axis in FIG. 7 shows the change in the output characteristics of the AFM 4 when the element is clogged, assuming that the output characteristic when the element is not clogged (initial state) is zero.
As shown in FIG. 7, in Example 2, output characteristics similar to those in the initial state can be obtained even when clogging occurs. In Comparative Example 1, when the element is clogged, the output tends to be smaller than that in the initial state. In Comparative Example 2, the output is smaller than that in the initial state although it is better than Comparative Example 1.

エレメント7は異物が内周側に溜まっていくため、偏流が生じて、流速分布における外周側と内周側との差が大きくなる。このため、比較例1及び比較例2では、出力が低くなるが、実施例2では内周側での流速を大きくすることができるので、エレメント目詰まり時にも出力特性が変化しない。   In the element 7, foreign matter accumulates on the inner peripheral side, so that a drift occurs, and the difference between the outer peripheral side and the inner peripheral side in the flow velocity distribution increases. For this reason, in Comparative Example 1 and Comparative Example 2, the output is low, but in Example 2, the flow velocity on the inner peripheral side can be increased, so that the output characteristics do not change even when the element is clogged.

〔実施例
実施例を、実施例1とは異なる点を中心に、図8を用いて説明する。
なお、実施例1と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
[Example 2 ]
A second embodiment will be described with reference to FIG. 8 with a focus on differences from the first embodiment.
In addition, the same code | symbol as Example 1 shows the same structure, Comprising: The previous description is referred.

本実施例では、整流板30の下流端Yが、吸気の流れ方向において、ダクト3の上流端よりも下流側に位置している。
すなわち、整流板30が吸気出口10よりもダクト3側に突出して設けられている。
これによれば、AFM4の直前にまで整流板30を設けることが可能となり、実施例1の効果をさらに向上させることができる。
In the present embodiment, the downstream end Y of the rectifying plate 30 is located downstream of the upstream end of the duct 3 in the intake air flow direction.
That is, the rectifying plate 30 is provided so as to protrude from the intake outlet 10 toward the duct 3.
According to this, it becomes possible to provide the baffle plate 30 just before AFM4, and the effect of Example 1 can further be improved.

〔実施例
実施例を、実施例1とは異なる点を中心に、図9を用いて説明する。
なお、実施例1と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
本実施例では、整流板30の内周側で吸気の流れを整流する補助整流板37を備える。
この補助整流板37は、整流板30と同様に曲率が吸気の上流側から下流側に向かって小さくなる湾曲形状を呈している。
なお、補助整流板37は、直線的に延びていてもよいし、整流板30の曲率の条件とは異なる条件で湾曲していてもよい。
また、補助整流板37は1枚に限らず、複数枚設けられていてもよい。また、整流板30の外周側と内周側に1枚ずつ設けられているのでもよい。
[Example 3 ]
A third embodiment will be described with reference to FIG. 9 with a focus on differences from the first embodiment.
In addition, the same code | symbol as Example 1 shows the same structure, Comprising: The previous description is referred.
In the present embodiment, an auxiliary rectifying plate 37 that rectifies the flow of intake air on the inner peripheral side of the rectifying plate 30 is provided.
Similar to the rectifying plate 30, the auxiliary rectifying plate 37 has a curved shape in which the curvature decreases from the upstream side to the downstream side of the intake air.
The auxiliary rectifying plate 37 may extend linearly or may be curved under a condition different from the curvature condition of the rectifying plate 30.
Further, the number of auxiliary rectifying plates 37 is not limited to one, and a plurality of auxiliary rectifying plates 37 may be provided. Alternatively, one plate may be provided on each of the outer peripheral side and the inner peripheral side of the current plate 30.

これによれば、内周側での吸気の乱れをより低減することができ、実施例1の効果をさらに向上させることができる。   According to this, the disturbance of the intake air on the inner peripheral side can be further reduced, and the effect of the first embodiment can be further improved.

〔実施例
実施例を、実施例1とは異なる点を中心に、図10を用いて説明する。
なお、実施例1と同じ符号は、同一の構成を示すものであって、先行する説明を参照する。
本実施例では、ケース内周壁面31とダクト内周壁面33との交差部38が、R形状もしくは面取り形状に形成されている。
すなわち、曲がり部15の内周側角部がR形状もしくは面取り形状となっている。
これによれば、吸気の流れが内周側角部で剥離することなく、吸気の乱れをより低減することができ、実施例1の効果をさらに向上させることができる。
[Example 4 ]
A fourth embodiment will be described with reference to FIG. 10 with a focus on differences from the first embodiment.
In addition, the same code | symbol as Example 1 shows the same structure, Comprising: The previous description is referred.
In the present embodiment, the intersecting portion 38 between the case inner peripheral wall surface 31 and the duct inner peripheral wall surface 33 is formed in an R shape or a chamfered shape.
That is, the inner peripheral corner of the bent portion 15 has an R shape or a chamfered shape.
According to this, the disturbance of the intake air can be further reduced without causing the intake air flow to separate at the inner peripheral side corners, and the effect of the first embodiment can be further improved.

〔変形例〕
本実施例では、AFM入口22がダクト3の内周側に偏って位置していたが、
AFM入口22またはAFM出口23の少なくともいずれか一方がダクト3の内周側に偏って位置していればよい。
例えば、AFM出口23のみがダクト3の内周側に位置している場合でも、整流板30によってダクト3の内周側での流速が大きくなることにより、バイパス流路18に吸気が導かれやすくなり、高精度に流量を測定することができる。
[Modification]
In the present embodiment, the AFM inlet 22 is biased to the inner peripheral side of the duct 3,
It suffices that at least one of the AFM inlet 22 or the AFM outlet 23 is biased toward the inner peripheral side of the duct 3.
For example, even when only the AFM outlet 23 is located on the inner peripheral side of the duct 3, the flow velocity on the inner peripheral side of the duct 3 is increased by the rectifying plate 30, so that intake air is easily guided to the bypass flow path 18. Thus, the flow rate can be measured with high accuracy.

また、本実施例では、AFM4がダクト3の内周側壁に設けられた取付け穴から挿入されて組みつけられていたが、ダクト3の外周側壁に設けられた取付け穴から挿入されて組みつけられているのでもよい。   Further, in this embodiment, the AFM 4 is inserted and assembled from the mounting hole provided on the inner peripheral side wall of the duct 3, but is inserted and assembled from the mounting hole provided on the outer peripheral side wall of the duct 3. It may be.

また、本実施例では、整流板30に吸気をバイパス流路18へと導く機能を持たせるために、内外周方向においてAFM入口22の範囲内に上流端Xが位置するよう整流板30が設けられていたが、少なくとも、上流端Xの位置が、AFM入口22の内周側端よりも外周側にあればよい。また、内外周方向においてAFM出口23の範囲内に上流端Xが位置するよう整流板30が設けてもよい。   Further, in this embodiment, the rectifying plate 30 is provided so that the upstream end X is positioned within the range of the AFM inlet 22 in the inner and outer peripheral directions in order to give the rectifying plate 30 the function of guiding the intake air to the bypass flow path 18. However, it is sufficient that at least the position of the upstream end X is located on the outer peripheral side of the inner peripheral side end of the AFM inlet 22. Further, the rectifying plate 30 may be provided so that the upstream end X is positioned within the range of the AFM outlet 23 in the inner and outer peripheral directions.

1 吸気装置、2 エアクリーナ、3 ダクト、4 AFM、7 エレメント、8 クリーナケース、10 吸気出口、15 曲がり部、18 バイパス流路、20 流量センサ、22 AFM入口、23 AFM出口、30 整流板、31 ケース内周壁面、32 ケース外周壁面、33 ダクト内周壁面、34 ダクト外周壁面、37 補助整流板、38 交差部 DESCRIPTION OF SYMBOLS 1 Intake device, 2 Air cleaner, 3 Duct, 4 AFM, 7 element, 8 Cleaner case, 10 Inlet outlet, 15 Bending part, 18 Bypass flow path, 20 Flow sensor, 22 AFM inlet, 23 AFM outlet, 30 Current plate, 31 Case inner peripheral wall, 32 Case outer peripheral wall, 33 Duct inner peripheral wall, 34 Duct outer peripheral wall, 37 Auxiliary flow straightening plate, 38 Intersection

Claims (6)

内燃機関に吸入される吸気を浄化するエアクリーナ(2)と、
このエアクリーナ(2)で浄化された吸気を下流側へ送るダクト(3)と、
このダクト(3)に取り付けられて、前記ダクト(3)内を流れる吸気量を測定する吸気量測定装置(4)とを備え、
前記エアクリーナ(2)は、吸気をろ過するエレメント(7)と、このエレメント(7)を内蔵するクリーナケース(8)とを有し、
前記クリーナケース(8)には、前記エレメント(7)を通過する吸気の流れ方向とは異なる方向に吸気出口(10)が開口しており、
前記ダクト(3)は、前記クリーナケース(8)の前記吸気出口(10)に接続されており、前記クリーナケース(8)及び前記ダクト(3)によって、前記エレメント(7)を通過した吸気が曲がって前記吸気量測定装置(4)に到るように曲がり部(15)を形成しており、
前記吸気量測定装置(4)は、前記クリーナケース(8)から流出する吸気の一部を取り込むバイパス流路(18)と、このバイパス流路(18)内の吸気流量を検出する流量センサ(20)とを有する吸気装置であって、
前記エレメント(7)から前記吸気量測定装置(4)に到る流路において、前記曲がり部(15)の曲がりの内側となる方向を内周側、曲がりの外側となる方向を外周側と定義すると、
前記吸気量測定装置(4)は、前記バイパス流路(18)の入口(22)または出口(23)の少なくともいずれか一方が、前記ダクト(3)の内周側に偏って位置し、
前記クリーナケース(8)の内部には、前記吸気量測定装置(4)の上流側で吸気の流れを整流するとともに、前記バイパス流路(18)内へ吸気を導くように案内する整流板(30)が設けられ、
前記エレメント(7)を通過する吸気の流れ方向を1次方向とし、前記曲がり部(15)の内周側に位置する前記クリーナケース(8)の壁面をケース内周壁面(31)と呼び、曲がり部(15)の外周側に位置する前記クリーナケース(8)の壁面をケース外周壁面(32)と呼ぶときに、
1次方向に直交する方向における前記ケース内周壁面(31)と前記ケース外周壁面(32)との間の距離をB1、前記ケース内周壁面(31)と前記整流板(30)の上流端(X)との距離をB2とし、
前記吸気出口(10)と前記吸気量測定装置(4)との間の前記ダクト(3)内の流れ方向を2次方向とし、前記曲がり部(15)の内周側に位置する前記ダクト(3)の壁面をダクト内周壁面(33)と呼び、曲がり部(15)の外周側に位置する前記ダクト(3)の壁面をダクト外周壁面(34)と呼ぶときに、
2次方向に直交する方向における前記ダクト内周壁面(33)と前記ダクト外周壁面(34)との距離をA1、前記ダクト内周壁面(33)と前記整流板(30)の下流端(Y)との距離をA2とすると、
A1/A2>B1/B2
の関係を満たすことを特徴とする吸気装置。
An air cleaner (2) for purifying intake air taken into the internal combustion engine;
A duct (3) for sending the air purified by the air cleaner (2) to the downstream side;
An intake air amount measuring device (4) attached to the duct (3) and measuring the intake air amount flowing through the duct (3);
The air cleaner (2) has an element (7) for filtering the intake air, and a cleaner case (8) containing the element (7).
The cleaner case (8) has an intake outlet (10) opened in a direction different from the flow direction of the intake air passing through the element (7).
The duct (3) is connected to the intake outlet (10) of the cleaner case (8), and the intake air that has passed through the element (7) is passed through the cleaner case (8) and the duct (3). A bent portion (15) is formed so as to be bent and reach the intake air amount measuring device (4),
The intake air amount measuring device (4) includes a bypass passage (18) for taking in part of the intake air flowing out from the cleaner case (8), and a flow rate sensor (for detecting an intake air flow in the bypass passage (18)). 20) having an intake device,
In the flow path from the element (7) to the intake air amount measuring device (4), the direction inside the bend of the bent portion (15) is defined as the inner peripheral side, and the direction outside the bend is defined as the outer peripheral side. Then
In the intake air amount measuring device (4), at least one of the inlet (22) and the outlet (23) of the bypass flow path (18) is located biased toward the inner peripheral side of the duct (3),
In the cleaner case (8), there is a rectifying plate (for rectifying the flow of intake air upstream of the intake air amount measuring device (4) and guiding the intake air into the bypass flow path (18)). 30)
The flow direction of the intake air passing through the element (7) is a primary direction, and the wall surface of the cleaner case (8) located on the inner peripheral side of the bent portion (15) is referred to as a case inner peripheral wall surface (31), When the wall surface of the cleaner case (8) located on the outer peripheral side of the bent portion (15) is referred to as a case outer peripheral wall surface (32),
The distance between the case inner peripheral wall surface (31) and the case outer peripheral wall surface (32) in the direction orthogonal to the primary direction is B1, and the case inner peripheral wall surface (31) and the upstream end of the rectifying plate (30). The distance to (X) is B2,
The flow direction in the duct (3) between the intake outlet (10) and the intake air amount measuring device (4) is a secondary direction, and the duct ( When the wall surface of 3) is called the duct inner peripheral wall surface (33) and the wall surface of the duct (3) located on the outer peripheral side of the bent portion (15) is called the duct outer peripheral wall surface (34),
The distance between the duct inner peripheral wall surface (33) and the duct outer peripheral wall surface (34) in the direction orthogonal to the secondary direction is A1, and the duct inner peripheral wall surface (33) and the downstream end of the rectifying plate (30) (Y )) Is A2,
A1 / A2> B1 / B2
An air intake device that satisfies the above relationship .
請求項1に記載の吸気装置において、
前記整流板(30)は、吸気の流れ方向が変化する方向に湾曲する湾曲形状を有し、前記整流板(30)の曲率は、吸気の上流側から下流側に向かって小さくなっていることを特徴とする吸気装置。
The intake device according to claim 1,
The rectifying plate (30) has a curved shape that curves in a direction in which the flow direction of the intake air changes, and the curvature of the rectifying plate (30) decreases from the upstream side to the downstream side of the intake air. Intake device characterized by.
請求項1または2に記載の吸気装置において、
前記整流板(30)の下流端(Y)が、吸気の流れ方向において、前記ダクト(3)の上流端よりも下流側に位置していることを特徴とする吸気装置。
The intake device according to claim 1 or 2 ,
An air intake apparatus , wherein a downstream end (Y) of the rectifying plate (30) is located downstream of an upstream end of the duct (3) in a flow direction of intake air.
請求項1〜3のいずれか1つに記載の吸気装置において、
前記整流板(30)の内周側もしくは外周側で吸気の流れを整流する補助整流板(37)を備えることを特徴とする吸気装置。
In the intake device according to any one of claims 1 to 3,
An air intake apparatus comprising an auxiliary rectifying plate (37) for rectifying the flow of intake air on the inner peripheral side or the outer peripheral side of the rectifying plate (30) .
請求項1〜4のいずれか1つに記載の吸気装置において、
前記ケース内周壁面(31)と前記ダクト内周壁面(33)との交差部(38)は、R形状もしくは面取り形状に形成されていることを特徴とする吸気装置。
In the inhalation device according to any one of claims 1 to 4,
An air intake apparatus , wherein an intersection (38) between the case inner peripheral wall surface (31) and the duct inner peripheral wall surface (33) is formed in an R shape or a chamfered shape .
請求項1〜5のいずれか1つに記載の吸気装置において、
前記吸気量測定装置(4)は、前記バイパス流路(18)の入口(22)または出口(23)の少なくともいずれか一方が、前記整流板(30)の下流端(Y)を通るとともに前記ダクト(3)の中心軸に平行な仮想直線に対して、内周側に位置するように設けられていることを特徴とする吸気装置。
In the intake device according to any one of claims 1 to 5,
In the intake air amount measuring device (4), at least one of the inlet (22) and the outlet (23) of the bypass channel (18) passes through the downstream end (Y) of the rectifying plate (30) and An air intake apparatus provided so as to be located on an inner peripheral side with respect to a virtual straight line parallel to the central axis of the duct (3) .
JP2012182273A 2012-08-21 2012-08-21 Intake device Active JP5751533B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012182273A JP5751533B2 (en) 2012-08-21 2012-08-21 Intake device
DE201310216348 DE102013216348A1 (en) 2012-08-21 2013-08-19 INLET DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012182273A JP5751533B2 (en) 2012-08-21 2012-08-21 Intake device

Publications (2)

Publication Number Publication Date
JP2014040779A JP2014040779A (en) 2014-03-06
JP5751533B2 true JP5751533B2 (en) 2015-07-22

Family

ID=50393216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012182273A Active JP5751533B2 (en) 2012-08-21 2012-08-21 Intake device

Country Status (2)

Country Link
JP (1) JP5751533B2 (en)
DE (1) DE102013216348A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014014398A1 (en) 2014-10-02 2016-04-07 Mann + Hummel Gmbh Fluid management system
DE102014019147A1 (en) * 2014-12-19 2016-06-23 Daimler Ag Air line for an intake of an internal combustion engine, in particular a motor vehicle
JP7140644B2 (en) * 2018-11-16 2022-09-21 タイガースポリマー株式会社 rectifier structure
JP7227850B2 (en) 2019-05-22 2023-02-22 タイガースポリマー株式会社 rectifier structure
JP7278203B2 (en) 2019-12-02 2023-05-19 マーレジャパン株式会社 air cleaner
WO2021200021A1 (en) * 2020-03-31 2021-10-07 本田技研工業株式会社 Intake air purifying device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3345994B2 (en) * 1993-11-09 2002-11-18 株式会社デンソー Engine intake system
JP3169808B2 (en) 1995-09-29 2001-05-28 株式会社日立製作所 Air flow measurement device and air cleaner case
JP4132169B2 (en) 1998-01-23 2008-08-13 株式会社デンソー Intake device
JP2001033288A (en) * 1999-07-21 2001-02-09 Denso Corp Air flow rate measuring device
JP3995386B2 (en) * 2000-04-04 2007-10-24 株式会社デンソー Intake device
JP3562474B2 (en) * 2001-02-07 2004-09-08 株式会社デンソー Engine control module cooling mechanism
JP2004144025A (en) * 2002-10-25 2004-05-20 Toyota Motor Corp Air cleaner for internal combustion engine
JP2008190515A (en) * 2007-02-08 2008-08-21 Nissan Motor Co Ltd Engine air intake cleaning device
DE102007023119A1 (en) * 2007-05-16 2008-11-20 Robert Bosch Gmbh Flow guiding element for guiding a flow of a fluid medium
JP2009215988A (en) * 2008-03-11 2009-09-24 Nissan Motor Co Ltd Air cleaner device
JP2010138755A (en) * 2008-12-10 2010-06-24 Toyota Boshoku Corp Intake air temperature adjusting device for engine

Also Published As

Publication number Publication date
DE102013216348A1 (en) 2014-05-15
JP2014040779A (en) 2014-03-06

Similar Documents

Publication Publication Date Title
JP5751533B2 (en) Intake device
JP5338870B2 (en) Air flow measurement device
JP5338864B2 (en) Air flow measurement device
CN108700005B (en) Air intake device for engine
JP5397425B2 (en) Air flow measurement device
JP4934198B2 (en) Plug-in sensor with optimized outflow
JP3706300B2 (en) Flow measuring device
JP2006522917A (en) Apparatus for measuring at least one parameter of a medium flowing in a conduit
US11525425B2 (en) Air cleaner
JP2001289132A (en) Air intake device
JP2018132047A (en) Air cleaner
US11530670B2 (en) Air cleaner
JP6171859B2 (en) Air cleaner
JP6209960B2 (en) Air cleaner
JP6140985B2 (en) Intake pipe structure of internal combustion engine
JP2022153665A (en) Flow rate measurement device
JP2018025549A (en) Flow rate measurement device
CN208672064U (en) A kind of current stabilization metering mould group for hot type gas meter, flow meter
JP5527297B2 (en) Air flow measurement device
JPH10205415A (en) Intake manifold for internal combustion engine
JP6144599B2 (en) Air cleaner
CN112673163B (en) Air filter
JP5983374B2 (en) Air cleaner
JP4132169B2 (en) Intake device
US20210108950A1 (en) Sensor element for detecting at least one property of a fluid medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150427

R151 Written notification of patent or utility model registration

Ref document number: 5751533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150510

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250