JP4130676B2 - Compressor oil leveling device and refrigerator - Google Patents

Compressor oil leveling device and refrigerator Download PDF

Info

Publication number
JP4130676B2
JP4130676B2 JP2005329875A JP2005329875A JP4130676B2 JP 4130676 B2 JP4130676 B2 JP 4130676B2 JP 2005329875 A JP2005329875 A JP 2005329875A JP 2005329875 A JP2005329875 A JP 2005329875A JP 4130676 B2 JP4130676 B2 JP 4130676B2
Authority
JP
Japan
Prior art keywords
pipe
oil
compressor
gas
collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005329875A
Other languages
Japanese (ja)
Other versions
JP2007139215A (en
Inventor
孝 金子
道美 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Priority to JP2005329875A priority Critical patent/JP4130676B2/en
Priority to KR1020060027435A priority patent/KR101085493B1/en
Publication of JP2007139215A publication Critical patent/JP2007139215A/en
Application granted granted Critical
Publication of JP4130676B2 publication Critical patent/JP4130676B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2525Pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1932Oil pressures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、複数の室外機の圧縮機の間で冷凍機油を均等にする圧縮機均油装置、圧縮機均油装置を有する冷凍機に関する。   The present invention relates to a compressor oil leveling device that equalizes refrigerating machine oil among compressors of a plurality of outdoor units, and a refrigerator having a compressor oil leveling device.

冷凍機において、複数の圧縮機を用いて冷媒を循環させると、各圧縮機の間で冷凍機油が不均一になって特定の圧縮機の冷凍機油が不足することがある。このように冷凍機油が不均一な状態を解消するために、従来の冷凍機には、圧縮機の間の冷凍機油をバランスさせる装置が取り付けられたものがある(例えば、特許文献1参照)。この種の冷凍機では、圧縮機内の冷凍機油の油面を検出する油面検出器を備え、油面検出器が冷凍機油の不足を検出したら、その圧縮機を停止させて冷凍機油の貯溜部の圧力を下げる。さらに、油面検出器が冷凍機油を余分に貯溜している圧縮機を検出し、その圧縮機を運転させて、貯溜部の圧力を増大させる。複数の圧縮機の貯溜部同士を接続する連結管の開閉弁を開閉制御して、圧力が高い圧縮機から圧力が低い圧縮機に冷凍機油を移動させる。圧力の高い圧縮機の冷凍機油が減少し、その分だけ圧力の低い圧縮機の冷凍機油が増加する。
特開2000−220892号公報
When a refrigerant is circulated using a plurality of compressors in a refrigerator, the refrigeration oil becomes uneven among the compressors, and the refrigeration oil for a specific compressor may be insufficient. In order to eliminate the uneven state of the refrigerating machine oil in this way, some conventional refrigerating machines are provided with a device for balancing the refrigerating machine oil between the compressors (see, for example, Patent Document 1). This type of refrigerator has an oil level detector that detects the oil level of the refrigeration oil in the compressor, and when the oil level detector detects a shortage of refrigeration oil, the compressor is stopped to store the refrigeration oil storage unit. Reduce the pressure. Furthermore, the oil level detector detects a compressor that stores extra refrigeration oil, operates the compressor, and increases the pressure in the reservoir. The open / close valve of the connecting pipe that connects the reservoirs of the plurality of compressors is controlled to open and close to move the refrigerating machine oil from the compressor having a high pressure to the compressor having a low pressure. The compressor oil in the compressor with high pressure decreases, and the compressor oil in the compressor with low pressure increases accordingly.
JP 2000-220892 A

このように、従来の冷凍機では、油面検出器を全ての圧縮機に設け、油面検出器の検出結果に基づいて開閉弁の制御を行う構成であるために高価であった。また、冷凍機油の移動には、複数の圧縮機の貯溜部の間の差圧を利用するが、この差圧を冷凍機油が不足する圧縮機を停止させることで形成している。しかしながら、均油のために圧縮機を停止させると、その間は冷房能力や暖房能力が低下してしまう。
この発明は、このような事情に鑑みてなされたものであり、その目的とするところは、簡単な構成で、安定して室外ユニット間の冷凍機油の均等化を図ることである。
Thus, the conventional refrigerator is expensive because the oil level detector is provided in all the compressors and the on-off valve is controlled based on the detection result of the oil level detector. Moreover, although the differential pressure between the storage parts of a some compressor is utilized for the movement of refrigerating machine oil, this differential pressure is formed by stopping the compressor which runs short of refrigerating machine oil. However, if the compressor is stopped for oil leveling, the cooling capacity and the heating capacity will decrease during that time.
The present invention has been made in view of such circumstances, and an object of the present invention is to stably equalize refrigerating machine oil between outdoor units with a simple configuration.

上記の課題を解決する本発明は、複数の室外機と室内機との間を集合ガス管及び集合液管で接続し、室外機に搭載された圧縮機に吸入配管から冷媒を吸入させ、加圧してから吐出することで冷媒を循環させる冷凍機に用いられ、前記圧縮機の間で冷凍機油を均等に保つ圧縮機均油装置であって、前記圧縮機の高圧容器に接続される気液分離手段を有し、前記気液分離手段には主に冷凍機油を流出する第一流出端と、主に気体を流出して前記気液分離手段が冷凍機油で満たされた場合には冷凍機油を流出する第二流出端とが設けられており、前記第一流出端は第一減圧手段を介して前記吸入配管においてその圧縮機に冷媒を供給する部分に接続され、前記第二流出端には均油管が接続されており、前記均油管は、その経路中に第二減圧手段が設けられた後にユニット間均油管に接続されており、前記ユニット間均油管は、複数の前記室外機のそれぞれの前記均油管が接続された後に、2つの接続管に分岐し、第一の前記分岐管が第一流路切替手段を介して前記集合ガス管に接続されると共に、第二の前記分岐管が前記第二流路切替手段を介して前記集合液管に接続されることを特徴とする圧縮機均油装置とした。   The present invention that solves the above problems connects a plurality of outdoor units and indoor units with a collecting gas pipe and a collecting liquid pipe, and causes a compressor mounted on the outdoor unit to suck refrigerant from a suction pipe, thereby adding the refrigerant. A compressor oil leveling device that is used in a refrigerator that circulates a refrigerant by discharging after being compressed, and that keeps refrigeration oil evenly between the compressors, and is a gas-liquid connected to a high-pressure vessel of the compressor The gas-liquid separation means has a first outflow end for mainly flowing out the refrigerating machine oil, and when the gas-liquid separation means is filled with the refrigerating machine oil by mainly flowing out the gas, the refrigerating machine oil A second outflow end for flowing out the refrigerant, and the first outflow end is connected to a portion of the suction pipe for supplying a refrigerant to the compressor via the first pressure reducing means, and the second outflow end is connected to the second outflow end. An oil leveling pipe is connected to the oil leveling pipe, and the second pressure reducing means is provided in the path. The inter-unit oil leveling pipes are connected to the unit oil leveling pipes, and the inter-unit oil leveling pipes are branched into two connection pipes after the oil leveling pipes of each of the plurality of outdoor units are connected. A pipe is connected to the collecting gas pipe via a first flow path switching means, and a second branch pipe is connected to the collecting liquid pipe via the second flow path switching means. A compressor oil leveling device was used.

この圧縮機均油装置では、気液分離手段の流入端に接続される配管の接続高さよりも、その圧縮機の冷凍機油の油面が低い場合には、冷凍機油のミストが混入した冷媒が気液分離手段に流入し、冷凍機油のミストが気液分離手段で冷媒から分離されて元の圧縮機に戻される。これに対して、その圧縮機の冷凍機油の油面が配管の接続高さよりも高い場合には、冷凍機油が気液分離手段に流入して、冷凍機油が均油管にも流出する。この冷凍機油は、均油管や、ユニット間均油管から第一、第二流路切替手段のいずれかを通ってガス管又は液管に流入し、ガス管又は液管を通って圧縮機に吸入される。   In this compressor oil leveling device, when the oil level of the refrigerating machine oil of the compressor is lower than the connection height of the pipe connected to the inflow end of the gas-liquid separation means, the refrigerant mixed with the mist of the refrigerating machine oil is mixed. It flows into the gas-liquid separation means, and the mist of the refrigerator oil is separated from the refrigerant by the gas-liquid separation means and returned to the original compressor. On the other hand, when the oil level of the refrigerating machine oil of the compressor is higher than the connection height of the pipe, the refrigerating machine oil flows into the gas-liquid separating means and the refrigerating machine oil also flows out into the oil equalizing pipe. This refrigerating machine oil flows into the gas pipe or the liquid pipe from the oil leveling pipe or the inter-unit oil leveling pipe through the first or second flow path switching means, and is sucked into the compressor through the gas pipe or the liquid pipe. Is done.

本発明によれば、冷凍機油の少ない圧縮機からは、冷凍機油が流出せずに、冷凍機油が多い圧縮機からは、他の室外機を含めた他の圧縮機に冷凍機油が流出して分配されるので、複数の室外機を有する冷凍機において圧縮機の冷凍機油の量を所定量に維持することができる。しかも、従来のような特別な運転制御をしなくても複数の圧縮機の冷凍機油の量を所定量に維持することができる。したがって、簡単な構成で常に安定した運転を実現することができる。   According to the present invention, refrigeration oil does not flow out of a compressor with a small amount of refrigeration oil, and refrigeration oil flows out of a compressor with a large amount of refrigeration oil into other compressors including other outdoor units. Since it is distributed, in the refrigerator having a plurality of outdoor units, the amount of compressor oil in the compressor can be maintained at a predetermined amount. Moreover, the amount of refrigerating machine oil of the plurality of compressors can be maintained at a predetermined amount without performing special operation control as in the prior art. Therefore, it is possible to always achieve stable operation with a simple configuration.

発明を実施するための最良の形態について図面を参照しながら詳細に説明する。
図1に本実施の形態に係る冷凍機の構成を示す。冷凍機1は、3台の室外機2〜4が集合ガス管5(ガス管)及び集合液管6(液管)に並列に接続されており、集合ガス管5及び集合液管6には屋内で使用される室内機7が複数並列に接続されている。このような冷凍機1は、室外マルチ空調機と呼ばれることもある。なお、室外機2〜4の数及び室内機7の数は、図示したものに限定されない。
The best mode for carrying out the invention will be described in detail with reference to the drawings.
FIG. 1 shows a configuration of a refrigerator according to the present embodiment. In the refrigerator 1, three outdoor units 2 to 4 are connected in parallel to a collecting gas pipe 5 (gas pipe) and a collecting liquid pipe 6 (liquid pipe), and the collecting gas pipe 5 and the collecting liquid pipe 6 include A plurality of indoor units 7 used indoors are connected in parallel. Such a refrigerator 1 may be called an outdoor multi air conditioner. In addition, the number of outdoor units 2-4 and the number of indoor units 7 are not limited to what was illustrated.

室外機2には、第一圧縮機10と、第二圧縮機11とが搭載されている。第一、第二圧縮機10,11は、高圧シェル型の圧縮機であり、それぞれの吐出口には、吐出配管14が接続されている。吐出配管14は、1つに合流した後に、油分離器15を介して四方弁16の第一のポート16Aに接続されている。四方弁16は、4つのポートを有し、第一のポート16Aと第二のポート16Bとを接続したときには、第三のポート16Cと第四のポート16Dが接続され、第一のポート16Aと第四のポート16Dを接続したときには、第二のポート16Bと第三のポート16Cが接続されるように切替可能になっている。四方弁16の第二のポート16Bは、室外熱交換器17を介して液管6Aに接続されている。液管6Aは、集合液管6Aに接続されており、その管路中には室外側減圧装置18が設けられている。集合液管6は、各室外機2〜3からの液管6Aが接続されると共に、室内機7側で3つの液管6Bに分岐しており、これら液管6Bは3つの室内機7内に一本ずつ導かれて、各室内機7の室内側減圧装置20にそれぞれ接続されている。   A first compressor 10 and a second compressor 11 are mounted on the outdoor unit 2. The first and second compressors 10 and 11 are high-pressure shell type compressors, and a discharge pipe 14 is connected to each discharge port. The discharge pipe 14 is connected to the first port 16 </ b> A of the four-way valve 16 through the oil separator 15 after merging into one. The four-way valve 16 has four ports. When the first port 16A and the second port 16B are connected, the third port 16C and the fourth port 16D are connected, and the first port 16A and When the fourth port 16D is connected, the second port 16B and the third port 16C can be switched so as to be connected. The second port 16B of the four-way valve 16 is connected to the liquid pipe 6A via the outdoor heat exchanger 17. The liquid pipe 6A is connected to the collecting liquid pipe 6A, and an outdoor decompression device 18 is provided in the pipe line. The collecting liquid pipe 6 is connected to the liquid pipe 6A from each of the outdoor units 2 to 3, and is branched into three liquid pipes 6B on the indoor unit 7 side. Are connected one by one to the indoor decompression device 20 of each indoor unit 7.

室内機7は、室内側減圧装置20と、室内熱交換器21とが直列に接続されており、室内熱交換器21には集合ガス管5のガス管5Bが接続されている。   In the indoor unit 7, an indoor decompression device 20 and an indoor heat exchanger 21 are connected in series, and the gas pipe 5 </ b> B of the collective gas pipe 5 is connected to the indoor heat exchanger 21.

ガス管5Bは、集合ガス管5に接続されている。集合ガス管5は、室外機2側で3つのガス管5Aに分岐しており、これらガス管5Aが1本ずつ室外機2〜3内に引き込まれ、四方弁16の第四のポート16Dに接続されている。そして、四方弁16の第三のポート16Cには、吸入配管23が接続されている。吸入配管23は、熱交換後に第一、第二圧縮機10,11に吸入させる冷媒を通流させる配管で、油分離器15からの油戻し管24が合流した後に、第一、第二圧縮機10,11ごとに2つの吸入分岐管23A,23Bに分岐している。なお、油戻し管24には、その管路中にキャピラリチューブなどの減圧手段26が設けられている。   The gas pipe 5 </ b> B is connected to the collective gas pipe 5. The collective gas pipe 5 is branched into three gas pipes 5A on the outdoor unit 2 side, and these gas pipes 5A are drawn into the outdoor units 2 to 3 one by one, into the fourth port 16D of the four-way valve 16. It is connected. A suction pipe 23 is connected to the third port 16C of the four-way valve 16. The suction pipe 23 is a pipe through which the refrigerant sucked into the first and second compressors 10 and 11 flows after heat exchange. After the oil return pipe 24 from the oil separator 15 is joined, the first and second compression pipes 23 are compressed. Each of the machines 10 and 11 branches into two suction branch pipes 23A and 23B. The oil return pipe 24 is provided with a decompression means 26 such as a capillary tube in the pipeline.

吸入配管23の各吸入分岐管23Aは、第一、第二圧縮機10,11の高圧容器27に接続されている。各吸入分岐管23Aには、対応する1つの圧縮機10,11に吸入される冷媒のみが通流する。第一、第二圧縮機10,11のそれぞれの高圧容器27内には、所定量の冷凍機油が収容されている。なお、室外機3は、高圧シェル型の圧縮機である第三圧縮機30及び第四圧縮機31を有し、室外機2と同様の構成を有している。室外機4は、高圧シェル型の圧縮機である第五圧縮機40及び第六圧縮機41を有し、室外機2と同様の構成を有している。   Each suction branch pipe 23 </ b> A of the suction pipe 23 is connected to the high-pressure container 27 of the first and second compressors 10 and 11. Only the refrigerant sucked into the corresponding one of the compressors 10 and 11 flows through each intake branch pipe 23A. A predetermined amount of refrigerating machine oil is accommodated in each of the high-pressure containers 27 of the first and second compressors 10 and 11. The outdoor unit 3 includes a third compressor 30 and a fourth compressor 31 that are high-pressure shell type compressors, and has the same configuration as the outdoor unit 2. The outdoor unit 4 includes a fifth compressor 40 and a sixth compressor 41, which are high-pressure shell type compressors, and has the same configuration as the outdoor unit 2.

ここで、この冷凍機1には、各圧縮機10,11,30,31,40,41のそれぞれに接続される圧縮機均油装置51が設けられている。圧縮機均油装置51は、室外機2に内蔵される第一均油ユニット52と、室外機3に内蔵される第二均油ユニット53と、室外機4に内蔵される第三均油ユニット54とを有し、これら各均油ユニット52〜54がユニット間均油管55を介して集合ガス管5及び集合液管6に連結される構成を有する。   Here, the refrigerator 1 is provided with a compressor oil leveling device 51 connected to each of the compressors 10, 11, 30, 31, 40, and 41. The compressor oil leveling device 51 includes a first oil leveling unit 52 built in the outdoor unit 2, a second oil leveling unit 53 built in the outdoor unit 3, and a third oil leveling unit built in the outdoor unit 4. The oil leveling units 52 to 54 are connected to the collecting gas pipe 5 and the collecting liquid pipe 6 via inter-unit oil leveling pipes 55.

第一均油ユニット52は、第一圧縮機10の高圧容器27の底部から所定の高さに接続された接続管62を有している。この接続管62は、気液分離手段63の流入端に接続されている。気液分離手段63は、例えば、遠心力を利用して気液が混合した流体を気体と液体とに分離するように構成されている。気液分離手段63において、主に液体が流出する第一流出端には、油戻し管64が接続されている。油戻し管64は、その管路中に第一減圧手段であるキャピラリチューブ65が設けられた後に、第一圧縮機10に吸入される冷媒のみが通流する吸入分岐管23Aに接続されている。なお、図1においては、吸入分岐管23Aの配管中に設けられたアキュムレータ28に接続されているが、アキュムレータ28以外の配管部分に接続されても良い。一方、気液分離手段63において、主に気体が流出する第二流出端には、均油管66が接続されている。均油管66は、その管路中に第二減圧手段であるキャピラリチューブ67が設けられており、均油集合管68(均油管)に接続されている。均油集合管68は、ユニット間均油管55に接続されている。   The first oil leveling unit 52 has a connecting pipe 62 connected to a predetermined height from the bottom of the high-pressure vessel 27 of the first compressor 10. This connection pipe 62 is connected to the inflow end of the gas-liquid separation means 63. The gas-liquid separation means 63 is configured to separate a fluid mixed with gas-liquid into gas and liquid using, for example, centrifugal force. In the gas-liquid separation means 63, an oil return pipe 64 is connected to a first outflow end from which liquid mainly flows out. The oil return pipe 64 is connected to the suction branch pipe 23A through which only the refrigerant sucked into the first compressor 10 flows after the capillary tube 65 as the first pressure reducing means is provided in the pipe line. . In FIG. 1, the accumulator 28 is provided in the pipe of the suction branch pipe 23 </ b> A, but may be connected to a pipe portion other than the accumulator 28. On the other hand, in the gas-liquid separation means 63, an oil equalizing pipe 66 is connected to a second outflow end from which mainly gas flows out. The oil equalizing pipe 66 is provided with a capillary tube 67 as a second pressure reducing means in the pipe line, and is connected to an oil equalizing collecting pipe 68 (oil equalizing pipe). The oil leveling collecting pipe 68 is connected to the inter-unit oil leveling pipe 55.

第二圧縮機11には、高圧容器27の底部から所定の高さに接続管62が接続されており、この接続管62は気液分離手段63の流入端に接続されている。気液分離手段63の第一流出端には、油戻し管64が接続されている。油戻し管64は、キャピラリチューブ65が設けられており、第二圧縮機11のみに吸入させる冷媒が通る吸入分岐管23Bのアキュムレータ28に接続されている。気液分離手段63の第二流出端には、均油管66が接続されている。この均油管66は、キャピラリチューブ67が設けられた後に、均油集合管68に接続されている。   A connection pipe 62 is connected to the second compressor 11 at a predetermined height from the bottom of the high-pressure vessel 27, and this connection pipe 62 is connected to the inflow end of the gas-liquid separation means 63. An oil return pipe 64 is connected to the first outflow end of the gas-liquid separation means 63. The oil return pipe 64 is provided with a capillary tube 65, and is connected to the accumulator 28 of the suction branch pipe 23B through which the refrigerant sucked only by the second compressor 11 passes. An oil leveling pipe 66 is connected to the second outflow end of the gas-liquid separation means 63. The oil leveling pipe 66 is connected to an oil leveling collecting pipe 68 after the capillary tube 67 is provided.

同様に、第二均油ユニット53は、第三圧縮機30の高圧容器27の底部から所定の高さに接続管62で接続された気液分離手段63を有している。気液分離手段63の第一流出端側の油戻し管64は、キャピラリチューブ65が設けられた後に第三圧縮機30の吸入分岐管23Aに接続されている。気液分離手段63の第二流出端側の均油管66は、キャピラリチューブ67が設けられた後に均油集合管68に接続されている。さらに、第四圧縮機31側も同様に、接続管62で第四圧縮機31に接続された気液分離手段63と、油戻し管64と、均油管66と、キャピラリチューブ65,67を有している。油戻し管64は、第四圧縮機31の吸入分岐管23Bに接続されている。均油集合管68は、ユニット間均油管55に接続されている。   Similarly, the second oil leveling unit 53 has gas-liquid separation means 63 connected to a predetermined height from the bottom of the high-pressure vessel 27 of the third compressor 30 by a connecting pipe 62. The oil return pipe 64 on the first outflow end side of the gas-liquid separation means 63 is connected to the suction branch pipe 23A of the third compressor 30 after the capillary tube 65 is provided. The oil leveling pipe 66 on the second outflow end side of the gas-liquid separation means 63 is connected to the oil leveling collecting pipe 68 after the capillary tube 67 is provided. Further, similarly, the fourth compressor 31 side has a gas-liquid separation means 63 connected to the fourth compressor 31 by a connecting pipe 62, an oil return pipe 64, an oil equalizing pipe 66, and capillary tubes 65 and 67. is doing. The oil return pipe 64 is connected to the suction branch pipe 23B of the fourth compressor 31. The oil leveling collecting pipe 68 is connected to the inter-unit oil leveling pipe 55.

第三均油ユニット54は、第五圧縮機40に接続管62で接続された気液分離手段63と、油戻し管64と、均油管66と、キャピラリチューブ65,67を有している。油戻し管64は、第五圧縮機40の吸入分岐管23Aに接続されている。さらに、第六圧縮機41に接続管62で接続された気液分離手段63と、油戻し管64と、均油管66と、キャピラリチューブ65,67を有している。油戻し管64は、第六圧縮機41の吸入分岐管23Bに接続されている。均油集合管68は、ユニット間均油管55に接続されている。   The third oil leveling unit 54 includes gas-liquid separation means 63 connected to the fifth compressor 40 via a connection pipe 62, an oil return pipe 64, an oil leveling pipe 66, and capillary tubes 65 and 67. The oil return pipe 64 is connected to the suction branch pipe 23 </ b> A of the fifth compressor 40. Furthermore, it has gas-liquid separation means 63 connected to the sixth compressor 41 by a connecting pipe 62, an oil return pipe 64, an oil equalizing pipe 66, and capillary tubes 65 and 67. The oil return pipe 64 is connected to the suction branch pipe 23B of the sixth compressor 41. The oil leveling collecting pipe 68 is connected to the inter-unit oil leveling pipe 55.

ユニット間均油管55は、各均油ユニット52〜54が接続された後に、2つの分岐管55A,55Bに分岐しており、第一の分岐管55Aが第一逆止弁70(流路切替手段)を介して集合ガス管5に接続されている。第一の分岐管55Aの接続箇所は、集合ガス管5がガス管5Aに分岐する分岐箇所よりも室内機7側である。同様に、第二の分岐管55Bが第二逆止弁71(流路切替手段)を介して集合液管6に接続されている。第二の分岐管55Bの接続箇所は、集合液管6が液管6Aに分岐する分岐箇所よりも室内機7側である。第一逆止弁70は、ユニット間均油管55の圧力が集合ガス管5の圧力よりも高いときに開き、ユニット間均油管55の圧力が集合ガス管5の圧力よりも低いときには閉じるように構成されている。同様に、第二逆止弁71は、ユニット間均油管55の圧力がよりも高いときに開き、ユニット間均油管55の圧力が集合液管6の圧力よりも低いときには閉じるように構成されている。   The inter-unit oil leveling pipe 55 is branched into two branch pipes 55A and 55B after the oil leveling units 52 to 54 are connected, and the first branch pipe 55A is connected to the first check valve 70 (flow path switching). To the collective gas pipe 5 via the means). The connection point of the first branch pipe 55A is closer to the indoor unit 7 than the branch point where the collective gas pipe 5 branches to the gas pipe 5A. Similarly, the second branch pipe 55B is connected to the collecting liquid pipe 6 via the second check valve 71 (flow path switching means). The connection point of the second branch pipe 55B is closer to the indoor unit 7 than the branch point where the collecting liquid pipe 6 branches to the liquid pipe 6A. The first check valve 70 is opened when the pressure of the inter-unit oil leveling pipe 55 is higher than the pressure of the collective gas pipe 5, and is closed when the pressure of the inter-unit oil leveling pipe 55 is lower than the pressure of the collective gas pipe 5. It is configured. Similarly, the second check valve 71 is configured to open when the pressure of the inter-unit oil leveling pipe 55 is higher, and to close when the pressure of the inter-unit oil leveling pipe 55 is lower than the pressure of the collecting liquid pipe 6. Yes.

なお、キャピラリチューブ65,67は、冷媒や冷凍機油の圧力が各圧縮機10,11,30,31,40,41の高圧容器27の内圧、及び気液分離手段63の内圧よりも低くなるように減圧する一方で、冷媒や冷凍機油の圧力が吸入配管23、吸入分岐管23A,23Bの内圧よりは高くなるように設定されている。さらに、キャピラリチューブ65,67は、室内、室外熱交換器17,21を通るメインの回路を流れる冷媒の流量に対して、各均油ユニット52,53,54を流れる冷媒の流量が所定の割合以下になるように流路抵抗が設定されている。また、キャピラリチューブ65とキャピラリチューブ67とを比較すると、これらキャピラリチューブ65,67は油戻し管64を通る流量と、均油集合管68に流入する流量とを制御して各圧縮機10,11,30,31,40,41の油面がそれぞれ所定のレベルに保持されるように予め設定されている。したがって、キャピラリチューブ65は、第一流量調整手段として機能し、キャピラリチューブ67は、第二流量調整手段として機能する。   The capillary tubes 65 and 67 are such that the pressure of the refrigerant or the refrigerating machine oil is lower than the internal pressure of the high-pressure vessel 27 of each compressor 10, 11, 30, 31, 40, 41 and the internal pressure of the gas-liquid separation means 63. The pressure of the refrigerant and the refrigerating machine oil is set to be higher than the internal pressure of the suction pipe 23 and the suction branch pipes 23A and 23B. Further, in the capillary tubes 65 and 67, the flow rate of the refrigerant flowing through the oil equalizing units 52, 53 and 54 is a predetermined ratio with respect to the flow rate of the refrigerant flowing through the main circuit passing through the indoor and outdoor heat exchangers 17 and 21. The channel resistance is set to be as follows. Further, when the capillary tube 65 and the capillary tube 67 are compared, the capillary tubes 65 and 67 control the flow rate passing through the oil return pipe 64 and the flow rate flowing into the oil equalizing collecting pipe 68 to control the compressors 10 and 11. , 30, 31, 40, 41 are set in advance so as to be held at predetermined levels. Therefore, the capillary tube 65 functions as a first flow rate adjusting unit, and the capillary tube 67 functions as a second flow rate adjusting unit.

また、気液分離手段63の容積は、各圧縮機10,11,30,31,40,41の必要最低油量に対して所定の容積以下になっている。さらに具体的には、図2に示す気液分離手段容積範囲R1の間になっている。この実施の形態において、気液分離手段容積範囲R1の下限値は、冷凍機油の5%に相当する容積であった。また、気液分離手段容積範囲R1の上限値は、冷凍機油の20%に相当する容積であった。気液分離手段63の容積が下限値を下回ると液体と気体の分離性能が落ちるので好ましくない。また、気液分離手段63の容積が上限値を下回ると、気液分離手段63に余剰な冷凍機油が滞溜し、各圧縮機10,11,30,31,40,41の運転に必要な冷凍機油が足りなくなるので好ましくない。   Further, the volume of the gas-liquid separation means 63 is not more than a predetermined volume with respect to the minimum required oil amount of each compressor 10, 11, 30, 31, 40, 41. More specifically, it is between the gas-liquid separation means volume range R1 shown in FIG. In this embodiment, the lower limit value of the gas-liquid separation means volume range R1 was a volume corresponding to 5% of the refrigerating machine oil. Further, the upper limit value of the gas-liquid separation means volume range R1 was a volume corresponding to 20% of the refrigerating machine oil. If the volume of the gas-liquid separation means 63 is less than the lower limit value, the liquid / gas separation performance is lowered, which is not preferable. Further, when the volume of the gas-liquid separation means 63 is less than the upper limit value, excess refrigeration oil stagnates in the gas-liquid separation means 63 and is necessary for the operation of the compressors 10, 11, 30, 31, 40, 41. It is not preferable because there is not enough freezer oil.

次に、この実施の形態の作用について説明する。
まず、3つの室外機2〜4を同時に運転して冷房運転、暖房運転をするときの冷媒の流れについて順番に説明する。なお、1つ又は2つの室外機2〜4を停止させたり、いずれかの室外機2〜4の片方の圧縮機10,11,30,31,40,41のみを停止させたりしつつ冷房運転又は暖房運転をすることも可能である。
Next, the operation of this embodiment will be described.
First, the flow of the refrigerant when the three outdoor units 2 to 4 are simultaneously operated to perform the cooling operation and the heating operation will be described in order. In addition, cooling operation is performed while stopping one or two outdoor units 2 to 4 or only one of the compressors 10, 11, 30, 31, 40, and 41 of any one of the outdoor units 2 to 4. Or heating operation is also possible.

冷房運転時には、各室外機2〜4の四方弁16を切り替えて第一のポート16Aと第二のポート16Bを接続し、第三のポート16Cと第四のポート16Dを接続する。各圧縮機10,11,30,31,40,41から吐出される高圧のガス冷媒は、油分離器15でガス冷媒中に混入した冷凍機油を分離した後に、四方弁16から室外熱交換器17に導かれる。室外熱交換器17では、熱交換によってガス冷媒が液化して高圧の液冷媒が形成される。液冷媒は、集合液管6で合流して運転中の室内機7に導かれる。室内機7内で液冷媒は、室内側減圧装置20で減圧させられた後に室内熱交換器21に流入する。室内熱交換器21では、熱交換によって低圧の液冷媒が気化して低圧のガス冷媒が形成され、この際に周囲の空気から気化熱を奪うことで室内が冷房される。低圧のガス冷媒は、室内熱交換器21から集合ガス管5を通って、各室外機2〜4に分岐しながら回収される。各室外機2内では、四方弁16から吸入配管23に導かれ、吸入分岐管23A,23Bから各圧縮機10,11,30,31,40,41に吸入される。そして、再び加圧されて吐出配管14に吐出される。   During the cooling operation, the four-way valves 16 of the outdoor units 2 to 4 are switched to connect the first port 16A and the second port 16B, and connect the third port 16C and the fourth port 16D. The high-pressure gas refrigerant discharged from the compressors 10, 11, 30, 31, 40, and 41 is separated from the refrigeration oil mixed in the gas refrigerant by the oil separator 15, and then the outdoor heat exchanger from the four-way valve 16. 17 leads. In the outdoor heat exchanger 17, the gas refrigerant is liquefied by heat exchange to form a high-pressure liquid refrigerant. The liquid refrigerant joins in the collecting liquid pipe 6 and is guided to the indoor unit 7 in operation. In the indoor unit 7, the liquid refrigerant is decompressed by the indoor-side decompression device 20 and then flows into the indoor heat exchanger 21. In the indoor heat exchanger 21, the low-pressure liquid refrigerant is vaporized by heat exchange to form a low-pressure gas refrigerant. At this time, the indoor air is cooled by taking the heat of vaporization from the surrounding air. The low-pressure gas refrigerant is recovered from the indoor heat exchanger 21 through the collective gas pipe 5 while branching to the outdoor units 2 to 4. In each outdoor unit 2, it is led from the four-way valve 16 to the suction pipe 23 and sucked into the compressors 10, 11, 30, 31, 40, 41 from the suction branch pipes 23A, 23B. Then, it is pressurized again and discharged to the discharge pipe 14.

冷凍機1で暖房運転をするときには、各室外機2〜4の四方弁16を切り替えて第一のポート16Aと第四のポート16Dを接続し、第二のポート16Bと第三のポート16Cを接続する。各圧縮機10,11,30,31,40,41から吐出される高圧のガス冷媒は、四方弁16から集合ガス管5で合流し、運転中の室内機7の室内熱交換器21に導かれる。室内熱交換器21では、ガス冷媒が液化して液冷媒が形成され、このときに放出される凝縮熱で室内が暖房される。液冷媒は、室内側減圧装置20で減圧されて中間圧の液冷媒として集合液管6を流れ、各室外機2〜4に分岐して回収され、室外側減圧装置18及び室外熱交換器17を通って低圧のガス冷媒になる。ガス冷媒は、四方弁16から吸入配管23を通って、吸入分岐管23A,23Bから圧縮機10,11,30,31,40,41に吸入される。そして、再び加圧されて吐出配管14に吐出される。   When the refrigerator 1 performs a heating operation, the four-way valves 16 of the outdoor units 2 to 4 are switched to connect the first port 16A and the fourth port 16D, and the second port 16B and the third port 16C are connected. Connecting. The high-pressure gas refrigerant discharged from each of the compressors 10, 11, 30, 31, 40, 41 merges from the four-way valve 16 through the collecting gas pipe 5 and is introduced to the indoor heat exchanger 21 of the indoor unit 7 in operation. It is burned. In the indoor heat exchanger 21, the gas refrigerant is liquefied to form a liquid refrigerant, and the room is heated by the condensation heat released at this time. The liquid refrigerant is depressurized by the indoor decompression device 20 and flows through the collecting liquid pipe 6 as an intermediate pressure liquid refrigerant, and is branched and collected into the outdoor units 2 to 4, and the outdoor decompression device 18 and the outdoor heat exchanger 17 are collected. It passes through and becomes a low-pressure gas refrigerant. The gas refrigerant is sucked from the four-way valve 16 through the suction pipe 23 into the compressors 10, 11, 30, 31, 40, 41 through the suction branch pipes 23A, 23B. Then, it is pressurized again and discharged to the discharge pipe 14.

このように冷媒を循環させながら冷凍機1が運転する間、各圧縮機10,11,30,31,40,41の稼動状態を維持したままで、圧縮機均油装置51によって各室外機2〜4内の2つの圧縮機10,11,30,31,40,41同士の冷凍機油の均等化と、室外機2〜4間での冷凍機油の均等化とが実施される。   While the refrigerator 1 is operated while circulating the refrigerant in this way, each outdoor unit 2 is maintained by the compressor oil leveling device 51 while maintaining the operating state of each compressor 10, 11, 30, 31, 40, 41. The equalization of the refrigerating machine oil between the two compressors 10, 11, 30, 31, 40, and 41 in 4 and the equalization of the refrigerating machine oil between the outdoor units 2 to 4 are performed.

例えば、第一圧縮機10の高圧容器27内の冷凍機油が多く、その油面が接続管62の接続位置よりも高い位置にある場合(以下、このような状態を冷凍機油が余剰であると称する)には、冷凍機油のみが接続管62から気液分離手段63の流入端63Aに流入する。この場合には、図3に示すように、第一圧縮機10の高圧容器27から流出した冷凍機油で気液分離手段63が満たされ、第一流出端63B及び第二流出端63Cからそれぞれ油戻し管64及び均油管66に冷凍機油が流出する。油戻し管64に流出した冷凍機油は、元の圧縮機である第一圧縮機10のみに戻る。均油管66に流出した冷凍機油は、均油集合管68を通ってユニット間均油管55に流出する。なお、キャピラリチューブ67によって気液分離手段63側が高圧になっているので、均油集合管68から第二圧縮機11側の気液分離手段63に逆流することはない。同様に、ユニット間均油管55から第二、第三均油ユニット53,54に逆流することもない。ユニット間均油管55に流出した冷凍機油は、第一、第二逆止弁70,71のいずれか一方を通って集合ガス管5又は集合液管6に流出する。   For example, when the amount of refrigerating machine oil in the high-pressure vessel 27 of the first compressor 10 is large and the oil level is at a position higher than the connection position of the connection pipe 62 (hereinafter, it is assumed that the refrigerating machine oil is excessive in this state. Only the refrigerating machine oil flows from the connecting pipe 62 into the inflow end 63A of the gas-liquid separating means 63. In this case, as shown in FIG. 3, the gas-liquid separation means 63 is filled with the refrigerating machine oil flowing out from the high-pressure vessel 27 of the first compressor 10, and the oil is discharged from the first outflow end 63B and the second outflow end 63C, respectively. The refrigeration oil flows out to the return pipe 64 and the oil equalizing pipe 66. The refrigeration oil that has flowed out to the oil return pipe 64 returns only to the first compressor 10 that is the original compressor. The refrigerating machine oil that has flowed out into the oil equalizing pipe 66 flows into the inter-unit oil equalizing pipe 55 through the oil equalizing collecting pipe 68. Since the gas-liquid separation means 63 side is at a high pressure by the capillary tube 67, it does not flow backward from the oil equalizing collecting pipe 68 to the gas-liquid separation means 63 on the second compressor 11 side. Similarly, there is no backflow from the inter-unit oil leveling pipe 55 to the second and third oil leveling units 53, 54. The refrigerating machine oil that has flowed into the inter-unit oil leveling pipe 55 flows out to the collecting gas pipe 5 or the collecting liquid pipe 6 through one of the first and second check valves 70 and 71.

図4に示すように、冷凍機1が冷房運転中の場合には、集合ガス管5に低圧のガス冷媒が流れており、集合ガス管5の内圧がユニット間均油管55の内圧よりも相対的に低いので、第一逆止弁70は開いている。したがって、冷凍機油は、第一逆止弁70を通って集合ガス管5に流出する。一方、集合液管6は、高圧の液冷媒が流れており、集合液管6の内圧がユニット間均油管55の内圧よりも相対的に高いので、第二逆止弁71は閉じており、冷凍機油は流出しない。集合ガス管5に流出した冷凍機油は、低圧のガス冷媒に混入され、ガス管5Aから各室外機2〜4に流入する。各室外機2〜4では、四方弁16から吸入配管23を流れて、それぞれの圧縮機10,11,30,31,40,41に吸入される。その結果、冷凍機油が余剰な圧縮機(この場合には、第一圧縮機10)の冷凍機油が徐々に減少し、他の圧縮機の冷凍機油が徐々に増加する。   As shown in FIG. 4, when the refrigerator 1 is in the cooling operation, a low-pressure gas refrigerant flows through the collective gas pipe 5, and the internal pressure of the collective gas pipe 5 is relative to the internal pressure of the inter-unit oil leveling pipe 55. The first check valve 70 is open. Therefore, the refrigeration oil flows out to the collecting gas pipe 5 through the first check valve 70. On the other hand, since the high pressure liquid refrigerant flows through the collecting liquid pipe 6 and the internal pressure of the collecting liquid pipe 6 is relatively higher than the internal pressure of the inter-unit oil leveling pipe 55, the second check valve 71 is closed, Refrigerator oil does not flow out. The refrigerating machine oil that has flowed out into the collective gas pipe 5 is mixed into the low-pressure gas refrigerant and flows into the outdoor units 2 to 4 from the gas pipe 5A. In each of the outdoor units 2 to 4, it flows from the four-way valve 16 through the suction pipe 23 and is sucked into the compressors 10, 11, 30, 31, 40, and 41. As a result, the refrigeration oil of the compressor (in this case, the first compressor 10) with excessive refrigeration oil gradually decreases, and the refrigeration oil of other compressors gradually increases.

図5に示すように、冷凍機1が暖房運転中の場合には、集合ガス管5には高圧のガス冷媒が流れているので、集合ガス管5の内圧がユニット間均油管55の内圧よりも相対的に高く、第一逆止弁70が閉じている。したがって、冷凍機油は、集合ガス管5には流出しない。一方、集合液管6は、室内機7を通った中間圧の液冷媒が流れており、集合液管6の内圧がユニット間均油管55の内圧よりも相対的に低いので、第二逆止弁71は開く。したがって、冷凍機油は、集合液管6に流出する。集合液管6に流出した冷凍機油は、中間圧の液冷媒に混入され、液管6Aから各室外機2〜4に流入する。各室外機2〜4では、四方弁16から吸入配管23を流れて、それぞれの圧縮機10,11,30,31,40,41に吸入される。その結果、冷凍機油の余剰な圧縮機(この場合には、第一圧縮機10)の冷凍機油が徐々に減少し、他の圧縮機の冷凍機油が徐々に増加する。   As shown in FIG. 5, when the refrigerator 1 is in the heating operation, since the high-pressure gas refrigerant flows through the collective gas pipe 5, the internal pressure of the collective gas pipe 5 is higher than the internal pressure of the inter-unit oil leveling pipe 55. Is relatively high, and the first check valve 70 is closed. Therefore, the refrigeration oil does not flow out to the collecting gas pipe 5. On the other hand, since the intermediate pressure liquid refrigerant passing through the indoor unit 7 flows through the collecting liquid pipe 6 and the internal pressure of the collecting liquid pipe 6 is relatively lower than the internal pressure of the inter-unit oil leveling pipe 55, the second check Valve 71 opens. Therefore, the refrigeration oil flows out to the collecting liquid pipe 6. The refrigerating machine oil that has flowed out into the collecting liquid pipe 6 is mixed into the intermediate-pressure liquid refrigerant and flows into the outdoor units 2 to 4 from the liquid pipe 6A. In each of the outdoor units 2 to 4, it flows from the four-way valve 16 through the suction pipe 23 and is sucked into the compressors 10, 11, 30, 31, 40, and 41. As a result, the refrigeration oil of the excessive compressor (in this case, the first compressor 10) of the refrigeration oil gradually decreases, and the refrigeration oil of the other compressors gradually increases.

また、図6に示すように、例えば、第一圧縮機10の高圧容器27内の冷凍機油が少なく、その油面が接続管62の接続位置よりも低い位置にある場合(以下、この状態を冷凍機油が所定量以下という)には、ガス冷媒と、ガス冷媒中に混入した冷凍機油のオイルミストとが接続管62を通って気液分離手段63に流入する。気液分離手段63は、オイルミストと、ガス冷媒とを分離する。オイルミストは、第一流出端63Bから油戻し管64に流出し、油戻し管64を通って吸入分岐管23Aから元の圧縮機である第一圧縮機10に戻される。したがって、第一圧縮機10中でガス冷媒に混入していた冷凍機油が、第一圧縮機10自身に回収される。これによって、第一圧縮機10からの冷凍機油の流出を防止し、高圧容器27内の油面の低下が防止される。なお、気液分離手段63で分離された冷媒は、第二流出端63Cから均油集合管68を通ってユニット間均油管55に流出する。このガス冷媒は、前記した余剰な冷凍機油と同様にして、冷房運転中には第一逆止弁70を通って集合ガス管5に流入し、暖房運転中は第二逆止弁71を通って集合液管6に流入し、各圧縮機10,11,30,31,40,41に吸入される。   Further, as shown in FIG. 6, for example, when the refrigeration oil in the high-pressure vessel 27 of the first compressor 10 is small and the oil level is lower than the connection position of the connection pipe 62 (hereinafter, this state is referred to as When the refrigerating machine oil is equal to or less than a predetermined amount), the gas refrigerant and the oil mist of the refrigerating machine oil mixed in the gas refrigerant flow into the gas-liquid separation means 63 through the connection pipe 62. The gas-liquid separation means 63 separates the oil mist and the gas refrigerant. The oil mist flows out from the first outflow end 63B to the oil return pipe 64, passes through the oil return pipe 64, and returns to the first compressor 10 that is the original compressor from the suction branch pipe 23A. Therefore, the refrigerating machine oil mixed in the gas refrigerant in the first compressor 10 is recovered by the first compressor 10 itself. This prevents the refrigeration oil from flowing out of the first compressor 10 and prevents the oil level in the high-pressure vessel 27 from being lowered. The refrigerant separated by the gas-liquid separation means 63 flows out from the second outflow end 63C through the oil equalizing collecting pipe 68 to the inter-unit oil equalizing pipe 55. This gas refrigerant flows into the collective gas pipe 5 through the first check valve 70 during the cooling operation, and passes through the second check valve 71 during the heating operation, in the same manner as the above-described excessive refrigeration oil. Then, it flows into the collecting liquid pipe 6 and is sucked into the compressors 10, 11, 30, 31, 40, 41.

他の圧縮機11,20,21,30,31についても同様に、冷凍機油が所定量よりも多い、つまり冷凍機油が余剰な場合には、ユニット間均油管55を通って集合ガス管5又は集合液管6から各圧縮機10,11,30,31,40,41に分配される。その一方で、冷凍機油が所定量以下の場合には、油戻し管64を通って元の圧縮機のみに還流する。したがって、冷凍機1を運転する過程で、圧縮機11,20,21,30,31の冷凍機油が均等化される。   Similarly, with respect to the other compressors 11, 20, 21, 30, 31 as well, when the amount of refrigeration oil is larger than a predetermined amount, that is, when the refrigeration oil is excessive, the collecting gas pipe 5 or It is distributed from the collecting liquid pipe 6 to the compressors 10, 11, 30, 31, 40, 41. On the other hand, when the refrigerating machine oil is less than or equal to the predetermined amount, it flows back to the original compressor only through the oil return pipe 64. Therefore, in the process of operating the refrigerator 1, the refrigerator oil of the compressors 11, 20, 21, 30, and 31 is equalized.

この実施の形態では、複数の室外機2〜3を有する構成において、圧縮機均油装置51を設けて集合ガス管5又は集合液管6を通って、余剰な冷凍機油を複数の圧縮機10,11,30,31,40,41に分配させるようにしたので、圧縮機10,11,30,31,40,41を停止させることなく各圧縮機10,11,30,31,40,41の冷凍機油を均等化することができる。圧縮機均油装置51のユニット間均油管55には、第一、第二逆止弁70,71が設けたので、集合ガス管5又は集合液管6のうちで相対的に低圧で、かつ室外機2〜4に戻る冷媒が流れる配管に冷凍機油を流入させることが可能になる。したがって、室内機7を通すことなく冷凍機油を速やかに圧縮機10,11,30,31,40,41に分配できる。さらに、ユニット間均油管55は、最も室内機7に近い位置に配置されている室外機4に向けて集合ガス管5、集合液管6から分岐した配管であるガス管5A、液管6Aよりも室内機7側に接続したので、全ての圧縮機10,11,30,31,40,41の冷凍機油を分配することが可能である。なお、ユニット間均油管55をガス管5A、液管6Aの近傍に接続すると、冷凍機油が流れる経路を短くすることができる。   In this embodiment, in a configuration having a plurality of outdoor units 2 to 3, a compressor oil leveling device 51 is provided, and surplus refrigeration oil is supplied to the plurality of compressors 10 through the collective gas pipe 5 or the collective liquid pipe 6. , 11, 30, 31, 40, 41, the compressors 10, 11, 30, 31, 40, 41 are not stopped without stopping the compressors 10, 11, 30, 31, 40, 41. Refrigerator oil can be equalized. Since the inter-unit oil leveling pipe 55 of the compressor oil leveling device 51 is provided with the first and second check valves 70 and 71, the pressure is relatively low in the collective gas pipe 5 or the collective liquid pipe 6, and Refrigerating machine oil can be caused to flow into the piping through which the refrigerant returns to the outdoor units 2 to 4 flows. Therefore, the refrigeration oil can be quickly distributed to the compressors 10, 11, 30, 31, 40, 41 without passing through the indoor unit 7. Further, the inter-unit oil leveling pipe 55 is formed from the gas pipe 5A and the liquid pipe 6A which are pipes branched from the collective gas pipe 5 and the collective liquid pipe 6 toward the outdoor unit 4 disposed closest to the indoor unit 7. Since it is connected to the indoor unit 7 side, it is possible to distribute the refrigerating machine oil of all the compressors 10, 11, 30, 31, 40, 41. If the inter-unit oil leveling pipe 55 is connected in the vicinity of the gas pipe 5A and the liquid pipe 6A, the path through which the refrigerating machine oil flows can be shortened.

本発明は、前記の実施の形態に限定されずに広く応用することができる。
例えば、図7に示すように、第一、第二逆止弁70,71を最も室内機7に近い室外機4に内蔵しても良い。この場合には、集合ガス管5及び集合液管6の一部が室外機4内に引き込まれ、さらにユニット間均油管55も室外機4内に引き込まれる。室外機4内では、第一の分岐管55Aが第一逆止弁70を介して集合ガス管5の引き込まれた部分75に接続され、第二の分岐管55Bが第二逆止弁71を介して集合液管6の引き込まれた部分76に接続される。一般的に、集合ガス管5及び集合液管6と室外機4の接続は、冷凍機1の実際に設置する現地で行われるので、図1に示す形態では、集合ガス管5及び集合液管6と分岐管55A,55Bの接続作業も現地で施工される。第一、第二の分岐管55A,55Bには第一、第二逆止弁70,71が設けられているので、これら分岐管55A,55Bを溶接によって接続する場合には、第一、第二逆止弁70,71に及ぼす熱の影響を考慮しながら現地で施工する必要がある。図7に示す形態では、製造段階で予め引き込まれた部分75,76と第一、第二の分岐管55A,55Bを接続しておくことができるので、現地では引き込まれた部分75,76と、残りの集合ガス管5及び集合液管6を溶接するだけで済み、現地での作業が容易になる。
The present invention is not limited to the above embodiment and can be widely applied.
For example, as shown in FIG. 7, the first and second check valves 70 and 71 may be built in the outdoor unit 4 closest to the indoor unit 7. In this case, a part of the collecting gas pipe 5 and the collecting liquid pipe 6 are drawn into the outdoor unit 4, and the inter-unit oil leveling pipe 55 is also drawn into the outdoor unit 4. In the outdoor unit 4, the first branch pipe 55 </ b> A is connected to the drawn-in portion 75 of the collecting gas pipe 5 via the first check valve 70, and the second branch pipe 55 </ b> B connects the second check valve 71. To the drawn-in portion 76 of the collecting liquid pipe 6. In general, the connection between the collecting gas pipe 5 and the collecting liquid pipe 6 and the outdoor unit 4 is performed at the site where the refrigerator 1 is actually installed. Therefore, in the form shown in FIG. 1, the collecting gas pipe 5 and the collecting liquid pipe are used. 6 and branch pipes 55A and 55B are connected on site. Since the first and second branch pipes 55A and 55B are provided with the first and second check valves 70 and 71, when these branch pipes 55A and 55B are connected by welding, the first and second It is necessary to perform construction on site while taking into consideration the effect of heat on the two check valves 70 and 71. In the form shown in FIG. 7, the first and second branch pipes 55A and 55B can be connected to the portions 75 and 76 drawn in advance in the manufacturing stage. Then, it is only necessary to weld the remaining collecting gas pipe 5 and collecting liquid pipe 6, and the work at the site becomes easy.

圧縮機均油装置51は、流路切替手段として逆止弁の代わりに開閉弁を用いても良い。図8に示すように、ユニット間均油管55の分岐管55Aは、第一開閉弁80を介して集合ガス管5に接続されており、分岐管55Bは第二開閉弁81を介して集合液管6に接続されている。第一、第二開閉弁80,81は、不図示の制御装置によって冷凍機1の運転モードに合わせて開閉制御される。冷房運転時には、第一開閉弁80を開いて、第二開閉弁81を閉じる。ユニット間均油管55の冷凍機油は、集合ガス管5から各圧縮機10,11,30,31,40,41に分配される。暖房運転時には、第一開閉弁80を閉じて、第二開閉弁81を開く。ユニット間均油管55の冷凍機油は、集合液管6から各圧縮機10,11,30,31,40,41に分配される。図7の形態において、第一、第二逆止弁70,71を第一、第二開閉弁80,81に置き換えることも可能である。   The compressor oil leveling device 51 may use an on-off valve as a flow path switching means instead of a check valve. As shown in FIG. 8, the branch pipe 55 </ b> A of the inter-unit oil leveling pipe 55 is connected to the collecting gas pipe 5 via the first on-off valve 80, and the branch pipe 55 </ b> B is connected to the collecting liquid via the second on-off valve 81. Connected to the tube 6. The first and second on-off valves 80 and 81 are controlled to be opened and closed in accordance with the operation mode of the refrigerator 1 by a control device (not shown). During the cooling operation, the first on-off valve 80 is opened and the second on-off valve 81 is closed. The refrigerating machine oil in the inter-unit oil leveling pipe 55 is distributed from the collecting gas pipe 5 to the compressors 10, 11, 30, 31, 40, 41. During the heating operation, the first on-off valve 80 is closed and the second on-off valve 81 is opened. The refrigerating machine oil in the inter-unit oil leveling pipe 55 is distributed from the collecting liquid pipe 6 to the compressors 10, 11, 30, 31, 40 and 41. In the form of FIG. 7, the first and second check valves 70 and 71 can be replaced with the first and second on-off valves 80 and 81.

また、室外機2〜4ごとの圧縮機10,11,30,31,40,41は、各2つに限定されない。1つでも良いし、3つ以上でも良い。
気液分離手段63の容量は、その冷凍機によって最適な容積を選択することが可能であり、圧縮機の運転に必要な最低油量以下であれば、前記した気液分離手段容積範囲R1以外でも良い。
第一、第二減圧手段は、キャピラリチューブ65,67の代わりに、膨張弁や、開閉弁、その他の減圧手段であっても良い。
Moreover, the compressor 10, 11, 30, 31, 40, 41 for every outdoor unit 2-4 is not limited to two each. One may be sufficient and three or more may be sufficient.
The capacity of the gas-liquid separation means 63 can select an optimum volume depending on the refrigerator, and if it is less than the minimum oil amount necessary for the operation of the compressor, it is outside the gas-liquid separation means volume range R1. But it ’s okay.
The first and second decompression means may be expansion valves, on-off valves, or other decompression means instead of the capillary tubes 65 and 67.

本発明の実施の形態に係る冷凍機及び圧縮機均油装置の構成を示す図である。It is a figure which shows the structure of the refrigerator which concerns on embodiment of this invention, and a compressor oil equalizing apparatus. 気液分離手段の容積の範囲を示す図である。It is a figure which shows the range of the volume of a gas-liquid separation means. 圧縮機均油装置の気液分離手段の作用を説明する図である。It is a figure explaining the effect | action of the gas-liquid separation means of a compressor oil equalizing apparatus. 冷房運転時に冷凍機油が集合ガス管を通して複数の圧縮機に分配される様子を模式的に示す図である。It is a figure which shows typically a mode that refrigeration oil is distributed to several compressors through an aggregate gas pipe at the time of air_conditionaing | cooling operation. 暖房運転時に冷凍機油が集合液管を通して複数の圧縮機に分配される様子を模式的に示す図である。It is a figure showing typically signs that refrigeration oil is distributed to a plurality of compressors through a collecting liquid pipe at the time of heating operation. 圧縮機均油装置の気液分離手段の作用を説明する図である。It is a figure explaining the effect | action of the gas-liquid separation means of a compressor oil equalizing apparatus. 流路切替手段を室外機内に設けた図である。It is the figure which provided the flow-path switching means in the outdoor unit. 流路切替手段の他の形態を示す図である。It is a figure which shows the other form of a flow-path switching means.

符号の説明Explanation of symbols

1 冷凍機
2,3,4 室外機
5 集合ガス管
6 集合液管
7 室外機
10 第一圧縮機
11 第二圧縮機
23 吸入配管
27 高圧容器
30 第三圧縮機
31 第四圧縮機
40 第五圧縮機
41 第六圧縮機
51 圧縮機均油装置
55 ユニット間均油管
55A 第一の分岐管
55B 第二の分岐管
63 気液分離手段
63B 第一流出端
63C 第二流出端
65 キャピラリチューブ(第一減圧手段)
66 均油管
66 キャピラリチューブ(第二減圧手段)
70,71 逆止弁(第一流路切替手段、第二流路切替手段)
75,76 引き込まれた部分
80,81 開閉弁(第一流路切替手段、第二流路切替手段)

DESCRIPTION OF SYMBOLS 1 Refrigerator 2, 3, 4 Outdoor unit 5 Collected gas pipe 6 Collected liquid pipe 7 Outdoor unit 10 1st compressor 11 2nd compressor 23 Suction piping 27 High pressure vessel 30 3rd compressor 31 4th compressor 40 5th Compressor 41 Sixth compressor 51 Compressor oil leveling device 55 Unit oil leveling tube 55A First branch pipe 55B Second branch pipe 63 Gas-liquid separation means 63B First outflow end 63C Second outflow end 65 Capillary tube (first One decompression means)
66 Oil equalizing pipe 66 Capillary tube (second decompression means)
70, 71 Check valve (first flow path switching means, second flow path switching means)
75,76 Retracted part 80,81 On-off valve (first flow path switching means, second flow path switching means)

Claims (6)

複数の室外機と室内機との間を集合ガス管及び集合液管で接続し、室外機に搭載された圧縮機に吸入配管から冷媒を吸入させ、加圧してから吐出することで冷媒を循環させる冷凍機に用いられ、前記圧縮機の間で冷凍機油を均等に保つ圧縮機均油装置であって、
前記圧縮機の高圧容器に接続される気液分離手段を有し、前記気液分離手段には主に冷凍機油を流出する第一流出端と、主に気体を流出して前記気液分離手段が冷凍機油で満たされた場合には冷凍機油を流出する第二流出端とが設けられており、前記第一流出端は第一減圧手段を介して前記吸入配管においてその圧縮機に冷媒を供給する部分に接続され、前記第二流出端には均油管が接続されており、前記均油管は、その経路中に第二減圧手段が設けられた後にユニット間均油管に接続されており、前記ユニット間均油管は、複数の前記室外機のそれぞれの前記均油管が接続された後に、2つの接続管に分岐し、第一の前記分岐管が第一流路切替手段を介して前記集合ガス管に接続されると共に、第二の前記分岐管が前記第二流路切替手段を介して前記集合液管に接続されることを特徴とする圧縮機均油装置。
A plurality of outdoor units and indoor units are connected by a collecting gas pipe and a collecting liquid pipe, and the refrigerant is circulated by sucking the refrigerant from the suction pipe into the compressor mounted on the outdoor unit, pressurizing it, and discharging it. A compressor oil leveling device for keeping the refrigerating machine oil evenly between the compressors,
A gas-liquid separation means connected to a high-pressure vessel of the compressor, wherein the gas-liquid separation means mainly includes a first outflow end through which refrigeration oil flows out; Is provided with a second outflow end for flowing out the refrigerating machine oil, and the first outflow end supplies the refrigerant to the compressor in the suction pipe via the first pressure reducing means An oil equalizing pipe is connected to the second outflow end, and the oil equalizing pipe is connected to the inter-unit oil equalizing pipe after the second pressure reducing means is provided in the path, The inter-unit oil equalizing pipe is branched into two connecting pipes after the oil equalizing pipes of the plurality of outdoor units are connected, and the first branch pipe is connected to the collecting gas pipe via the first flow path switching means. And the second branch pipe connects the second flow path switching means. To compressor oil equalizing system, characterized in that it is connected to the collecting liquid pipe.
前記ユニット間均油管は、前記集合ガス管及び前記集合液管がそれぞれの前記室外機に向けて分岐する分岐箇所よりも前記室内機側で前記集合ガス管及び前記集合液管に接続されていることを特徴とする請求項1に記載の圧縮機均油装置。   The inter-unit oil equalizing pipe is connected to the collecting gas pipe and the collecting liquid pipe on the indoor unit side from a branching point where the collecting gas pipe and the collecting liquid pipe branch toward the outdoor unit. The compressor oil equalizing device according to claim 1. 前記第一流路切替手段は、前記ユニット間均油管の内圧が前記集合ガス管の内圧よりも高いときのみに開く逆止弁であり、前記第二流路切替手段は、前記ユニット間均油管の内圧が前記集合液管の内圧よりも高いときのみに開く逆止弁であることを特徴とする請求項1又は請求項2に記載の圧縮機均油装置。   The first flow path switching means is a check valve that opens only when the internal pressure of the inter-unit oil leveling pipe is higher than the internal pressure of the collective gas pipe, and the second flow path switching means is the The compressor oil leveling device according to claim 1 or 2, wherein the check valve is opened only when an internal pressure is higher than an internal pressure of the collecting liquid pipe. 前記第一流路切替手段と、第二流路切替手段とは、一方が開かれると他方が閉じるように開閉制御された開閉弁からなることを特徴とする請求項1又は請求項2に記載の圧縮機均油装置。   The said 1st flow-path switching means and the 2nd flow-path switching means consist of an opening-and-closing valve by which opening / closing control was carried out so that the other might close, when one was opened. Compressor oil leveling equipment. 前記第一、第二流路切替手段と、前記第一、第二の分岐管とは、最も前記室内機側に配置される前記室外機に内蔵されていることを特徴とする請求項2に記載の圧縮機均油装置。   The said 1st, 2nd flow-path switching means and said 1st, 2nd branch pipe are incorporated in the said outdoor unit most arrange | positioned at the said indoor unit side. The compressor oil leveling device. 請求項1から請求項4のいずれか一項に記載の圧縮機均油装置と、前記圧縮機均油装置が前記圧縮に接続された複数の前記室外機と、前記集合ガス管と、前記集合液管と、前記室内機とを含んで構成される冷凍機。

5. The compressor oil leveling device according to claim 1, a plurality of the outdoor units in which the compressor oil leveling device is connected to the compression, the aggregate gas pipe, and the aggregate A refrigerator comprising a liquid pipe and the indoor unit.

JP2005329875A 2005-11-15 2005-11-15 Compressor oil leveling device and refrigerator Expired - Fee Related JP4130676B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005329875A JP4130676B2 (en) 2005-11-15 2005-11-15 Compressor oil leveling device and refrigerator
KR1020060027435A KR101085493B1 (en) 2005-11-15 2006-03-27 Compressor Distributing Apparatus And Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005329875A JP4130676B2 (en) 2005-11-15 2005-11-15 Compressor oil leveling device and refrigerator

Publications (2)

Publication Number Publication Date
JP2007139215A JP2007139215A (en) 2007-06-07
JP4130676B2 true JP4130676B2 (en) 2008-08-06

Family

ID=38202307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005329875A Expired - Fee Related JP4130676B2 (en) 2005-11-15 2005-11-15 Compressor oil leveling device and refrigerator

Country Status (2)

Country Link
JP (1) JP4130676B2 (en)
KR (1) KR101085493B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7979101B2 (en) 2004-10-05 2011-07-12 National Institute Of Information And Communications Technology, Incorporated Administrative Agency Electromagnetic wave detection element and electromagnetic wave detection device using the same
WO2018116407A1 (en) 2016-12-21 2018-06-28 三菱電機株式会社 Refrigeration cycle device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105180493B (en) * 2015-09-01 2019-12-24 珠海格力电器股份有限公司 Compressor module, multi-module unit and oil balancing control method of multi-module unit
CN114526566A (en) * 2020-11-05 2022-05-24 珠海格力电器股份有限公司 Multi-compressor oil return balance structure, control method thereof and air conditioning system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001132645A (en) 1999-11-11 2001-05-18 Matsushita Refrig Co Ltd Oil equalizing system for plural compressors
JP2001173564A (en) 1999-12-17 2001-06-26 Matsushita Refrig Co Ltd Oil equalizing system of plural compressors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7979101B2 (en) 2004-10-05 2011-07-12 National Institute Of Information And Communications Technology, Incorporated Administrative Agency Electromagnetic wave detection element and electromagnetic wave detection device using the same
WO2018116407A1 (en) 2016-12-21 2018-06-28 三菱電機株式会社 Refrigeration cycle device
EP3913299A1 (en) 2016-12-21 2021-11-24 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Also Published As

Publication number Publication date
KR101085493B1 (en) 2011-11-23
KR20070051634A (en) 2007-05-18
JP2007139215A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
KR100878819B1 (en) Air conditioner and control method for the same
US9488396B2 (en) Air-conditioning apparatus
JP4752765B2 (en) Air conditioner
KR102344058B1 (en) An air conditioning system and a method for controlling the same
JP4013261B2 (en) Refrigeration equipment
KR102373851B1 (en) Air conditioner
CN109595846B (en) Heat pump unit and method for controlling heat pump unit
JP4323484B2 (en) Refrigeration cycle equipment
JP4553761B2 (en) Air conditioner
JP6045489B2 (en) Air conditioner
JP4130676B2 (en) Compressor oil leveling device and refrigerator
JP3940840B2 (en) Air conditioner
JP4116030B2 (en) Compressor oil leveling device and refrigerator
US9890978B2 (en) Renewal method of air-conditioning unit for vehicle and air-conditioning unit for vehicle
JP4113221B2 (en) Compressor oil leveling device and refrigerator
JP5225895B2 (en) Air conditioner
JP2002277077A (en) Air conditioner
JP4464333B2 (en) Compressor oil leveling device and refrigerator
JP2017110820A (en) Air conditioning device
JP4661725B2 (en) Refrigeration equipment
WO2016152039A1 (en) Air-conditioning apparatus
EP3199878B1 (en) Variable refrigerant volume system and control method thereof
KR102136589B1 (en) An air conditioning system
KR101203868B1 (en) Air conditioner and control method for the same
JPH06117719A (en) Heating and cooling device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees