JP4130049B2 - Photocatalyst with improved activity and sustained activity - Google Patents

Photocatalyst with improved activity and sustained activity Download PDF

Info

Publication number
JP4130049B2
JP4130049B2 JP2000049208A JP2000049208A JP4130049B2 JP 4130049 B2 JP4130049 B2 JP 4130049B2 JP 2000049208 A JP2000049208 A JP 2000049208A JP 2000049208 A JP2000049208 A JP 2000049208A JP 4130049 B2 JP4130049 B2 JP 4130049B2
Authority
JP
Japan
Prior art keywords
activity
photocatalyst
doped
natao
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000049208A
Other languages
Japanese (ja)
Other versions
JP2001232191A (en
Inventor
一成 堂免
昭彦 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000049208A priority Critical patent/JP4130049B2/en
Publication of JP2001232191A publication Critical patent/JP2001232191A/en
Application granted granted Critical
Publication of JP4130049B2 publication Critical patent/JP4130049B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、活性および活性持続性を改善したNaTaOまたはHPbNb10を基材とする光触媒および活性および活性の持続性を改善した(経時劣化の小さい)NaTaO NiO/NaTaOまたはPt/HPbNb10から成る水の光分解触媒に関する。より具体的には、ランタノイド系の元素、例えばLa、Pr、Nd、Gd、Tb、Dyから成る群から選択される少なくとも1種の原子をペロブスカイト構造のNaTaOまたはLaをペロブスカイト構造のHPbNb10にドープすることにより、上記光触媒としての活性および活性の経時的安定性を改善した技術に関する。なお、上記原子ドープHPbNb10は、上記原子ドープRbPbNb10を調製後、生成物をプロトン交換することによって得られる。
【0002】
【従来技術】
水の光分解反応は光エネルギー変換の観点から興味が持たれている。また、水の光分解反応に活性を示す光触媒は、光吸収、電荷分離、表面での酸化還元反応といった機能を備えた高度な光機能材料と見ることができる。本発明者等は、タンタル酸アルカリ、アルカリ土類等が、前記水の完全光分解反応に高い活性を示す光触媒であることを報告している〔例えば、Catal.Lett.,58(1999).153-155、Chem.Lett.,(1999),1207、表面,Vol.36,No.12(1998),625-645(文献Aという)〕。
【0003】
前記文献Aにおいては、水を光触媒を用いて水素と酸素に分解する反応を進めるのに有用な光触媒材料について解説しており、水の完全光分解反応用光触媒についての多くの示唆をしている。先ず、水の完全光分解において、タンタル酸塩は、助触媒なしに純水から水素と酸素を量論比で生成する光触媒として機能することを見出したこと、また、NiO助触媒を担持させることにより、前記触媒活性が飛躍的に向上することが分かったことが報告されている(635頁右欄)。また、KNb17についても、純水から助触媒なしに水素と酸素を生成させることができること、また、これを粉砕して微結晶にしたものは著しく高い活性を示すとの報告があることを解説している。更に、KLaTi10の様なペロブスカイト構造を有する化合物は、層間が水和し易いことにより光触媒活性が高いことが説明されている。
【0004】
また、光の効率的な利用性の観点から、可視光照射下での水分解による水素または酸素の生成反応に活性な光触媒についても言及している。その中で、Ptサイトを持つHPbNb10についても、酸化剤として働くAgNOのような物質や還元剤として働く有機物質などを含む水溶液の分解による水素または酸素の生成に活性を示す光触媒としての機能について解説されている。この化合物の特徴は、利用できる光波長領域が可視光にあることにある。ところで、NaTaOおよびMNb10はペロブスカイト構造〔ABX型固体〕を取りうるから、Aサイトおよび/またはBサイトヘの色々な原子のドーピンクによって、電子物性(バンドギャップ)の制御が期待される。石原らはKTaOのBサイトにTi、Zr、Hfをドーピングすることにより水の光分解活性が向上することを報告している〔J.Phys.Chem.B,(1999),103,1.、Chem.Lett.(1999)1327.〕。また、町田らは、ランタノイドを成分とする層状タンタル酸塩の光触媒活性を報告している〔Chem.Commun.(1999),1939〕。
【0005】
また、SrTiOなどにおいて、AサイトにLaをドーピングすることにより導電性を向上させることができることが知られている。このような中で、本発明者等も、NaTaOなどの光触媒材料に希土類イオンをドープした場合の発光現象について検討し、その知見から該材料のエネルギー状態の考察をしてきた。その研究の過程でNaと同程度のイオン半径を持つランタノイド系原子をドーピングした場合に前記光触媒活性に対する特性の向上にも有効ではないかと推測してきた。また、MNb10においても、NaTaOなどの光触媒材料におけると同様にランタノイド系原子のドーピングによる電子物性の制御による光触媒活性の性能の向上が期待できるのではないかと考えた。また、前記ランタノイド系原子のドーピングの効果を、可視光領域で光活性を示すHPbNb10においてももたらすことができるのではないかと考えた。更に、前記従来の光触媒の研究に於ける観点は、光活性の向上に集中しており、光触媒を利用した技術のより実用性を高めるための、光触媒活性の経時的安定性についての検討が欠けているように思われる。
【0006】
【発明が解決しようとする課題】
したがって、本発明の課題は、光触媒活性が高く、かつ、該光触媒活性が経時的に安定である光活性触媒機能を有する材料を提供することである。前記課題を解決するのに、触媒としての基本である活性の制御に有効なドーピング技術を鋭意検討し、その中で触媒の経時的安定性を持つものを見つけだすという手法により、前記課題を解決することを検討した。そして、前記ランタノイド系の元素のドープによる、ペロブスカイト構造の化合物の導電性、発光特性の改善などからの推測から、これらの元素のドープと光触媒活性および光活性の安定性について多くの実験をする中で、ランタノイド系の元素の中で前記元素のドープによる、とくにLaドープによる、光触媒としての活性の向上とその活性の安定性を満たす光活性触媒機能を有する材料見出した。また、可視光領域で光活性を示すHPbNb10においても同様の効果がもたらされることを見出すことができた。
【0007】
【課題を解決するための手段】
本発明の第1は、La、Pr、Nd、Gd、Tb、Dyから成る群から選択される少なくとも1種の原子を0.1原子%〜5原子%ドープしたNaTaO 、NiO/NaTaO またはLaをドープしたPt/HPb Nb 10 からなる光触媒である。好ましくは、NaTaOおよびHPbNb10はペロブスカイト構造を有するものであることを特徴とする前記光触媒である。
【0008】
【本発明の実施の態様】
本発明をより詳細に説明する。
A.タンタル酸アルカリ、アルカリ土類が水の完全光分解反応に高い活性を示す光触媒であること、またHPbNb10が可視光の照射下で水の分解をする触媒として利用可能であることは、前記したとおりである。しかしながら、NiO/NaTaOがもっとも高い活性を示すこと、また、LaをドープしたPt/HPb Nb 10 は可視光の照射下で触媒機能をもつ活性材料であることから、これらの材料の、水の光分解反応における光触媒活性の向上と、前記活性の安定性を改善させる技術について説明する。
B.NaTaO光触媒に種々のランタノイド系元素をドーピングして、該ドープ元素と触媒活性や該触媒活性の経時安定性について考察した。その結果を表1に示す。ここでは、NaTaOについて説明しているが、他のペロブスカイト系の光触媒においても同様の改善が予想される。
【0009】
C.ランタノイド元素をドープした光活性触媒の製造方法の一例。ここでは、Ln(ランタノイド系原子を意味する)を1原子%ドーピングした光触媒の合成法を説明するが、ドーピング量を変えた材料もこれに準じて合成できる。
1.出発原料として、NaCO(5%過剰に用いる)、Ta、Ln酸化物を混合して白金るつぼに入れ、空気中で1423Kで10時間焼成した。生成物は、XRD(X線回折)により結晶構成を確認した。また、拡散反射法、BET、SEMにより、光吸収特性、表面積、粒径などの特性を調べた。焼成温度は1173K〜1423Kの範囲で変更できる。焼成温度による活性の効果は約20〜30%程度の範囲内であり、あまり違いがない。2.助触媒であるNiOは含浸法により担持させ、540Kで1時間、空中で焼成した。助触媒の含浸量は0.05重量%で説明しているが、0.01〜0.1重量%の範囲で変更できる。また、焼成温度は500〜650Kの範囲で調整できる。3.純水の完全光分解反応は、図1に示す装置を用いて行う。すなわち、反応セル〔RC:石英ガラス製、撹拌部材ST(磁気撹拌子)を備えているのが好ましい〕に、光触媒粒子(1g)と純水(350mL)を入れ、この中に光源〔LS:冷却用循環水(CW)装置を備えた高圧水銀ランプ:内部照射型400Wからなる〕を入れて、溶存ガスを脱気(真空系:VL)した後、Arを約40〜66kPa導入し、水の完全光分解反応を行わせる、発生するガスを系内に捕集する。ガス成分は、循環ポンプ(CP)で循環するガスの一部をガスクロマトグラフィー(GC:カラム、MS−5A;キャリヤーガスAr:熱伝導検出器TCD)に導かれ、分析される。系の圧力は圧力計(PG:Hgマノメーターや圧力センサーなど)を見て調整する。
【0010】
【表1】

Figure 0004130049
【0011】
前記表1から、Eu、Ybをドーピングしたものを除いて、触媒活性の著しい向上が見られた。中でもLaをドープしたものが最も効果的に触媒の活性および該活性の安定性を改善できることが分かる。また、触媒の高活性化と経時的活性の低下(活性の持続性)の観点から、Laを1原子%ドーピングしたものが最も好ましい特性を示した。表1において、生成した粒子の結晶サイズの特性と水素および酸素の生成効率の結果から、La、Nd、Smのドープしたものは粒子サイズが小さく、かつ、光触媒活性の高い結晶構造のものが形成されたていることが推測できる。
【0012】
D.LaをドーピングしたRbPbNb10、すなわち一般式Rb1−2xPb2(1−x)La2xNb10(以下、一般式1という。0<x≦0.2)で表される層状ペロブスカイトの合成も、前記NaTaOへのランタノイド系元素をドーピングしたものと同様の方法によって行うことができる(他のランタノイド系元素をドープすることもできる。)。すなわち、RbCO、PbOおよびNbの量論比の粉末と10%過剰のRbCO(揮発による損失分を考慮して)を加え十分に混合粉砕し、前記xの範囲となるようにLn(ランタノイド)酸化物を、具体的にはLa酸化物を混合して白金るつぼに入れ、前焼成を850℃〜900℃で3〜5時間行った後、本焼成を1000〜1100℃で約40時間の範囲で焼成し、得られた焼成物を粉砕して微粒子(粒径0.1μm〜10μm)とした。Laをドープして得られたRbPbNb10は、焼成の際の粒子径の成長現象において、ドープしないものと顕著な違いがあることが分かった。すなわち、ドープしてないものは1100℃焼成のものは1000℃焼成のものに比べて粒子径が大きくなるが、ドープしたものは、1100℃で焼成しても粒子径が大きくなるという現象が起こらず、従って、触媒の活性の低下がないのに対し(図2)、ドープしないものは、1100℃で焼成すると、1000℃で焼成したものに比べて活性が著しく低下することが分かった(図3)。この現象の原因を探求すべく、両者の1000℃および1100℃で焼成したもののSEM像を取って調べたところ、Laをドープして得られたRbPbNb10粒子は、粒径が小さく、かつ、結晶性がよいことが分かった。高い光触媒活性は、Laなどをドープして得られたRbPbNb10粒子を硝酸水溶液中、例えば3Mの硝酸溶液中(この濃度が最適である)でプロトン交換する(約一日)ことにより得られる。E.Laドープ量と水素生成速度(光触媒活性)(プロトン交換体とした場合の触媒活性)の関係を図4に示す。F.LaなどをドーピングしたRbPbNb10のプロトン交換体を水の光分解触媒とする場合には、NaTaOの場合と異なり水素の生成サイトを形成する必要がある。水素の生成サイトにはPtが用いられ、Ptサイトの形成は、HPtClのアニオン錯体から光電着法により形成される。G.水の光分解反応(水素発生)は、光源として可視光領域のみの光を用い、アルコールの様な還元試薬を加えた水を用いて行った(図5)。図5は、前記図1の方法に対して、光源として、420nm以下の波長光をカットする波長フィルター(CF)を備えたキセノンランプ用いること、純水に代えて還元試薬、例えばメタノールを加えた(20容積%)水溶液を用いること、冷却ジャケット(CJ)付きパイレックス製反応セル(RC)を用いること以外ほぼ同様の構成である。
【0013】
【実施例】
実施例1
前記手法に従って調製したLaを1原子%ドーピングしたNaTaOに、助触媒NiOを担持した(0.05重量%)純水光分解触媒(平均粒径0.2μm)を用いて、前記装置(図1)を用い、照射光源〔400高圧水銀灯(SEM光源社)、有効波長300nm以下〕で純水の完全光分解特性および触媒の活性の持続性を調べた。図6にLaがドープされたNaTaOを用いた場合(○:H、●:O)と、ドープなしの場合(□:H、■:O)を用いた場合の純水の完全光分解の特性を示す。1周期2時間における水素および酸素発生量により触媒の活性を調べた。また、周期を繰り返すことにより、触媒の経時安定性を調べた。ドープした触媒の活性は格段に高いことが理解できる。また、ドープした触媒を用いたものには、2周期以降での水素および酸素の発生の特性は安定しており、ドープした触媒の活性の安定性がよいことが分かる。
【0014】
実施例2
Pt(0.1重量%)/LaドープRbPbNb10のプロトン置換光触媒を前記Dで説明する方法により、Laのドープ量が、前記一般式1においてx=0.025になるようにLa酸化物を混合し、焼成して得られたものを、3M硝酸溶液中で、約一日プロトン交換処理して光触媒を調製した。水分解のための溶液として、メタノール40mLと水160mLから成るものを用い、300Wキセノンランプ(λ>420nm)を用いて光分解反応をさせた。LaドープしたRbPbNb10を生成させる焼成温度と焼成して得られたものを前記プロトン交換処理して得られた触媒の活性との関係を調べた(前記図2)。比較のためにLa未ドープの場合も示す(前記図3)。Laをドープすることにより触媒活性は約4倍程度向上し、焼成温度に対する寛容性、換言すれば、触媒粒子の熱安定性も著しく改善されることが分かった。
【0015】
【発明の効果】
以上述べたように、活性および活性持続性が改善され、より実用性に近づけたNaTaOまたはRbPbNb10を基材とする光触媒、特にNaTaOを基材とする純水の完全光分解反応の触媒が提供され、太陽光のようなクリーンなエネルギーの利用による、水素のようなクリーンなエネルギーの生産に貢献できることは明らかであり、環境に優しい技術の提供といった面で貢献すること大である。
【図面の簡単な説明】
【図1】 光触媒を用いて純水等の光分解反応を実施する装置の1例
【図2】 LaドープRbPbNb10の焼成温度と焼成生成物のプロトン交換体の光触媒活性との関連
【図3】 LaドープなしのRbPbNb10の焼成温度と焼成生成物のプロトン交換体の光触媒活性との関連
【図4】RbPbNb10のLaドープ量とLaドープ生成物のプロトン交換体の水素生成速度(光触媒活性)の関係
【図5】 可視光領域の光を用いた水の光分解反応を実施する装置の1例
【図6】 LaがドープされたNaTaO(○:H、●:O)を用いた場合と、ドープなしの場合(□:H、■:O)の純水の完全光分解の光触媒特性および該触媒特性の経時安定性
【符号の説明】
RC 反応セル ST 撹拌部材 LS 光源CW 循環冷却水 CP 循環ポンプ GC ガスクロマトグラフィーPG 圧力計 CF 波長フィルター CJ 冷却ジャケットVL 真空系[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photocatalyst based on NaTaO 3 or HPb 2 Nb 3 O 10 with improved activity and activity persistence, and improved activity and activity persistence (small degradation over time) NaTaO 3 , NiO / NaTaO 3 Alternatively, the present invention relates to a water photolysis catalyst comprising Pt / HPb 2 Nb 3 O 10 . More specifically, at least one atom selected from the group consisting of lanthanoid elements, such as La, Pr, Nd, Gd, Tb, and Dy , is NaTaO 3 having a perovskite structure or La is HPb 2 Nb having a perovskite structure. The present invention relates to a technique in which the activity as the photocatalyst and the stability over time of the activity are improved by doping 3 O 10 . The atomic dope HPb 2 Nb 3 O 10 can be obtained by proton exchange of the product after preparing the atomic dope RbPb 2 Nb 3 O 10 .
[0002]
[Prior art]
The photolysis reaction of water is of interest from the viewpoint of light energy conversion. In addition, a photocatalyst that is active in the photodecomposition reaction of water can be regarded as an advanced photofunctional material having functions such as light absorption, charge separation, and oxidation-reduction reaction on the surface. The present inventors have reported that alkali tantalate, alkaline earth, and the like are photocatalysts exhibiting high activity in the complete photolysis reaction of water [for example, Catal. Lett., 58 (1999). 153-155, Chem. Lett., (1999), 1207, Surface, Vol. 36, No. 12 (1998), 625-645 (referred to as Document A)].
[0003]
In the document A, a photocatalyst material useful for advancing the reaction of decomposing water into hydrogen and oxygen using a photocatalyst is described, and many suggestions are made for a photocatalyst for complete photolysis reaction of water. . First, in complete photolysis of water, it was found that tantalate functions as a photocatalyst that generates hydrogen and oxygen in a stoichiometric ratio from pure water without a promoter, and also supports a NiO promoter. Thus, it was reported that the catalytic activity was dramatically improved (right column on page 635). In addition, K 4 Nb 6 O 17 has also been reported that hydrogen and oxygen can be produced from pure water without a promoter, and that pulverized fine crystals show extremely high activity. Explains that there is. Further, it has been described that a compound having a perovskite structure such as K 2 La 2 Ti 3 O 10 has high photocatalytic activity due to easy hydration between layers.
[0004]
In addition, from the viewpoint of efficient use of light, a photocatalyst active in a hydrogen or oxygen production reaction by water splitting under visible light irradiation is also mentioned. Among them, HPb 2 Nb 3 O 10 having a Pt site also shows activity in generating hydrogen or oxygen by decomposition of an aqueous solution containing a substance such as AgNO 3 acting as an oxidizing agent or an organic substance acting as a reducing agent. The function as a photocatalyst is explained. This compound is characterized in that the usable wavelength region is visible light. By the way, since NaTaO 3 and M 2 Nb 3 O 10 can have a perovskite structure (ABX 3 type solid), control of electronic physical properties (band gap) is expected by the do pink of various atoms at the A site and / or B site. Is done. Ishihara et al. Reported that the photolytic activity of water is improved by doping Ti, Zr, and Hf at the B site of KTaO 3 [ J. Phys. Chem. B, (1999), 103, 1. Chem. Lett. (1999) 1327.]. Machida et al. Have reported the photocatalytic activity of layered tantalates containing lanthanoids [Chem. Commun. (1999), 1939].
[0005]
In addition, it is known that the conductivity of SrTiO 3 or the like can be improved by doping La to the A site. Under such circumstances, the present inventors have also studied the light emission phenomenon in the case where a rare earth ion is doped in a photocatalytic material such as NaTaO 3 , and have considered the energy state of the material from the knowledge. In the course of the research, it has been speculated that doping with a lanthanoid atom having an ion radius comparable to that of Na is effective in improving the characteristics for the photocatalytic activity. In addition, in M 2 Nb 3 O 10 , it was thought that the improvement in the performance of the photocatalytic activity by controlling the electronic physical properties by doping with lanthanoid atoms was expected as in the photocatalytic material such as NaTaO 3 . Further, it was considered that the doping effect of the lanthanoid atoms could be brought about even in HPb 2 Nb 3 O 10 that exhibits photoactivity in the visible light region. Furthermore, the viewpoint in the research of the conventional photocatalyst is concentrated on the improvement of the photoactivity, and lack of examination on the temporal stability of the photocatalytic activity in order to improve the practicality of the technology using the photocatalyst. Seems to be.
[0006]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a material having a photoactive catalytic function that has high photocatalytic activity and that is stable over time. In order to solve the above-mentioned problems, the inventors have intensively studied a doping technique effective for controlling the activity, which is the basis of the catalyst, and solved the above problems by a method of finding out what has the stability over time of the catalyst. I examined that. Based on the assumptions made from the conductivity and emission characteristics of compounds having a perovskite structure due to the doping of the lanthanoid elements, many experiments are being conducted on the doping of these elements, the photocatalytic activity, and the stability of the photoactivity. Thus, the present inventors have found a material having a photoactive catalytic function that satisfies the improvement of the activity as a photocatalyst and the stability of the activity by doping with the element among the lanthanoid elements, particularly by La doping. In addition, it was found that the same effect can be obtained with HPb 2 Nb 3 O 10 exhibiting photoactivity in the visible light region.
[0007]
[Means for Solving the Problems]
The first of the present invention is NaTaO 3 , NiO / NaTaO 3 doped with 0.1 atomic% to 5 atomic% of at least one atom selected from the group consisting of La, Pr, Nd, Gd, Tb, and Dy, or It is a photocatalyst composed of Pt / HPb 2 Nb 3 O 10 doped with La . Preferably, NaTaO 3 and HPb 2 Nb 3 O 10 are the photocatalysts having a perovskite structure.
[0008]
[Embodiments of the present invention]
The present invention will be described in more detail.
A. Alkaline tantalate and alkaline earth are photocatalysts exhibiting high activity for complete photolysis of water, and HPb 2 Nb 3 O 10 can be used as a catalyst for decomposing water under irradiation with visible light. Is as described above. However, NiO / NaTaO 3 exhibits the highest activity, and La-doped Pt / HPb 2 Nb 3 O 10 is an active material having a catalytic function under irradiation of visible light. A technique for improving the photocatalytic activity in the photolysis reaction of water and improving the stability of the activity will be described.
B. The NaTaO 3 photocatalyst was doped with various lanthanoid elements, and the doping element, catalytic activity, and temporal stability of the catalytic activity were studied. The results are shown in Table 1. Here, NaTaO 3 is described, but similar improvements are expected in other perovskite photocatalysts.
[0009]
C. An example of the manufacturing method of the photoactive catalyst doped with the lanthanoid element. Here, a method of synthesizing a photocatalyst doped with 1 atom% of Ln (meaning a lanthanoid atom) will be described, but materials with different doping amounts can be synthesized in accordance with this method.
1. As starting materials, Na 2 CO 3 (used in excess of 5%), Ta 2 O 5 , and Ln oxide were mixed, put into a platinum crucible, and calcined in air at 1423K for 10 hours. The crystal structure of the product was confirmed by XRD (X-ray diffraction). Further, characteristics such as light absorption characteristics, surface area, and particle diameter were examined by a diffuse reflection method, BET, and SEM. The firing temperature can be changed in the range of 1173K to 1423K. The effect of activity depending on the firing temperature is in the range of about 20-30%, and there is not much difference. 2. NiO as a cocatalyst was supported by an impregnation method and baked in the air at 540 K for 1 hour. The impregnation amount of the cocatalyst is described as 0.05% by weight, but can be changed within a range of 0.01 to 0.1% by weight. Moreover, a calcination temperature can be adjusted in the range of 500-650K. 3. The complete photolysis reaction of pure water is performed using the apparatus shown in FIG. That is, photocatalyst particles (1 g) and pure water (350 mL) are placed in a reaction cell [RC: made of quartz glass, preferably equipped with a stirring member ST (magnetic stirrer)], and a light source [LS: A high-pressure mercury lamp equipped with a circulating water (CW) device for cooling: consisting of an internal irradiation type 400 W], and after degassing the dissolved gas (vacuum system: VL), introducing about 40 to 66 kPa of Ar, water The generated gas that causes the complete photolysis reaction is collected in the system. A part of the gas circulated by a circulation pump (CP) is introduced into a gas chromatography (GC: column, MS-5A; carrier gas Ar: heat conduction detector TCD) and analyzed for the gas component. The system pressure is adjusted by looking at a pressure gauge (PG: Hg manometer, pressure sensor, etc.).
[0010]
[Table 1]
Figure 0004130049
[0011]
From Table 1, the catalytic activity was remarkably improved except for those doped with Eu and Yb. It can be seen that, among them, those doped with La can most effectively improve the activity of the catalyst and the stability of the activity. In addition, from the viewpoints of high activation of the catalyst and reduction in activity over time (activity persistence), the one having La doped at 1 atomic% showed the most preferable characteristics. In Table 1, from the results of the characteristics of the crystal size of the generated particles and the generation efficiency of hydrogen and oxygen, those doped with La, Nd, and Sm have a crystal structure with a small particle size and high photocatalytic activity. I can guess that it was done.
[0012]
D. RbPb 2 Nb 3 O 10 doped with La, that is, the general formula Rb 1-2x Pb 2 (1-x) La 2x Nb 3 O 10 (hereinafter, referred to as general formula 1; 0 <x ≦ 0.2 ). The layered perovskite can also be synthesized by the same method as that in which NaTaO 3 is doped with a lanthanoid element (other lanthanoid elements can also be doped). That is, a powder having a stoichiometric ratio of Rb 2 CO 3 , PbO and Nb 2 O 5 and 10% excess Rb 2 CO 3 (considering the loss due to volatilization) were added and mixed and pulverized sufficiently. Ln (lanthanoid) oxide, specifically, La oxide was mixed and placed in a platinum crucible, and pre-baking was performed at 850 ° C. to 900 ° C. for 3 to 5 hours. Firing was performed at 1100 ° C. for about 40 hours, and the obtained fired product was pulverized to form fine particles (particle size: 0.1 μm to 10 μm). It has been found that RbPb 2 Nb 3 O 10 obtained by doping La has a remarkable difference from the undoped one in the particle diameter growth phenomenon during firing. In other words, the undoped one is fired at 1100 ° C. and has a larger particle size than the one fired at 1000 ° C., but the doped one has a phenomenon that the particle size increases even when fired at 1100 ° C. Therefore, while the activity of the catalyst was not reduced (FIG. 2), it was found that the activity of the undoped one was significantly reduced when calcined at 1100 ° C. compared to that calcined at 1000 ° C. (FIG. 2). 3). In order to investigate the cause of this phenomenon, Sb images of those fired at 1000 ° C. and 1100 ° C. were taken and examined. As a result, RbPb 2 Nb 3 O 10 particles obtained by doping La had a small particle size. And it was found that the crystallinity was good. High photocatalytic activity is that proton exchange of RbPb 2 Nb 3 O 10 particles obtained by doping La or the like in nitric acid aqueous solution, for example, 3M nitric acid solution (this concentration is optimum) (about one day) Is obtained. E. FIG. 4 shows the relationship between the La doping amount and the hydrogen production rate (photocatalytic activity) (catalytic activity when a proton exchanger is used). F. When a proton exchanger of RbPb 2 Nb 3 O 10 doped with La or the like is used as a photodecomposition catalyst for water, it is necessary to form a hydrogen generation site unlike NaTaO 3 . Pt is used as a hydrogen generation site, and the Pt site is formed from an anion complex of H 2 PtCl 6 by a photodeposition method. G. The photolysis reaction (hydrogen generation) of water was performed using water with a reducing reagent such as alcohol using light only in the visible light region as a light source (FIG. 5). 5 uses a xenon lamp provided with a wavelength filter (CF) that cuts light having a wavelength of 420 nm or less as a light source, and a reducing reagent such as methanol is added instead of pure water. The configuration is substantially the same except that a (20% by volume) aqueous solution is used and a Pyrex reaction cell (RC) with a cooling jacket (CJ) is used.
[0013]
【Example】
Example 1
Using the pure water photodecomposition catalyst (average particle size 0.2 μm) in which the cocatalyst NiO is supported on NaTaO 3 doped with 1 atomic% of La prepared according to the above technique (average particle size 0.2 μm), 1), the complete photolysis characteristics of pure water and the sustainability of the catalyst activity were examined with an irradiation light source [400 high-pressure mercury lamp (SEM light source company), effective wavelength 300 nm or less]. In FIG. 6, pure water when using LaTa-doped NaTaO 3 (◯: H 2 , ●: O 2 ) and when not doped (□: H 2 , ■: O 2 ) Shows the characteristics of complete photolysis. The activity of the catalyst was examined by the amount of hydrogen and oxygen generated in 2 hours per cycle. In addition, the cycle stability of the catalyst was examined by repeating the cycle. It can be seen that the activity of the doped catalyst is much higher. Further, the one using a doped catalyst, characteristics of the hydrogen and oxygen generated in the two subsequent periods is stable, it can be seen stability doped activity of the catalyst is good.
[0014]
Example 2
The proton substitution photocatalyst of Pt (0.1 wt%) / La-doped RbPb 2 Nb 3 O 10 is subjected to the method described in D above so that the doping amount of La becomes x = 0.025 in the general formula 1. A photocatalyst was prepared by proton exchange treatment of the La oxide mixed and calcined in a 3M nitric acid solution for about one day. As a solution for water decomposition, a solution composed of 40 mL of methanol and 160 mL of water was used, and a photolysis reaction was carried out using a 300 W xenon lamp (λ> 420 nm). Investigated the relationship between the La doped RbPb 2 Nb 3 O 10 wherein the one obtained by firing a firing temperature to produce a proton exchange treatment to the resulting activity of the catalyst (FIG. 2). For comparison, a case where La is not doped is also shown (FIG. 3). It has been found that doping with La increases the catalytic activity by about 4 times, and the tolerance to the calcination temperature, in other words, the thermal stability of the catalyst particles is significantly improved.
[0015]
【The invention's effect】
As described above, the photocatalyst based on NaTaO 3 or RbPb 2 Nb 3 O 10 based on NaTaO 3 or RbPb 2 Nb 3 O 10 with improved activity and activity sustainability, especially pure water based on NaTaO 3 It is clear that a catalyst for the decomposition reaction is provided and it is possible to contribute to the production of clean energy such as hydrogen by using clean energy such as sunlight. It is.
[Brief description of the drawings]
FIG. 1 shows an example of an apparatus for carrying out a photodecomposition reaction such as pure water using a photocatalyst. FIG. 2 shows the firing temperature of La-doped RbPb 2 Nb 3 O 10 and the photocatalytic activity of the proton exchanger of the fired product. [FIG. 3] Relationship between the calcining temperature of RbPb 2 Nb 3 O 10 without La doping and the photocatalytic activity of the proton exchanger of the calcined product [FIG. 4] La doping amount of Lab Pb 2 Nb 3 O 10 and La doping formation Relationship between hydrogen production rate (photocatalytic activity) of proton exchanger of product [FIG. 5] One example of an apparatus for performing photodecomposition reaction of water using light in visible region [FIG. 6] NaTaO 3 doped with La Photocatalytic characteristics of complete photolysis of pure water when (○: H 2 , ●: O 2 ) is used and without doping (□: H 2 , ■: O 2 ), and stability over time of the catalytic characteristics [Explanation of symbols]
RC reaction cell ST stirring member LS light source CW circulating cooling water CP circulating pump GC gas chromatography PG pressure gauge CF wavelength filter CJ cooling jacket VL vacuum system

Claims (2)

La、Pr、Nd、Gd、TbおよびDyから成る群から選択される少なくとも1種の原子を0.1原子%〜5原子%ドープしたNaTaONaTaO doped with 0.1 atomic% to 5 atomic% of at least one atom selected from the group consisting of La, Pr, Nd, Gd, Tb and Dy 3 、NiO/NaTaONiO / NaTaO 3 またはLaをドープしたPt/HPbOr La doped Pt / HPb 2 NbNb 3 O 1010 からなる光触媒。A photocatalyst consisting of NaTaOおよびHPbNb10はペロブスカイト構造を有するものであることを特徴とする請求項1に記載の光触媒The photocatalyst according to claim 1, wherein NaTaO 3 and HPb 2 Nb 3 O 10 have a perovskite structure.
JP2000049208A 2000-02-25 2000-02-25 Photocatalyst with improved activity and sustained activity Expired - Fee Related JP4130049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000049208A JP4130049B2 (en) 2000-02-25 2000-02-25 Photocatalyst with improved activity and sustained activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000049208A JP4130049B2 (en) 2000-02-25 2000-02-25 Photocatalyst with improved activity and sustained activity

Publications (2)

Publication Number Publication Date
JP2001232191A JP2001232191A (en) 2001-08-28
JP4130049B2 true JP4130049B2 (en) 2008-08-06

Family

ID=18571183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000049208A Expired - Fee Related JP4130049B2 (en) 2000-02-25 2000-02-25 Photocatalyst with improved activity and sustained activity

Country Status (1)

Country Link
JP (1) JP4130049B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696414B2 (en) * 2001-07-23 2011-06-08 住友金属鉱山株式会社 Photocatalyst having catalytic activity in the visible light region
JP4576556B2 (en) * 2004-01-13 2010-11-10 独立行政法人物質・材料研究機構 Visible light responsive complex oxide photocatalyst
JP4528944B2 (en) * 2004-09-22 2010-08-25 学校法人東京理科大学 Photocatalyst carrying Ir oxide cocatalyst in oxidative atmosphere in the presence of nitrate ion and method for producing the same
KR100764891B1 (en) 2005-12-13 2007-10-09 한국화학연구원 Novel visible light metal oxide photocatalysts for photocatalytic decomposion of hydrogen sulfide, and photohydrogen production method under visible light irradiation using the photocatalysts
JP4660766B2 (en) * 2006-02-22 2011-03-30 独立行政法人物質・材料研究機構 Visible light responsive complex oxide photocatalyst
JP4701459B2 (en) * 2006-04-14 2011-06-15 独立行政法人物質・材料研究機構 Tantalum oxide nanomesh, synthesis method thereof and use thereof
JP5399530B2 (en) * 2012-05-07 2014-01-29 国立大学法人長岡技術科学大学 Photocatalyst for organic matter decomposition and method for producing the photocatalyst
CA2915578C (en) * 2013-06-17 2021-06-22 Hindustan Petroleum Corporation Limited Nata03 : la203 catalyst with co-catalyst composition for photocatalytic reduction of carbon dioxide
CN103706363A (en) * 2013-12-18 2014-04-09 江苏大学 Method for preparing composite photocatalyst with silver loaded on surface of nano sodium tantalate

Also Published As

Publication number Publication date
JP2001232191A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
JP4755988B2 (en) Metal oxide solid solution, its production and use
Moriya et al. Recent progress in the development of (oxy) nitride photocatalysts for water splitting under visible-light irradiation
Rodionov et al. Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions
US7763149B2 (en) Solar photocatalysis using transition-metal oxides combining d0 and d6 electron configurations
Zou et al. Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M= Mn, Fe, Co, Ni and Cu) photocatalysts
Kanhere et al. Visible light driven photocatalytic hydrogen evolution and photophysical properties of Bi3+ doped NaTaO3
CN102000584A (en) Method for preparing cobalt-doped improved beta-bismuth oxide photocatalyst
EP2425893B1 (en) Device for catalytic hydrolysis comprising an optically pumped semiconductor
JP4130049B2 (en) Photocatalyst with improved activity and sustained activity
Kudo et al. Photocatalytic water splitting into H2 and O2 over K2LnTa5O15 powder
JP2007091578A (en) METHOD FOR MANUFACTURING PtTe OR PdTe NANOPARTICLE
Bokhonov et al. Formation of ordered nanocrystalline CeO2 structures during thermal decomposition of cerium formate Ce (HCOO) 3
JPH0788370A (en) Photocatalyst and production of photocatalyst
Obregón et al. Water splitting performance of Er3+-doped YVO4 prepared from a layered K3V5O14 precursor
WO2014057839A1 (en) Method for producing composite oxide and composite oxide catalyst
Hosono et al. Fabrication of nanoparticulate porous LaOF films through film growth and thermal decomposition of ion-modified lanthanum diacetate hydroxide
Sun et al. Enhanced Photocatalytic Hydrogen Evolution Over CaTi 1− x Zr x O 3 Composites Synthesized by Polymerized Complex Method
Kuo et al. Hydrogen generation from water/methanol under visible light using aerogel prepared strontium titanate (SrTiO3) nanomaterials doped with ruthenium and rhodium metals
JP2004008922A (en) Visible light responsive sulfide photocatalyst for producing hydrogen from water
JP3793800B2 (en) Method for producing hydrogen and oxygen using iodine compound and semiconductor photocatalyst
CN101367039A (en) Tantalum-kalium composite oxides photocatalyst and preparation method thereof
Shimizu et al. Photocatalytic Water Splitting over Spontaneously Hydrated Layered Tantalate A2SrTa2O7· n H2O (A= H, K, Rb)
JP2730111B2 (en) New water photolysis catalyst
Liu et al. Enhanced photocatalytic activity of TiO2–niobate nanosheet composites
JPH0889800A (en) Photocatalyst

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees