JP4131100B2 - Ultrasonic transducer - Google Patents

Ultrasonic transducer Download PDF

Info

Publication number
JP4131100B2
JP4131100B2 JP2001335123A JP2001335123A JP4131100B2 JP 4131100 B2 JP4131100 B2 JP 4131100B2 JP 2001335123 A JP2001335123 A JP 2001335123A JP 2001335123 A JP2001335123 A JP 2001335123A JP 4131100 B2 JP4131100 B2 JP 4131100B2
Authority
JP
Japan
Prior art keywords
ultrasonic
vibration
case
ultrasonic transducer
vibration case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001335123A
Other languages
Japanese (ja)
Other versions
JP2003143695A (en
Inventor
直哉 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2001335123A priority Critical patent/JP4131100B2/en
Publication of JP2003143695A publication Critical patent/JP2003143695A/en
Application granted granted Critical
Publication of JP4131100B2 publication Critical patent/JP4131100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超音波を利用してセンシングを行う検出器に用いる超音波変換器に関するものである。
【0002】
【従来の技術】
圧電型の超音波変換器は、有底筒状体の内側に空間部を有する振動ケースと、前記空間部の底部に取着した圧電振動素子と、前記振動ケースの内側の空間部に充填された緩衝材と、圧電振動素子に接続したリード線とで構成される。この超音波変換器を用いた超音波検知器は、超音波を利用してセンシングを行うものであり、超音波変換器から超音波パルス波を間欠的に送信し、超音波変換器で周辺に存在する障害物からの反射波を受信することで物体を検知する車両用として主に使われる。
【0003】
上記のような圧電型の超音波変換器を利用した超音波検知器は、間欠的に作成した超音波パルス信号を超音波変換器の圧電振動素子に印加し、振動ケースを振動させて超音波パルス波を送信する。そして障害物からの反射波を振動ケース、圧電振動素子を介して受信し、増幅する。そしてその反射波(受信パルス)が所定の距離範囲内に対応する時間内に受信されれば、検知表示を行なうものである。そして超音波変換器が車両の後方部やコーナー部に配置され、車両周辺の障害物を監視し、運転者に注意を促すものであり、従来、圧電振動素子を1個用いた超音波変換器が各々の部位に配置されていた。図4,及び図5に、車両50の後方の位置60a,60bに超音波変換器を各々配置した時の、障害物の水平検知エリア70a,70b、及び垂直検知エリア70cを示しておく。
【0004】
図6は第1の従来例の超音波検知器の側面断面図,図7は上面図,図8は図6のAから見た矢視図(但し、電子回路3、リード線4a,4b、回路ケース10’は外した状態)を各々示しており、超音波変換器101は、振動ケース1’と、圧電振動素子2と、緩衝材5と、リード線4a,4bとから構成されている。外形が円筒形の有底筒状である振動ケース1’は、内側の筒型の空間部11を、開口側は大径の円筒状にして、その奥は、軸方向に垂直な横断面視形状が略矩形である有底円筒状に形成し、底部内側に圧電振動素子2が接着されている。さらに、空間部11には緩衝材5が充填されている。
【0005】
そして超音波変換器101は、空間部11の開口端を閉塞するように装着した有底円筒体の保持ゴム9’を介して、有底円筒体のハウジング8’の内部に装着され、ハウジング8’の底部外側には、両端を閉塞した円筒状の回路ケース10’が装着されて、回路ケース10’内には電子回路3を収納している。
【0006】
圧電振動素子2は例えばPZT系の圧電セラミックスで構成され、両面に電極を有して、信号電極(正電極)をリード線4aの一端に接続し、アース電極(負電極)を振動ケース1’に接着して、振動ケース1’をリード線4bの一端に接続している。このリード線4a,4bの各他端は、保持ゴム9’,ハウジング8’,回路ケース10’の各底面に形成した挿通口を通って電子回路3に接続されており、電子回路3からの超音波パルス信号は、リード線4aを介して圧電振動素子2の正電極に、リード線4b,振動ケース1’を介して負電極に印加される。また、圧電振動素子2で受信した信号もリード線4a,及び振動ケース1’,リード線4bを介して電子回路3に伝達され、電子回路3で増幅される。
【0007】
次に本従来例の超音波検知器の動作について図9(a),(b),(c)の波形図を用いて説明する。まず、圧電振動素子2は電子回路3によって間欠的に超音波パルス信号が印加されて(図9(a))、振動ケース1’の底部を振動させて超音波パルス波を送信する。そして、振動ケース1’の内側の空間部11には緩衝材5が充填されていて、緩衝材5は、超音波パルス信号の印加後に発生する残響振動を収束させるための役割を果たしているが、検知動作原理上、印加された超音波パルス信号によって印加が終了しても残響振動が残ってしまう(図9(b))。
【0008】
そのため、超音波パルス信号を印加してから残響振動が完了するまでの時間t1の間は、物体からの反射波と残響振動とを識別することができない。即ち、超音波変換器から離れた距離に存在する物体からの反射波80は、残響振動波形と識別でき物体の存在を判断できるが、超音波変換器から近い距離に存在する物体からの反射波81は、残響振動波形と識別できず物体の存在を判断できないという問題があった(図9(c))。
【0009】
そこで、上記問題点を克服する手段として、圧電振動素子を2個用いた、即ち超音波変換器を2個用いた超音波検知器が提案された。図10はこの第2の従来例の超音波検知器の側面断面図,図11は上面図を各々示しており、2個の超音波変換器101a,101b(第1の従来例で説明した超音波変換器101と同様の構成を有する)を備えている。超音波変換器101a,101bは、空間部11の開口端を閉塞するように有底円筒体の保持ゴム9’を装着し、横断面視形状が略長円の柱体であるハウジング8’ ’には軸方向に形成した円筒状の凹部が長辺方向に並設されて、超音波変換器101a,101bは保持ゴム9’を介して各凹部内に装着される。ハウジング8’ ’の底部外側には、横断面視形状が略長円で両端を閉塞した筒状の回路ケース10’ ’が装着され、回路ケース10’ ’内には電子回路3を収納している。そして、各圧電振動素子2と電子回路3とを接続する2本のリード線4a、及び各振動ケース1’と電子回路3とを接続する2本のリード線4bの計4本のリード線を備える。
【0010】
この超音波検知器は、超音波変換器101aの圧電振動素子2に間欠的に超音波パルス信号を印加して超音波パルス波を送信し、超音波変換器101bで物体からの反射波を受信するものであり、本従来例の超音波検知器の動作について図12(a),(b),(c)の波形図を用いて説明する。まず、送信を行う超音波変換器101aの圧電振動素子2に間欠的に超音波パルス信号を印加し、振動ケース1’の底部を振動させて超音波パルス波を送信しても(図12(a))、受信を行う超音波変換器101bは、超音波パルス信号が印加されないため印加後の残響振動は時間t2(t2<t1)の間は発生するが、すぐに完了し(図12(b))、超音波変換器101bは、超音波変換器から離れた距離に存在する物体からの反射波82のみならず、超音波変換器から近い距離に存在する物体からの反射波83までも、残響振動波形と識別でき、物体の存在を判断することができる(図12(c))。
【0011】
しかし、この第2の従来例では、1個の超音波検知器の中に複数個(2個)の圧電振動素子、即ち複数個の超音波変換器を必要とするため、コストが非常にアップしてしまうという根本的な問題があり、実用化には至っていない。
【0012】
また第3の従来例として、近年、三角測距の原理を応用して、2個の圧電振動素子、即ち2個の超音波変換器を備えて、一方の超音波変換器に間欠的に超音波パルス信号を印加して超音波パルス波を送信し、両方の超音波変換器で物体からの反射波を受信することによって、物体の存在する距離と方向(角度)とを検出する超音波検知器が考案され、特願平10−365420号、及び特願平11−145744号で開示されている。
【0013】
本従来例の超音波検知器の動作を図13の検出原理図,図14(a),(b),(c)の波形図を用いて説明する。超音波検知器は、2個の超音波変換器101c,101dを備えており、距離L離れた場所に物体51が存在している。まず、送信を行う超音波変換器101cに間欠的に超音波パルス信号を印加し、超音波パルス波84を送信すると(図14(a))、超音波変換器101cは、時間t3秒後に反射波85を受信し、(図14(b))、超音波変換器101dは、超音波変換器101cが反射波85を受信してから時間t4秒後に反射波86を受信する(図14(c))。
【0014】
そして、反射波85が帰ってくるまでの時間t3より、物体51間との距離Lを検出し、超音波変換器101c,101dで各々受信した反射波85,86の時間差t4から物体51が存在する方向(角度)θを検出することができる。即ち、図15に示すように、車両50の後方の位置60c,60dに本従来例の超音波変換器を配置した時に、障害物の検知エリア70d,70e内に存在する物体51の位置(距離、方向)を特定することができ、さらにはその物体51に衝突する危険性があるのか、あるいは回避できるのかを予測することができ、以前の超音波変換器に比べてより有益な超音波変換器を実現することができるものである。
【0015】
しかし、この第3の従来例でも、1個の超音波検知器の中に複数個(2個)の圧電振動素子、即ち複数個の超音波変換器を必要とするため、コストが非常にアップしてしまうという根本的な問題がある。
【0016】
【発明が解決しようとする課題】
本発明は、上記事由に鑑みてなされたものであり、その目的は、近距離性能の向上を図ったり、三角測距方式の超音波検知器に採用できる安価な超音波変換器を提供することにある。
【0017】
【課題を解決するための手段】
請求項1の発明は、一端を開口し、他端を閉塞した複数の筒状空間部及び前記複数の筒状空間部を互いに連続させる連続空間部を内側に有する振動ケースと、前記複数の筒状空間部の各他端底部に取着して、各アース電極を前記振動ケースに接続した複数の圧電振動素子と、前記複数の圧電振動素子のアース電極に対をなす各信号電極に一端を接続し、他端を前記振動ケース外に導出する複数の第1のリード線と、前記振動ケースに一端を接続し、他端を前記振動ケース外に導出する1本の第2のリード線と、前記複数の筒状空間部及び連続空間部に同時に充填された緩衝材とを備え、前記1本の第2のリード線は、前記振動ケースを共通電位とした前記複数の圧電振動素子のアース線であることを特徴とする。
【0018】
請求項2の発明は、請求項1の発明において、前記振動ケースの筒状空間部は、軸方向に垂直な横断面視形状が長手方向と短手方向とで互いに異なる寸法を有することを特徴とする。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0020】
図1は本実施形態の超音波変換器を用いた超音波検知器の側面断面図,図2は上面図,図3は図1のAから見た矢視図(但し、電子回路3、リード線4a,4b、回路ケース10は外した状態)を各々示しており、超音波変換器100は、振動ケース1と、2個の圧電振動素子2と、リード線4a,4bと、緩衝材5とから構成されている。
【0021】
軸方向に垂直な横断面視形状が略長円の柱体の外見を有する振動ケース1は、一端を開口した空間部を備え、一端側は大径の略長円形の筒形内の空間からなり、その略長円形の筒形内の空間の底面に、一端側が開口し、他端側が閉塞して、横断面視形状が略矩形の筒状空間部6を長円の長径方向に2つ並設し、各筒状空間部6の底部内側に圧電振動素子2が接着されている。そして、この略長円形の筒形内の空間が、振動ケース1内の2つの筒状空間部6の各空間を互いにつなぐ連続空間部7となり、2つの筒状空間部6は連続空間部7を介して連続した空間となっている。さらに、筒状空間部6、及び連続空間部7には緩衝材5が充填されているが、2つの筒状空間部6と連続空間部7とは連続した空間であり、同時に緩衝材5が充填されるため、この充填のための作業は1回でよい。
【0022】
そして超音波変換器100は、連続空間部7の開口端を閉塞するように装着した横断面視形状が略長円の有底筒状である保持ゴム9を介して、横断面視形状が略長円の有底筒状であるハウジング8の内部に装着され、ハウジング8の底部外側には、両端を閉塞した略長円の筒状の回路ケース10が装着され、回路ケース10内には電子回路3を収納している。
【0023】
圧電振動素子2は例えばPZT系の圧電セラミックスで構成され、両面に電極を有して、各信号電極(正電極)をリード線4aの各一端に接続し、各アース電極(負電極)を振動ケース1に接着して、振動ケース1を1本のリード線4bの一端に接続している。即ち、2個の圧電振動素子2の各正電極からはリード線4aが各々引き出されるが、共通の電位(アース)である振動ケース1からは1本のリード線4bが引き出されるだけでよい。そして、この2本のリード線4a,及び1本のリード線4bの各他端は、保持ゴム9,ハウジング8,回路ケース10の各底面に形成した挿通口を通って電子回路3に接続されており、電子回路3からの超音波パルス信号は、リード線4aを介して圧電振動素子2の各正電極に、リード線4b,振動ケース1を介して各負電極に印加される。また、圧電振動素子2で受信した信号もリード線4a,及び振動ケース1,リード線4bを介して電子回路3に伝達され、電子回路3で増幅される。
【0024】
超音波変換器101を2個用いる従来の超音波検知器(図10,11)では、振動ケース1’が2個分の材料費が必要であったが、本実施形態の超音波変換器100の振動ケース1の材料費は、振動ケース1’が1.5個分程度の費用に低減することができる。また、本実施形態では従来の超音波変換器101(図10,11)に比べて、リード線4a,4bの本数は計4本から計3本に低減でき、緩衝材5の充填加工時間は2回分の時間から1回分の時間に低減することができる。さらに、超音波変換器100,ハウジング8,保持ゴム9の接着加工に要する時間は、従来の超音波変換器101:2個を接着加工する時間から1.5個を接着加工する時間にまで低減することができ、さらに他の加工時間も従来の超音波変換器101:2個を加工する時間から1.5個を加工する時間にまで低減することができる。
【0025】
したがって、距離性能の向上を図ったり、物体の存在する距離と方向(角度)とを検出する三角測距方式を採用するために圧電振動素子2を2個用いるためには、従来の超音波検知器では、超音波変換器101が2個分のコストが必要であったのに比べて、本実施形態の超音波変換器100は、超音波変換器101が1.2〜1.5個分のコストに抑えることができる。
【0026】
また、各筒状空間部6の軸方向に垂直な横断面視形状は略矩形であり、長手方向、短手方向に各々異なる寸法を有しているため、長手方向と短手方向とで超音波パルス波は異なる指向性を示すようにしており、短手方向(水平方向)には広く、長手方向(垂直方向)には狭い指向性が実現されている。さらに、この筒状空間部6の横断面視形状は、矩形状だけでなく、長円形状であっても上記同様の効果を得ることができる。
【0027】
なお、本実施形態の動作については、第2の従来例と同様に、一方の超音波変換器100に間欠的に超音波パルス信号を印加して超音波パルス波を送信し、他方の超音波変換器100で物体からの反射波を受信することによって近距離性能の向上を図ったり、あるいは第3の従来例と同様に、一方の超音波変換器100に間欠的に超音波パルス信号を印加して超音波パルス波を送信し、両方の超音波変換器100で物体からの反射波を受信することによって、物体の存在する距離と方向(角度)とを検出する三角測距方式を採用することができる。
【0028】
【発明の効果】
請求項1の発明は、一端を開口し、他端を閉塞した複数の筒状空間部及び前記複数の筒状空間部を互いに連続させる連続空間部を内側に有する振動ケースと、前記複数の筒状空間部の各他端底部に取着して、各アース電極を前記振動ケースに接続した複数の圧電振動素子と、前記複数の圧電振動素子のアース電極に対をなす各信号電極に一端を接続し、他端を前記振動ケース外に導出する複数の第1のリード線と、前記振動ケースに一端を接続し、他端を前記振動ケース外に導出する1本の第2のリード線と、前記複数の筒状空間部及び連続空間部に同時に充填された緩衝材とを備え、前記1本の第2のリード線は、前記振動ケースを共通電位とした前記複数の圧電振動素子のアース線であるので、緩衝材充填のための作業を1回とし、リード線の本数を計3本に低減して低コスト化を図り、複数個の圧電振動素子を用いて近距離性能の向上を図ったり、三角測距方式に採用可能で安価な超音波変換器を提供することができるという効果がある。
【0029】
請求項2の発明は、請求項1の発明において、前記振動ケースの筒状空間部は、軸方向に垂直な横断面視形状が長手方向と短手方向とで互いに異なる寸法を有するので、長手方向と短手方向とで超音波パルス波は異なる指向性を示すことができるという効果がある。
【図面の簡単な説明】
【図1】本発明の実施形態を用いた超音波検知器を示す側面断面図である。
【図2】本発明の実施形態を用いた超音波検知器を示す上面図である。
【図3】本発明の実施形態の図1のAから見た一部省略した矢視図である。
【図4】第1の従来例の水平方向の検知エリアを示す図である。
【図5】第1の従来例の垂直方向の検知エリアを示す図である。
【図6】第1の従来例の超音波検知器を示す側面断面図である。
【図7】第1の従来例の超音波検知器を示す上面図である。
【図8】第1の従来例の図6のAから見た一部省略した矢視図である。
【図9】(a),(b),(c)第1の従来例の超音波検知器の動作を説明する波形図である。
【図10】第2の従来例の超音波検知器を示す側面断面図である。
【図11】第2の従来例の超音波検知器を示す上面図である。
【図12】(a),(b),(c)第2の従来例の超音波検知器の動作を説明する波形図である。
【図13】第3の従来例の超音波検知器の検出原理を説明する図である。
【図14】(a),(b),(c)第3の従来例超音波検知器の動作を説明する波形図である。
【図15】第3の従来例超音波検知器の動作を説明する別の図である。
【符号の説明】
1 振動ケース
2 圧電振動素子
3 電子回路
4a,4b リード線
5 緩衝材
6 筒状空間部
7 連続空間部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic transducer used in a detector that performs sensing using ultrasonic waves.
[0002]
[Prior art]
The piezoelectric ultrasonic transducer is filled in a vibration case having a space inside a bottomed cylindrical body, a piezoelectric vibration element attached to the bottom of the space, and a space inside the vibration case. And a lead wire connected to the piezoelectric vibration element. The ultrasonic detector using the ultrasonic transducer performs sensing using ultrasonic waves, intermittently transmits ultrasonic pulse waves from the ultrasonic transducer, and is surrounded by the ultrasonic transducer. Mainly used for vehicles that detect objects by receiving reflected waves from existing obstacles.
[0003]
The ultrasonic detector using the piezoelectric ultrasonic transducer as described above applies an ultrasonic pulse signal generated intermittently to the piezoelectric transducer of the ultrasonic transducer, and vibrates the vibration case. Send a pulse wave. Then, the reflected wave from the obstacle is received through the vibration case and the piezoelectric vibration element and amplified. If the reflected wave (reception pulse) is received within a time corresponding to a predetermined distance range, detection display is performed. An ultrasonic transducer is arranged at the rear or corner of the vehicle, monitors obstacles around the vehicle, and alerts the driver. Conventionally, an ultrasonic transducer using one piezoelectric vibration element. Was placed at each site. 4 and 5 show the obstacle horizontal detection areas 70a and 70b and the vertical detection area 70c when the ultrasonic transducers are disposed at positions 60a and 60b behind the vehicle 50, respectively.
[0004]
6 is a side sectional view of the first conventional ultrasonic detector, FIG. 7 is a top view, and FIG. 8 is an arrow view as seen from A of FIG. 6 (however, the electronic circuit 3, lead wires 4a and 4b, The ultrasonic transducer 101 includes a vibration case 1 ′, a piezoelectric vibration element 2, a buffer material 5, and lead wires 4 a and 4 b. . The vibration case 1 ′ having a cylindrical shape with a bottomed cylindrical shape has an inner cylindrical space portion 11 having a large-diameter cylindrical shape on the opening side, and the inner side of the vibration case 1 ′ is seen in a cross-sectional view perpendicular to the axial direction. It is formed in a bottomed cylindrical shape having a substantially rectangular shape, and the piezoelectric vibration element 2 is bonded to the inside of the bottom. Further, the space 11 is filled with the buffer material 5.
[0005]
The ultrasonic transducer 101 is mounted inside a bottomed cylindrical housing 8 ′ via a bottomed cylindrical holding rubber 9 ′ mounted so as to close the open end of the space portion 11. A cylindrical circuit case 10 ′ whose both ends are closed is mounted on the outer side of the bottom of “′, and the electronic circuit 3 is accommodated in the circuit case 10 ′.
[0006]
The piezoelectric vibration element 2 is made of, for example, PZT-based piezoelectric ceramics, has electrodes on both sides, connects the signal electrode (positive electrode) to one end of the lead wire 4a, and connects the ground electrode (negative electrode) to the vibration case 1 ′. The vibration case 1 'is connected to one end of the lead wire 4b. The other ends of the lead wires 4a and 4b are connected to the electronic circuit 3 through insertion holes formed on the bottom surfaces of the holding rubber 9 ', the housing 8', and the circuit case 10 '. The ultrasonic pulse signal is applied to the positive electrode of the piezoelectric vibration element 2 via the lead wire 4a and to the negative electrode via the lead wire 4b and the vibration case 1 ′. A signal received by the piezoelectric vibration element 2 is also transmitted to the electronic circuit 3 via the lead wire 4 a, the vibration case 1 ′, and the lead wire 4 b, and is amplified by the electronic circuit 3.
[0007]
Next, the operation of the ultrasonic detector of this conventional example will be described with reference to the waveform diagrams of FIGS. 9 (a), (b), and (c). First, the ultrasonic vibration signal is intermittently applied to the piezoelectric vibration element 2 by the electronic circuit 3 (FIG. 9A), and the ultrasonic vibration is transmitted by vibrating the bottom of the vibration case 1 ′. And the space part 11 inside vibration case 1 'is filled with the buffer material 5, and the buffer material 5 plays the role for converging the reverberation vibration generated after application of an ultrasonic pulse signal, On the basis of the detection operation principle, reverberation vibration remains even when the application is terminated by the applied ultrasonic pulse signal (FIG. 9B).
[0008]
Therefore, the reflected wave from the object and the reverberation vibration cannot be distinguished during the time t1 from the application of the ultrasonic pulse signal to the completion of the reverberation vibration. That is, the reflected wave 80 from the object existing at a distance away from the ultrasonic transducer can be distinguished from the reverberation vibration waveform, and the presence of the object can be determined, but the reflected wave from the object present at a short distance from the ultrasonic transducer. No. 81 has a problem that it cannot be distinguished from the reverberation vibration waveform and the existence of the object cannot be determined (FIG. 9C).
[0009]
Therefore, as a means for overcoming the above problems, an ultrasonic detector using two piezoelectric vibration elements, that is, using two ultrasonic transducers has been proposed. FIG. 10 is a side sectional view of the ultrasonic detector according to the second conventional example, and FIG. 11 is a top view, respectively. Two ultrasonic transducers 101a and 101b (the ultrasonic detector described in the first conventional example) The same configuration as that of the acoustic wave transducer 101 is provided. The ultrasonic transducers 101a and 101b are provided with a bottomed cylindrical holding rubber 9 'so as to close the open end of the space 11, and a housing 8''which is a column having a substantially oval cross-sectional shape. The cylindrical concave portions formed in the axial direction are juxtaposed in the long side direction, and the ultrasonic transducers 101a and 101b are mounted in the concave portions via the holding rubber 9 '. A cylindrical circuit case 10 '"having a substantially oval cross-sectional shape and closed at both ends is mounted on the outside of the bottom of the housing 8"'. The electronic circuit 3 is accommodated in the circuit case 10 "'. Yes. Then, a total of four lead wires, that is, two lead wires 4 a connecting each piezoelectric vibration element 2 and the electronic circuit 3 and two lead wires 4 b connecting each vibration case 1 ′ and the electronic circuit 3 are connected. Prepare.
[0010]
This ultrasonic detector intermittently applies an ultrasonic pulse signal to the piezoelectric vibration element 2 of the ultrasonic transducer 101a to transmit an ultrasonic pulse wave, and receives an reflected wave from an object by the ultrasonic transducer 101b. Therefore, the operation of the ultrasonic detector of this conventional example will be described with reference to the waveform diagrams of FIGS. 12 (a), (b), and (c). First, even if an ultrasonic pulse signal is intermittently applied to the piezoelectric vibration element 2 of the ultrasonic transducer 101a that performs transmission and the bottom of the vibration case 1 ′ is vibrated to transmit an ultrasonic pulse wave (FIG. 12 ( a)) In the ultrasonic transducer 101b that performs reception, since no ultrasonic pulse signal is applied, reverberation vibration after application occurs during time t2 (t2 <t1), but is completed immediately (FIG. 12 ( b)) The ultrasonic transducer 101b not only reflects the reflected wave 82 from the object existing at a distance away from the ultrasonic transducer, but also the reflected wave 83 from the object present at a short distance from the ultrasonic transducer. Thus, it can be distinguished from the reverberation vibration waveform, and the presence of the object can be determined (FIG. 12C).
[0011]
However, in this second conventional example, since a plurality of (two) piezoelectric vibration elements, that is, a plurality of ultrasonic transducers, are required in one ultrasonic detector, the cost is greatly increased. There is a fundamental problem that it will end up, and it has not been put into practical use.
[0012]
As a third conventional example, in recent years, by applying the principle of triangulation, two piezoelectric vibration elements, that is, two ultrasonic transducers, are provided, and one ultrasonic transducer is intermittently superposed. Ultrasonic detection that detects the distance and direction (angle) of an object by applying an ultrasonic pulse signal and transmitting an ultrasonic pulse wave and receiving the reflected wave from the object with both ultrasonic transducers Devices have been devised and disclosed in Japanese Patent Application No. 10-365420 and Japanese Patent Application No. 11-145744.
[0013]
The operation of the conventional ultrasonic detector will be described with reference to the detection principle diagram of FIG. 13 and the waveform diagrams of FIGS. 14 (a), 14 (b), and 14 (c). The ultrasonic detector includes two ultrasonic transducers 101c and 101d, and the object 51 is present at a distance L away. First, when an ultrasonic pulse signal is intermittently applied to the transmitting ultrasonic transducer 101c and an ultrasonic pulse wave 84 is transmitted (FIG. 14A), the ultrasonic transducer 101c reflects after time t3 seconds. The ultrasonic transducer 101d receives the wave 85 (FIG. 14B), and receives the reflected wave 86 after time t4 seconds after the ultrasonic transducer 101c receives the reflected wave 85 (FIG. 14C). )).
[0014]
Then, the distance L between the objects 51 is detected from the time t3 until the reflected wave 85 returns, and the object 51 exists from the time difference t4 between the reflected waves 85 and 86 received by the ultrasonic transducers 101c and 101d. The direction (angle) θ to be detected can be detected. That is, as shown in FIG. 15, when the ultrasonic transducer of this conventional example is arranged at positions 60c and 60d behind the vehicle 50, the position (distance) of the object 51 existing in the obstacle detection areas 70d and 70e. Direction), and can predict whether there is a risk of colliding with the object 51, or whether it can be avoided, and ultrasonic conversion that is more useful than previous ultrasonic transducers. Can be realized.
[0015]
However, this third conventional example also requires a plurality of (two) piezoelectric vibration elements, that is, a plurality of ultrasonic transducers, in one ultrasonic detector, so that the cost is greatly increased. There is a fundamental problem.
[0016]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned reasons, and an object thereof is to provide an inexpensive ultrasonic transducer that can improve short-range performance or can be employed in a triangulation ultrasonic detector. It is in.
[0017]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a vibration case having a plurality of cylindrical space portions having one end opened and the other end closed, and a continuous space portion continuously connecting the plurality of cylindrical space portions, and the plurality of tubes. A plurality of piezoelectric vibration elements attached to the bottom of each other end of the space and connecting each ground electrode to the vibration case, and one end of each signal electrode paired with the ground electrode of the plurality of piezoelectric vibration elements. A plurality of first lead wires that are connected to each other and lead out the vibration case to the vibration case; a second lead wire that connects one end to the vibration case and leads the other end to the vibration case; A plurality of cylindrical space portions and a buffer material filled in the continuous space portion at the same time , and the one second lead wire is connected to the ground of the plurality of piezoelectric vibration elements having the vibration case as a common potential. It is a line .
[0018]
According to a second aspect of the present invention, in the first aspect of the invention, the cylindrical space portion of the vibration case has a cross-sectional view shape perpendicular to the axial direction having different dimensions in the longitudinal direction and the short direction. And
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0020]
1 is a side sectional view of an ultrasonic detector using the ultrasonic transducer of the present embodiment, FIG. 2 is a top view, and FIG. 3 is an arrow view as viewed from A of FIG. The ultrasonic transducer 100 includes a vibration case 1, two piezoelectric vibration elements 2, lead wires 4a and 4b, and a buffer material 5. It consists of and.
[0021]
The vibration case 1 having the appearance of a column having a substantially oval cross-sectional view perpendicular to the axial direction includes a space portion having one end opened, and one end side is formed from a space in a large-diameter substantially oval cylindrical shape. The cylindrical space portion 6 having one end opened at the bottom of the space in the substantially oval cylindrical shape, closed at the other end, and substantially rectangular in cross-sectional view is formed in the major axis direction of the ellipse. The piezoelectric vibration elements 2 are bonded to each other inside the bottom portion of each cylindrical space portion 6. The space in the substantially oval cylindrical shape becomes a continuous space portion 7 that connects the spaces of the two cylindrical space portions 6 in the vibration case 1 to each other, and the two cylindrical space portions 6 are the continuous space portions 7. It is a continuous space through. Furthermore, although the cylindrical space part 6 and the continuous space part 7 are filled with the buffer material 5, the two cylindrical space parts 6 and the continuous space part 7 are continuous spaces, and at the same time, the buffer material 5 Since it is filled, the work for this filling may be performed once.
[0022]
The ultrasonic transducer 100 has a substantially cross-sectional view shape through the holding rubber 9 that is a bottomed cylindrical shape having a substantially oval cross-sectional view that is mounted so as to close the open end of the continuous space portion 7. A cylindrical circuit case 10 having a substantially elliptical shape with both ends closed is mounted on the outside of the bottom of the housing 8, and an electronic circuit is mounted in the circuit case 10. The circuit 3 is accommodated.
[0023]
The piezoelectric vibration element 2 is made of, for example, PZT-based piezoelectric ceramic, has electrodes on both sides, connects each signal electrode (positive electrode) to each end of the lead wire 4a, and vibrates each ground electrode (negative electrode). The vibration case 1 is bonded to the case 1 and connected to one end of one lead wire 4b. That is, the lead wires 4a are drawn out from the positive electrodes of the two piezoelectric vibrating elements 2, but only one lead wire 4b needs to be drawn out from the vibrating case 1 having a common potential (ground). The other ends of the two lead wires 4a and one lead wire 4b are connected to the electronic circuit 3 through insertion holes formed on the bottom surfaces of the holding rubber 9, the housing 8, and the circuit case 10. The ultrasonic pulse signal from the electronic circuit 3 is applied to each positive electrode of the piezoelectric vibration element 2 via the lead wire 4 a and to each negative electrode via the lead wire 4 b and the vibration case 1. A signal received by the piezoelectric vibration element 2 is also transmitted to the electronic circuit 3 via the lead wire 4 a and the vibration case 1 and the lead wire 4 b and amplified by the electronic circuit 3.
[0024]
In the conventional ultrasonic detector using two ultrasonic transducers 101 (FIGS. 10 and 11), the material cost for two vibration cases 1 ′ is required. However, the ultrasonic transducer 100 according to this embodiment is used. The material cost of the vibration case 1 can be reduced to the cost of about 1.5 vibration cases 1 ′. Further, in this embodiment, the number of lead wires 4a and 4b can be reduced from a total of four to three compared to the conventional ultrasonic transducer 101 (FIGS. 10 and 11), and the filling time of the buffer material 5 can be reduced. The time can be reduced from two times to one time. Further, the time required for bonding the ultrasonic transducer 100, the housing 8, and the holding rubber 9 is reduced from the time required for bonding the conventional ultrasonic transducer 101: 1.5 to the time for bonding 1.5. Further, other processing time can be reduced from the time of processing the conventional ultrasonic transducer 101: 2 to the time of processing 1.5.
[0025]
Therefore, in order to improve the distance performance or to use the two piezoelectric vibrating elements 2 in order to employ the triangulation system that detects the distance and direction (angle) where the object exists, conventional ultrasonic detection Compared to the cost of two ultrasonic transducers 101, the ultrasonic transducer 100 of the present embodiment has 1.2 to 1.5 ultrasonic transducers 101. The cost can be reduced.
[0026]
In addition, the cross-sectional view perpendicular to the axial direction of each cylindrical space 6 is substantially rectangular, and has different dimensions in the longitudinal direction and the lateral direction. The acoustic pulse wave has different directivities, and wide directivity in the short direction (horizontal direction) and narrow directivity is realized in the long direction (vertical direction). Furthermore, the same effect as described above can be obtained even when the shape of the cylindrical space portion 6 in a cross-sectional view is not only a rectangular shape but also an oval shape.
[0027]
As for the operation of this embodiment, as in the second conventional example, an ultrasonic pulse signal is intermittently applied to one ultrasonic transducer 100 to transmit an ultrasonic pulse wave, and the other ultrasonic wave is transmitted. The transducer 100 receives the reflected wave from the object to improve short-range performance, or intermittently applies an ultrasonic pulse signal to one ultrasonic transducer 100 as in the third conventional example. Then, an ultrasonic pulse wave is transmitted, and a reflected wave from the object is received by both ultrasonic transducers 100, thereby adopting a triangulation system that detects the distance and direction (angle) where the object exists. be able to.
[0028]
【The invention's effect】
According to a first aspect of the present invention, there is provided a vibration case having a plurality of cylindrical space portions having one end opened and the other end closed, and a continuous space portion continuously connecting the plurality of cylindrical space portions, and the plurality of tubes. A plurality of piezoelectric vibration elements attached to the bottom of each other end of the space and connecting each ground electrode to the vibration case, and one end of each signal electrode paired with the ground electrode of the plurality of piezoelectric vibration elements. A plurality of first lead wires that are connected to each other and lead out the vibration case to the vibration case; a second lead wire that connects one end to the vibration case and leads the other end to the vibration case; A plurality of cylindrical space portions and a buffer material filled in the continuous space portion at the same time , and the one second lead wire is connected to the ground of the plurality of piezoelectric vibration elements having the vibration case as a common potential. since a line, and once the work for cushioning material filling, Lee Reduce the cost by reducing the number of wires to a total of three, improve the short-range performance using a plurality of piezoelectric vibration elements, and adopt an inexpensive ultrasonic transducer that can be used in the triangulation method There is an effect that it can be provided.
[0029]
According to a second aspect of the present invention, in the first aspect of the invention, the cylindrical space portion of the vibration case has a shape in which the cross-sectional view perpendicular to the axial direction has mutually different dimensions in the longitudinal direction and the lateral direction. There is an effect that the ultrasonic pulse wave can exhibit different directivities in the direction and the short direction.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing an ultrasonic detector using an embodiment of the present invention.
FIG. 2 is a top view showing an ultrasonic detector using an embodiment of the present invention.
FIG. 3 is a partially omitted arrow view as viewed from FIG. 1A of the embodiment of the present invention.
FIG. 4 is a diagram illustrating a horizontal detection area of a first conventional example.
FIG. 5 is a diagram showing a vertical detection area of a first conventional example.
FIG. 6 is a side sectional view showing a first conventional ultrasonic detector.
FIG. 7 is a top view showing an ultrasonic detector of a first conventional example.
FIG. 8 is a partially omitted arrow view as viewed from A of FIG. 6 of the first conventional example.
FIGS. 9A, 9B and 9C are waveform diagrams for explaining the operation of the first conventional ultrasonic detector. FIGS.
FIG. 10 is a side sectional view showing an ultrasonic detector of a second conventional example.
FIG. 11 is a top view showing an ultrasonic detector of a second conventional example.
FIGS. 12A, 12B, and 12C are waveform diagrams for explaining the operation of the ultrasonic detector of the second conventional example.
FIG. 13 is a diagram illustrating a detection principle of an ultrasonic detector according to a third conventional example.
FIGS. 14A, 14B, and 14C are waveform diagrams for explaining the operation of the third conventional ultrasonic detector.
FIG. 15 is another diagram for explaining the operation of the third conventional ultrasonic detector.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vibration case 2 Piezoelectric vibration element 3 Electronic circuit 4a, 4b Lead wire 5 Buffer material 6 Cylindrical space part 7 Continuous space part

Claims (2)

一端を開口し、他端を閉塞した複数の筒状空間部及び前記複数の筒状空間部を互いに連続させる連続空間部を内側に有する振動ケースと、前記複数の筒状空間部の各他端底部に取着して、各アース電極を前記振動ケースに接続した複数の圧電振動素子と、前記複数の圧電振動素子のアース電極に対をなす各信号電極に一端を接続し、他端を前記振動ケース外に導出する複数の第1のリード線と、前記振動ケースに一端を接続し、他端を前記振動ケース外に導出する1本の第2のリード線と、前記複数の筒状空間部及び連続空間部に同時に充填された緩衝材とを備え、前記1本の第2のリード線は、前記振動ケースを共通電位とした前記複数の圧電振動素子のアース線であることを特徴とする超音波変換器。A vibration case having a plurality of cylindrical space portions with one end opened and the other end closed, and a continuous space portion for continuously connecting the plurality of cylindrical space portions to each other, and each other end of the plurality of cylindrical space portions A plurality of piezoelectric vibration elements attached to the bottom, each ground electrode connected to the vibration case, and one end connected to each signal electrode paired with the ground electrode of the plurality of piezoelectric vibration elements, the other end of the A plurality of first lead wires led out of the vibration case, one second lead wire having one end connected to the vibration case and the other end led out of the vibration case, and the plurality of cylindrical spaces And the buffer material filled in the continuous space portion at the same time , and the one second lead wire is a ground wire of the plurality of piezoelectric vibration elements having the vibration case as a common potential. Ultrasonic transducer. 前記振動ケースの筒状空間部は、軸方向に垂直な横断面視形状が長手方向と短手方向とで互いに異なる寸法を有することを特徴とする請求項1記載の超音波変換器。2. The ultrasonic transducer according to claim 1, wherein the cylindrical space portion of the vibration case has dimensions different from each other in a longitudinal direction and a lateral direction in a cross-sectional view perpendicular to the axial direction.
JP2001335123A 2001-10-31 2001-10-31 Ultrasonic transducer Expired - Fee Related JP4131100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001335123A JP4131100B2 (en) 2001-10-31 2001-10-31 Ultrasonic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001335123A JP4131100B2 (en) 2001-10-31 2001-10-31 Ultrasonic transducer

Publications (2)

Publication Number Publication Date
JP2003143695A JP2003143695A (en) 2003-05-16
JP4131100B2 true JP4131100B2 (en) 2008-08-13

Family

ID=19150147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001335123A Expired - Fee Related JP4131100B2 (en) 2001-10-31 2001-10-31 Ultrasonic transducer

Country Status (1)

Country Link
JP (1) JP4131100B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101376347B1 (en) 2012-09-04 2014-03-21 주식회사 만도 ultrasonic transducer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101376347B1 (en) 2012-09-04 2014-03-21 주식회사 만도 ultrasonic transducer

Also Published As

Publication number Publication date
JP2003143695A (en) 2003-05-16

Similar Documents

Publication Publication Date Title
US7692367B2 (en) Ultrasonic transducer
US7461555B2 (en) Ultrasonic sensor
JP2001289939A (en) Ultrasonic wave transmitter/receiver and peripheral obstacle detector for vehicle
JP2007282058A (en) Ultrasonic sensor
JP3552605B2 (en) Ultrasonic transducer
JP2006345271A (en) Ultrasonic wave transceiver
JPH10332817A (en) Ultrasonic vibrator and ultrasonic sensor with it
JP3986987B2 (en) Ultrasonic sensor and attached parts
JP2002209294A (en) Ultrasonic sensor, electronic unit provided with the same and vehicle rear sonar
JP4860797B2 (en) Ultrasonic sensor and obstacle detection device
JP2001013239A (en) Ultrasonicvibrator
JP4131100B2 (en) Ultrasonic transducer
JP5950742B2 (en) Ultrasonic transducer
US7203133B1 (en) Ultrasound sensor system
JP4019799B2 (en) Ultrasonic sensor
JP4532347B2 (en) Ultrasonic transducer
JP5111977B2 (en) Ultrasonic transducer
JP5276352B2 (en) Ultrasonic transducer
JP2001238292A (en) Ultrasonic wave sensor
JP3528491B2 (en) Ultrasonic transducer
JP2009141451A (en) Ultrasonic wave transceiver
JP5237786B2 (en) Ultrasonic transducer
JP3367446B2 (en) Drip-proof ultrasonic transducer
JP2004343660A (en) Ultrasonic sensor
JP2002112395A (en) Ultrasonic wave vibrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4131100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees