JP4131783B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4131783B2
JP4131783B2 JP2001138392A JP2001138392A JP4131783B2 JP 4131783 B2 JP4131783 B2 JP 4131783B2 JP 2001138392 A JP2001138392 A JP 2001138392A JP 2001138392 A JP2001138392 A JP 2001138392A JP 4131783 B2 JP4131783 B2 JP 4131783B2
Authority
JP
Japan
Prior art keywords
reducing agent
air
fuel mixture
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001138392A
Other languages
Japanese (ja)
Other versions
JP2002332825A (en
Inventor
裕司 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2001138392A priority Critical patent/JP4131783B2/en
Publication of JP2002332825A publication Critical patent/JP2002332825A/en
Application granted granted Critical
Publication of JP4131783B2 publication Critical patent/JP4131783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化装置において、特に、窒素酸化物の浄化効率を向上させる技術に関する。
【0002】
【従来の技術】
内燃機関から排出される排気中には、無害な二酸化炭素(CO2),水(H2O),窒素(N2)の他に、有害な一酸化炭素(CO),炭化水素(HC),窒素酸化物(NOx)が含まれていることは知られている。このため、有害物質であるNOxを浄化することを目的として、例えば、特開平6−137136号公報に開示されるような排気浄化装置が提案されている。かかる排気浄化装置は、酸素過剰雰囲気でNOxを無害なN2、酸素(O2)等に転化すべく、内燃機関の排気通路にNOx還元触媒が介装されている。また、NOx還元触媒におけるNOx浄化効率を高めるべく、その上流側の排気通路に、還元剤としてのHCを含む軽油等の燃料を添加する構成が採用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、排気と比べて温度が低い還元剤をそのまま排気通路に添加すると、排気温度が低下してしまい、NOx還元触媒によるNOx浄化効率が低下してしまうおそれがあった。また、還元剤として軽油等の液体燃料を使用した場合には、排気通路に液滴状態の還元剤が添加されるため、還元剤の拡散が不十分となり、NOx還元触媒に対する還元剤の供給にむらが生じ易いという問題もあった。さらに、液体燃料は、NOx還元活性の低い高分子のHCから構成されるため、NOx浄化効率の向上が困難であるという問題もあった。
【0004】
そこで、本発明は以上のような従来の問題点に鑑み、還元剤添加による排気温度の低下を抑制すると共に、還元剤の拡散性及び活性を高めることで、NOx還元触媒によるNOx浄化効率を向上させた内燃機関の排気浄化装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
このため、請求項1記載の発明では、内燃機関の排気通路に介装され、排気中の窒素酸化物を還元反応により無害物質に転化させる窒素酸化物還元触媒と、炭化水素を含んだ還元剤と空気とを所定比率で混合した混合気を生成する混合気生成手段と、該混合気生成手段により生成された混合気を加熱しつつ、前記窒素酸化物還元触媒の上流側に添加する還元剤噴射弁と、を含んで構成された内燃機関の排気浄化装置において、前記還元剤噴射弁は、軸方向に延びつつ略同心に配設される2つの発熱体の間に混合気流路が形成されると共に、該混合気流路の横断面において混合気導入口が軸中心に対してオフセットした位置に開口していることを特徴とする。
【0006】
かかる構成によれば、窒素酸化物還元触媒の上流側には、還元剤と空気とが所定比率で混合した混合気が加熱されてから添加されるため、混合気と排気とが混合しても、排気温度の低下が抑制される。また、混合気が加熱されることで、還元剤の気化が促進されるので、窒素酸化物還元触媒に対する還元剤の供給分布が均一化され、拡散性が向上される。
さらに、還元剤噴射弁は、軸方向に延びつつ略同心に配設される2つの発熱体の間に混合気流路が形成されると共に、混合気流路の横断面において混合気導入口が軸中心に対してオフセットした位置に開口しているため、混合気流路内に旋回流が生じる。このため、混合気の加熱が効果的に行なわれるようになる。
【0007】
請求項2記載の発明では、前記還元剤噴射弁の混合気流路内壁面には、前記還元剤を部分酸化させて改質する改質触媒が塗布されたことを特徴とする。
かかる構成によれば、還元剤と空気との混合気が混合気流路を通るときに、還元剤の主成分である炭化水素がより低分子の炭化水素,アルデヒド,一酸化炭素,水素等に改質される。このため、還元剤による窒素酸化物還元活性が高められ、窒素酸化物の浄化効率が一層向上される。
【0008】
請求項3記載の発明では、前記改質触媒は、貴金属からなることを特徴とする。
かかる構成によれば、改質触媒として貴金属が用いられることで、還元剤が効果的に改質される。
【0010】
請求項4記載の発明では、機関運転状態を検出する運転状態検出手段と、前記還元剤の温度を検出する還元剤温度検出手段と、前記運転状態検出手段及び還元剤温度検出手段により夫々検出された機関運転状態及び還元剤温度に基づいて、前記還元剤噴射弁による混合気の加熱量を制御する加熱量制御手段と、を含んだ構成であることを特徴とする。
【0011】
かかる構成によれば、混合気の加熱量は、機関運転状態及び還元剤温度に基づいて制御されるため、加熱量を必要最小限とすることができ、混合気の加熱に要する消費電力及び発熱体の熱劣化が極力抑制される。
請求項5記載の発明では、前記混合気の添加終了後に、前記還元剤噴射弁に空気のみを供給する空気供給手段が備えられたことを特徴とする。
【0012】
かかる構成によれば、混合気の添加終了後には、還元剤噴射弁に空気のみが供給されるので、例えば、その噴射孔から空気のみが噴射され、噴射孔の目詰まりが防止される。
【0013】
【発明の実施の形態】
以下、添付された図面を参照して本発明を詳述する。
図1は、本発明に係る内燃機関の排気浄化装置(以下「排気浄化装置」という)を備えたディーゼル機関の全体構成を示す。
ディーゼル機関10の排気通路12には、排気流通方向に沿って、粒子状物質(PM)を捕集除去するディーゼルパティキュレートフィルタ(DPF)14と、NOxを還元浄化するNOx還元触媒16と、が介装される。
【0014】
