JP5950742B2 - Ultrasonic transducer - Google Patents
Ultrasonic transducer Download PDFInfo
- Publication number
- JP5950742B2 JP5950742B2 JP2012166942A JP2012166942A JP5950742B2 JP 5950742 B2 JP5950742 B2 JP 5950742B2 JP 2012166942 A JP2012166942 A JP 2012166942A JP 2012166942 A JP2012166942 A JP 2012166942A JP 5950742 B2 JP5950742 B2 JP 5950742B2
- Authority
- JP
- Japan
- Prior art keywords
- opening
- bottomed cylindrical
- cylindrical case
- ultrasonic transducer
- shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/521—Constructional features
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/93—Sonar systems specially adapted for specific applications for anti-collision purposes
- G01S15/931—Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Transducers For Ultrasonic Waves (AREA)
Description
本発明は、超音波を用いた送信、受信を行う空中用超音波送受波器に関するものである。 The present invention relates to an aerial ultrasonic transducer that performs transmission and reception using ultrasonic waves.
超音波送受波器は、車と周囲の障害物との距離を検知するセンサとして利用されている。この時、超音波送受器は、車のバンパー等に埋め込み設置して利用されることが多く、取り付ける位置によって、車の後方の障害物を検知するバックセンサやコーナーの障害物を検知するコーナーセンサと呼ばれている。 Ultrasonic transducers are used as sensors that detect the distance between a vehicle and surrounding obstacles. At this time, the ultrasonic handset is often used by being embedded in a bumper or the like of a car, and depending on the mounting position, a back sensor that detects an obstacle behind the car or a corner sensor that detects an obstacle at a corner. is called.
この超音波送受器を用いた障害物検出には、超音波送受波器内部に存在する振動と電気信号を変換する材料もしくは機構が用いられている。これを利用し、パルスバースト電気信号を超音波送受器に入力することで超音波送受波器からその入力パルスバースト電気信号に応じた超音波信号が発振され、発振された超音波信号は障害物に到達した後、その障害物で反射し、反射した超音波信号の一部は同じ超音波送受波器に戻ってくる。超音波送受波器はその反射信号を受信することで障害物を検出し、発信して受信するまでの時間差を利用して車と障害物との距離を測定している。 For the obstacle detection using this ultrasonic handset, a material or a mechanism for converting vibrations and electric signals existing inside the ultrasonic handset is used. Using this, an ultrasonic signal corresponding to the input pulse burst electric signal is oscillated from the ultrasonic transducer by inputting the pulse burst electric signal to the ultrasonic transducer, and the generated ultrasonic signal is an obstacle. After reaching the obstacle, a part of the reflected ultrasonic signal returns to the same ultrasonic transducer. The ultrasonic transducer detects the obstacle by receiving the reflected signal, and measures the distance between the vehicle and the obstacle by using the time difference between transmission and reception.
従来の実施の形態に関わる超音波送受波器において、図1にその概略縦断面図を表す。図2は従来の実施の形態に関わる超音波送受波器における有底筒状ケースの概略上面図および断面図を表す。図1において、アルミニウム材等から成る内部が長方形状の有底筒状ケース2の内部底面に圧電素子1を接着しユニモルフ振動子を構成する。圧電素子1は、圧電性を有する絶縁体からなり、表面に銀などの導電材料により2つの互いに独立した電極が形成されている。
FIG. 1 shows a schematic longitudinal sectional view of an ultrasonic transducer according to a conventional embodiment. FIG. 2 shows a schematic top view and a cross-sectional view of a bottomed cylindrical case in an ultrasonic transducer according to a conventional embodiment. In FIG. 1, a
圧電素子1と有底筒状状ケース2との接着面側の反対面に存在する圧電素子1表面の一方の電極は、入出力リード5aと半田付け等により電気的に接続されている。また、入出力リード5bは、有底筒状ケース2もしくは圧電素子1表面の他方の電極と半田付け等をして電気的に接続されている。ここで、圧電素子1の有底筒状ケース2との接着面側と有底筒状ケース2とは電気的に接続されている。
One electrode on the surface of the
入出力リード5aおよび5bはPVC被覆ワイヤ付きコネクタのワイヤ6にそれぞれ半田付けされている。圧電素子1の上面にシリコーン発泡体等から成る吸音材3を設置し、入出力リード5aを通すために吸音材3に開けた穴にシリコーン材、ウレタン材等の弾性体からなる充填材8を充填し、更にその上からシリコーン材、ウレタン材等の弾性体から成る封止剤4を有底筒状ケース2内に充填して構成されている。有底筒状ケース2の側面開口部9はすべてシリコーン材、ウレタン材等からなる充填材7を充填しておく必要がある。
The input / output leads 5a and 5b are respectively soldered to the wire 6 of the connector with the PVC coated wire. A
従来の実施の形態に関わる超音波送受波器において、有底筒状ケースの内部が長方形状の広い側が水平方向、狭い側が垂直方向となり、求められる指向特性として水平の指向性は広く、垂直方向は狭くする必要がある。
これは、車両等に設置された場合、路面に平行な水平方向に拡がりのある超音波を送信して広域の障害物を検出し、路面に垂直な方向に拡がりを抑えた超音波を送信して路面からの超音波の反射等の誤検出を抑えるためのものである。
In the ultrasonic transducer according to the conventional embodiment, the inside of the bottomed cylindrical case is rectangular, the wide side is the horizontal direction, the narrow side is the vertical direction, and the horizontal directivity is wide as the required directivity, the vertical direction Need to be narrow.
When installed in a vehicle, etc., it transmits ultrasonic waves that spread in the horizontal direction parallel to the road surface, detects obstacles in a wide area, and transmits ultrasonic waves that suppress spread in the direction perpendicular to the road surface. This is to suppress erroneous detection such as reflection of ultrasonic waves from the road surface.
この指向特性を実現するために、図2の様に有底筒状ケースの内部の長方形状の狭い側の側面に開口部を設けることで垂直方向の指向性を狭くするという発明がなされている。この発明による超音波送波器は、市場動向として検出距離の長い用途としての応用が始まっている。 In order to realize this directivity, an invention has been made in which the directivity in the vertical direction is narrowed by providing an opening on the side surface of the rectangular narrow side inside the bottomed cylindrical case as shown in FIG. . The ultrasonic transmitter according to the present invention has begun to be applied as a use with a long detection distance as a market trend.
従来の超音波送受波器、つまり有底筒状ケースの内部が円形状もしくは長方形状の狭い側の側面中心に開口部を設けた空中用超音波送受波器では、水平方向の指向性が車両幅よりはみ出し、必要以上の検出範囲となる問題がある。 In conventional ultrasonic transducers, that is, in the aerial ultrasonic transducer in which the inside of the bottomed cylindrical case is provided with an opening in the center of the side surface on the narrow side that is circular or rectangular, the horizontal directivity is the vehicle There is a problem that the detection range extends beyond the width and becomes more than necessary.
有底筒状ケースの底面内部に圧電素子を貼り合わせてユニモルフ振動子を構成し、この振動体のケース外側面にて超音波の送信、受信を行う超音波送受波器において、有底筒状ケースの側壁の2箇所に開口部を設け、有底筒状ケースの中心軸に対して開口部の形状を非線対称になるように設ける。 A unimorph vibrator is constructed by laminating a piezoelectric element inside the bottom surface of a bottomed cylindrical case, and an ultrasonic transducer that transmits and receives ultrasonic waves on the case outer surface of this vibrating body has a bottomed cylindrical shape. Openings are provided at two locations on the side wall of the case, and the shape of the openings is provided so as to be axisymmetric with respect to the central axis of the bottomed cylindrical case.
開口部の形状が前記ケースの中心軸に対して非線対称になることで、水平指向性が偏心されて車両幅より検出範囲がはみ出さないようにすることができる。 Since the shape of the opening is axisymmetric with respect to the central axis of the case, the horizontal directivity is decentered and the detection range can be prevented from protruding beyond the vehicle width.
請求項1に記載の第1の発明は、前記開口部を有底筒状ケースの中心軸に対して、非線対称となるように前記の2つの開口部を設けることによって、水平指向性を偏心する。 According to a first aspect of the present invention, horizontal directivity is provided by providing the two openings so that the opening is axisymmetric with respect to the central axis of the bottomed cylindrical case. Eccentric.
請求項2に記載の第2の発明は、第1の発明における前記開口部を長方形状もしくは楕円形状とし、さらにこの開口部の長辺もしくは長軸の方向をケース底面に対して傾けることにより、振動面において開口部に近い箇所ほど剛性が低下する。このため、開口部における振動面に近い方向に指向性が偏心される。
ただし、開口部の振動面に近い箇所が、有底筒状ケースの内部底面よりも高い位置になる程に指向性の偏心は失われていく。
According to a second aspect of the present invention, the opening in the first aspect has a rectangular shape or an elliptical shape, and further, the direction of the long side or long axis of the opening is inclined with respect to the bottom surface of the case. On the vibration surface, the closer to the opening, the lower the rigidity. For this reason, directivity is decentered in a direction close to the vibration surface in the opening.
However, the eccentricity of directivity is lost as the position near the vibration surface of the opening becomes higher than the inner bottom surface of the bottomed cylindrical case.
有底筒状ケースの底面に対する開口部の傾きは、5°から20°の範囲で指向性の偏心が顕著にみられる。また、90°に近づく程、開口部において有底筒状ケースの振動面に近い箇所でのみ剛性の低下が生じ易くなり、振動面全体の剛性は上がる。このため、開口部直下の振動面の振動も次第に困難になることで、開口部を設けていない場合の有底筒状ケースの示す指向性に徐々に移り変わり、偏心の観測が難くなる。 In the inclination of the opening with respect to the bottom surface of the bottomed cylindrical case, the eccentricity of directivity is noticeable in the range of 5 ° to 20 °. Further, as the angle approaches 90 °, the rigidity is likely to be lowered only at a position near the vibration surface of the bottomed cylindrical case in the opening, and the rigidity of the entire vibration surface is increased. For this reason, the vibration of the vibration surface immediately below the opening becomes gradually difficult, and the directivity shown by the bottomed cylindrical case when no opening is provided is gradually changed, making it difficult to observe the eccentricity.
請求項3に記載の第3の発明は、第1の発明における前記開口部を円弧形状もしくは多角形状とし、有底筒状ケースの底面に垂直かつ開口部形状の図心を通る直線に対してこの開口部形状が非線対称である様に設けることを特徴としたものである。 According to a third aspect of the present invention, the opening in the first aspect has an arc shape or a polygonal shape, and is perpendicular to the bottom surface of the bottomed cylindrical case and a straight line passing through the centroid of the opening shape. It is characterized in that the opening shape is provided so as to be non-axisymmetric.
この発明の効果は、第2の発明と同様に、開口部において振動面から近い箇所と遠い箇所を形成することで、開口部直下の振動面の剛性分布を制御することが出来る。また、開口部を円弧形状もしくは多角形状にすることで、振動面と開口部の距離が直線的にしか変化できない長方形状よりも自由な設計を行うことが可能となる。さらに、振動面に垂直な方向の開口部の幅は、振動面に平行な方向の幅と比較して指向性に対する影響が小さく、且つ開口部の面積が広くなると超音波送受器の強度の低下や開口部を介した内部への水蒸気の進入等で故障原因となるため、開口部の面積を小さくし易い円弧形状や多角形状の方が楕円形状よりも有利となる。
次に、有底筒状ケースの底面に垂直かつ開口部形状の図心を通る直線に対して開口形状を非線対称にする目的は、各開口部直下の振動面の剛性を開口部の特定の方向に弱くして、その方向へ指向性を偏心させるためである。
The effect of this invention is that, as in the second invention, the rigidity distribution of the vibration surface directly under the opening can be controlled by forming a portion near and far from the vibration surface in the opening. In addition, by making the opening in an arc shape or a polygonal shape, it becomes possible to design more freely than a rectangular shape in which the distance between the vibration surface and the opening can be changed only linearly. Furthermore, the width of the opening in the direction perpendicular to the vibration surface has less influence on directivity compared to the width in the direction parallel to the vibration surface, and the strength of the ultrasonic handset decreases as the area of the opening increases. In addition, an arc shape or a polygonal shape, which can easily reduce the area of the opening, is more advantageous than the elliptical shape.
Next, the purpose of making the opening shape non-symmetrical with respect to a straight line passing through the centroid of the opening shape and perpendicular to the bottom surface of the bottomed cylindrical case is to specify the rigidity of the vibration surface immediately below each opening. This is because the directivity is decentered in that direction.
請求項4に記載の第4の発明は、
第1の発明における前記開口部を長方形状もしくは楕円形状とし、
さらに有底筒状ケースの底面に平行な面における前記開口部の各中心軸間の角度φを60°≦φ≦150度の範囲とすることで、振動面の剛性が低下する開口部の方向に振動が伝播し易くなる。このため、開口部の存在する方向に指向性が偏心される。
ただし、有底筒状ケースの内部底面よりも開口部の下部の位置が高くなるにつれて、開口部直下の振動面の剛性が上がり、開口部の方向への振動の伝播が抑制されて偏心の効果は失われていく。
According to a fourth aspect of the present invention,
The opening in the first invention is rectangular or elliptical,
Further, by setting the angle φ between the central axes of the openings in the plane parallel to the bottom surface of the bottomed cylindrical case to be in the range of 60 ° ≦ φ ≦ 150 degrees, the direction of the openings where the rigidity of the vibration surface is reduced Vibrations are easy to propagate to. For this reason, directivity is decentered in the direction in which the opening exists.
However, as the position of the lower part of the opening becomes higher than the inner bottom of the bottomed cylindrical case, the rigidity of the vibration surface immediately below the opening increases, and the propagation of vibration in the direction of the opening is suppressed, resulting in an eccentric effect. Will be lost.
請求項5に記載の第5の発明は、第1から第4の発明の少なくとも一つの発明における前記開口部形状と配置とを有底筒状ケースに設けることで、指向性の偏心を容易に制御することが可能となる。 According to a fifth aspect of the present invention, by providing the bottomed cylindrical case with the opening shape and arrangement according to at least one of the first to fourth aspects of the invention, directivity eccentricity can be easily achieved. It becomes possible to control.
図3は本発明の実施の形態に関わる超音波送受波器の概略縦断面図を表す。図3において、アルミニウム材等から成る有底筒状ケース2の内部底面に圧電素子1を接着しユニモルフ振動子を構成する。圧電素子1は、圧電性を有する絶縁体からなり、表面に銀などの導電材料により2つの互いに独立した電極が形成されている。
FIG. 3 is a schematic longitudinal sectional view of an ultrasonic transducer according to the embodiment of the present invention. In FIG. 3, a
圧電素子1と有底筒状状ケース2との接着面側の反対面に存在する圧電素子1表面の一方の電極は、入出力リード5aと半田付け等により電気的に接続されている。
また、入出力リード5bは、有底筒状ケース2もしくは圧電素子1表面の他方の電極と半田付け等をして電気的に接続されている。ここで、圧電素子1の有底筒状ケース2との接着面側と有底筒状ケース2とは電気的に接続されている。入出力リード5aおよび5bはPVC被覆ワイヤ付きコネクタのワイヤ6にそれぞれ半田付けされている。圧電素子1の上面にシリコーン発泡体等から成る吸音材3を設置し、入出力リード5aを通すために吸音材3に開けた穴にシリコーン材、ウレタン材等の弾性体からなる充填材8を充填し、更にその上からシリコーン材、ウレタン材等の弾性体から成る封止剤4を有底筒状ケース2内に充填して構成されている。有底筒状ケース2の側面開口部9はすべてシリコーン材、ウレタン材等からなる充填材7を充填しておく必要がある。
One electrode on the surface of the
The input / output lead 5b is electrically connected to the bottomed
図4は本発明の実施の形態に関わる有底筒状ケースの概略側面図を表す。図4おいて、アルミニウム材等から成る有底筒状ケースの側面に2つの開口部Oa、Obが設けられている。例えば図4に示した開口部Oa、Obの形は、いずれも長辺と短辺をもち、四隅にR形状が設けられた長方形である。開口部Oaと開口部Obは有底筒状ケース2の底面Vに対して斜めに(傾斜角θで)設けられている。また、開口部Oaと開口部Obは開口部Oaと開口部Obの振動面に近い箇所が有底筒状ケースの内部底面に接するように設けられている。ここで、水平方向の指向性の偏心が最大になるように、開口部Oaと開口部Obの形状は、底面Vの図心Pを通る中心軸P1を通る断面Aに対して鏡面対称の関係となるように設計した。ただし、他方向への指向性の偏心が必要であれば、開口部Oaと開口部Obの傾斜角は必ずしも同じでなくてもよく、開口部Oaと開口部Obの形状もまた断面Aに対して鏡面対称でなくとも良い。尚、開口部はアルミニウム材等から成る有底筒状ケースの内部底面から離れていても良く、また開口部はケース上面付近まで完全に達していても良い。
FIG. 4 is a schematic side view of a bottomed cylindrical case according to the embodiment of the present invention. In FIG. 4, two openings Oa and Ob are provided on the side surface of a bottomed cylindrical case made of an aluminum material or the like. For example, the shapes of the openings Oa and Ob shown in FIG. 4 are both rectangles having long sides and short sides and R shapes at the four corners. The opening Oa and the opening Ob are provided obliquely (with an inclination angle θ) with respect to the bottom surface V of the bottomed
図5は、図4の有底筒状ケースを利用して開口部の傾斜角をθ=10°とした場合と従来の傾斜のない場合との水平方向の指向性を比較した結果である。指向性の測定はつぎのように行った。超音波送受波器の意匠面から60cmの位置にφ50cmのポールを設置する。超音波送受信器の意匠面に垂直な位置、つまり超音波送受信器の正面にポールがある場合を90°として、ポールの位置を同心円上に動かして反射感度の測定した。ここで、底面Vと断面Aの交差線の方向を指向性の水平方向とする。傾斜のある場合にのみ水平方向で有底筒状ケース底面と開口部の間の距離が近い方向に指向性の偏心が見られる。指向性の測定はつぎのように行った。超音波送受波器の意匠面から60cmの位置にφ50cmのポールと設置する。超音波送受信器の意匠面に垂直な位置、つまり超音波送受信器の正面にポールがある場合を90°として、ポールの位置を同心円上に動かして反射感度の測定を行った。
FIG. 5 is a result of comparing the directivity in the horizontal direction when the inclination angle of the opening is θ = 10 ° using the bottomed cylindrical case of FIG. 4 and when there is no conventional inclination. The directivity was measured as follows. A φ50 cm pole is installed at a position 60 cm from the design surface of the ultrasonic transducer. Reflection sensitivity was measured by moving the pole position concentrically to a position perpendicular to the design surface of the ultrasonic transmitter / receiver, that is, when the pole is in front of the ultrasonic transmitter / receiver at 90 °. Here, let the direction of the intersection line of the bottom face V and the cross section A be a horizontal direction of directivity. Only when there is an inclination, the eccentricity of directivity is seen in the direction in which the distance between the bottom surface of the bottomed cylindrical case and the opening is short in the horizontal direction. The directivity was measured as follows. A φ50 cm pole is installed at a position 60 cm from the design surface of the ultrasonic transducer. The reflection sensitivity was measured by moving the pole position concentrically to a position perpendicular to the design surface of the ultrasonic transmitter / receiver, that is, when the pole is in front of the ultrasonic transmitter / receiver at 90 °.
図6は、図4の有底筒状ケースを利用して開口部の傾斜角を0°から25°の間で変化させたときの偏心の度合いを示す。上記の方法で指向性を測定し、反射感度が最大となるポールの位置(角度)を確認する。図6の縦軸に(90°)−(反射感度が最大の角度)の値をしめす。ポールが90°の位置(つまりポールの超音波送受波器の正面)にあるとき反射感度が最大になると、反射感度が最大の角度が90°となる。縦軸の値は0となる。指向性が偏芯して90°以外で反射感度が最大になる場合は、縦軸の値が大きくなる。開口部の傾斜角θの範囲を5°≦θ≦20°として超音波送受波器を設計した際に実用上有効であると考えられる10°以上の偏心が得られる。 FIG. 6 shows the degree of eccentricity when the inclination angle of the opening is changed between 0 ° and 25 ° using the bottomed cylindrical case of FIG. The directivity is measured by the above method, and the position (angle) of the pole where the reflection sensitivity is maximized is confirmed. The vertical axis of FIG. 6 indicates a value of (90 °) − (angle at which reflection sensitivity is maximum). If the reflection sensitivity is maximized when the pole is at a position of 90 ° (that is, in front of the ultrasonic transducer of the pole), the angle at which the reflection sensitivity is maximized is 90 °. The value on the vertical axis is 0. When the directivity is decentered and the reflection sensitivity is maximized at angles other than 90 °, the value on the vertical axis increases. An eccentricity of 10 ° or more, which is considered to be practically effective, can be obtained when the ultrasonic transducer is designed with the range of the inclination angle θ of the opening being 5 ° ≦ θ ≦ 20 °.
図6の結果から、開口部の形状により近傍の振動面の剛性が変化し、この剛性の分布を特定の方向に偏らせることで指向性の偏心が生じていることが理解できる。このため、図7と図8に示すような円弧形状や多角形状の開口部を用いることでも同様に指向性を偏心させることが可能である From the result of FIG. 6, it can be understood that the rigidity of the nearby vibration surface changes depending on the shape of the opening, and the eccentricity of directivity is generated by biasing the distribution of this rigidity in a specific direction. For this reason, directivity can be similarly decentered by using arc-shaped or polygonal openings as shown in FIGS.
図7に示す開口部の形状は、2つ以上の円弧を有し、円弧の両端が繋がれたことを特徴とする。 The shape of the opening shown in FIG. 7 has two or more arcs, and both ends of the arc are connected.
図8に示す開口部の形状は、多角形状からなり、各角(すみ)が曲面(R面)であることを特徴とする。 The shape of the opening shown in FIG. 8 is a polygon, and each corner is a curved surface (R surface).
図9は本発明の実施の形態に関わる別の有底筒状ケースの概略側面図を表す。図9おいて、アルミニウム材等から成る有底筒状ケースは、各開口部OaとObのそれぞれの中心軸をPaとPbとしたときにPaとPbが非平行となる交差角φで交わるように開口部を設けた。このとき、有底筒状ケースの中心軸はP1で示している。尚、開口部はアルミニウム材等から成る有底筒状ケースの底面から離れていても良く、また開口部はケース上面まで完全に達していても良い。ここで、φ/2の角度の方向を水平方向とし、この水平指向性の偏心を大きくするために、開口部Oaと開口部Obの形状と有底筒状ケースの底面からの高さを等しくなるように開口部を設けた。ただし、異なる方向での指向性を偏心させる場合には、開口部Oaと開口部Obの形状や有底筒状ケースの底面からの高さは等しくなくても良い。 FIG. 9: represents the schematic side view of another bottomed cylindrical case in connection with embodiment of this invention. In FIG. 9, the bottomed cylindrical case made of aluminum or the like intersects at an intersecting angle φ where Pa and Pb are non-parallel when the central axes of the openings Oa and Ob are Pa and Pb, respectively. An opening was provided. At this time, the central axis of the bottomed cylindrical case is indicated by P1. The opening may be separated from the bottom surface of the bottomed cylindrical case made of an aluminum material or the like, and the opening may completely reach the upper surface of the case. Here, in order to make the direction of the angle of φ / 2 the horizontal direction and increase the eccentricity of the horizontal directivity, the shape of the opening Oa and the opening Ob and the height from the bottom surface of the bottomed cylindrical case are equal. An opening was provided so as to be. However, when the directivity in different directions is decentered, the shapes of the opening Oa and the opening Ob and the height from the bottom surface of the bottomed cylindrical case do not have to be equal.
図10は、交差角をφ=120°とした図9の有底筒状ケースを用いた場合と従来のφ=180°かつ2つの開口部形状が有底筒状ケースの中心軸に対して2回対称である場合との水平指向性を比較した結果である。 FIG. 10 shows a case where the bottomed cylindrical case of FIG. 9 with an intersection angle of φ = 120 ° is used, and a conventional φ = 180 ° and two opening shapes with respect to the central axis of the bottomed cylindrical case. It is the result of having compared horizontal directivity with the case where it is 2 times symmetrical.
図11は、図9の有底筒状ケースを用いて開口部の中心軸間の交差角φを0°≦φ≦180°の間で変化させたときの偏心の度合いを、測定した指向性の最大反射感度の角度を90°から差し引いた角度によりプロットした結果である。交差角φの範囲を60°≦φ≦150°として超音波送受波器を設計した際に実用上有効であると考えられる10°以上の偏心が得られる。図11における、φ=0°の値は開口部を一つのみ設けたものである。また、図11の測定で用いた有底筒状ケースは、開口部の中心軸が互いに有底筒状ケースの中心軸上で交差するように設計したため、φ=180°において偏心が生じていない。ただし、本発明の効果は、開口部の中心軸が互いに有底筒状ケースの中心軸上以外で交差していても同様に得られる。 FIG. 11 shows the directivity obtained by measuring the degree of eccentricity when the crossing angle φ between the central axes of the openings is changed between 0 ° ≦ φ ≦ 180 ° using the bottomed cylindrical case of FIG. This is a result of plotting the angle of the maximum reflection sensitivity by an angle subtracted from 90 °. An eccentricity of 10 ° or more, which is considered to be practically effective, can be obtained when the ultrasonic transducer is designed with the range of the crossing angle φ being 60 ° ≦ φ ≦ 150 °. In FIG. 11, the value of φ = 0 ° is obtained by providing only one opening. In addition, the bottomed cylindrical case used in the measurement of FIG. 11 is designed so that the central axes of the openings intersect with each other on the central axis of the bottomed cylindrical case, so that no eccentricity occurs at φ = 180 °. . However, the effect of the present invention can be obtained in the same manner even if the central axes of the openings intersect each other except on the central axis of the bottomed cylindrical case.
図12は従来の実施の形態に関わる超音波送受信器を用いたバックセンサの検知範囲の模式図、図13は従来の実施の形態に関わる超音波送受信器と本発明の実施の形態に関わる超音波送受信器を用いたバックセンサの検知範囲の比較模式図を示したものである。図1の様に従来の実施の形態に関わる超音波送受信器を用いたバックセンサは水平方向の検知範囲が広すぎて車両幅より広くなり余計な部分まで検知してしまっている。これに比べて本発明の実施の形態に関わる各超音波送受信器を用いたバックセンサでは水平方向の指向性を車両の内側に偏心させる事で検知範囲が車両幅よりもはみ出さないようにすることが可能となり、意図した理想的な検知範囲を得ることが出来る。
FIG. 12 is a schematic diagram of the detection range of the back sensor using the ultrasonic transceiver according to the conventional embodiment, and FIG. 13 is an ultrasonic transceiver according to the conventional embodiment and the ultrasonic according to the embodiment of the present invention. The comparison schematic diagram of the detection range of a back sensor using a sound wave transceiver is shown. As shown in FIG. 1, the back sensor using the ultrasonic transmitter / receiver according to the conventional embodiment has a detection range in the horizontal direction that is too wide and wider than the vehicle width, and has detected an extra portion. In contrast, in the back sensor using each ultrasonic transceiver according to the embodiment of the present invention, the detection range does not protrude beyond the vehicle width by decentering the horizontal directivity toward the inside of the vehicle. Therefore, the intended ideal detection range can be obtained.
1 音響整合層
2 圧電素子
3 吸音材
4 封止材
5 両端に開口を有する筒状ケース
5a 入出力リード
5b 入出力リード
V 底面
P 有底筒状ケース底面の図心
P1 有底筒状ケースの中心軸
Pa 開口部
Pb 開口部
Oa 開口部Paの中心軸
Ob 開口部Pbの中心軸
θ 開口部の傾斜角
φ OaとObの交差角
DESCRIPTION OF
Claims (5)
ユニモルフ振動子の振動によって超音波の送受信を行う空中用超音波送受波器において、
有底筒状ケースの側面に2つの開口部を有し、
有底筒状ケースの底面に垂直且つ有底筒状ケース底面の図心を通る中心軸に対して、前記開口部の形状を非線対称となるように設けたことを特徴とする空中用超音波送受波器。 A piezoelectric element is attached inside the bottom of the bottomed cylindrical case to form a unimorph vibrator,
In the ultrasonic transmitter / receiver for air that transmits and receives ultrasonic waves by vibration of the unimorph vibrator,
There are two openings on the side of the bottomed cylindrical case,
An aerial vehicle characterized in that the shape of the opening is axisymmetric with respect to a central axis perpendicular to the bottom surface of the bottomed cylindrical case and passing through the centroid of the bottom surface of the bottomed cylindrical case Sonic transducer.
前述開口部が長方形状もしくは楕円形状からなり、
さらに開口部の長辺もしくは長軸の向きがケース底面に対して5°から20°の範囲で傾いていることを特徴とする空中用超音波送受波器。 The aerial ultrasonic transducer according to claim 1,
The opening has a rectangular or elliptical shape,
Furthermore, the ultrasonic transducer for the air, characterized in that the direction of the long side or long axis of the opening is inclined within a range of 5 ° to 20 ° with respect to the bottom surface of the case.
前述開口部が有底筒状ケースの底面に垂直かつ開口部形状の図心を通る直線に対して非線対称である円弧形状もしくは多角形状からなることを特徴とする空中用超音波送受波器。 The aerial ultrasonic transducer according to claim 1,
An aerial ultrasonic transducer characterized in that the opening has an arc shape or a polygonal shape which is perpendicular to the bottom surface of the bottomed cylindrical case and is axisymmetric with respect to a straight line passing through the centroid of the opening shape. .
前記開口部が長方形状もしくは楕円形状からなり、
かつ前記開口部の各中心軸間の角度が60°から150°の範囲にあることを特徴とする空中用超音波送受波器。 The aerial ultrasonic transducer according to claim 1,
The opening is rectangular or elliptical,
And the angle between each central axis of the said opening part exists in the range of 60 degrees-150 degrees, The ultrasonic transmitter / receiver for the air characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012166942A JP5950742B2 (en) | 2012-07-27 | 2012-07-27 | Ultrasonic transducer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012166942A JP5950742B2 (en) | 2012-07-27 | 2012-07-27 | Ultrasonic transducer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014027516A JP2014027516A (en) | 2014-02-06 |
JP5950742B2 true JP5950742B2 (en) | 2016-07-13 |
Family
ID=50200773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012166942A Active JP5950742B2 (en) | 2012-07-27 | 2012-07-27 | Ultrasonic transducer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5950742B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6667080B2 (en) * | 2015-05-25 | 2020-03-18 | パナソニックIpマネジメント株式会社 | Ultrasonic device and ultrasonic sensor using the same |
JP6197136B1 (en) | 2017-04-03 | 2017-09-13 | マテック株式会社 | Method for manufacturing cup structure |
JP7118041B2 (en) * | 2019-11-01 | 2022-08-15 | 日本セラミック株式会社 | ultrasonic transmitter and receiver |
WO2023119745A1 (en) * | 2021-12-20 | 2023-06-29 | 株式会社村田製作所 | Ultrasonic transducer |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001013239A (en) * | 1999-06-30 | 2001-01-19 | Matsushita Electric Works Ltd | Ultrasonicvibrator |
JP2006345271A (en) * | 2005-06-09 | 2006-12-21 | Nippon Ceramic Co Ltd | Ultrasonic wave transceiver |
JPWO2011067835A1 (en) * | 2009-12-02 | 2013-04-18 | 三菱電機株式会社 | Aerial ultrasonic sensor |
-
2012
- 2012-07-27 JP JP2012166942A patent/JP5950742B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014027516A (en) | 2014-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4086091B2 (en) | Ultrasonic transducer | |
US6250162B1 (en) | Ultrasonic sensor | |
US9003887B2 (en) | Ultrasonic sensor | |
US7692367B2 (en) | Ultrasonic transducer | |
JP2007147319A (en) | Obstacle detection device | |
JP5672389B2 (en) | Ultrasonic sensor | |
JP2007142967A (en) | Ultrasonic sensor | |
JP2009058362A (en) | Ultrasonic transmission method and device | |
JP5950742B2 (en) | Ultrasonic transducer | |
JP4544285B2 (en) | Ultrasonic sensor | |
JP2009058298A (en) | Ultrasonic sensor | |
JP2006345271A (en) | Ultrasonic wave transceiver | |
JPWO2007091609A1 (en) | Ultrasonic sensor | |
JP2002209294A (en) | Ultrasonic sensor, electronic unit provided with the same and vehicle rear sonar | |
JP2000032594A (en) | Ultrasonic wave transmitter-receiver | |
JP2016139871A (en) | Ultrasonic transducer | |
JP4532347B2 (en) | Ultrasonic transducer | |
JP6667081B2 (en) | Ultrasonic device and ultrasonic sensor using the same | |
JP2010014496A (en) | Mounting structure of ultrasonic sensor | |
JP5237786B2 (en) | Ultrasonic transducer | |
KR101376347B1 (en) | ultrasonic transducer | |
JP2009065380A (en) | Ultrasonic sensor | |
JP2009141451A (en) | Ultrasonic wave transceiver | |
JP6611992B2 (en) | Ultrasonic sensor device and obstacle detection device | |
WO2017141402A1 (en) | Ultrasonic transmission/reception apparatus, wall member, and method for attaching ultrasonic sensor to wall member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150724 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160419 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160524 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160607 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5950742 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |