JP4576556B2 - Visible light responsive complex oxide photocatalyst - Google Patents

Visible light responsive complex oxide photocatalyst Download PDF

Info

Publication number
JP4576556B2
JP4576556B2 JP2004006018A JP2004006018A JP4576556B2 JP 4576556 B2 JP4576556 B2 JP 4576556B2 JP 2004006018 A JP2004006018 A JP 2004006018A JP 2004006018 A JP2004006018 A JP 2004006018A JP 4576556 B2 JP4576556 B2 JP 4576556B2
Authority
JP
Japan
Prior art keywords
photocatalyst
visible light
light
reaction
propyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004006018A
Other languages
Japanese (ja)
Other versions
JP2005199134A (en
Inventor
哲也 加古
金花 葉
寛 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
National Institute for Materials Science
Original Assignee
Meidensha Corp
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, National Institute for Materials Science filed Critical Meidensha Corp
Priority to JP2004006018A priority Critical patent/JP4576556B2/en
Publication of JP2005199134A publication Critical patent/JP2005199134A/en
Application granted granted Critical
Publication of JP4576556B2 publication Critical patent/JP4576556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)

Description

本発明は光触媒材料とその製造方法およびその使用方法に関するものである。
特に太陽光、室内照明などに含まれる紫外線および可視光線に高い光触媒活性を示す複合酸化物半導体光触媒材料とその製造方法に関するものである。
The present invention relates to a photocatalytic material, a method for producing the same, and a method for using the photocatalytic material.
In particular, the present invention relates to a composite oxide semiconductor photocatalyst material exhibiting high photocatalytic activity for ultraviolet rays and visible light contained in sunlight, indoor lighting, and the like, and a method for producing the same.

光触媒材料にそのバンドギャップ以上のエネルギーをもつ光が照射されると価電子帯の電子が伝導帯に励起し、伝導帯には電子が、価電子帯にはその電子の抜け殻であるホールが生成する。生成した電子、ホールはそれぞれ還元能力、酸化能力を持ち、さまざまな物質を還元あるいは酸化することができる。そして、このような光触媒反応を利用して、脱臭や抗菌などさまざまな分野に応用されている(例えば、特許文献1、非特許文献1)。   When the photocatalytic material is irradiated with light with energy greater than its band gap, electrons in the valence band are excited to the conduction band, and electrons are generated in the conduction band and holes that are shells of the electrons are generated in the valence band. To do. The generated electrons and holes have reducing ability and oxidizing ability, respectively, and can reduce or oxidize various substances. And using such a photocatalytic reaction, it is applied to various fields, such as deodorization and antibacterial (for example, patent document 1, nonpatent literature 1).

上記のような光触媒の応用材料にはこれまでは酸化チタンが主に利用されている(非特許文献2、非特許文献3)。酸化チタンのバンドギャップは3.2eVと大きいため400nmより短い波長の紫外光に対しては極めて高い光触媒活性を示すが、より長い波長の可視光に対しては活性を示さない。一方、光源となる太陽光や蛍光灯に含まれている紫外線の量は可視光の約4〜10%しかなく、その余の可視光部分は、全く利用されることがなかった。光の利用効率からみると極めて低いものであった。そのため、光の大部分を占める波長領域、すなわち可視光領域にまで活性を示す触媒の開発が待たれていた。これによって、光の有している波長全般の有効利用が高まり、光化学反応に一層有効に利用され、寄与するものと期待され、望まれている。   Titanium oxide has been mainly used so far as an application material for the photocatalyst as described above (Non-patent Documents 2 and 3). Since the band gap of titanium oxide is as large as 3.2 eV, it exhibits extremely high photocatalytic activity for ultraviolet light having a wavelength shorter than 400 nm, but does not exhibit activity for visible light having a longer wavelength. On the other hand, the amount of ultraviolet light contained in sunlight or fluorescent lamps as light sources is only about 4 to 10% of visible light, and the remaining visible light portion was never used. It was extremely low in terms of light utilization efficiency. Therefore, development of a catalyst that shows activity in the wavelength region that occupies most of light, that is, in the visible light region, has been awaited. As a result, the effective use of all wavelengths of light is enhanced, and it is expected and desired to contribute more effectively to photochemical reactions.

特開2000−327315号公報JP 2000-327315 A M.Wakamura、K.Hashimoto、T.Watanabe、Langmuir Vol.19、No.8、p.3428〜3431、American Chemical Society Publications、(2003.4.15)M.M. Wakamura, K .; Hashimoto, T .; Watanabe, Langmuir Vol. 19, no. 8, p. 3428-3431, American Chemical Society Publications, (2003. 4.15) K.Sunada、Y.Kikuchi、K.Hashimoto、A.Fujishima、Environmental Science & Technology、Vol.32、No.5、p.726〜728、American Chemical Society Publications、(1998.3.1)K. Sunada, Y. et al. Kikuchi, K. et al. Hashimoto, A.H. Fujishima, Environmental Science & Technology, Vol. 32, no. 5, p. 726-728, American Chemical Society Publications, (1998.3.1). A.Fujishima、K.Hashimoto、T.Watanabe、TiO2 photocatalysis:Fundamentals and Applications、BKC Inc、(1999.5)A. Fujishima, K .; Hashimoto, T .; Watanabe, TiO2 photocatalysis: Fundamentals and Applications, BKC Inc, (1999. 5)

本発明は前記期待に応えられる光触媒を提供しようと言うものである。太陽光や室内照明に含まれている光、とりわけ比較的長波長の可視光領域の光をも効率よく利用する光触媒、すなわち、紫外線、可視光線の両方に対して高い活性を示す新規な光触媒材料を提供しようとするものである。さらにこの触媒に光を照射することによって、有害物質を酸化、還元、分解することにより有害物質の無害化処理する方法、あるいは汚れを清浄化する方法、そしてそれらの光触媒材料とそれらの製造方法およびそれらの使用方法を提供しようと云うものである。   The present invention is intended to provide a photocatalyst that meets the above expectations. A photocatalyst that efficiently uses sunlight and light contained in room lighting, especially light in the visible light region with a relatively long wavelength, that is, a novel photocatalytic material that exhibits high activity against both ultraviolet and visible light. Is to provide. Further, by irradiating the catalyst with light, the harmful substance is oxidized, reduced, or decomposed to detoxify the harmful substance, or the dirt is cleaned, and the photocatalytic material and the production method thereof. It is intended to provide a method for using them.

本発明者等においては、鋭意研究した結果、上記の課題を下記(1)〜(6)に記載の手段により解決し、達成することに成功したものである。   As a result of earnest research, the present inventors have succeeded in solving and achieving the above problems by the means described in the following (1) to (6).

(1) 一般式(I):AgBi(式中、MはNb、Taの5A族金属元素から選ばれた1種または2種の元素であり、x、yは0<x、y≦3、zは0<z≦9、wは0<w≦24の任意の数値をそれぞれ示す。)で表される複合酸化物半導体からなる光触媒。
(2) 前記(1)記載の複合酸化物半導体からなる有害物質分解用光触媒。
(3) 前記(2)記載の有害化学物質分解用光触媒の存在下、有害物質に紫外線および可視光線を含む光を照射することを特徴とする有害物質分解除去方法。
(4) 前記(1)記載の複合酸化物半導体からなる汚れを分解し、清浄化する汚れ清浄用光触媒。
(5) 前記(4)記載の汚れ清浄用光触媒の存在下、汚れ物質に紫外線および可視光線を含む光を照射することを特徴とする汚れ分解清浄方法。
(6) Ag/M比、Bi/M比、および(Ag+Bi)/M比(M=Nb、Ta)を制御することによりバンドギャップが1.9eVから3.0eVをもつことを特徴とする前記(1)記載の光触媒。
(1) In formula (I): Ag in x Bi y M z O w (wherein, M is N b, is one or two elements selected from Group 5A metal element Ta, x, y are 0 <x, y ≦ 3, z represents an arbitrary numerical value of 0 <z ≦ 9, and w represents 0 <w ≦ 24, respectively).
(2) A photocatalyst for decomposing harmful substances comprising the composite oxide semiconductor according to (1).
(3) A method for decomposing and removing harmful substances, wherein the harmful substances are irradiated with light containing ultraviolet rays and visible light in the presence of the photocatalyst for decomposing harmful chemical substances according to (2).
(4) A soil cleaning photocatalyst for decomposing and cleaning soils comprising the composite oxide semiconductor according to (1).
(5) A method for decomposing and cleaning soils, comprising irradiating a soil material with light containing ultraviolet rays and visible light in the presence of the soil cleaning photocatalyst described in (4) .
(6) The band gap is from 1.9 eV to 3.0 eV by controlling the Ag / M ratio, Bi / M ratio, and (Ag + Bi) / M ratio (M = Nb, Ta). wherein (1) photocatalyst according.

以上の通り一般式(I):AgBi(式中、MはNb、Taの5A族金属元素から選ばれた1種または2種の元素であり、x、yは0<x、y≦3を、zは0<z≦9を、wは0<w≦24の任意の数値をそれぞれ示す。)で表される複合酸化物半導体からなる光触媒はx、y、z、wの値とMの金属元素の種類を制御することによりバンドギャップを1.9から3.0eVまで連続的に変化させることができ、最大で約650nmの可視光まで吸収できるようになった。これまでの光触媒が、紫外光領域でのみ機能していたことを考えると、有効利用できる波長領域を大きく広げることができたという意義は極めて大きい。本発明によれば、可視光を利用して2−プロピルアルコールを効率よく分解できるが、この光触媒特性はこれだけにとどまらず、他の環境ホルモンなどの有害物質や細菌などの殺菌など様々なものの分解、除去に利用することができる。以上本発明の複合酸化物半導体光触媒は、可視光、紫外光領域に対して活性を有することは上記の通りであり、その特性の故、前示した使用例以外にも多様な用途に利用できることが期待され、今後その果たす役割は、非常に大きいものと考えられる。 As described above general formula (I): Ag in x Bi y M z O w (wherein, M is N b, is one or two elements selected from Group 5A metal element Ta, x, y are 0 <x, y ≦ 3, z represents 0 <z ≦ 9, and w represents an arbitrary numerical value of 0 <w ≦ 24.) A photocatalyst formed of a composite oxide semiconductor represented by x, y, By controlling the values of z and w and the type of metal element of M, the band gap can be continuously changed from 1.9 to 3.0 eV, and a maximum visible light of about 650 nm can be absorbed. It was. Considering that the conventional photocatalysts functioned only in the ultraviolet light region, it is extremely significant that the wavelength region that can be used effectively can be greatly expanded. According to the present invention, 2-propyl alcohol can be efficiently decomposed using visible light. However, this photocatalytic property is not limited to this, and various substances such as harmful substances such as environmental hormones and sterilization of bacteria can be decomposed. Can be used for removal. As described above, the composite oxide semiconductor photocatalyst of the present invention has activity in the visible light and ultraviolet light regions, and because of its characteristics, it can be used for various applications other than the use examples shown above. It is expected that this will play a very important role in the future.

以下、本発明を実施例および図面に基づいて具体的に説明するが、これらは何れも当業者が本発明を容易に理解するための一助として具体例を示したものであり、本発明はこれに限られるものではない。   Hereinafter, the present invention will be described in detail with reference to examples and drawings. However, these are only examples for helping those skilled in the art to easily understand the present invention. It is not limited to.

本発明の前記(1)に記載するAgBiで表される複合酸化物半導体からなる光触媒は、MとしてNb、Taを1種又は2種含むものであり、具体的には例えばAgBi16、AgBiNb16、AgBiTa16 、AgBiNb 、AgBiTa、AgBiNb15、AgBiVNbO、AgBiVTaO、AgBiTaなどでAgとBiの量は0から3へさらにはMサイトに前記複数の元素を含むものも有効であり、これらを含むものである。 Photocatalyst comprising a composite oxide semiconductor represented by Ag x Bi y M z O w as described in (1) of the present invention is one or 2 Tane含 Dressings N b, the Ta as the M, specifically For example, AgBi 2 V 5 O 16 , AgBi 2 Nb 5 O 16 , AgBi 2 Ta 5 O 16 , AgBiNb 2 O 7 , AgBiTa 2 O 7 , Ag 2 BiNb 5 O 15 , AgBiVNbO 7 , AgBiVNbO 7 AgBiTa 2 O 7 and the like, in which the amount of Ag and Bi is from 0 to 3 and further includes the plurality of elements at the M site, are effective.

本発明の一般式(I)で表される化合物のx、y、z、wの値は、0<x、y≦3、0<z≦9、0<w≦24の範囲で任意の値を取ることができ、この値とMの金属元素の種類とを制御することによりバンドギャップが1.9から3.0eVまで連続的に変化させることができる。このようにバンドギャップを制御できると使用用途毎に最も適したバンドギャップを持つ光触媒材料を選択できるようになり、より効率化が図られることになる。   The values of x, y, z, and w of the compound represented by the general formula (I) of the present invention are arbitrary values within the range of 0 <x, y ≦ 3, 0 <z ≦ 9, and 0 <w ≦ 24. By controlling this value and the type of M metal element, the band gap can be continuously changed from 1.9 to 3.0 eV. If the band gap can be controlled in this way, it becomes possible to select the photocatalyst material having the most suitable band gap for each use application, and the efficiency can be further improved.

本発明の複合酸化物半導体を得るためには、通常の固相反応法、すなわち原料となる各金属成分の酸化物あるいは金属炭酸塩あるいは金属硝酸塩あるいは金属硫酸塩、あるいは金属塩化物を目的組成の比率で混合し、常圧下空気中で焼成することで合成することができる。昇華し易い原料では少し多めに加える必要がある。
また、金属アルコキシドや金属塩を原料とした各種ゾルゲル法、共沈法、錯体重合法、スパッタリング法、化学蒸着法、水熱合成法など様々な方法も用いられる。その中には酸化物前駆体を調製し、焼成することで合成することも含むものである。
In order to obtain the composite oxide semiconductor of the present invention, an ordinary solid phase reaction method, that is, an oxide of each metal component as a raw material, a metal carbonate, a metal nitrate, a metal sulfate, or a metal chloride with a target composition is used. It can synthesize | combine by mixing by a ratio and baking in air under a normal pressure. It is necessary to add a little more in the raw material which is easy to sublimate.
Various methods such as various sol-gel methods, coprecipitation methods, complex polymerization methods, sputtering methods, chemical vapor deposition methods, hydrothermal synthesis methods using metal alkoxides and metal salts as raw materials are also used. Among them, an oxide precursor is prepared and synthesized by firing.

本発明の光触媒の形状は、光を有効に利用するために極力表面積の大きな設計にすることが望ましい。焼結法によるいわゆる固相反応法によって調製してなる複合酸化物系光触媒は、大きな成型物あるいは塊状物として得られるため、これをボールミルなどで粉砕するか、あるいは酸などでエッチングすることによってさらに表面積を大きくすることができる。一般には触媒の粉末粒子の大きさは、1μm以下にまで小さくするのが望ましい。次いで粉末粒子を適宜大きさの形状、形態に成形して使用することができる。本発明の光触媒は、焼結法以外にも、前記(0012)に記載した様々な調整手段が適用でき、たとえば、触媒成分を含む水溶液等反応原料溶液を用意し、反応溶液から共析反応、あるいは共沈反応によって、触媒成分を含む物質を共析、共沈させ、回収し、乾燥脱水し、あるいは焼成することによって生成することもできる。   The shape of the photocatalyst of the present invention is desirably designed to have a large surface area as much as possible in order to effectively use light. A composite oxide photocatalyst prepared by a so-called solid-phase reaction method by a sintering method is obtained as a large molded product or a lump, so that it can be further pulverized with a ball mill or etched with an acid or the like. The surface area can be increased. In general, the size of the powder particles of the catalyst is desirably reduced to 1 μm or less. Subsequently, the powder particles can be used by appropriately shaping them into shapes and forms. The photocatalyst of the present invention can be applied to various adjustment means described in the above (0012) in addition to the sintering method. For example, a reaction raw material solution such as an aqueous solution containing a catalyst component is prepared, and a eutectoid reaction is performed from the reaction solution. Alternatively, it can be produced by co-precipitation, co-precipitation, recovery, drying, dehydration, or calcination of a substance containing a catalyst component by a coprecipitation reaction.

本発明の光触媒の使用方法は使用場所、使用用途に応じて、様々な使用態様、反応形式が考えられる。図1、図2は、その具体的実施態様を示すものである。図1は、本発明の光触媒を被処理液体に分散させ、これを光を通すガラス等の透明な反応容器に入れ、外部から光を照射させて光反応を行わせる態様を示すものであり、本発明はこの態様を実施態様として含むものである。この様な懸濁液型反応形式は、それ自体は反応形式としては通常の形式であるが、本発明は、可視光領域にも活性な触媒を使用することから、使用する光源は、紫外光発生光源に限定される必要はなく、可視光を発生する光源を使用することができる。可視光によっても励起され、光の利用効率は極めて高いのが特徴である。紫外領域に偏重していたこれまでの紫外線励起型光触媒に比し、その分使用領域が広がり光の利用効率が高くなり、反応効率も良い。勿論従来通り、紫外光発光光源を使用することはできる。   The usage method of the photocatalyst of this invention can consider various usage modes and reaction modes according to a use place and a use application. 1 and 2 show specific embodiments thereof. FIG. 1 shows a mode in which the photocatalyst of the present invention is dispersed in a liquid to be treated, put in a transparent reaction vessel such as glass that transmits light, and irradiated with light from the outside to cause a photoreaction. The present invention includes this aspect as an embodiment. Such a suspension-type reaction mode itself is a normal reaction mode. However, since the present invention uses a catalyst that is also active in the visible light region, the light source used is an ultraviolet light. The light source need not be limited to a light source, and a light source that generates visible light can be used. It is excited by visible light and is characterized by extremely high light utilization efficiency. Compared to the conventional UV-excited photocatalysts that have been concentrated on the UV region, the use region is expanded correspondingly and the light utilization efficiency is increased, and the reaction efficiency is also good. Of course, an ultraviolet light source can be used as usual.

前記装置を使用した実施態様では反応に必要な光は、装置の外部から窓を通して光を照射する態様を示したが、その場合の光を取り入れる手段としての透明ガラスは、反応に関与する波長領域の光に対しては吸収率の低い、すなわち透過率の高い材質を選択するのがよい。また、このような光反応装置の外部から照射する態様に代えて、光源を直接装置内に布設してもよい。そのため液密構造に設定した安全ランプを反応液に直接投入して実施することも可能である。また、上記装置を使用した実施態様では、処理液をポンプによって循環させながら反応を行う循環式を示したが、その反応液の流れは、連続的に循環しても良く、あるいは間欠的に循環しても良い。また、その固(触媒)−液(反応液)接触形式は、サスペンション方式以外にも、固定触媒層に液体を通す方式でもよいことは言うまでもない。   In the embodiment using the apparatus, the light necessary for the reaction has been shown to irradiate the light from the outside of the apparatus through the window. In this case, the transparent glass as a means for taking in the light has a wavelength region involved in the reaction. For such light, it is preferable to select a material having a low absorption rate, that is, a high transmittance rate. Moreover, it may replace with the aspect irradiated from the outside of such a photoreaction apparatus, and may lay a light source directly in an apparatus. Therefore, it is also possible to carry out by directly putting a safety lamp set in a liquid-tight structure into the reaction solution. Further, in the embodiment using the above-described apparatus, the circulation type in which the reaction is performed while circulating the treatment liquid by the pump is shown. However, the flow of the reaction liquid may be circulated continuously or intermittently. You may do it. Needless to say, the solid (catalyst) -liquid (reaction liquid) contact mode may be a system in which a liquid is passed through the fixed catalyst layer in addition to the suspension system.

さらに、本発明の光触媒は、液体の処理以外にも、気体に対しても有効であり、従って、本発明は、上記液体を気体に代えた実施態様も含むものである。反応気体に対して光触媒を適用する態様としては、反応装置を使用し、装置内に触媒を循環させた反応気体に搬送させて、気流中に自由に流動させて固−気接触反応を行うことができる。また、本発明の光触媒を基板にコーティング、あるいは担持せしめ、これを光のあたる反応空間に設置して反応気体と接触させる、固定式反応形式によって反応させる態様も含むものである。図2は、このような態様示すものである。このような態様としては、装置を使用せず直接太陽光のもとで野外に設置し、車から排出される有害ガス等の分解反応、無害化反応に供することもできる。あるいは前記塗布あるいは担持形式以外にも、触媒粉末そのもの、あるいは触媒粉末を成形して利用してもよい。さらには、建物外装用塗料に混入し、自然光によって協働して作用し、防薇性塗料として使用することも出来、本発明はこの実施態様を含むものである。   Furthermore, the photocatalyst of the present invention is effective not only for liquid treatment but also for gas. Therefore, the present invention includes an embodiment in which the liquid is replaced with gas. As a mode of applying the photocatalyst to the reaction gas, a reaction apparatus is used, and the catalyst is circulated in the reaction gas, and the catalyst is circulated in the gas stream to freely flow in the air-solid contact reaction. Can do. In addition, the present invention includes a mode in which the photocatalyst of the present invention is coated or supported on a substrate and placed in a reaction space where light is applied and brought into contact with a reaction gas to react by a fixed reaction mode. FIG. 2 shows such an embodiment. As such an embodiment, the apparatus can be directly installed outdoors under sunlight without using an apparatus, and can be subjected to a decomposition reaction or a detoxification reaction of a harmful gas discharged from a vehicle. Alternatively, the catalyst powder itself or the catalyst powder may be molded and used in addition to the coating or carrying type. Furthermore, it mixes with the coating material for building exteriors, it cooperates with natural light, can also be used as a rose-proof coating material, and this invention includes this embodiment.

本発明の光触媒材料の光触媒反応により分解あるいは酸化あるいは還元反応により除去できる有害物質としては環境ホルモン、農薬、殺虫剤、カビ、細菌、ウィルス、藻類、環境汚染物質、フロンガス、炭化水素、アルコール、アルデヒド、ケトン、カルボン酸、一酸化炭素、アミン、油、芳香族化合物、有機ハロゲン化合物、窒素化合物、硫黄化合物、有機リン化合物、蛋白質などが挙げられる。さらに身の回りの汚れの原因となっている石鹸や油、手垢、茶渋、台所のシンクなどのぬめりなどもこの光触媒材料の光触媒反応により分解できる。   Hazardous substances that can be decomposed or removed by oxidation or reduction reaction of the photocatalytic material of the present invention include environmental hormones, agricultural chemicals, insecticides, molds, bacteria, viruses, algae, environmental pollutants, chlorofluorocarbons, hydrocarbons, alcohols, aldehydes , Ketone, carboxylic acid, carbon monoxide, amine, oil, aromatic compound, organic halogen compound, nitrogen compound, sulfur compound, organic phosphorus compound, protein and the like. In addition, soap and oil, hand stains, tea astringents, and slimes such as kitchen sinks that cause personal contamination can be decomposed by this photocatalytic reaction.

以下、本発明を具体的に実施例に基づいて詳細に説明する。以下の実施例においては、AgBi(M=Nb、Ta;0<x、y≦3、0<z≦9、0<w≦24)の合成を固相反応法によって行った。 Hereinafter, the present invention will be described in detail based on specific examples. In the following examples, the synthesis of Ag x Bi y M z O w (M = N b, Ta; 0 <x, y ≦ 3, 0 <z ≦ 9, 0 <w ≦ 24) was performed using a solid-phase reaction method. Went by.

実施例1;
AgBi(M=Nb、Ta;0<x、y≦3、0<z≦9、0<w≦24)の1種類の化合物であるAgBiNbを以下に述べる要領にて固相反応法によって合成した。
先ず、AgOを0.87gとBiを1.75g、Nbを2.38gそれぞれ秤量した。これをボールミルや乳鉢などの粉砕混合器具を利用して十分に粉砕混合したあと、アルミナるつぼに入れて、大気圧空気雰囲気下に設置された電気炉中で700℃、5時間保持し予備反応させた後、さらに粉砕混合し、900℃で12時間焼結した。これによって、約5gのAgBiNbが合成、回収された。焼成終了後、この焼成物を乳鉢で10μm以下の大きさに粉砕した。
紫外−可視吸収スペクトル測定の結果、本実施例の光触媒は紫外線領域から510nm以上の可視光領域まで吸収を示し、バンドキャップは2.4eV以下と見積もることができ、可視光応答性があることがわかった。
Example 1;
Ag x Bi y M z O w (M = N b, Ta; 0 <x, y ≦ 3,0 <z ≦ 9,0 <w ≦ 24) the AgBiNb 2 O 7 is one compound of the following It was synthesized by a solid phase reaction method as described below.
First, 0.87 g of Ag 2 O, 1.75 g of Bi 2 O 3 and 2.38 g of Nb 2 O 5 were weighed. This is thoroughly pulverized and mixed using a pulverizer such as a ball mill or mortar, then placed in an alumina crucible and kept in an electric furnace installed at atmospheric pressure in an air atmosphere at 700 ° C. for 5 hours for preliminary reaction. Thereafter, the mixture was further pulverized and mixed, and sintered at 900 ° C. for 12 hours. As a result, about 5 g of AgBiNb 2 O 7 was synthesized and recovered. After the completion of firing, the fired product was pulverized to a size of 10 μm or less in a mortar.
As a result of ultraviolet-visible absorption spectrum measurement, the photocatalyst of this example exhibits absorption from the ultraviolet region to the visible light region of 510 nm or more, and the band cap can be estimated to be 2.4 eV or less, and has visible light responsiveness. all right.

得られた0.4gのAgBiNb27で約600ppmの2−プロピルアルコールの分解試験を行った。光源には300WXeランプを用い、カットオフフィルターを利用して、420nm以上の可視光を反応セルに照射させた。2−プロピルアルコールとその分解物質のアセトン、二酸化炭素の検出及び定量はガスクロマトグラフィーで行い、アセトンの発生量から2−プロピルアルコールの分解率を計算した。その結果を表1に示す。
2−プロピルアルコールは、1時間で48%以上が分解されることが確認された。さらに光を照射し続けると二酸化炭素の発生も確認でき、2−プロピルアルコールなどの有機物を完全分解できる光触媒であることも確認された。
A decomposition test of about 600 ppm of 2-propyl alcohol was performed with the obtained 0.4 g of AgBiNb 2 O 7 . A 300 WXe lamp was used as the light source, and the reaction cell was irradiated with visible light of 420 nm or more using a cutoff filter. Detection and quantification of 2-propyl alcohol and its decomposition substances acetone and carbon dioxide were performed by gas chromatography, and the decomposition rate of 2-propyl alcohol was calculated from the amount of acetone generated. The results are shown in Table 1.
It was confirmed that 48% or more of 2-propyl alcohol was decomposed in 1 hour. Furthermore, it was confirmed that the photocatalyst capable of completely decomposing organic substances such as 2-propyl alcohol could be confirmed by continuing to irradiate light and generating carbon dioxide.

実施例2;
AgBi(M=Nb、Ta;0<x、y≦3、0<z≦9、0<w≦24)の1種類の化合物であるAgBiTaを以下に述べる要領にて固相反応法によって合成した。
すなわち、AgOを0.75gとBiを1.47g、Taを2.79gそれぞれ秤量した。これをボールミルや乳鉢などの粉砕混合器具を利用して十分に粉砕混合したあと、アルミナるつぼに入れて、大気圧空気雰囲気下に設置された電気炉中で700℃、5時間保持し予備反応させた後、1100℃で12時間焼結した。焼成終了後、この焼成物を乳鉢で10μm以下の大きさに粉砕した。以上の反応によって、約5gのAgBiTaが合成された。
紫外−可視吸収スペクトル測定の結果、本実施例の光触媒は紫外線領域から480nm以上の可視光領域まで吸収を示し、バンドキャップは2.6eV以下と見積もることができ、可視光の応答性を有することがわかった。
Example 2;
AgBiTa 2 O 7 which is one kind of compound of Ag x Bi y M z O w (M = N b, Ta; 0 <x, y ≦ 3, 0 <z ≦ 9, 0 <w ≦ 24) is described below. It was synthesized by a solid phase reaction method as described below.
That is, 0.75 g of Ag 2 O, 1.47 g of Bi 2 O 3 and 2.79 g of Ta 2 O 5 were weighed. This is thoroughly pulverized and mixed using a pulverizer such as a ball mill or mortar, then placed in an alumina crucible and kept in an electric furnace installed at atmospheric pressure in an air atmosphere at 700 ° C. for 5 hours for preliminary reaction. And then sintered at 1100 ° C. for 12 hours. After the completion of firing, the fired product was pulverized to a size of 10 μm or less in a mortar. About 5 g of AgBiTa 2 O 7 was synthesized by the above reaction.
As a result of ultraviolet-visible absorption spectrum measurement, the photocatalyst of this example exhibits absorption from the ultraviolet region to the visible light region of 480 nm or more, and the band cap can be estimated to be 2.6 eV or less, and has a visible light response. I understood.

0.4gのAgBiTa27を用いて約600ppmの2−プロピルアルコールの分解試験を行った。光源には300WXeランプを用い、カットオフフィルターを利用して、420nm以上の可視光を反応セルに照射させた。2−プロピルアルコールとその分解物質のアセトン、二酸化炭素の検出及び定量はガスクロマトグラフィーで行い、アセトンの発生量から2−プロピルアルコールの分解量を計算した。その結果を表1に示す。
2−プロピルアルコールは、1時間で86%以上が分解されることが確認された。さらに光を照射し続けると二酸化炭素の発生も確認でき、2−プロピルアルコールなどの有機物を完全分解できる光触媒であることも確認された。
A decomposition test of about 600 ppm of 2-propyl alcohol was performed using 0.4 g of AgBiTa 2 O 7 . A 300 WXe lamp was used as the light source, and the reaction cell was irradiated with visible light of 420 nm or more using a cutoff filter. Detection and quantification of 2-propyl alcohol and its decomposition substances acetone and carbon dioxide were performed by gas chromatography, and the decomposition amount of 2-propyl alcohol was calculated from the amount of acetone generated. The results are shown in Table 1.
It was confirmed that 86% or more of 2-propyl alcohol was decomposed in 1 hour. Furthermore, it was confirmed that the photocatalyst capable of completely decomposing organic substances such as 2-propyl alcohol could be confirmed by continuing to irradiate light and generating carbon dioxide.

実施例3
AgBi(M=Nb、Ta;0<x、y≦3、0<z≦9、0<w≦24)の1種類の化合物であるAgBiNb16を以下に述べる要領にて固相反応法によって合成した。
すなわち、AgOを0.48gとBiを1.87g、Nbを2.67gそれぞれ秤量した。これをボールミルや乳鉢などの粉砕混合器具を利用して十分に粉砕混合したあと、アルミナるつぼに入れて、大気圧空気雰囲気下に設置された電気炉中で700℃、5時間保持し予備反応させた後、1050℃で12時間焼結した。焼成終了後、この焼成物を乳鉢で10μm以下の大きさに粉砕した。その結果、約5gのAgBiNb16が合成、回収された。
紫外−可視吸収スペクトル測定の結果、本実施例の光触媒は紫外線領域から480nm以上の可視光領域まで吸収を示し、バンドキャップは2.6eV以下と見積もることができ、可視光の応答性を有することがわかった。
Example 3
AgBi 2 Nb 5 O 16 which is one kind of compound of Ag x Bi y M z O w (M = N b, Ta; 0 <x, y ≦ 3, 0 <z ≦ 9, 0 <w ≦ 24) It was synthesized by the solid phase reaction method as described below.
That is, 0.48 g of Ag 2 O, 1.87 g of Bi 2 O 3 and 2.67 g of Nb 2 O 5 were weighed. This is thoroughly pulverized and mixed using a pulverizer such as a ball mill or mortar, then placed in an alumina crucible and kept in an electric furnace installed at atmospheric pressure in an air atmosphere at 700 ° C. for 5 hours for preliminary reaction. And then sintered at 1050 ° C. for 12 hours. After the completion of firing, the fired product was pulverized to a size of 10 μm or less in a mortar. As a result, about 5 g of AgBi 2 Nb 5 O 16 was synthesized and recovered.
As a result of ultraviolet-visible absorption spectrum measurement, the photocatalyst of this example exhibits absorption from the ultraviolet region to the visible light region of 480 nm or more, and the band cap can be estimated to be 2.6 eV or less, and has a visible light response. I understood.

合成されたAgBi2Nb5160.4gを用いて600ppmの2−プロピルアルコールの分解試験を行った。光源には300WXeランプを用い、カットオフフィルターを利用して、420nm以上の可視光を反応セルに照射させた。2−プロピルアルコールとその分解物質のアセトン、二酸化炭素の検出及び定量はガスクロマトグラフィーで行い、アセトンの発生量から2−プロピルアルコールの分解量を計算した。その結果を表1に示す。
2−プロピルアルコールは、1時間で9%以上が分解されることが確認された。さらに光を照射し続けると二酸化炭素の発生も確認でき、2−プロピルアルコールなどの有機物を完全分解できる光触媒であることも確認された。
A decomposition test of 600 ppm of 2-propyl alcohol was performed using 0.4 g of the synthesized AgBi 2 Nb 5 O 16 . A 300WXe lamp was used as the light source, and the reaction cell was irradiated with visible light of 420 nm or more using a cutoff filter. Detection and quantification of 2-propyl alcohol and its decomposition substances acetone and carbon dioxide were performed by gas chromatography, and the decomposition amount of 2-propyl alcohol was calculated from the amount of acetone generated. The results are shown in Table 1.
It was confirmed that 9% or more of 2-propyl alcohol was decomposed in 1 hour. Furthermore, it was confirmed that the photocatalyst capable of completely decomposing organic substances such as 2-propyl alcohol could be confirmed by continuing to irradiate light and generating carbon dioxide.

実施例4
AgBi(M=Nb、Ta;0<x、y≦3、0<z≦9、0<w≦24)の1種類の化合物であるAgBiNb15を以下に述べる要領にて固相反応法によって合成した。
先ず、AgOを1.06gとBiを1.03g、Nbを2.94gそれぞれ秤量した。これをボールミルや乳鉢などの粉砕混合器具を利用して十分に粉砕混合したあと、アルミナるつぼに入れて、大気圧空気雰囲気下に設置された電気炉中で700℃、5時間保持し予備反応させた後、1050℃で12時間焼結した。焼成終了後、この焼成物を乳鉢で10μm以下の大きさに粉砕した。
その結果、約5gのAgBiNb15が合成、回収された。紫外−可視吸収スペクトル測定の結果、本実施例の光触媒は紫外線領域から470nm以上の可視光領域まで吸収を示し、バンドキャップは2.6eV以下と見積もることができ、可視光の応答性を有することがわかった。
Example 4
Ag 2 BiNb 5 O 15 which is one kind of compound of Ag x Bi y M z O w (M = N b, Ta; 0 <x, y ≦ 3, 0 <z ≦ 9, 0 <w ≦ 24) It was synthesized by the solid phase reaction method as described below.
First, 1.06 g of Ag 2 O, 1.03 g of Bi 2 O 3 and 2.94 g of Nb 2 O 5 were weighed. This is thoroughly pulverized and mixed using a pulverizer such as a ball mill or mortar, then placed in an alumina crucible and kept in an electric furnace installed at atmospheric pressure in an air atmosphere at 700 ° C. for 5 hours for preliminary reaction. And then sintered at 1050 ° C. for 12 hours. After the completion of firing, the fired product was pulverized to a size of 10 μm or less in a mortar.
As a result, about 5 g of Ag 2 BiNb 5 O 15 was synthesized and recovered. As a result of ultraviolet-visible absorption spectrum measurement, the photocatalyst of this example exhibits absorption from the ultraviolet region to the visible light region of 470 nm or more, and the band cap can be estimated to be 2.6 eV or less, and has a visible light response. I understood.

合成された0.4gのAg2BiNb515を用いて600ppmの2−プロピルアルコールの分解試験を行った。光源には300WXeランプを用い、カットオフフィルターを利用して、420nm以上の可視光を反応セルに照射させた。2−プロピルアルコールとその分解物質のアセトン、二酸化炭素の検出及び定量はガスクロマトグラフィーで行い、アセトンの発生量から2−プロピルアルコールの分解量を計算した。その結果を表1に示す。
2−プロピルアルコールは、1時間で24%以上が分解されることが確認された。さらに光を照射し続けると二酸化炭素の発生も確認でき、2−プロピルアルコールなどの有機物を完全分解できる光触媒であることも確認された。
A decomposition test of 600 ppm of 2-propyl alcohol was performed using 0.4 g of the synthesized Ag 2 BiNb 5 O 15 . A 300 WXe lamp was used as the light source, and the reaction cell was irradiated with visible light of 420 nm or more using a cutoff filter. Detection and quantification of 2-propyl alcohol and its decomposition substances acetone and carbon dioxide were performed by gas chromatography, and the decomposition amount of 2-propyl alcohol was calculated from the amount of acetone generated. The results are shown in Table 1.
It was confirmed that 2-propyl alcohol was decomposed by 24% or more in 1 hour. Furthermore, it was confirmed that the photocatalyst was capable of completely decomposing organic substances such as 2-propyl alcohol by continuing to irradiate light and confirming the generation of carbon dioxide.

実施例5
AgBi(M=Nb、Ta;0<x、y≦3、0<z≦9、0<w≦24)の1種類の化合物であるAgBiTa16を以下に述べる要領にて固相反応法によって合成した。
すなわち、AgOを0.35gとBiを1.38g、Taを3.28gそれぞれ秤量した。これをボールミルや乳鉢などの粉砕混合器具を利用して十分に粉砕混合したあと、アルミナるつぼに入れて、大気圧空気雰囲気下に設置された電気炉中で700℃、5時間保持し予備反応させた後、1050℃で12時間焼結した。焼成終了後、この焼成物を乳鉢で10μm以下の大きさに粉砕した。
その結果、約5gのAgBiTa16を合成、回収した。紫外−可視吸収スペクトル測定の結果、本実施例の光触媒は紫外線領域から430nm以上の可視光領域まで吸収を示し、バンドキャップは2.9eV以下と見積もることができ、可視光の応答性を有することがわかった。
Example 5
AgBi 2 Ta 5 O 16 , which is one kind of compound of Ag x Bi y M z O w (M = N b, Ta; 0 <x, y ≦ 3, 0 <z ≦ 9, 0 <w ≦ 24) It was synthesized by the solid phase reaction method as described below.
That is, 0.35 g of Ag 2 O, 1.38 g of Bi 2 O 3 and 3.28 g of Ta 2 O 5 were weighed. This is thoroughly pulverized and mixed using a pulverizer such as a ball mill or mortar, then placed in an alumina crucible and kept in an electric furnace installed at atmospheric pressure in an air atmosphere at 700 ° C. for 5 hours for preliminary reaction. And then sintered at 1050 ° C. for 12 hours. After the completion of firing, the fired product was pulverized to a size of 10 μm or less in a mortar.
As a result, about 5 g of AgBi 2 Ta 5 O 16 was synthesized and recovered. As a result of ultraviolet-visible absorption spectrum measurement, the photocatalyst of this example exhibits absorption from the ultraviolet region to the visible light region of 430 nm or more, and the band cap can be estimated to be 2.9 eV or less, and has a visible light response. I understood.

合成された0.4gのAgBi2Ta516を用いて600ppmの2−プロピルアルコールの分解試験を行った。光源には300WXeランプを用い、カットオフフィルターを利用して、420nm以上の可視光を反応セルに照射させた。2−プロピルアルコールとその分解物質のアセトン、二酸化炭素の検出及び定量はガスクロマトグラフィーで行い、アセトンの発生量から2−プロピルアルコールの分解量を計算した。その結果を表1に示す。
2−プロピルアルコールが、1時間で2%以上が分解されることが確認された。さらに光を照射し続けると二酸化炭素の発生も確認でき、2−プロピルアルコールなどの有機物を完全分解できる光触媒であることも確認された。
A decomposition test of 600 ppm of 2-propyl alcohol was performed using 0.4 g of AgBi 2 Ta 5 O 16 synthesized. A 300 WXe lamp was used as the light source, and the reaction cell was irradiated with visible light of 420 nm or more using a cutoff filter. Detection and quantification of 2-propyl alcohol and its decomposition substances acetone and carbon dioxide were performed by gas chromatography, and the decomposition amount of 2-propyl alcohol was calculated from the amount of acetone generated. The results are shown in Table 1.
It was confirmed that 2% or more of 2-propyl alcohol was decomposed in 1 hour. Furthermore, it was confirmed that the photocatalyst capable of completely decomposing organic substances such as 2-propyl alcohol could be confirmed by continuing to irradiate light and generating carbon dioxide.

比較例1
代表的な光触媒であるTiO2を使用して2−プロピルアルコール分解の可視光分解活性を調べた。測定に使用した機器は実施例1と同じであった。その結果、
1時間経過してもアセトン、二酸化炭素の生成量はなく、気相中の2−プロピルアルコールの量に変化もないことから2−プロピルアルコールは、全く分解されないことが確認された(表1)。紫外光において優れた活性を示すTiO2も可視光照射においては活性を示さず、可視光領域における光触媒活性はAgxBiyzw(M=V、Nb、Ta;0<x、y≦3、0<z≦9、0<w≦24)よりも著しく劣っていた。これより、このTiO2光触媒は、事実上、可視光照射下においては2−プロピルアルコールをはじめとする有機物を分解する触媒としては機能しなかった。
Comparative Example 1
Using TiO 2 , which is a typical photocatalyst, the visible light decomposition activity of 2-propyl alcohol decomposition was examined. The equipment used for the measurement was the same as in Example 1. as a result,
Even when 1 hour passed, there was no production of acetone and carbon dioxide, and there was no change in the amount of 2-propyl alcohol in the gas phase, so it was confirmed that 2-propyl alcohol was not decomposed at all (Table 1). . TiO 2 exhibiting excellent activity in ultraviolet light also does not show activity in visible light irradiation, and the photocatalytic activity in the visible light region is Ag x Bi y M z O w (M = V, Nb, Ta; 0 <x, y ≦ 3, 0 <z ≦ 9, 0 <w ≦ 24). Than this, the TiO 2 photocatalyst is virtually Under visible light irradiation did not function as a catalyst for decomposing organic substances, including 2-propyl alcohol.

以上の結果については、表1にまとめて示していることは、前述したとおりである。すなわち、使用された光触媒成分、反応の種類(反応目的)、用いた光源及び波長、光照射時間及び分解率を、表1にまとめて示した。   The above results are summarized in Table 1 as described above. That is, Table 1 shows the photocatalyst components used, the type of reaction (reaction purpose), the light source and wavelength used, the light irradiation time, and the decomposition rate.

Figure 0004576556
Figure 0004576556

以上説明してきたように、本発明は、一般式(I):AgBi(式中、MはNb、Taの5A族金属元素から選ばれた1種または2種の元素であり、x、yは0<x、y≦3を、zは0<z≦9を、wは0<w≦24の任意の数値をそれぞれ示す。)で表される組成に設計することによって、得られてなる複合酸化物半導体の光触媒特性は、組成式中のx、y、z、wの値、Mの金属元素の種類を適宜選択し、制御することによってバンドギャップを1.9から3.0eVまで連続的に変化させることができ、最大で約650nmの可視光まで吸収できるようになった。本発明によって、これまでの光触媒が、紫外光領域でのみ機能していたことを考えると、有効利用できる波長領域を大きく広げることができたという意義は極めて大きい。本発明によれば、可視光を利用して各種有害な化合物、例えば、環境ホルモンや細菌等いわゆる有害物質に作用し、これらを殺菌、分解、除去等無害化するのに使用される環境対策技術を始めとして各種化学反応に大いに利用され、産業の発展に寄与するものと期待される。 As described above, the present invention provides the general formula (I): Ag x Bi y M z O w (wherein M is one or two selected from Group 5A metal elements of Nb and Ta ). X, y are 0 <x, y ≦ 3, z is 0 <z ≦ 9, and w is an arbitrary numerical value of 0 <w ≦ 24. Thus, the photocatalytic properties of the obtained composite oxide semiconductor are selected as follows by appropriately selecting and controlling the values of x, y, z, and w in the composition formula and the type of M metal element. It was possible to continuously change from 9 to 3.0 eV and to absorb visible light of about 650 nm at the maximum. Considering that the present photocatalysts functioned only in the ultraviolet light region according to the present invention, it is very significant that the wavelength region that can be effectively used can be greatly expanded. According to the present invention, environmental countermeasure technology used to act on various harmful compounds using visible light, for example, so-called harmful substances such as environmental hormones and bacteria, and to sterilize, decompose, remove, etc. It is expected to contribute to the development of industry by being used for various chemical reactions.

本発明の光触媒を使用したサスペンジョン方式の実施態様図Embodiment diagram of a suspension system using the photocatalyst of the present invention 本発明の光触媒を使用した気−固接触型実施態様図Gas-solid contact type embodiment diagram using the photocatalyst of the present invention

Claims (6)

一般式(I):AgBi(式中、MはNb、Taの5A族金属元素から選ばれた1種または2種の元素であり、x、yは0<x、y≦3を、zは0<z≦9を、wは0<w≦24の任意の数値をそれぞれ示す。)で表される複合酸化物半導体からなる光触媒。 General formula (I): Ag x Bi y M z O w ( where, M is one or two elements selected from N b, 5A group metal elements of Ta, x, y are 0 <x , Y ≦ 3, z is 0 <z ≦ 9, and w is an arbitrary numerical value of 0 <w ≦ 24.) 請求項1に記載の複合酸化物半導体からなる有害物質分解用光触媒。   A photocatalyst for decomposing harmful substances comprising the composite oxide semiconductor according to claim 1. 請求項2に記載の有害物質分解用光触媒の存在下、有害化学物質に紫外線および可視光線を含む光を照射することを特徴とする有害化学物質分解除去方法。   A method for decomposing and removing harmful chemical substances, comprising irradiating the harmful chemical substances with light containing ultraviolet rays and visible light in the presence of the photocatalyst for decomposing harmful substances according to claim 2. 請求項1に記載の複合酸化物半導体からなる汚れを分解し、清浄化する汚れ清浄用光触媒。 2. A soil cleaning photocatalyst for decomposing and cleaning soils comprising the composite oxide semiconductor according to claim 1. 請求項に記載の汚れ清浄用光触媒の存在下、汚れ物質に紫外線および可視光線を含む光を照射することを特徴とする汚れ分解清浄方法。 5. A method for decomposing and cleaning soils, comprising irradiating a soil material with light containing ultraviolet rays and visible light in the presence of the soil cleaning photocatalyst according to claim 4 . Ag/M比、Bi/M比、および(Ag+Bi)/M比(M=Nb、Ta)を制御することによりバンドギャップが1.9eVから3.0eVをもつことを特徴とする請求項1に記載の光触媒。 2. The band gap is from 1.9 eV to 3.0 eV by controlling the Ag / M ratio, Bi / M ratio, and (Ag + Bi) / M ratio (M = Nb, Ta). photocatalyst described.
JP2004006018A 2004-01-13 2004-01-13 Visible light responsive complex oxide photocatalyst Expired - Lifetime JP4576556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004006018A JP4576556B2 (en) 2004-01-13 2004-01-13 Visible light responsive complex oxide photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004006018A JP4576556B2 (en) 2004-01-13 2004-01-13 Visible light responsive complex oxide photocatalyst

Publications (2)

Publication Number Publication Date
JP2005199134A JP2005199134A (en) 2005-07-28
JP4576556B2 true JP4576556B2 (en) 2010-11-10

Family

ID=34820129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004006018A Expired - Lifetime JP4576556B2 (en) 2004-01-13 2004-01-13 Visible light responsive complex oxide photocatalyst

Country Status (1)

Country Link
JP (1) JP4576556B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111929A (en) * 1986-10-28 1988-05-17 Ebara Res Co Ltd Decomposing and removing method for nitrous oxide contained in gaseous mixture
WO2000006300A1 (en) * 1998-07-30 2000-02-10 Toto Ltd. Method for producing high-performance material having photocatalytic function and device therefor
JP2000327315A (en) * 1999-05-21 2000-11-28 Fujitsu Ltd Metal-modified apatite and its production
JP2001232191A (en) * 2000-02-25 2001-08-28 Japan Science & Technology Corp Photocatalyst having improved activity and activity persistence
JP2001270024A (en) * 2000-03-22 2001-10-02 Dainippon Printing Co Ltd Pattern forming element
JP2002255502A (en) * 2001-02-26 2002-09-11 National Institute Of Advanced Industrial & Technology Light energy conversion by iodine compound and semiconductor photocatalyst
JP2004105957A (en) * 2002-08-30 2004-04-08 Sk Kaken Co Ltd Photocatalyst composite powder and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63111929A (en) * 1986-10-28 1988-05-17 Ebara Res Co Ltd Decomposing and removing method for nitrous oxide contained in gaseous mixture
WO2000006300A1 (en) * 1998-07-30 2000-02-10 Toto Ltd. Method for producing high-performance material having photocatalytic function and device therefor
JP2000327315A (en) * 1999-05-21 2000-11-28 Fujitsu Ltd Metal-modified apatite and its production
JP2001232191A (en) * 2000-02-25 2001-08-28 Japan Science & Technology Corp Photocatalyst having improved activity and activity persistence
JP2001270024A (en) * 2000-03-22 2001-10-02 Dainippon Printing Co Ltd Pattern forming element
JP2002255502A (en) * 2001-02-26 2002-09-11 National Institute Of Advanced Industrial & Technology Light energy conversion by iodine compound and semiconductor photocatalyst
JP2004105957A (en) * 2002-08-30 2004-04-08 Sk Kaken Co Ltd Photocatalyst composite powder and its manufacturing method

Also Published As

Publication number Publication date
JP2005199134A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
Nasirian et al. Enhancement of photocatalytic activity of titanium dioxide using non-metal doping methods under visible light: a review
Irandost et al. Fabrication of highly visible active N, S co-doped TiO2@ MoS2 heterojunction with synergistic effect for photocatalytic degradation of diclofenac: mechanisms, modeling and degradation pathway
Zaleska Doped-TiO2: a review
JP6342225B2 (en) Photocatalyst composite material and method for producing the same
TWI404567B (en) Photocatalyst material, organic decomposition method, built-in component, air cleaner, oxidizer manufacturing device
KR100945035B1 (en) Tungstates based visible-light induced oxides photocatalysts and synthesis methods thereof
Wang et al. Preparation of zinc titanate nanoparticles and their photocatalytic behaviors in the photodegradation of humic acid in water
KR101334970B1 (en) Photocatalyst material, method for decomposition of organic material, interior member, air purification device, and appatarus for preparation of oxidizing agent
JP2009078211A (en) Photocatalyst
JP2007216223A (en) Photocatalytic material having semiconductor properties, and its manufacturing method and use
Lamdab et al. InVO4–BiVO4 composite films with enhanced visible light performance for photodegradation of methylene blue
JP6552090B2 (en) Photocatalyst composite material and method for producing the same
JP2011031139A (en) Photocatalyst material and method for manufacturing the same
JP4871325B2 (en) PHOTOCATALYST AGENT HAVING TITANIUM OXIDE / IRON TITANATE JOINT STRUCTURE AND METHOD FOR PRODUCING THE SAME
Ullah et al. Visible light photocatalytic degradation of organics on nanoparticles of bi-metallic oxides
Janani et al. ZnO-Zn2TiO4 heterostructure for highly efficient photocatalytic degradation of pharmaceuticals
US7033566B2 (en) Photocatalyst and use thereof for decomposing chemical substance
WO2005087371A1 (en) Photocatalyst based on composite oxide responsive to visible light and method for decomposition and removal of harmful chemical material using the same
JP4997627B2 (en) Visible light responsive photocatalyst
JP4150712B2 (en) Visible light-activated photocatalyst and process for producing the same
KR101706846B1 (en) A manufacturing method of nanocomposite photocatalyst
JP4576556B2 (en) Visible light responsive complex oxide photocatalyst
JP2005034716A (en) Visible light responsive photocatalyst comprising bismuth composite oxide of alkali metal and silver, and harmful chemical substance decomposing and removing method using it
JP2008006328A (en) Photocatalyst comprising visible light responsive composite oxide semiconductor
JP3837548B2 (en) Bismuth complex oxide visible light responsive photocatalyst and method for decomposing and removing harmful chemicals using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4576556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term