DPF14は、セラミック等の多孔性部材からなる隔壁により排気流と略平行なセルが多数形成され、各セルの入口と出口とが目封材により互い違いに千鳥格子状に目封じされた構成をなす。そして、出口が塞がれたセル内の排気が、隔壁を介して入口が塞がれている隣接するセルに流入するとき、排気中のPMが隔壁を形成する多孔性部材により捕集除去される。
【0015】
一方、NOx還元触媒16は、セラミックのコーディライトやFe−Cr−Al系の耐熱鋼からなるハニカム形状の横断面を有するモノリスタイプの触媒担体に、例えば、ゼオライト系の活性成分が担持された構成をなす。そして、触媒担体に担持された活性成分は、添加剤としてのHCの供給を受けて活性化し、NOxを効果的に無害物質に転化させる。
【0016】
NOx還元触媒16の上流側の排気通路12には、HCを含む軽油等の還元剤と空気とが所定比率で混合した混合気を噴射添加する還元剤噴射弁18が介装される。還元剤噴射弁18には、空気導入路20を介してエアリザーバ22が接続される。空気導入路20には、定圧圧送ポンプ24が介装された還元剤導入路26を介して、燃料タンク等の還元剤貯蔵タンク28が接続される。還元剤導入路26は、空気導入路20を流通する空気流により還元剤が微細化されるように、例えば、霧吹き作用が奏されるように空気導入路20に接続されることが望ましい。また、空気導入路20及び還元剤導入路26には、夫々、空気流量及び還元剤流量を制御すべく、マイクロコンピュータを内蔵したコントロールユニット30によりデューティ制御される空気流量制御弁32及び還元剤流量制御弁34が介装される。
【0017】
なお、空気導入路20,エアリザーバ22,定圧圧送ポンプ24,還元剤導入路26,還元剤貯蔵タンク28,コントロールユニット30,空気流量制御弁32及び還元剤流量制御弁34により、混合気生成手段及び空気供給手段が構成される。
還元剤噴射弁18は、図2に示すように、排気通路12に添加される還元剤と空気との混合気の温度を高めるべく、軸方向に延びつつ略同心に配設された2つの発熱体18A,18Bの間に、混合気流路としての還元剤流路18Cが形成された構成をなす。ここで、発熱体18A,18Bは、還元剤を短時間で加熱可能な低熱容量の電気ヒータで構成されることが望ましい。発熱体18Bの外周には、熱が外部に放散されることを抑制すべく、遮熱材18Dが配設される。なお、混合気導入口としての還元剤導入口18Eは、還元剤流路18C内に旋回流が生じるように、還元剤噴射弁18の軸中心に対してオフセットした位置に開口することが望ましい(図2(B)参照)。また、発熱体18A,18Bは、必ずしも、その両方が配設される必要はなく、少なくとも一方が配設されるようにしてもよい。
【0018】
還元剤流路18Cの内壁面、即ち、中央に配設される発熱体18Aの外周面及びその周囲に配設される発熱体18Bの内周面には、還元剤によるNOx還元活性を高めるべく、還元剤としてのHCをより低分子のHC,アルデヒド,CO,水素(H2)等に改質する白金(Pt)等の貴金属からなる改質触媒が塗布されることが望ましい。ここで、「アルデヒド」とは、ホルムアルデヒド(HCHO),アセトアルデヒド(CH3CHO)のように、カルボニル基に水素原子を少なくとも1個(即ち、アルデヒド基−CHO)有するオキソ化合物のことをいう。
【0019】
また、排気浄化装置の制御を行なうために、機関運転状態,還元剤状態などを検出する種々のセンサが配設される。即ち、DPF14の下流側の排気通路12には、排気中のNOx濃度CNOxを検出するNOxセンサ36、及び、排気温度Teを検出する排気温度センサ38が夫々介装される。ディーゼル機関10には、吸気流量Qを検出する吸気流量センサ40、機関回転速度Nを検出する回転速度センサ42、及び、機関負荷Lを検出する負荷センサ44が夫々配設される。なお、NOxセンサ36,排気温度センサ38,吸気流量センサ40,回転速度センサ42及び負荷センサ44により、運転状態検出手段が構成される。定圧圧送ポンプ24の下流側の還元剤導入路26には、還元剤温度Trを検出する還元剤温度センサ46(還元剤温度検出手段)が介装される。
【0020】
そして、コントロールユニット30では、図3に示す処理が所定時間毎に繰り返し実行され、還元剤噴射弁18の発熱体18A,18B、空気流量制御弁32及び還元剤流量制御弁34が夫々制御される。なお、発熱体18A,18Bに対する電力供給制御が、加熱量制御手段に該当する。
ステップ1(図では「S1」と略記する。以下同様)では、機関運転状態として、NOxセンサ36,排気温度センサ38,吸気流量センサ40,回転速度センサ42及び負荷センサ44から、夫々、NOx濃度CNOx,排気温度Te,吸気流量Q,回転速度N及び機関負荷Lが検出される。また、還元剤温度センサ46から、還元剤温度Trが検出される。
【0021】
ステップ2では、例えば、還元剤添加量マップ及び還元剤添加流量マップが参照され、機関運転状態に応じた還元剤添加量及び還元剤添加流量(単位時間当りの還元剤添加量)が夫々演算される。
ステップ3では、還元剤と空気との混合比率が略一定になるように、演算された還元剤添加流量に応じた空気流量が演算される。なお、還元剤と空気との混合比率は、機関運転状態に応じて変化させるようにしてもよい。
【0022】
ステップ4では、還元剤添加流量,排気温度Te及び還元剤温度Trに基づいて、還元剤噴射弁18の発熱体18A,18Bへの供給電力が演算される。即ち、発熱体18A,18Bへの供給電力は、図4に示すように、還元剤添加流量に比例すると共に、排気温度Te及び還元剤温度Trに依存する。このため、例えば、排気温度Te及び還元剤温度Trに基づいて、マップから図4に示す直線の傾きを求め、簡単な演算により発熱体18A,18Bへの供給電力を求めることができる。
【0023】
ステップ5では、還元剤の加熱、及び、還元剤と空気との混合気の噴射が開始される。即ち、演算された供給電力に基づいて、例えば、発熱体18A,18Bに印加する電圧又は/及び電流が制御され、還元剤噴射弁18に供給された還元剤と空気との混合気が加熱される。また、演算された還元剤添加流量及び空気流量に基づいて、夫々、還元剤流量制御弁34及び空気流量制御弁32の開度がデューティ制御され、還元剤噴射弁18から排気通路12内に、加熱昇温された混合気が噴射される。
【0024】
ステップ6では、混合気の噴射が終了、即ち、演算された還元剤添加量が排気通路12内に噴射されたか否かが判定される。混合気の噴射が終了したか否かは、例えば、混合気の噴射開始から、還元剤添加量を還元剤添加流量で除算して求められる噴射時間が経過したか否かで判定することができる。そして、混合気の噴射が終了したならばステップ7へと進み(Yes)、混合気の噴射が終了していなければステップ6における判定が繰り返される(No)。
【0025】
ステップ7では、混合気の加熱を停止すべく、発熱体18A,18Bへの通電が遮断されると共に、還元剤の噴射を停止すべく、還元剤流量制御弁34が閉弁制御される。
ステップ8では、空気噴射が終了、即ち、還元剤の噴射停止後、所定時間経過したか否かが判定される。そして、空気噴射が終了したならばステップ9へと進み(Yes)、空気噴射が終了していなければステップ8における判定が繰り返される(No)。
【0026】
ステップ9では、空気噴射を停止すべく、空気流量制御弁32が閉弁制御される。
かかる構成によれば、NOx還元触媒16の上流側には、還元剤と空気とが所定比率で混合した混合気が加熱されてから添加されるので、混合気が排気と混合しても、排気温度の低下を抑制することができる。また、混合気が加熱されることで、還元剤の気化が促進されるので、NOx還元触媒16に対する還元剤の供給分布が均一化され、拡散性を向上させることができる。そして、排気温度の低下抑制と還元剤の拡散性向上との相乗作用により、最小限の還元剤を用いて、NOx還元触媒16によるNOx浄化効率を向上させることができる。
【0027】
また、還元剤噴射弁18の還元剤流路18Cの内壁面に改質触媒を塗布した場合には、ここで、還元剤の主成分であるHCがより低分子のHC,アルデヒド,CO,H2等に改質される。このため、還元剤によるNOx還元活性が高められ、NOx浄化効率を一層向上させることができる。ここで、改質触媒として、白金等の貴金属を用いているので、還元剤を効果的に改質することができる。
【0028】
さらに、還元剤噴射弁18は、還元剤流路18Cが軸方向に延び、かつ、その横断面において還元剤導入路18Eが軸中心に対してオフセットした位置に開口しているため、還元剤流路18C内に旋回流が発生する。このため、還元剤の加熱が効果的に行なわれるようになり、NOx浄化触媒によるNOx浄化効率を一層向上させることができる。還元剤流路18Cの内壁面に改質触媒が塗布されている場合には、旋回流により還元剤の改質を効果的に行なうことができる。
【0029】
この他、還元剤噴射弁18における混合気の加熱量は、還元剤噴射量,排気温度Te及び還元剤温度Trに基づいて制御されるため、加熱量を必要最小限とすることができ、加熱に要する消費電力及び発熱体18A,18Bの熱劣化を極力抑制することができる。
また、混合気の添加終了後には、還元剤噴射弁18に空気のみが供給されるので、例えば、その噴射孔から空気のみが噴射され、噴射孔の目詰まりを防止することができる。
【0030】
なお、還元剤噴射弁18の発熱体18A,18Bは、コントロールユニット30により制御される他、自己温度調整型のものを使用してもよい。また、本発明の排気浄化装置は、ディーゼル機関に限らず、ガソリン機関,圧縮天然ガス(CNG)機関などの内燃機関にも適用可能であることは言うまでもない。
【0031】
【発明の効果】
以上説明したように、請求項1記載の発明によれば、排気温度の低下抑制と還元剤の拡散性向上との相乗作用により、最小限の液体還元剤を用いて、窒素酸化物還元触媒による窒素酸化物の浄化効率を向上させることができる。また、混合気流路内に生じた旋回流により、混合気の加熱を効果的に行なうことができる。
請求項2記載の発明によれば、還元剤による窒素酸化物還元活性が高められ、窒素酸化物の浄化効率を一層向上することができる。
【0032】
請求項3記載の発明によれば、改質触媒として貴金属が用いられることで、還元剤を効果的に改質することができる。
【0033】
請求項4記載の発明によれば、混合気の加熱量が必要最小限となるので、混合気の加熱に要する消費電力及び発熱体の熱劣化を極力抑制することができる。
請求項5記載の発明によれば、例えば、還元剤噴射弁における混合気噴射孔の目詰まりを防止することができる。
【図面の簡単な説明】
【図1】本発明に係る排気浄化装置を備えたディーゼル機関の全体構成図
【図2】還元剤噴射弁の詳細を示し、(A)は縦断面図、(B)は横断面図
【図3】排気浄化装置の制御内容を示すフローチャート
【図4】発熱体への供給電力を演算する原理の説明図
【符号の説明】
10 ディーゼル機関
12 排気通路
16 NOx還元触媒
18 還元剤噴射弁
18A 発熱体
18B 発熱体
18C 還元剤流路
18E 還元剤導入口
20 空気導入路
22 エアリザーバ
24 定圧圧送ポンプ
26 還元剤導入路
28 還元剤貯蔵タンク
30 コントロールユニット
32 空気流量制御弁
34 還元剤流量制御弁
36 NOxセンサ
38 排気温度センサ
40 吸気流量センサ
42 回転速度センサ
44 負荷センサ
46 還元剤温度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for improving the purification efficiency of nitrogen oxides, particularly in an exhaust gas purification apparatus for an internal combustion engine.
[0002]
[Prior art]
In the exhaust discharged from the internal combustion engine, harmful carbon dioxide (CO 2 ), water (H 2 O), nitrogen (N 2 ), harmful carbon monoxide (CO), hydrocarbon (HC) It is known that nitrogen oxides (NOx) are contained. For this reason, for the purpose of purifying NOx, which is a harmful substance, for example, an exhaust purification device as disclosed in JP-A-6-137136 has been proposed. In such an exhaust purification device, a NOx reduction catalyst is interposed in the exhaust passage of the internal combustion engine in order to convert NOx into harmless N 2 , oxygen (O 2 ), etc. in an oxygen-excess atmosphere. Further, in order to increase the NOx purification efficiency in the NOx reduction catalyst, a configuration is adopted in which fuel such as light oil containing HC as a reducing agent is added to the upstream exhaust passage.
[0003]
[Problems to be solved by the invention]
However, if a reducing agent having a temperature lower than that of the exhaust gas is added to the exhaust passage as it is, the exhaust gas temperature is lowered, and the NOx purification efficiency by the NOx reduction catalyst may be lowered. In addition, when liquid fuel such as light oil is used as the reducing agent, the reducing agent in a droplet state is added to the exhaust passage, so that the diffusion of the reducing agent becomes insufficient, and the reducing agent is supplied to the NOx reduction catalyst. There was also a problem that unevenness was likely to occur. Furthermore, since the liquid fuel is composed of polymer HC having a low NOx reduction activity, there has been a problem that it is difficult to improve the NOx purification efficiency.
[0004]
Therefore, in view of the conventional problems as described above, the present invention improves the NOx purification efficiency by the NOx reduction catalyst by suppressing the decrease in the exhaust temperature due to the addition of the reducing agent and enhancing the diffusibility and activity of the reducing agent. It is an object of the present invention to provide an exhaust purification device for an internal combustion engine.
[0005]
[Means for Solving the Problems]
Therefore, according to the first aspect of the present invention, a nitrogen oxide reduction catalyst that is interposed in the exhaust passage of the internal combustion engine and converts the nitrogen oxide in the exhaust gas into a harmless substance by a reduction reaction, and a reducing agent containing hydrocarbons Mixture generating means for generating an air-fuel mixture in which air and air are mixed at a predetermined ratio, and a reducing agent added to the upstream side of the nitrogen oxide reduction catalyst while heating the air-fuel mixture generated by the air-fuel mixture generation means In the exhaust gas purification apparatus for an internal combustion engine including an injection valve, the reducing agent injection valve has an air-fuel mixture channel formed between two heating elements that extend in the axial direction and are arranged substantially concentrically. In addition, the air-fuel mixture inlet is open at a position offset with respect to the axial center in the cross section of the air-fuel mixture flow path .
[0006]
According to this configuration, since the air-fuel mixture in which the reducing agent and air are mixed at a predetermined ratio is heated and added to the upstream side of the nitrogen oxide reduction catalyst, even if the air-fuel mixture and the exhaust gas are mixed. And the fall of exhaust temperature is suppressed. Further, since the gas mixture is heated, vaporization of the reducing agent is promoted, so that the supply distribution of the reducing agent with respect to the nitrogen oxide reduction catalyst is made uniform and the diffusibility is improved.
Further, the reducing agent injection valve has an air-fuel mixture flow path formed between two heating elements that extend in the axial direction and are substantially concentric, and the air-fuel mixture inlet is the axial center in the cross section of the air-fuel mixture flow path. Therefore, a swirling flow is generated in the mixture flow path. For this reason, the air-fuel mixture is effectively heated.
[0007]
The invention according to claim 2 is characterized in that a reforming catalyst for reforming the reducing agent by partially oxidizing the reducing agent is applied to the inner wall surface of the mixture flow path of the reducing agent injection valve .
According to this configuration, when the air-fuel mixture of the reducing agent and air passes through the air-fuel mixture flow path, the hydrocarbon that is the main component of the reducing agent is modified to a lower molecular weight hydrocarbon, aldehyde, carbon monoxide, hydrogen, or the like. Quality. For this reason, the nitrogen oxide reduction activity by a reducing agent is increased, and the purification efficiency of nitrogen oxide is further improved.
[0008]
The invention according to claim 3 is characterized in that the reforming catalyst is made of a noble metal.
According to such a configuration, the reducing agent is effectively reformed by using the noble metal as the reforming catalyst .
[0010]
In the fourth aspect of the invention, the operating state detecting means for detecting the engine operating state, the reducing agent temperature detecting means for detecting the temperature of the reducing agent, the operating state detecting means and the reducing agent temperature detecting means are respectively detected. And a heating amount control means for controlling the heating amount of the air-fuel mixture by the reducing agent injection valve based on the engine operating state and the reducing agent temperature.
[0011]
According to such a configuration, since the amount of heating of the air-fuel mixture is controlled based on the engine operating state and the reducing agent temperature, the amount of heating can be minimized, and power consumption and heat generation required for heating the air-fuel mixture can be achieved. Thermal deterioration of the body is suppressed as much as possible.
The invention according to claim 5 is characterized in that air supply means for supplying only air to the reducing agent injection valve after the addition of the air-fuel mixture is provided.
[0012]
According to this configuration, after the addition of the air-fuel mixture is completed, only air is supplied to the reducing agent injection valve . For example, only air is injected from the injection hole, and clogging of the injection hole is prevented.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows an overall configuration of a diesel engine equipped with an exhaust gas purification device for an internal combustion engine (hereinafter referred to as “exhaust gas purification device”) according to the present invention.
A diesel particulate filter (DPF) 14 that collects and removes particulate matter (PM) and a NOx reduction catalyst 16 that reduces and purifies NOx are disposed in the exhaust passage 12 of the diesel engine 10 along the exhaust flow direction. Intervened.
[0014]
The DPF 14 has a structure in which a large number of cells substantially parallel to the exhaust flow are formed by partition walls made of a porous member such as ceramic, and the inlets and outlets of each cell are alternately sealed in a staggered pattern by a plugging material. Eggplant. When the exhaust gas in the cell whose outlet is blocked flows into the adjacent cell whose inlet is blocked via the partition wall, PM in the exhaust gas is collected and removed by the porous member forming the partition wall. The
[0015]
On the other hand, the NOx reduction catalyst 16 has a configuration in which, for example, a zeolite-based active component is supported on a monolith type catalyst carrier having a honeycomb-shaped cross section made of ceramic cordierite or Fe-Cr-Al heat-resistant steel. Make. Then, the active component supported on the catalyst carrier is activated by receiving supply of HC as an additive, and effectively converts NOx into a harmless substance.
[0016]
A reducing agent injection valve 18 for injecting and adding an air-fuel mixture in which a reducing agent such as light oil containing HC and air are mixed at a predetermined ratio is interposed in the exhaust passage 12 upstream of the NOx reduction catalyst 16. An air reservoir 22 is connected to the reducing agent injection valve 18 via an air introduction path 20. A reducing agent storage tank 28 such as a fuel tank is connected to the air introduction path 20 via a reducing agent introduction path 26 in which a constant pressure pump 24 is interposed. The reducing agent introduction path 26 is desirably connected to the air introduction path 20 so that, for example, a spraying action is exerted so that the reducing agent is refined by the air flow flowing through the air introduction path 20. Further, in the air introduction path 20 and the reducing agent introduction path 26, the air flow rate control valve 32 and the reducing agent flow rate, which are duty-controlled by a control unit 30 incorporating a microcomputer, in order to control the air flow rate and the reducing agent flow rate, respectively. A control valve 34 is interposed.
[0017]
The air introduction path 20, the air reservoir 22, the constant pressure pump 24, the reducing agent introduction path 26, the reducing agent storage tank 28, the control unit 30, the air flow rate control valve 32 and the reducing agent flow rate control valve 34, An air supply means is configured.
As shown in FIG. 2, the reducing agent injection valve 18 extends in the axial direction and is substantially concentrically arranged to increase the temperature of the mixture of reducing agent added to the exhaust passage 12 and air. Between the bodies 18A and 18B, a reducing agent channel 18C as an air-fuel mixture channel is formed. Here, it is desirable that the heating elements 18A and 18B are constituted by low-heat capacity electric heaters capable of heating the reducing agent in a short time. A heat shield 18D is disposed on the outer periphery of the heating element 18B in order to suppress heat from being dissipated to the outside. Note that the reducing agent inlet 18E as the air-fuel mixture inlet preferably opens at a position offset with respect to the axial center of the reducing agent injection valve 18 so that a swirling flow is generated in the reducing agent flow path 18C ( (See FIG. 2B). Further, both of the heating elements 18A and 18B are not necessarily arranged, and at least one of them may be arranged.
[0018]
The inner wall surface of the reducing agent channel 18C, that is, the outer peripheral surface of the heating element 18A disposed in the center and the inner peripheral surface of the heating element 18B disposed in the periphery thereof, should increase NOx reduction activity by the reducing agent. It is desirable to apply a reforming catalyst made of a noble metal such as platinum (Pt) that modifies HC as a reducing agent to lower molecular weight HC, aldehyde, CO, hydrogen (H 2 ) or the like. Here, “aldehyde” refers to an oxo compound having at least one hydrogen atom in the carbonyl group (that is, aldehyde group —CHO), such as formaldehyde (HCHO) and acetaldehyde (CH 3 CHO).
[0019]
In order to control the exhaust emission control device, various sensors for detecting the engine operating state, the reducing agent state, and the like are provided. In other words, the NOx sensor 36 for detecting the NOx concentration C NOx in the exhaust and the exhaust temperature sensor 38 for detecting the exhaust temperature Te are interposed in the exhaust passage 12 on the downstream side of the DPF 14, respectively. The diesel engine 10 is provided with an intake flow sensor 40 that detects the intake flow rate Q, a rotational speed sensor 42 that detects the engine rotational speed N, and a load sensor 44 that detects the engine load L. The NOx sensor 36, the exhaust temperature sensor 38, the intake flow rate sensor 40, the rotation speed sensor 42, and the load sensor 44 constitute an operating state detection means. A reducing agent temperature sensor 46 (reducing agent temperature detecting means) for detecting the reducing agent temperature Tr is interposed in the reducing agent introduction path 26 on the downstream side of the constant pressure pump 24.
[0020]
Then, in the control unit 30, the processing shown in FIG. 3 is repeatedly executed at predetermined time intervals, and the heating elements 18A and 18B, the air flow rate control valve 32, and the reducing agent flow rate control valve 34 of the reducing agent injection valve 18 are controlled. . The power supply control for the heating elements 18A and 18B corresponds to the heating amount control means.
In step 1 (abbreviated as “S1” in the figure, the same applies hereinafter), the NOx concentration from the NOx sensor 36, the exhaust temperature sensor 38, the intake flow rate sensor 40, the rotational speed sensor 42, and the load sensor 44 is set as the engine operating state. C NOx , exhaust temperature Te, intake air flow rate Q, rotational speed N and engine load L are detected. Further, the reducing agent temperature Tr is detected from the reducing agent temperature sensor 46.
[0021]
In step 2, for example, the reducing agent addition amount map and the reducing agent addition flow rate map are referred to, and the reducing agent addition amount and the reducing agent addition flow rate (reducing agent addition amount per unit time) corresponding to the engine operating state are respectively calculated. The
In step 3, the air flow rate corresponding to the calculated reducing agent addition flow rate is calculated so that the mixing ratio of the reducing agent and air becomes substantially constant. The mixing ratio of the reducing agent and air may be changed according to the engine operating state.
[0022]
In step 4, the power supplied to the heating elements 18A and 18B of the reducing agent injection valve 18 is calculated based on the reducing agent addition flow rate, the exhaust gas temperature Te, and the reducing agent temperature Tr. That is, as shown in FIG. 4, the power supplied to the heating elements 18A and 18B is proportional to the reducing agent addition flow rate and depends on the exhaust gas temperature Te and the reducing agent temperature Tr. Therefore, for example, the slope of the straight line shown in FIG. 4 can be obtained from the map based on the exhaust temperature Te and the reducing agent temperature Tr, and the power supplied to the heating elements 18A and 18B can be obtained by a simple calculation.
[0023]
In step 5, heating of the reducing agent and injection of a mixture of the reducing agent and air are started. That is, based on the calculated supply power, for example, the voltage or / and current applied to the heating elements 18A, 18B is controlled, and the mixture of the reducing agent and air supplied to the reducing agent injection valve 18 is heated. The Further, based on the calculated reducing agent addition flow rate and air flow rate, the opening degrees of the reducing agent flow rate control valve 34 and the air flow rate control valve 32 are duty controlled, respectively, and the reducing agent injection valve 18 enters the exhaust passage 12. An air-fuel mixture heated and heated is injected.
[0024]
In step 6, it is determined whether or not the injection of the air-fuel mixture has ended, that is, whether or not the calculated reducing agent addition amount has been injected into the exhaust passage 12. Whether or not the injection of the air-fuel mixture has ended can be determined, for example, by whether or not the injection time determined by dividing the reducing agent addition amount by the reducing agent addition flow rate has elapsed since the start of the injection of the air-fuel mixture. . If the mixture injection is completed, the process proceeds to step 7 (Yes). If the mixture injection is not completed, the determination in step 6 is repeated (No).
[0025]
In step 7, the energization of the heating elements 18A and 18B is interrupted to stop the heating of the air-fuel mixture, and the reducing agent flow rate control valve 34 is controlled to close to stop the injection of the reducing agent.
In step 8, it is determined whether or not a predetermined time has elapsed after the air injection is completed, that is, after the injection of the reducing agent is stopped. And if air injection is complete | finished, it will progress to step 9 (Yes), and if air injection is not complete | finished, the determination in step 8 will be repeated (No).
[0026]
In step 9, the air flow control valve 32 is controlled to be closed in order to stop air injection.
According to such a configuration, since the air-fuel mixture in which the reducing agent and air are mixed at a predetermined ratio is heated and added to the upstream side of the NOx reduction catalyst 16, even if the air-fuel mixture is mixed with the exhaust gas, the exhaust gas is exhausted. A decrease in temperature can be suppressed. Further, since the gas mixture is heated to promote the vaporization of the reducing agent, the supply distribution of the reducing agent to the NOx reduction catalyst 16 is made uniform, and the diffusibility can be improved. The NOx purification efficiency by the NOx reduction catalyst 16 can be improved by using the minimum reducing agent by the synergistic effect of suppressing the decrease in the exhaust temperature and improving the diffusibility of the reducing agent.
[0027]
Further, when a reforming catalyst is applied to the inner wall surface of the reducing agent flow path 18C of the reducing agent injection valve 18, HC, which is the main component of the reducing agent, is HC, aldehyde, CO, H having lower molecular weight. Modified to 2 mag. For this reason, the NOx reduction activity by the reducing agent is increased, and the NOx purification efficiency can be further improved. Here, since a noble metal such as platinum is used as the reforming catalyst, the reducing agent can be effectively reformed.
[0028]
Furthermore, since the reducing agent flow path 18C extends in the axial direction and the reducing agent introduction path 18E is opened at a position offset with respect to the axial center in the cross section of the reducing agent injection valve 18, the reducing agent flow A swirling flow is generated in the path 18C. For this reason, heating of a reducing agent comes to be performed effectively and the NOx purification efficiency by a NOx purification catalyst can be improved further. When the reforming catalyst is applied to the inner wall surface of the reducing agent channel 18C, the reducing agent can be effectively reformed by the swirling flow.
[0029]
In addition, since the heating amount of the air-fuel mixture in the reducing agent injection valve 18 is controlled based on the reducing agent injection amount, the exhaust temperature Te, and the reducing agent temperature Tr, the heating amount can be minimized and heating is performed. Power consumption and heat deterioration of the heating elements 18A and 18B can be suppressed as much as possible.
In addition, since only air is supplied to the reducing agent injection valve 18 after the addition of the air-fuel mixture, for example, only air is injected from the injection hole, and clogging of the injection hole can be prevented.
[0030]
The heating elements 18A and 18B of the reducing agent injection valve 18 may be controlled by the control unit 30 or may be of a self-temperature adjusting type. Needless to say, the exhaust emission control device of the present invention is not limited to a diesel engine, but can also be applied to an internal combustion engine such as a gasoline engine or a compressed natural gas (CNG) engine.
[0031]
【The invention's effect】
As described above, according to the first aspect of the present invention, by the synergistic effect of suppressing the decrease in the exhaust temperature and improving the diffusibility of the reducing agent, the minimum amount of liquid reducing agent is used and the nitrogen oxide reduction catalyst is used. The purification efficiency of nitrogen oxides can be improved. Further, the mixture can be effectively heated by the swirling flow generated in the mixture flow path.
According to invention of Claim 2, the nitrogen oxide reduction activity by a reducing agent is heightened, and the purification efficiency of nitrogen oxide can be improved further.
[0032]
According to the invention described in claim 3, the reducing agent can be effectively reformed by using the noble metal as the reforming catalyst .
[0033]
According to the fourth aspect of the present invention, since the amount of heating of the air-fuel mixture is minimized, it is possible to suppress power consumption required for heating the air-fuel mixture and thermal deterioration of the heating element as much as possible.
According to the fifth aspect of the present invention, for example, clogging of the air-fuel mixture injection hole in the reducing agent injection valve can be prevented.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a diesel engine equipped with an exhaust purification device according to the present invention. FIG. 2 shows details of a reducing agent injection valve, (A) is a longitudinal sectional view, and (B) is a transverse sectional view. 3] Flow chart showing the control contents of the exhaust purification device [FIG. 4] Explanatory diagram of the principle for calculating the power supplied to the heating element
10 diesel engine 12 exhaust passage 16 NOx reduction catalyst 18 reducing agent injection valve 18A heating element 18B heating element 18C reducing agent passage 18E reducing agent introduction port 20 air introduction path 22 air reservoir 24 constant pressure pump 26 reducing agent introduction path 28 reducing agent storage Tank 30 Control unit 32 Air flow rate control valve 34 Reductant flow rate control valve 36 NOx sensor 38 Exhaust temperature sensor 40 Intake flow rate sensor 42 Rotational speed sensor 44 Load sensor 46 Reductant temperature sensor

Claims (5)

内燃機関の排気通路に介装され、排気中の窒素酸化物を還元反応により無害物質に転化させる窒素酸化物還元触媒と、
炭化水素を含んだ還元剤と空気とを所定比率で混合した混合気を生成する混合気生成手段と、
該混合気生成手段により生成された混合気を加熱しつつ、前記窒素酸化物還元触媒の上流側に添加する還元剤噴射弁と、
を含んで構成され、
前記還元剤噴射弁は、軸方向に延びつつ略同心に配設される2つの発熱体の間に混合気流路が形成されると共に、該混合気流路の横断面において混合気導入口が軸中心に対してオフセットした位置に開口していることを特徴とする内燃機関の排気浄化装置。
A nitrogen oxide reduction catalyst that is interposed in the exhaust passage of the internal combustion engine and converts the nitrogen oxide in the exhaust gas into a harmless substance by a reduction reaction;
An air-fuel mixture generating means for generating an air-fuel mixture in which a reducing agent containing hydrocarbon and air are mixed at a predetermined ratio;
A reducing agent injection valve that is added to the upstream side of the nitrogen oxide reduction catalyst while heating the mixture generated by the mixture generation means;
It is configured to include a,
In the reducing agent injection valve, an air-fuel mixture flow path is formed between two heating elements that extend in the axial direction and are substantially concentrically arranged, and the air-fuel mixture inlet is the axial center in the cross section of the air-fuel mixture flow path An exhaust gas purification apparatus for an internal combustion engine, wherein the exhaust gas purification apparatus is opened at a position offset with respect to the engine.
前記還元剤噴射弁の混合気流路内壁面には、前記還元剤を部分酸化させて改質する改質触媒が塗布されたことを特徴とする請求項1記載の内燃機関の排気浄化装置。 2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein a reforming catalyst for reforming the reducing agent by partially oxidizing the reducing agent is applied to an inner wall surface of the mixture flow path of the reducing agent injection valve . 前記改質触媒は、貴金属からなることを特徴とする請求項2記載の内燃機関の排気浄化装置。  The exhaust purification device of an internal combustion engine according to claim 2, wherein the reforming catalyst is made of a noble metal. 機関運転状態を検出する運転状態検出手段と、
前記還元剤の温度を検出する還元剤温度検出手段と、
前記運転状態検出手段及び還元剤温度検出手段により夫々検出された機関運転状態及び還元剤温度に基づいて、前記還元剤噴射弁による混合気の加熱量を制御する加熱量制御手段と、
を含んだ構成であることを特徴とする請求項1〜請求項3のいずれか1つに記載の内燃機関の排気浄化装置。
An operating state detecting means for detecting an engine operating state;
Reducing agent temperature detecting means for detecting the temperature of the reducing agent;
A heating amount control means for controlling the heating amount of the air-fuel mixture by the reducing agent injection valve based on the engine operating state and the reducing agent temperature detected by the operating state detection means and the reducing agent temperature detection means, respectively;
It is inclusive constitute an exhaust purification system of an internal combustion engine according to any one of claims 1 to 3, characterized in.
前記混合気の添加終了後に、前記還元剤噴射弁に空気のみを供給する空気供給手段が備えられたことを特徴とする請求項1〜請求項4のいずれか1つに記載の内燃機関の排気浄化装置。The exhaust of the internal combustion engine according to any one of claims 1 to 4 , further comprising air supply means for supplying only air to the reducing agent injection valve after the addition of the air-fuel mixture. Purification equipment.
JP2001138392A 2001-05-09 2001-05-09 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4131783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001138392A JP4131783B2 (en) 2001-05-09 2001-05-09 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001138392A JP4131783B2 (en) 2001-05-09 2001-05-09 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002332825A JP2002332825A (en) 2002-11-22
JP4131783B2 true JP4131783B2 (en) 2008-08-13

Family

ID=18985336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001138392A Expired - Fee Related JP4131783B2 (en) 2001-05-09 2001-05-09 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4131783B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4152833B2 (en) * 2003-07-30 2008-09-17 日産ディーゼル工業株式会社 Engine exhaust purification system
EP2426329B1 (en) 2003-09-19 2013-05-01 Nissan Diesel Motor Co., Ltd. Exhaust gas purification device of engine
WO2005028827A1 (en) 2003-09-19 2005-03-31 Nissan Diesel Motor Co., Ltd. Exhaust gas clarification apparatus for engine
WO2005073527A1 (en) 2004-02-02 2005-08-11 Nissan Diesel Motor Co., Ltd. Device for purifying exhaust gas of internal combustion engine
EP1712755B1 (en) 2004-02-02 2011-11-23 Nissan Diesel Motor Co., Ltd. Device for purifying exhaust gas of engine
JP4650241B2 (en) * 2005-11-30 2011-03-16 トヨタ自動車株式会社 Exhaust system for internal combustion engine
JP4645617B2 (en) * 2007-04-11 2011-03-09 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP6161969B2 (en) * 2013-06-14 2017-07-12 日野自動車株式会社 Exhaust purification system
JP6528725B2 (en) * 2016-05-30 2019-06-12 株式会社デンソー Purification control device

Also Published As

Publication number Publication date
JP2002332825A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
KR101659788B1 (en) Denox of diesel engine exhaust gases using a temperature-controlled precatalyst for providing no2 in accordance with the requirements
US7861516B2 (en) Methods of controlling reductant addition
US8776495B2 (en) Exhaust gas aftertreatment system and method of operation
JP4263711B2 (en) Exhaust gas purification device for internal combustion engine
JP4270224B2 (en) Exhaust gas purification device for internal combustion engine
JP4507901B2 (en) Exhaust gas purification system and exhaust gas purification method thereof
US20110173951A1 (en) Method and device for the purification of diesel exhaust gases
US20100326054A1 (en) Exhaust gas purification system
JP2011052612A (en) Device for controlling exhaust emission
JP2009106913A (en) Selectively reducing catalyst
JP2013503284A (en) Exhaust gas aftertreatment system with catalytically active wall flow filter with storage function upstream of a catalytic converter with the same storage function
US20110030350A1 (en) Exhaust gas purifying apparatus
US8950173B2 (en) Integrated exhaust gas after-treatment system for diesel fuel engines
CN104781516B (en) The emission-control equipment of internal combustion engine
JP2006183507A (en) Exhaust emission control device for internal combustion engine
KR20180068808A (en) Exhaust gas purification system and controlling method thereof
JP4131783B2 (en) Exhaust gas purification device for internal combustion engine
JP4131784B2 (en) Exhaust gas purification device for internal combustion engine
JP3839764B2 (en) Diesel engine exhaust purification system
US7708954B2 (en) Nitrogen oxides purification device
JP2014206079A (en) Exhaust emission control device for internal combustion engine, and process for manufacturing the device
US20080261801A1 (en) Methods of Regenerating a Nox Absorbent
KR101091633B1 (en) Denitrification catalyst and exhaust system using the same
JP4412183B2 (en) NOx purification device
JP2019536938A (en) Apparatus and method for injecting mixing gas into exhaust line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees