JP4129596B2 - Optical device - Google Patents

Optical device Download PDF

Info

Publication number
JP4129596B2
JP4129596B2 JP2004342485A JP2004342485A JP4129596B2 JP 4129596 B2 JP4129596 B2 JP 4129596B2 JP 2004342485 A JP2004342485 A JP 2004342485A JP 2004342485 A JP2004342485 A JP 2004342485A JP 4129596 B2 JP4129596 B2 JP 4129596B2
Authority
JP
Japan
Prior art keywords
wavelength
diffraction grating
light
light beam
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004342485A
Other languages
Japanese (ja)
Other versions
JP2006154096A (en
Inventor
滋人 大森
孝二郎 関根
光 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2004342485A priority Critical patent/JP4129596B2/en
Priority to US11/091,801 priority patent/US7199926B2/en
Publication of JP2006154096A publication Critical patent/JP2006154096A/en
Priority to US11/704,741 priority patent/US7385761B2/en
Priority to US12/112,260 priority patent/US7633680B2/en
Application granted granted Critical
Publication of JP4129596B2 publication Critical patent/JP4129596B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

本発明は、波長の異なる光を回折の対象とする回折格子素子を備え、波長の異なる光を送受する光学装置に関する。
The present invention relates to an optical apparatus that includes a diffraction grating element that diffracts light having different wavelengths and transmits / receives light having different wavelengths.

光通信においては、光ファイバ等の光伝送部材を用いて、波長の異なる光を双方向に伝送することが行われている。このような光通信で送受信に用いられる光学装置、すなわち、信号を光に担持させて光伝送部材に送出するとともに、光伝送部材から光を受けて、その光に担持されている信号を検出する光学装置では、送出する光と受ける光に同一の光伝送媒体を共用しながら、光を送出する送出部と光を受ける受光部とを異なる位置に配置する必要がある。そこで、光伝送部材の延長上に光束を分離・結合する分離結合部材を配置して、送出部から分離結合部材までの光路と分離結合部材から受光部までの光路とを分離し、分離結合部材から光伝送部材までの両光束の光路を結合する(一致させる)ようにしている。   In optical communication, light having different wavelengths is bidirectionally transmitted using an optical transmission member such as an optical fiber. An optical device used for transmission / reception in such optical communication, that is, a signal is carried in light and transmitted to the light transmission member, and light is received from the light transmission member and the signal carried in the light is detected. In an optical device, it is necessary to arrange a transmitting unit for transmitting light and a light receiving unit for receiving light at different positions while sharing the same optical transmission medium for the transmitted light and the received light. Therefore, a separating and coupling member that separates and couples the light flux is disposed on the extension of the optical transmission member, and the optical path from the sending unit to the separating and coupling member and the optical path from the separating and coupling member to the light receiving unit are separated, and the separating and coupling member The optical paths of both light fluxes from the optical transmission member to the optical transmission member are coupled (matched).

通信量の増大をはかるために、光伝送部材によって同じ方向に伝送する光に波長の異なるものを含ませることも行われている。このような光通信の光学装置では、送出部または受光部を複数備えることに加えて、分離結合部材を複数備えるか、あるいは、光伝送部材からの波長の異なる光を分離する機能を単一の分離結合部材にもたせることになる。   In order to increase the amount of communication, the light transmitted in the same direction by the optical transmission member is also included with light having different wavelengths. In such an optical device for optical communication, in addition to providing a plurality of transmission units or light receiving units, a plurality of separation coupling members are provided, or a function of separating light having different wavelengths from the optical transmission member is a single function. It will also be attached to the separating and coupling member.

分離結合部材としては、入射光を、その波長に応じて、反射しまたは透過させる多層膜フィルタが用いられている。しかし、多層膜フィルタは、作成工程が複雑で作成に時間を要し、コストが高いという問題を有する。   As the separating and coupling member, a multilayer filter that reflects or transmits incident light according to its wavelength is used. However, the multilayer filter has a problem that the production process is complicated and time is required for production, and the cost is high.

光を用いて記録媒体に情報を記録し記録媒体から情報を読み出す光記録再生装置においても、光通信の光学装置と同様に、光束を分離・結合する必要がある。特開2000−163791号では、波長の異なる光を用いる光記録再生装置の光ヘッドに、分離結合部材として、入射光を、その波長に応じて、異なる角度で回折させる回折格子を用いることが提案されている。
特開2000−163791号公報
In an optical recording / reproducing apparatus that records information on a recording medium using light and reads information from the recording medium, it is necessary to separate and combine light beams as in the optical apparatus for optical communication. Japanese Patent Laid-Open No. 2000-163791 proposes to use a diffraction grating that diffracts incident light at different angles according to the wavelength as an optical coupling head of an optical recording / reproducing apparatus that uses light of different wavelengths. Has been.
JP 2000-163791 A

回折格子は、凹凸を周期的に配列したものであるため、樹脂成形によって作成することが可能である。したがって、回折格子を備える回折格子素子は、大量生産に適し低コストであるという利点を有する。   Since the diffraction grating is formed by arranging irregularities periodically, it can be formed by resin molding. Therefore, the diffraction grating element provided with the diffraction grating has an advantage that it is suitable for mass production and low cost.

回折格子による回折角の波長依存性を利用して、波長の異なる複数の光束を空間的に大きく分離するためには、回折格子の凹凸の周期を小さくする必要がある。また、回折の対象とする光の波長はある程度の幅を有するため、たとえ平行光束を回折格子に入射させても、回折後の光束には広がりが生じる。回折後の光束の広がりは、入射光の波長帯域が広いほど大きくなり、また、回折格子の周期が小さいほど大きくなる。   In order to spatially separate a plurality of light beams having different wavelengths by utilizing the wavelength dependence of the diffraction angle by the diffraction grating, it is necessary to reduce the period of the unevenness of the diffraction grating. In addition, since the wavelength of the light to be diffracted has a certain width, the diffracted light beam spreads even if a parallel light beam is incident on the diffraction grating. The spread of the light beam after diffraction increases as the wavelength band of incident light increases, and increases as the period of the diffraction grating decreases.

光通信の装置では、回折後の光束が広がると、送出する光の一部が光伝送部材に入射しなくなったり、光伝送部材からの光の一部が受光部に入射しなくなったりして、送受する信号の正確性が低下する結果となる。これを防止するためには、光伝送部材と分離結合部材との間や、分離結合部材と受光部との間に集光用の光学部材を配置しなければならず、装置の大型化を招く。   In the optical communication device, when the diffracted light beam spreads, a part of the transmitted light does not enter the light transmission member, or a part of the light from the light transmission member does not enter the light receiving unit, As a result, the accuracy of the transmitted and received signals is reduced. In order to prevent this, a condensing optical member must be disposed between the optical transmission member and the separation / coupling member, or between the separation / coupling member and the light receiving unit, which leads to an increase in the size of the apparatus. .

光記録再生装置では、回折後の光束が広がると、記録媒体上の微小な範囲に光を収束させることができなくなって記録密度が低下したり、記録媒体からの光の一部が受光部に入射しなくなって読み出し精度が低下したりする。これを防止するためには、分離結合部材と記録媒体との間に配置する可動の対物レンズを大きくしなければならず、装置の大型化を招く上に、対物レンズの応答速度が低下して、処理速度の面で装置の性能が低下する。   In the optical recording / reproducing apparatus, when the light beam after diffraction spreads, the light cannot be converged to a minute range on the recording medium, the recording density is lowered, or a part of the light from the recording medium is received in the light receiving unit. Incident light is lost and reading accuracy decreases. In order to prevent this, the movable objective lens disposed between the separation coupling member and the recording medium has to be enlarged, which increases the size of the apparatus and reduces the response speed of the objective lens. The performance of the apparatus is reduced in terms of processing speed.

また、回折格子の回折効率は、凹凸の周期が小さくなるほど低下する傾向にある。凹凸の周期を小さくしながら高い回折効率を維持する方法として、回折後の光束が入射位置における回折格子の法線よりも入射光束に近くなるリトロー配置が知られている。しかし、光通信の光学装置でリトロー配置を採用すると、光伝送部材と受光部とが空間的に接近するため、両者の配設が容易でなくなる。   Further, the diffraction efficiency of the diffraction grating tends to decrease as the period of the unevenness decreases. As a method of maintaining high diffraction efficiency while reducing the period of the unevenness, a Littrow arrangement is known in which the diffracted light beam is closer to the incident light beam than the normal line of the diffraction grating at the incident position. However, when the Littrow arrangement is adopted in the optical device for optical communication, the optical transmission member and the light receiving unit are spatially close to each other, so that it is not easy to dispose both of them.

さらに、回折格子の凹凸の周期を小さくすると、回折格子に対してp偏光となる偏光成分とs偏光となる偏光成分とで、回折効率の差が大きくなる。光通信では一般に伝送する光として直線偏光が用いられるから、回折格子に対する光の偏光方向を考慮しなければ、送受する光の強度が低下することになって、送受する信号の正確性の低下を招く結果となる。   Furthermore, when the period of the concave and convex portions of the diffraction grating is reduced, the difference in diffraction efficiency between the polarization component that becomes p-polarized light and the polarization component that becomes s-polarized light increases. In optical communications, linearly polarized light is generally used as the transmitted light. Therefore, unless the polarization direction of the light with respect to the diffraction grating is taken into account, the intensity of the transmitted / received light is reduced, and the accuracy of the transmitted / received signal is reduced. Result.

本発明は、波長の異なる光を回折の対象とする回折格子素子における上記の諸問題を解決することを目的とし、特に、光束を分離または結合する回折格子素子であって、光束の広がりを抑えることが容易なものを備え、波長の異なる複数の光束を分離または結合する光学装置であって、光の損失を抑えることが容易なものを提供することを目的とする。
The present invention aims to solve the above-described problems in diffraction grating elements that diffract light of different wavelengths, and in particular, is a diffraction grating element that separates or combines light beams and suppresses the spread of the light beams. It is an object of the present invention to provide an optical device that can easily separate light beams having different wavelengths and that can easily suppress loss of light.

上記目的を達成するために、本発明では、第1の波長の第1の光束と第1の波長よりも長波長の第2の光束を異なる方向から入射させて、第1の光束を第2の光束の入射元の方向に出射させる回折格子素子を有する光学装置は、
n2 ≧ n1・sinθ
Λ/λL ≦ 1/(n1+n1・sinθ)
および
Λ/λS > 1/(n1+n1・sinθ)−0.04
の関係を満たすものとする。ここで、n1およびn2はそれぞれ回折格子を挟む媒質のうち第1の光束の入射側に位置する第1の媒質およびその反対側に位置する第2の媒質の屈折率、Λは回折格子の凹凸の周期、λSおよびλLはそれぞれ第1の光束および第2の光束の波長、θは回折格子への第1の光束の入射角である。
In order to achieve the above object, in the present invention, a first light flux having a first wavelength and a second light flux having a longer wavelength than the first wavelength are incident from different directions, and the first light flux is made to be a second light flux. An optical apparatus having a diffraction grating element that emits light in the direction of the incident source of
n2 ≧ n1 ・ sinθ
Λ / λL ≤ 1 / (n1 + n1 · sinθ)
And Λ / λ S> 1 / (n 1 + n 1 · sin θ) −0.04
Satisfy the relationship. Here, n1 and n2 are the refractive indices of the first medium located on the incident side of the first light beam and the second medium located on the opposite side of the medium sandwiching the diffraction grating, and Λ is the unevenness of the diffraction grating. Λs and λL are the wavelengths of the first and second light beams, respectively, and θ is the incident angle of the first light beam to the diffraction grating.

この回折格子素子は、波長λSの第1の光束に対しては回折を生じさせつつ透過させ、波長λLの第2の光束に対しては回折を生じさせることなく透過させるものとなる。したがって、第2の光束に広がりをもたらさない。また、光束の広がりを抑えるという回折格子素子の特徴により、光束を狭い範囲に導くことができて、光の損失が抑えられる装置となる。
The diffraction grating element transmits the first light flux having the wavelength λS while generating diffraction, and transmits the second light flux having the wavelength λL without causing diffraction. Therefore, the second light flux does not spread. In addition, due to the feature of the diffraction grating element that suppresses the spread of the light beam, the light beam can be guided to a narrow range, and the light loss can be suppressed.

上記目的を達成するために、本発明ではまた、第1の波長の第1の光束と第1の波長よりも長波長の第2の光束を異なる方向から入射させて、第1の光束を第2の光束の入射元の方向に出射させる回折格子素子を有する光学装置は、
n2 ≧ n1・sinθ
Λ/λL ≦ 1/(n2+n1・sinθ)
および
1/(n2+n1・sinθ)−0.04 < Λ/λS < 1/(n2+n1・sinθ)+0.02
の関係を満たすものとする。ここで、n1およびn2はそれぞれ回折格子を挟む媒質のうち第1の光束の入射側に位置する第1の媒質およびその反対側に位置する第2の媒質の屈折率、Λは回折格子の凹凸の周期、λSおよびλLはそれぞれ第1の光束および第2の光束の波長、θは回折格子への第1の光束の入射角である。
In order to achieve the above object, according to the present invention, the first light flux having the first wavelength and the second light flux having a longer wavelength than the first wavelength are incident from different directions, and the first light flux is changed to the first light flux. An optical apparatus having a diffraction grating element that emits light in the direction of the incident source of the two light beams
n2 ≧ n1 ・ sinθ
Λ / λL ≤ 1 / (n2 + n1 · sinθ)
And 1 / (n2 + n1 · sinθ) −0.04 <Λ / λS <1 / (n2 + n1 · sinθ) +0.02.
Satisfy the relationship. Here, n1 and n2 are the refractive indices of the first medium located on the incident side of the first light beam and the second medium located on the opposite side of the medium sandwiching the diffraction grating, and Λ is the unevenness of the diffraction grating. Λs and λL are the wavelengths of the first and second light beams, respectively, and θ is the incident angle of the first light beam to the diffraction grating.

この回折格子素子は、波長λLの第2の光束に対しては回折を生じさせることなく透過させ、波長λSの第1の光束に対しては回折を生じさせることなく反射するものとなる。したがって、第1の光束と第2の光束のいずれにも広がりをもたらさない。また、光束の広がりを抑えるという回折格子素子の特徴により、光束を狭い範囲に導くことができて、光の損失が抑えられる装置となる。
The diffraction grating element transmits the second light flux having the wavelength λL without causing diffraction, and reflects the first light flux having the wavelength λS without causing diffraction. Therefore, neither the first light beam nor the second light beam is spread. In addition, due to the feature of the diffraction grating element that suppresses the spread of the light beam, the light beam can be guided to a narrow range, and the light loss can be suppressed.

上記の各回折格子素子は、回折格子が設けられている面のほかに集光機能を有する面を備える構成とすることができる。このようにすると、光束の広がりが一層抑えられ、収束光束とすることも可能になる。
Each of the above diffraction grating elements can be configured to have a surface having a light collecting function in addition to the surface on which the diffraction grating is provided. In this way, the spread of the light beam is further suppressed, and a convergent light beam can be obtained.

回折格子が曲面上に設けられている構成とすることもできる。このようにすると、屈折による光学的パワーを回折格子にもたせることができて、回折後の光束の広がりを一層抑えたり、収束光束としたりすることが可能になる。   A configuration in which the diffraction grating is provided on a curved surface may be employed. In this way, the optical power due to refraction can be given to the diffraction grating, so that the spread of the light beam after diffraction can be further suppressed or a converged light beam can be obtained.

その場合、回折格子が設けられている曲面の任意の位置における接平面に回折格子を投影し、その平面上での回折格子の凹凸の周期をΛ、その平面に対する入射角をθとしたときに、前記関係を満たすようにするとよい。   In that case, when the diffraction grating is projected onto the tangent plane at an arbitrary position on the curved surface where the diffraction grating is provided, the period of the irregularities of the diffraction grating on the plane is Λ, and the incident angle with respect to the plane is θ. It is preferable to satisfy the relationship.

回折格子の凹凸の周期の方向に平行な各凹凸の断面が略矩形である構造とするとよい。回折格子の設計が容易になる上、樹脂成形による素子の製造も容易になる。   It is preferable that the cross section of each concavo-convex parallel to the direction of the period of the concavo-convex of the diffraction grating is a substantially rectangular structure. The design of the diffraction grating is facilitated, and the manufacture of the element by resin molding is facilitated.

ここで、回折格子に対する光束の入射角を変化させる機構を備えるようにするとよい。光の波長が温度等によって変動する場合でも、入射角を変えることで、回折後の光束の進行方向を一定にすることが可能になる。   Here, a mechanism for changing the incident angle of the light beam with respect to the diffraction grating may be provided. Even when the wavelength of light fluctuates depending on the temperature or the like, the traveling direction of the diffracted light beam can be made constant by changing the incident angle.

回折格子に第2の波長の光束を入射させるとともに、回折格子から出射した第1の波長の光束を受ける光学部品を備えるようにすることができる。このような構成とすると、第2の波長の光を外部から受けて第1の波長の光を外部に導くことを、同じ光学部品を介して行い得る装置となる。このような光学部品としては例えば光ファイバがある。
An optical component that receives the light beam having the first wavelength emitted from the diffraction grating and having the light beam having the second wavelength incident on the diffraction grating can be provided. With such a configuration, to lead the light of the first wavelength receives the light of the second wavelength from the outside to the outside, a device that may perform through the same optical components. An example of such an optical component is an optical fiber.

回折格子に入射する光束または回折格子から出射した光束を集光させる光学部品を備えるようにしてもよい。このようにすると、回折格子に入射する光束を平行光束に近づけたり、回折格子から出射する光束の広がりをさらに抑えたりすることが可能になって、光の損失を一層抑え得る装置となる。 You may make it provide the optical component which condenses the light beam which injects into a diffraction grating, or the light beam radiate | emitted from the diffraction grating. In this way, the light beam incident on the diffraction grating can be brought close to a parallel light beam, and the spread of the light beam emitted from the diffraction grating can be further suppressed, so that the device can further suppress the loss of light .

本発明の光学装置は、波長の異なる複数の光束を分離または結合するものでありながら、回折格子からの光束を狭い範囲に導くことができて、光の損失を抑えることができる。
The optical device according to the present invention can separate or combine a plurality of light beams having different wavelengths, but can guide the light beam from the diffraction grating to a narrow range and suppress light loss.

以下、本発明の実施形態について図面を参照しながら説明する。
<第1の実施形態>
第1の実施形態の光学装置1の構成を図1に模式的に示す。光学装置1は、光通信における送受信用の装置であり、発光部21、発光制御部22、光ファイバ31、受光部41、信号検出部42、および回折格子素子51を有する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
The configuration of the optical device 1 of the first embodiment is schematically shown in FIG. The optical device 1 is a device for transmission and reception in optical communication, and includes a light emitting unit 21, a light emission control unit 22, an optical fiber 31, a light receiving unit 41, a signal detection unit 42, and a diffraction grating element 51.

発光部21は送出する光束LTを発し、発光制御部22は、発光部21の発光を制御して、発光部21が発する光束LTに送信する信号を担持させる。図示しないが、発光部21は、レーザダイオードと集光レンズを備えており、レーザダイオードが発した光を集光レンズによって平行光束として射出する。   The light emitting unit 21 emits a light beam LT to be transmitted, and the light emission control unit 22 controls light emission of the light emitting unit 21 to carry a signal to be transmitted to the light beam LT emitted from the light emitting unit 21. Although not shown, the light emitting unit 21 includes a laser diode and a condenser lens, and emits light emitted from the laser diode as a parallel light beam by the condenser lens.

光ファイバ31は、送信信号を担持した発光部11からの光束LTを外部に伝送するとともに、受信すべき信号を担持した光束LRを外部から伝送してくる。   The optical fiber 31 transmits the light beam LT from the light emitting unit 11 carrying the transmission signal to the outside, and transmits the light beam LR carrying the signal to be received from the outside.

受光部41は、光ファイバ31によって伝送されてきた光束LRを受けて、受光量を表す信号を出力し、信号検出部41は、受光部41の出力信号から光束LRに担持されている信号を検出する。光束LTの波長帯域と光束LRの波長帯域は異なり、互いに分離している。光束LTの波長は光束LRの波長よりも短い。   The light receiving unit 41 receives the light beam LR transmitted through the optical fiber 31 and outputs a signal indicating the amount of received light. The signal detection unit 41 receives a signal carried by the light beam LR from the output signal of the light receiving unit 41. To detect. The wavelength band of the light beam LT and the wavelength band of the light beam LR are different and separated from each other. The wavelength of the light beam LT is shorter than the wavelength of the light beam LR.

回折格子素子51は、表面に回折格子52(図2参照)を備えており、発光部21からの光束LTを光ファイバ31に導くとともに、光ファイバ31からの光束LRを受光部41に導く。   The diffraction grating element 51 includes a diffraction grating 52 (see FIG. 2) on the surface thereof, and guides the light beam LT from the light emitting unit 21 to the optical fiber 31 and guides the light beam LR from the optical fiber 31 to the light receiving unit 41.

回折格子52の設定について説明する。ここで、回折格子52の凹凸の周期をΛ、回折格子52の凹凸の高低差をh、回折格子52を挟む2つの媒質のうち、光束LTの入射側に位置する方の屈折率をn1、他方の屈折率をn2、回折格子52への光束の入射角をθ1、回折格子52からの光束の出射角をθ2、より短波長の光束LTの中心波長をλS、より長波長の光束LRの中心波長をλLとする。   The setting of the diffraction grating 52 will be described. Here, the period of the unevenness of the diffraction grating 52 is Λ, the height difference of the unevenness of the diffraction grating 52 is h, and of the two media sandwiching the diffraction grating 52, the refractive index of the one located on the incident side of the light beam LT is n1, The other refractive index is n2, the incident angle of the light beam to the diffraction grating 52 is θ1, the exit angle of the light beam from the diffraction grating 52 is θ2, the center wavelength of the shorter wavelength light beam LT is λs, and the longer wavelength light beam LR Let the center wavelength be λL.

回折格子52は式(A1)〜(A3)の関係を満たす。
n2 ≧ n1・sinθ1 ・・・ 式(A1)
Λ/λL ≦ 1/(n1+n1・sinθ1) ・・・ 式(A2)
Λ/λS > 1/(n1+n1・sinθ1)−0.04 ・・・ 式(A3)
The diffraction grating 52 satisfies the relationships of formulas (A1) to (A3).
n2 ≧ n1 · sinθ1 Expression (A1)
Λ / λL ≦ 1 / (n1 + n1 · sinθ1) Equation (A2)
Λ / λ S> 1 / (n 1 + n 1 · sin θ 1) −0.04 Expression (A3)

これらの関係を満たすことで、回折格子52は、より短波長の光束LTを−1次で回折透過させ、より長波長の光束LRを0次で回折透過させるものとなる。   By satisfying these relationships, the diffraction grating 52 diffracts and transmits the light beam LT having a shorter wavelength in the −1st order and diffracts and transmits the light beam LR having a longer wavelength in the 0th order.

送出する光束LTの中心波長を1310nm、受ける光束LRの中心波長を1490nmとし、回折格子52に、光束LTを回折格子素子51の内部側から、光束LRを空気側から入射させるようにした設定例における光路を図2に模式的に示し、諸パラメータを表1に示す。なお、光束LT、LRの主光線の入射面は、回折格子52の周期の方向に平行である。   Setting example in which the center wavelength of the transmitted light beam LT is 1310 nm, the center wavelength of the received light beam LR is 1490 nm, and the light beam LT is incident on the diffraction grating 52 from the inner side of the diffraction grating element 51 and the light beam LR from the air side. The optical path is schematically shown in FIG. 2 and various parameters are shown in Table 1. The incident surfaces of the principal rays of the light beams LT and LR are parallel to the direction of the period of the diffraction grating 52.

[表1]
回折格子52
断面形状:矩形
凹凸周期Λ:0.69μm
凹凸高低差h:1.39μm
凸部幅:0.35μm
媒質屈折率:1.5
光束LT
波長(λS):1310nm
周期/波長(Λ/λS):0.53
入射角θ1:60゜
出射角θ2:−42.6゜
s偏光透過回折効率:0.72
光束LR
波長(λL):1490nm
周期/波長(Λ/λL):0.46
入射角θ1:60゜
出射角θ2:35.3゜
p偏光透過率:0.87
s偏光透過率:0.73
平均透過率:0.8
[Table 1]
Diffraction grating 52
Cross-sectional shape: Rectangle Concavity and convexity Λ: 0.69 μm
Uneven height difference h: 1.39 μm
Convex width: 0.35 μm
Medium refractive index: 1.5
Luminous flux LT
Wavelength (λS): 1310nm
Period / wavelength (Λ / λS): 0.53
Incident angle θ1: 60 ° Output angle θ2: -42.6 ° s-polarized light transmission diffraction efficiency: 0.72
Luminous flux LR
Wavelength (λL): 1490 nm
Period / wavelength (Λ / λL): 0.46
Incident angle θ1: 60 ° Output angle θ2: 35.3 ° p-polarized light transmittance: 0.87
s-polarized light transmittance: 0.73
Average transmittance: 0.8

なお、表1において、回折格子52の凸部幅とは、光束LTの入射側(回折格子素子51の内部)に向かって凸部となっている部分の幅である。また、ここでは、光学装置1での使用形態とは逆に、光束LTを光束LRと同じ方向から入射させて、光束LT、LRを分離する場合の値を掲げている。つまり、光学装置1での使用形態においては、光束LTの入射角θ1と出射角θ2は表1の値と逆になる。   In Table 1, the convex portion width of the diffraction grating 52 is the width of the portion that is convex toward the incident side of the light beam LT (inside the diffraction grating element 51). Further, here, contrary to the usage pattern in the optical apparatus 1, values are shown in the case where the light beam LT is incident from the same direction as the light beam LR and the light beams LT and LR are separated. That is, in the usage pattern in the optical device 1, the incident angle θ1 and the outgoing angle θ2 of the light beam LT are opposite to the values in Table 1.

上記の設定例(n1=1、θ1=60゜)において、式(A2)、(A3)に含まれる1/(n1+n1・sinθ1)の値が変化したときの回折効率の変化の様子を、図3に示す。なお、1/(1+1・sin60゜)の値は0.536である。図3より判るように、0次の透過光とする光束LRは、その中心波長λLを式(A2)の範囲内にすることで、透過率が高くなり、−1次の透過光とする光束LTは、その中心波長λSを式(A3)の範囲内にすることで、透過率が高くなる。   In the above setting example (n1 = 1, θ1 = 60 °), the figure shows how the diffraction efficiency changes when the value of 1 / (n1 + n1 · sinθ1) included in equations (A2) and (A3) changes. 3 shows. The value of 1 / (1 + 1 · sin 60 °) is 0.536. As can be seen from FIG. 3, the light beam LR to be transmitted as the 0th-order transmitted light has a higher transmittance by setting the center wavelength λL within the range of the formula (A2), and the light beam to be converted into the −1st-order transmitted light. The LT has a high transmittance by setting its center wavelength λ S within the range of the formula (A3).

回折後の光束の広がりは波長帯域の幅に比例するため、本実施形態の光学装置1における回折格子素子51のように、回折格子52がより長波長の光束LRを回折させることなく透過させるようにすることは、光束LRの広がりの防止に有効である。この設定により、受光部41を大きくしなくても、光束LRを全て受光部41に導くことができる。   Since the spread of the light beam after diffraction is proportional to the width of the wavelength band, the diffraction grating 52 allows the light beam LR having a longer wavelength to pass through without being diffracted like the diffraction grating element 51 in the optical device 1 of the present embodiment. It is effective to prevent the light beam LR from spreading. With this setting, the entire light beam LR can be guided to the light receiving unit 41 without increasing the size of the light receiving unit 41.

<第2の実施形態>
本実施形態の光学装置2も光通信用のもので、図1に示した光学装置1と同様の構成であり、発光部21、発光制御部22、光ファイバ31、受光部41、信号検出部42、および回折格子素子51を有する。
<Second Embodiment>
The optical device 2 of this embodiment is also for optical communication and has the same configuration as that of the optical device 1 shown in FIG. 1, and includes a light emitting unit 21, a light emission control unit 22, an optical fiber 31, a light receiving unit 41, and a signal detection unit. 42, and a diffraction grating element 51.

光学装置2における回折格子素子51の回折格子52の設定について説明する。ここで、第1の実施形態と同様に、回折格子52の凹凸の周期をΛ、回折格子52の凹凸の高低差をh、回折格子52を挟む2つの媒質のうち、光束LTの入射側に位置する方の屈折率をn1、他方の屈折率をn2、回折格子52への光束の入射角をθ1、回折格子52からの光束の出射角をθ2、より短波長の光束LTの中心波長をλS、より長波長の光束LRの中心波長をλLとする。   The setting of the diffraction grating 52 of the diffraction grating element 51 in the optical device 2 will be described. Here, as in the first embodiment, the period of the unevenness of the diffraction grating 52 is Λ, the height difference of the unevenness of the diffraction grating 52 is h, and the two media sandwiching the diffraction grating 52 are on the incident side of the light beam LT. The refractive index of the one located is n1, the other refractive index is n2, the incident angle of the light beam to the diffraction grating 52 is θ1, the emission angle of the light beam from the diffraction grating 52 is θ2, and the center wavelength of the light beam LT having a shorter wavelength is Let λS be the center wavelength of the longer wavelength light beam LR, λL.

回折格子52は式(B1)〜(B3)の関係を満たす。
n2 < n1・sinθ1 ・・・ 式(B1)
Λ/λL ≦ 1/(n1+n1・sinθ1) ・・・ 式(B2)
1/(n1+n1・sinθ1) ≦ Λ/λS ≦ 1/(n2+n1・sinθ1) ・・・ 式(B3)
The diffraction grating 52 satisfies the relationships of formulas (B1) to (B3).
n2 <n1 · sinθ1 Equation (B1)
Λ / λL ≦ 1 / (n1 + n1 · sinθ1) Equation (B2)
1 / (n1 + n1 · sinθ1) ≤ Λ / λS ≤ 1 / (n2 + n1 · sinθ1) Equation (B3)

これらの関係を満たすことで、回折格子52は、より短波長の光束LTを−1次で回折反射し、より長波長の光束LRを0次で回折反射(正反射)するものとなる。   By satisfying these relationships, the diffraction grating 52 diffracts and reflects the shorter wavelength light beam LT in the −1st order and diffracts and reflects (regular reflection) the longer wavelength light beam LR in the 0th order.

送出する光束LTの中心波長を1310nm、受ける光束LRの中心波長を1490nmとし、回折格子52に光束LT、LRを回折格子素子51の内部側から入射させるようにした設定例における光路を図4に模式的に示し、諸パラメータを表2に示す。なお、光束LT、LRの主光線の入射面は、回折格子52の周期の方向に平行である。   FIG. 4 shows an optical path in a setting example in which the center wavelength of the transmitted light beam LT is 1310 nm, the center wavelength of the received light beam LR is 1490 nm, and the light beams LT and LR are incident on the diffraction grating 52 from the inside of the diffraction grating element 51. It shows schematically and various parameters are shown in Table 2. The incident surfaces of the principal rays of the light beams LT and LR are parallel to the direction of the period of the diffraction grating 52.

[表2]
回折格子52
断面形状:矩形
凹凸周期Λ:0.585μm
凹凸高低差h:0.42μm
凸部幅:0.293μm
媒質屈折率:1.5
光束LT
波長(λS):1310nm
周期/波長(Λ/λS):0.45
入射角θ1:45゜
出射角θ2:−51.8゜
s偏光反射回折効率:0.85
光束LR
波長(λL):1490nm
周期/波長(Λ/λL):0.39
入射角θ1:45゜
出射角θ2:45゜
p偏光反射率:0.89
s偏光反射率:0.86
平均反射率:0.875
[Table 2]
Diffraction grating 52
Cross-sectional shape: Rectangle Unevenness period Λ: 0.585 μm
Uneven height difference h: 0.42 μm
Convex width: 0.293 μm
Medium refractive index: 1.5
Luminous flux LT
Wavelength (λS): 1310nm
Period / wavelength (Λ / λS): 0.45
Incident angle θ1: 45 ° Output angle θ2: −51.8 ° s-polarized reflection diffraction efficiency: 0.85
Luminous flux LR
Wavelength (λL): 1490 nm
Period / wavelength (Λ / λL): 0.39
Incident angle θ1: 45 ° Output angle θ2: 45 ° p-polarized reflectance: 0.89
s-polarized reflectance: 0.86
Average reflectance: 0.875

なお、表2において、回折格子52の凸部幅とは、光束LT、LRの入射側(回折格子素子51の内部)に向かって凸部となっている部分の幅である。また、ここでは、光学装置2での使用形態とは逆に、光束LTを光束LRと同じ方向から入射さて、光束LT、LRを分離する場合の値を掲げている。つまり、光学装置2での使用形態においては、光束LTの入射角θ1と出射角θ2は表2の値と逆になる。   In Table 2, the convex portion width of the diffraction grating 52 is the width of the portion that is convex toward the incident side of the light beams LT and LR (inside the diffraction grating element 51). Further, here, the values in the case of separating the light beams LT and LR by entering the light beam LT from the same direction as the light beam LR are listed, contrary to the usage pattern in the optical device 2. That is, in the usage form in the optical device 2, the incident angle θ1 and the outgoing angle θ2 of the light beam LT are opposite to the values in Table 2.

0次の反射光とする光束LRは、その中心波長λLを式(B2)の範囲内にすることで、反射率が高くなり、−1次の反射光とする光束LTは、その中心波長λSを式(B3)の範囲内にすることで、反射率が高くなる。なお、1/(1.5+1.5・sin45゜)の値は0.391、1/(1+1.5・sin45゜)の値は0.485である。   The light beam LR as the 0th-order reflected light has a higher reflectance by setting its center wavelength λL within the range of the formula (B2), and the light beam LT as the −1st-order reflected light has its center wavelength λS. By making the value in the range of the formula (B3), the reflectance is increased. The value of 1 / (1.5 + 1.5 · sin45 °) is 0.391, and the value of 1 / (1 + 1.5 · sin45 °) is 0.485.

回折後の光束の広がりは波長帯域の幅に比例するため、本実施形態の光学装置2における回折格子素子51のように、回折格子52がより長波長の光束LRを回折させることなく反射するようにすることは、光束LRの広がりの防止に有効である。この設定により、受光部41を大きくしなくても、光束LRを全て受光部41に導くことができる。   Since the spread of the light beam after diffraction is proportional to the width of the wavelength band, the diffraction grating 52 reflects the longer wavelength light beam LR without diffracting it, like the diffraction grating element 51 in the optical device 2 of the present embodiment. It is effective to prevent the light beam LR from spreading. With this setting, the entire light beam LR can be guided to the light receiving unit 41 without increasing the size of the light receiving unit 41.

<第3の実施形態>
本実施形態の光学装置3も光通信用のもので、図1に示した光学装置1と同様の構成であり、発光部21、発光制御部22、光ファイバ31、受光部41、信号検出部42、および回折格子素子51を有する。
<Third Embodiment>
The optical device 3 of the present embodiment is also for optical communication and has the same configuration as that of the optical device 1 shown in FIG. 1, and includes a light emitting unit 21, a light emission control unit 22, an optical fiber 31, a light receiving unit 41, and a signal detection unit. 42, and a diffraction grating element 51.

光学装置3における回折格子素子51の回折格子52の設定について説明する。ここで、第1の実施形態と同様に、回折格子52の凹凸の周期をΛ、回折格子52の凹凸の高低差をh、回折格子52を挟む2つの媒質のうち、光束LTの入射側に位置する方の屈折率をn1、他方の屈折率をn2、回折格子52への光束の入射角をθ1、回折格子52からの光束の出射角をθ2、より短波長の光束LTの中心波長をλS、より長波長の光束LRの中心波長をλLとする。   The setting of the diffraction grating 52 of the diffraction grating element 51 in the optical device 3 will be described. Here, as in the first embodiment, the period of the unevenness of the diffraction grating 52 is Λ, the height difference of the unevenness of the diffraction grating 52 is h, and the two media sandwiching the diffraction grating 52 are on the incident side of the light beam LT. The refractive index of the one located is n1, the other refractive index is n2, the incident angle of the light beam to the diffraction grating 52 is θ1, the emission angle of the light beam from the diffraction grating 52 is θ2, and the center wavelength of the light beam LT having a shorter wavelength is Let λS be the center wavelength of the longer wavelength light beam LR, λL.

回折格子52は式(C1)〜(C3)の関係を満たす。
n2 < n1・sinθ1 ・・・ 式(C1)
1/(n1+n1・sinθ1) ≦ Λ/λL ≦ 1/(n2+n1・sinθ1) ・・・ 式(C2)
1/(n2+n1・sinθ1) ≦ Λ/λS ≦ 2/(n1+n1・sinθ1) ・・・ 式(C3)
The diffraction grating 52 satisfies the relationships of formulas (C1) to (C3).
n2 <n1 · sinθ1 Equation (C1)
1 / (n1 + n1 · sinθ1) ≤ Λ / λL ≤ 1 / (n2 + n1 · sinθ1) Equation (C2)
1 / (n2 + n1 · sinθ1) ≤ Λ / λS ≤ 2 / (n1 + n1 · sinθ1) (C3)

これらの関係を満たすことで、回折格子52は、より長波長の光束LRを−1次で回折反射し、より短波長の光束LTを0次で回折反射(正反射)するものとなる。   By satisfying these relationships, the diffraction grating 52 diffracts and reflects the longer wavelength light beam LR in the −1st order and diffracts and reflects the shorter wavelength light beam LT in the 0th order (regular reflection).

送出する光束LTの中心波長を1310nm、受ける光束LRの中心波長を1490nmとし、回折格子52に光束LT、LRを回折格子素子51の内部側から入射させるようにした設定例における光路を図5に模式的に示し、諸パラメータを表3−1に示す。なお、光束LT、LRの主光線の入射面は、回折格子52の周期の方向に平行である。   The optical path in the setting example in which the center wavelength of the transmitted light beam LT is 1310 nm, the center wavelength of the received light beam LR is 1490 nm, and the light beams LT and LR are incident on the diffraction grating 52 from the inside of the diffraction grating element 51 is shown in FIG. It shows schematically and various parameters are shown in Table 3-1. The incident surfaces of the principal rays of the light beams LT and LR are parallel to the direction of the period of the diffraction grating 52.

[表3−1]
回折格子52
断面形状:矩形
凹凸周期Λ:0.6μm
凹凸高低差h:0.645μm
凸部幅:0.3μm
媒質屈折率:1.5
光束LT
波長(λS):1310nm
周期/波長(Λ/λS):0.46
入射角θ1:60゜
出射角θ2:60゜
反射率:0.81(−1.83dB)
光束LR
波長(λL):1490nm
周期/波長(Λ/λL):0.40
入射角θ1:60゜
出射角θ2:−52.1゜
p偏光反射回折効率:0.83(−1.63dB)
s偏光反射回折効率:0.87(−1.20dB)
平均反射回折効率:0.85(−1.41dB)
[Table 3-1]
Diffraction grating 52
Cross-sectional shape: Rectangle Concavity and convexity Λ: 0.6 μm
Uneven height difference h: 0.645 μm
Convex width: 0.3 μm
Medium refractive index: 1.5
Luminous flux LT
Wavelength (λS): 1310nm
Period / wavelength (Λ / λS): 0.46
Incident angle θ1: 60 ° Output angle θ2: 60 ° Reflectance: 0.81 (−1.83 dB)
Luminous flux LR
Wavelength (λL): 1490 nm
Period / wavelength (Λ / λL): 0.40
Incident angle θ1: 60 ° Output angle θ2: −52.1 ° p-polarized reflection diffraction efficiency: 0.83 (−1.63 dB)
s-polarized reflection diffraction efficiency: 0.87 (−1.20 dB)
Average reflection diffraction efficiency: 0.85 (−1.41 dB)

なお、表3−1において、回折格子の凸部幅とは、光束LT、LRの入射側(回折格子素子51の内部)に向かって凸部となっている部分の幅である。また、表3−1には、反射率および反射効率のdB換算値も示している。   In Table 3-1, the convex width of the diffraction grating is the width of the convex portion toward the incident side of the light beams LT and LR (inside the diffraction grating element 51). Table 3-1 also shows dB conversion values of reflectance and reflection efficiency.

−1次の反射光とする光束LRは、その中心波長λLを式(C2)の範囲内にすることで、反射率が高くなり、0次の反射光とする光束LTは、その中心波長λSを式(C3)の範囲内にすることで、反射率が高くなる。なお、1/(1.5+1.5・sin60゜)の値は0.357、1/(1+1.5・sin60゜)の値は0.434、2/(1.5+1.5・sin60゜)の値は0.715である。   The LR first-order reflected light beam LR has a higher reflectance by setting its center wavelength λL within the range of the equation (C2), and the 0-order reflected light beam LT has a center wavelength λS. By making the value in the range of the formula (C3), the reflectance is increased. The value of 1 / (1.5 + 1.5 · sin 60 °) is 0.357, and the value of 1 / (1 + 1.5 · sin 60 °) is 0.434, 2 / (1.5 + 1.5 · sin 60 °). The value of is 0.715.

波長帯域の幅が同じ場合、光束LRに比べて短波長の光束LTの方が、回折後の広がりが少ない。しかし、波長帯域の幅が広くなれば、より短波長の光束LTであっても、回折後の広がりは大きくなる。このような場合、光束LTを全て光ファイバ31に入射させることが難しくなる。しかしながら、本実施形態の光学装置3の回折格子素子51では、回折格子52が、光束LTに対して0次の回折を生じさせる、つまり、回折を生じさせないようにしているため、光束LTの広がりを招くことがなく、直径がμmオーダーと細い光ファイバ31に光束LTを全て入射させることは容易である。   When the width of the wavelength band is the same, the short wavelength light beam LT is less spread after diffraction than the light beam LR. However, if the width of the wavelength band is widened, the spread after diffraction becomes large even for the light beam LT having a shorter wavelength. In such a case, it becomes difficult to make all the light beam LT enter the optical fiber 31. However, in the diffraction grating element 51 of the optical device 3 of the present embodiment, the diffraction grating 52 causes zero-order diffraction to the light beam LT, that is, does not cause diffraction. It is easy to cause all the light beam LT to enter the optical fiber 31 having a diameter as small as μm.

光束LTの波長帯域が波長λSを中心に±50nmの幅を有するときの光束LTに関するパラメータを表3−2および表3−3に示し、光束LRの波長帯域が波長λLを中心に±10nmの幅を有するときの光束LRに関するパラメータを表3−4および表3−5に示す。他のパラメータは表3−1と同じである。   Tables 3-2 and 3-3 show parameters relating to the light beam LT when the wavelength band of the light beam LT has a width of ± 50 nm centered on the wavelength λ S. The wavelength band of the light beam LR is ± 10 nm centered on the wavelength λ L. Tables 3-4 and 3-5 show parameters related to the luminous flux LR when having a width. Other parameters are the same as in Table 3-1.

[表3−2]
光束LT
最短波長(λS−50):1260nm
周期/波長(Λ/(λS−50)):0.48
入射角θ1:60゜
出射角θ2:60゜
反射率:0.85(−1.43dB)
[表3−3]
光束LT
最長波長(λS+50):1360nm
周期/波長(Λ/(λS+50)):0.44
入射角θ1:60゜
出射角θ2:60゜
反射率:0.78(−2.11dB)
[Table 3-2]
Luminous flux LT
Shortest wavelength (λS-50): 1260nm
Period / wavelength (Λ / (λS-50)): 0.48
Incident angle θ1: 60 ° Output angle θ2: 60 ° Reflectance: 0.85 (−1.43 dB)
[Table 3-3]
Luminous flux LT
Longest wavelength (λS + 50): 1360 nm
Period / wavelength (Λ / (λS + 50)): 0.44
Incident angle θ1: 60 ° Output angle θ2: 60 ° Reflectance: 0.78 (−2.11 dB)

[表3−4]
光束LR
最短波長(λL−10):1480nm
周期/波長(Λ/(λL−10)):0.41
入射角θ1:60゜
出射角θ2:−51.1゜
p偏光反射回折効率:0.82(−1.76dB)
s偏光反射回折効率:0.81(−1.80dB)
平均反射回折効率:0.81(−1.78dB)
[表3−5]
光束LR
最長波長(λL+10):1500nm
周期/波長(Λ/(λL+10)):0.40
入射角θ1:60゜
出射角θ2:−53.2゜
p偏光反射回折効率:0.83(−1.62dB)
s偏光反射回折効率:0.91(−0.79dB)
平均反射回折効率:0.87(−1.20dB)
[Table 3-4]
Luminous flux LR
Shortest wavelength (λL-10): 1480 nm
Period / wavelength (Λ / (λL−10)): 0.41
Incident angle θ1: 60 ° Output angle θ2: −51.1 ° p-polarization reflection diffraction efficiency: 0.82 (−1.76 dB)
s-polarized reflection diffraction efficiency: 0.81 (-1.80 dB)
Average reflection diffraction efficiency: 0.81 (−1.78 dB)
[Table 3-5]
Luminous flux LR
Maximum wavelength (λL + 10): 1500 nm
Period / wavelength (Λ / (λL + 10)): 0.40
Incident angle θ1: 60 ° Output angle θ2: −53.2 ° p-polarization reflection diffraction efficiency: 0.83 (−1.62 dB)
s-polarized reflection diffraction efficiency: 0.91 (−0.79 dB)
Average reflection diffraction efficiency: 0.87 (−1.20 dB)

回折格子52は、光束LTに回折を生じさせないため、その波長帯域の最短波長および最長波長でも反射角に変化はなく、また、表3−2、3−3より明らかなように、最短波長および最長波長でも高い反射率となる。   Since the diffraction grating 52 does not cause diffraction in the light beam LT, there is no change in the reflection angle even at the shortest wavelength and the longest wavelength in the wavelength band, and as is clear from Tables 3-2 and 3-3, the shortest wavelength and High reflectance even at the longest wavelength.

<第4の実施形態>
第4の実施形態の光学装置4の構成を図6に模式的に示す。光学装置4は、第1〜第3の実施形態の光学装置1〜3と同様に送受信用の装置であるが、光ファイバ31を介して、波長帯域の異なる2つの光束LR1、LR2を受ける。このため、前述の発光部21、発光制御部22、光ファイバ31、受光部41、信号検出部42、および回折格子素子51に加えて、受光部43と信号検出部44を有し、回折格子素子51は、送出する光束LTと受ける光束LR1、LR2の、計3光束を回折の対象とする。光束LTが最も短波長、光束LR2が最も長波長、光束LR1が中間の波長である。
<Fourth Embodiment>
The configuration of the optical device 4 according to the fourth embodiment is schematically shown in FIG. The optical device 4 is a transmission / reception device similar to the optical devices 1 to 3 of the first to third embodiments, but receives two light beams LR1 and LR2 having different wavelength bands via the optical fiber 31. Therefore, in addition to the light emitting unit 21, the light emission control unit 22, the optical fiber 31, the light receiving unit 41, the signal detecting unit 42, and the diffraction grating element 51, the light receiving unit 43 and the signal detecting unit 44 are provided. The element 51 uses a total of three light beams, that is, a transmitted light beam LT and received light beams LR1 and LR2 as objects of diffraction. The light beam LT has the shortest wavelength, the light beam LR2 has the longest wavelength, and the light beam LR1 has the intermediate wavelength.

光学装置4における回折格子素子51の回折格子52の設定について説明する。
回折格子52の凹凸の周期をΛ、回折格子52の凹凸の高低差をh、回折格子52を挟む2つの媒質のうち、光束LTの入射側に位置する方の屈折率をn1、他方の屈折率をn2、回折格子52への光束の入射角をθ1、回折格子52からの光束の出射角をθ2、最も短波長の光束LTの中心波長をλS、最も長波長の光束LR2の中心波長をλL、中間の波長の光束LR1の中心波長をλMとする。
The setting of the diffraction grating 52 of the diffraction grating element 51 in the optical device 4 will be described.
The period of the unevenness of the diffraction grating 52 is Λ, the height difference of the unevenness of the diffraction grating 52 is h, and the refractive index of the two media sandwiching the diffraction grating 52 that is located on the incident side of the light beam LT is n1, and the other refraction. The rate is n2, the incident angle of the light beam to the diffraction grating 52 is θ1, the emission angle of the light beam from the diffraction grating 52 is θ2, the central wavelength of the shortest light beam LT is λs, and the central wavelength of the longest light beam LR2 is Let λL be the center wavelength of the light beam LR1 having an intermediate wavelength.

回折格子52は式(D1)〜(D3)の関係を満たす。
n2 < n1・sinθ1 ・・・ 式(D1)
1/(n1+n1・sinθ1) ≦ Λ/λL ≦ 1/(n2+n1・sinθ1) ・・・ 式(D2)
1/(n1+n1・sinθ1) ≦ Λ/λM ≦ 1/(n2+n1・sinθ1) ・・・ 式(D2')
1/(n2+n1・sinθ1) ≦ Λ/λS ≦ 2/(n1+n1・sinθ1) ・・・ 式(D3)
The diffraction grating 52 satisfies the relations (D1) to (D3).
n2 <n1 · sinθ1 Equation (D1)
1 / (n1 + n1 · sinθ1) ≤ Λ / λL ≤ 1 / (n2 + n1 · sinθ1) Equation (D2)
1 / (n1 + n1 · sinθ1) ≤ Λ / λM ≤ 1 / (n2 + n1 · sinθ1) Expression (D2 ')
1 / (n2 + n1 · sinθ1) ≤ Λ / λS ≤ 2 / (n1 + n1 · sinθ1) Equation (D3)

これらの関係を満たすことで、回折格子52は、最も長波長の光束LR2と中間の波長の光束LR1を−1次で回折反射し、最も短波長の光束LTを0次で回折反射(正反射)するものとなる。   By satisfying these relationships, the diffraction grating 52 diffracts and reflects the light beam LR2 having the longest wavelength and the light beam LR1 having the intermediate wavelength in the −1st order and diffracted and reflects the light beam LT having the shortest wavelength in the 0th order (regular reflection). ).

送出する光束LTの中心波長を1310nm、受ける光束LR1、LR2の中心波長をそれぞれ1490nm、1555nmとし、回折格子52に光束LT、LR1、LR2を回折格子素子51の内部側から入射させるようにした設定例における光路を図7に模式的に示し、諸パラメータを表4−1に示す。なお、光束LT、LR1、LR2の主光線の入射面は、回折格子52の周期の方向に平行である。   Setting that the center wavelength of the transmitted light beam LT is 1310 nm, the center wavelengths of the received light beams LR1 and LR2 are 1490 nm and 1555 nm, respectively, and the light beams LT, LR1 and LR2 are incident on the diffraction grating 52 from the inside of the diffraction grating element 51. The optical path in the example is schematically shown in FIG. 7, and various parameters are shown in Table 4-1. The principal ray incident surfaces of the light beams LT, LR1 and LR2 are parallel to the direction of the period of the diffraction grating 52.

[表4−1]
回折格子52
断面形状:矩形
凹凸周期Λ:0.629μm
凹凸高低差h:0.645μm
凸部幅:0.239μm
媒質屈折率:1.5
光束LT
波長(λS):1310nm
入射角θ1:51゜
出射角θ2:51゜
反射率:0.76(−2.41dB)
光束LR1
波長(λM):1490nm
入射角θ1:51゜
出射角θ2:−53.3゜
p偏光反射回折効率:0.95(−0.44dB)
s偏光反射回折効率:0.85(−1.45dB)
平均反射回折効率:0.90(−0.93dB)
光束LR2
波長(λM):1555nm
入射角θ1:51゜
出射角θ2:−60.6゜
p偏光反射回折効率:0.76(−2.34dB)
s偏光反射回折効率:0.75(−2.45dB)
平均反射回折効率:0.76(−2.39dB)
[Table 4-1]
Diffraction grating 52
Cross-sectional shape: Rectangle Concavity and convexity Λ: 0.629 μm
Uneven height difference h: 0.645 μm
Convex width: 0.239 μm
Medium refractive index: 1.5
Luminous flux LT
Wavelength (λS): 1310nm
Incident angle θ1: 51 ° Output angle θ2: 51 ° Reflectance: 0.76 (−2.41 dB)
Luminous flux LR1
Wavelength (λM): 1490 nm
Incident angle θ1: 51 ° Output angle θ2: −53.3 ° p-polarization reflection diffraction efficiency: 0.95 (−0.44 dB)
s-polarized reflection diffraction efficiency: 0.85 (−1.45 dB)
Average reflection diffraction efficiency: 0.90 (−0.93 dB)
Luminous flux LR2
Wavelength (λM): 1555 nm
Incident angle θ1: 51 ° Output angle θ2: −60.6 ° p-polarized reflection diffraction efficiency: 0.76 (−2.34 dB)
s-polarized reflection diffraction efficiency: 0.75 (−2.45 dB)
Average reflection diffraction efficiency: 0.76 (-2.39 dB)

なお、表4−1において、回折格子の凸部幅とは、光束LT、LR1、LR2の入射側(回折格子素子51の内部)に向かって凸部となっている部分の幅である。   In Table 4-1, the convex width of the diffraction grating is the width of the convex portion toward the incident side (inside the diffraction grating element 51) of the light beams LT, LR1, and LR2.

−1次の反射光とする光束LR1、LR2は、中心波長λM、λLを式(D2')、(D2)の範囲内にすることで、反射率が高くなり、0次の反射光とする光束LTは、中心波長λSを式(D3)の範囲内にすることで、反射率が高くなる。なお、1/(1.5+1.5・sin51゜)の値は0.375、1/(1+1.5・sin51゜)の値は0.462、2/(1.5+1.5・sin51゜)の値は0.750である。   The light beams LR1 and LR2 used as the −1st order reflected light have a higher reflectance by setting the center wavelengths λM and λL within the ranges of the expressions (D2 ′) and (D2), and thus are used as the 0th order reflected light. The reflectance of the light beam LT is increased by setting the center wavelength λ S within the range of the equation (D3). The value of 1 / (1.5 + 1.5 · sin 51 °) is 0.375, and the value of 1 / (1 + 1.5 · sin 51 °) is 0.462, 2 / (1.5 + 1.5 · sin 51 °). The value of is 0.750.

本実施形態においても、第3の実施形態と同様に、回折格子52が、光束LTに対して0次の回折を生じさせる、つまり、回折を生じさせないようにしているため、光束LTの広がりを招くことがなく、細い光ファイバ31に光束LTを全て入射させることは容易である。   Also in the present embodiment, as in the third embodiment, the diffraction grating 52 causes zero-order diffraction with respect to the light beam LT, that is, does not cause diffraction, so that the spread of the light beam LT is increased. Without inviting, it is easy to make all the light beam LT enter the thin optical fiber 31.

光束LTの波長帯域が波長λSを中心に±50nmの幅を有するときの光束LTに関するパラメータを表4−2および表4−3に示し、光束LR1の波長帯域が波長λMを中心に±10nmの幅を有するときの光束LR1に関するパラメータを表4−4および表4−5に示し、光束LR2の波長帯域が波長λLを中心に±5nmの幅を有するときの光束LR2に関するパラメータを表4−6および表4−7に示す。他のパラメータは表4−1と同じである。   Tables 4-2 and 4-3 show parameters related to the light beam LT when the wavelength band of the light beam LT has a width of ± 50 nm centered on the wavelength λs, and the wavelength band of the light beam LR1 is ± 10 nm centered on the wavelength λM. Tables 4-4 and 4-5 show parameters related to the light beam LR1 having a width. Tables 4-6 show parameters related to the light beam LR2 when the wavelength band of the light beam LR2 has a width of ± 5 nm centered on the wavelength λL. And shown in Table 4-7. Other parameters are the same as in Table 4-1.

[表4−2]
光束LT
最短波長(λS−50):1260nm
入射角θ1:51゜
出射角θ2:51゜
反射率:0.87(−1.26dB)
[表4−3]
光束LT
最長波長(λS+50):1360nm
入射角θ1:51゜
出射角θ2:51゜
反射率:0.74(−2.64dB)
[Table 4-2]
Luminous flux LT
Shortest wavelength (λS-50): 1260nm
Incident angle θ1: 51 ° Output angle θ2: 51 ° Reflectance: 0.87 (−1.26 dB)
[Table 4-3]
Luminous flux LT
Longest wavelength (λS + 50): 1360 nm
Incident angle θ1: 51 ° Output angle θ2: 51 ° Reflectance: 0.74 (−2.64 dB)

[表4−4]
光束LR1
最短波長(λM−10):1480nm
入射角θ1:51゜
出射角θ2:−52.3゜
p偏光反射回折効率:0.96(−0.33dB)
s偏光反射回折効率:0.84(−1.52dB)
平均反射回折効率:0.90(−0.90dB)
[表4−5]
光束LR1
最長波長(λM+10):1500nm
入射角θ1:51゜
出射角θ2:−54.4゜
p偏光反射回折効率:0.93(−0.60dB)
s偏光反射回折効率:0.85(−1.45dB)
平均反射回折効率:0.89(−1.02dB)
[Table 4-4]
Luminous flux LR1
Shortest wavelength (λM-10): 1480 nm
Incident angle θ1: 51 ° Output angle θ2: −52.3 ° p-polarization reflection diffraction efficiency: 0.96 (−0.33 dB)
s-polarized reflection diffraction efficiency: 0.84 (-1.52 dB)
Average reflection diffraction efficiency: 0.90 (-0.90 dB)
[Table 4-5]
Luminous flux LR1
Maximum wavelength (λM + 10): 1500 nm
Incident angle θ1: 51 ° Output angle θ2: −54.4 ° p-polarization reflection diffraction efficiency: 0.93 (−0.60 dB)
s-polarized reflection diffraction efficiency: 0.85 (−1.45 dB)
Average reflection diffraction efficiency: 0.89 (−1.02 dB)

[表4−6]
光束LR2
最短波長(λL−5):1550nm
入射角θ1:51゜
出射角θ2:−60゜
p偏光反射回折効率:0.78(−2.12dB)
s偏光反射回折効率:0.77(−2.30dB)
平均反射回折効率:0.78(−2.21dB)
[表4−7]
光束LR2
最長波長(λL+5):1560nm
入射角θ1:51゜
出射角θ2:−61.2゜
p偏光反射回折効率:0.74(−2.56dB)
s偏光反射回折効率:0.74(−2.62dB)
平均反射回折効率:0.74(−2.59dB)
[Table 4-6]
Luminous flux LR2
Shortest wavelength (λL-5): 1550 nm
Incident angle θ1: 51 ° Output angle θ2: −60 ° p-polarization reflection diffraction efficiency: 0.78 (−2.12 dB)
s-polarized reflection diffraction efficiency: 0.77 (-2.30 dB)
Average reflection diffraction efficiency: 0.78 (−2.21 dB)
[Table 4-7]
Luminous flux LR2
Longest wavelength (λL + 5): 1560 nm
Incident angle θ1: 51 ° Output angle θ2: −61.2 ° p-polarization reflection diffraction efficiency: 0.74 (−2.56 dB)
s-polarized reflection diffraction efficiency: 0.74 (−2.62 dB)
Average reflection diffraction efficiency: 0.74 (−2.59 dB)

回折格子52は、光束LTに回折を生じさせないため、その波長帯域の最短波長および最長波長でも反射角に変化はなく、また、表4−2、4−3より明らかなように、最短波長および最長波長でも高い反射率となる。   Since the diffraction grating 52 does not cause diffraction in the light beam LT, the reflection angle does not change even at the shortest wavelength and the longest wavelength in the wavelength band, and as is clear from Tables 4-2 and 4-3, the shortest wavelength and High reflectance even at the longest wavelength.

<第5の実施形態>
本実施形態の光学装置5も光通信用のもので、図1に示した光学装置1と同様の構成であり、発光部21、発光制御部22、光ファイバ31、受光部41、信号検出部42、および回折格子素子51を有する。
<Fifth Embodiment>
The optical device 5 of the present embodiment is also for optical communication and has the same configuration as that of the optical device 1 shown in FIG. 1, and includes a light emitting unit 21, a light emission control unit 22, an optical fiber 31, a light receiving unit 41, and a signal detection unit. 42, and a diffraction grating element 51.

光学装置5における回折格子素子51の回折格子52の設定について説明する。ここで、第1の実施形態と同様に、回折格子52の凹凸の周期をΛ、回折格子52の凹凸の高低差をh、回折格子52を挟む2つの媒質のうち、光束LTの入射側に位置する方の屈折率をn1、他方の屈折率をn2、回折格子52への光束の入射角をθ1、回折格子52からの光束の出射角をθ2、より短波長の光束LTの中心波長をλS、より長波長の光束LRの中心波長をλLとする。   The setting of the diffraction grating 52 of the diffraction grating element 51 in the optical device 5 will be described. Here, as in the first embodiment, the period of the unevenness of the diffraction grating 52 is Λ, the height difference of the unevenness of the diffraction grating 52 is h, and the two media sandwiching the diffraction grating 52 are on the incident side of the light beam LT. The refractive index of the one located is n1, the other refractive index is n2, the incident angle of the light beam to the diffraction grating 52 is θ1, the emission angle of the light beam from the diffraction grating 52 is θ2, and the center wavelength of the light beam LT having a shorter wavelength is Let λS be the center wavelength of the longer wavelength light beam LR, λL.

回折格子52は式(E1)〜(E3)の関係を満たす。
n2 ≧ n1・sinθ1 ・・・ 式(E1)
Λ/λL ≦ 1/(n2+n1・sinθ1) ・・・ 式(E2)
1/(n2+n1・sinθ1)−0.04 < Λ/λS < 1/(n2+n1・sinθ1)+0.02
・・・ 式(E3)
The diffraction grating 52 satisfies the relations (E1) to (E3).
n2 ≧ n1 · sinθ1 Expression (E1)
Λ / λL ≦ 1 / (n2 + n1 · sinθ1) ... Formula (E2)
1 / (n2 + n1 · sinθ1) −0.04 <Λ / λS <1 / (n2 + n1 · sinθ1) +0.02
... Equation (E3)

これらの関係を満たすことで、回折格子52は、より長波長の光束LRを0次で回折透過させ、より短波長の光束LTを0次で回折反射(正反射)するものとなる。   By satisfying these relationships, the diffraction grating 52 diffracts and transmits the longer wavelength light beam LR in the 0th order and diffracts and reflects (regular reflection) the shorter wavelength light beam LT in the 0th order.

送出する光束LTの中心波長を1310nm、受ける光束LRの中心波長を1490nmとし、回折格子52に光束LT、LRを回折格子素子51の内部側から入射させるようにした設定例における光路を図8に模式的に示し、諸パラメータを表5−1に示す。なお、光束LT、LRの主光線の入射面は、回折格子52の周期の方向に平行である。   The optical path in a setting example in which the center wavelength of the transmitted light beam LT is 1310 nm, the center wavelength of the received light beam LR is 1490 nm, and the light beams LT and LR are incident on the diffraction grating 52 from the inside of the diffraction grating element 51 is shown in FIG. It shows schematically and various parameters are shown in Table 5-1. The incident surfaces of the principal rays of the light beams LT and LR are parallel to the direction of the period of the diffraction grating 52.

[表5−1]
回折格子52
断面形状:矩形
凹凸周期Λ:0.667μm
凹凸高低差h:1.167μm
凸部幅:0.267μm
媒質屈折率:1.5
光束LT
波長(λS):1310nm
周期/波長(Λ/λS):0.509
入射角θ1:36゜
出射角θ2:36゜
反射率:0.71(−2.93dB)
光束LR
波長(λL):1490nm
周期/波長(Λ/λL):0.448
入射角θ1:36゜
出射角θ2:61.8゜
p偏光透過率:0.91(−0.86dB)
s偏光透過率:0.76(−2.34dB)
平均透過率:0.83(−1.57dB)
[Table 5-1]
Diffraction grating 52
Cross-sectional shape: rectangle Uneven period Λ: 0.667 μm
Uneven height difference h: 1.167 μm
Convex width: 0.267 μm
Medium refractive index: 1.5
Luminous flux LT
Wavelength (λS): 1310nm
Period / wavelength (Λ / λS): 0.509
Incident angle θ1: 36 ° Output angle θ2: 36 ° Reflectance: 0.71 (-2.93 dB)
Luminous flux LR
Wavelength (λL): 1490 nm
Period / wavelength (Λ / λL): 0.448
Incident angle θ1: 36 ° Output angle θ2: 61.8 ° p-polarized light transmittance: 0.91 (−0.86 dB)
s-polarized light transmittance: 0.76 (-2.34 dB)
Average transmittance: 0.83 (−1.57 dB)

なお、表5−1において、回折格子の凸部幅とは、光束LT、LRの入射側(回折格子素子51の内部)に向かって凸部となっている部分の幅である。   In Table 5-1, the convex width of the diffraction grating is the width of the convex portion toward the incident side of the light beams LT and LR (inside the diffraction grating element 51).

上記の設定例(n1=1.5、n2=1、θ1=36゜)において、式(E2)、(E3)に含まれる1/(n2+n1・sinθ1)の値が変化したときの回折効率の変化の様子を、図9に示す。なお、1/(1+1.5・sin36゜)の値は0.531である。図9より判るように、0次の透過光とする光束LRは、その中心波長λLを式(E2)の範囲内にすることで、透過率が高くなり、0次の反射光とする光束LTは、その中心波長λSを式(E3)の範囲内にすることで、反射率が高くなる。   In the above setting example (n1 = 1.5, n2 = 1, θ1 = 36 °), the diffraction efficiency when the value of 1 / (n2 + n1 · sinθ1) included in the equations (E2) and (E3) changes The state of the change is shown in FIG. The value of 1 / (1 + 1.5 · sin 36 °) is 0.531. As can be seen from FIG. 9, the luminous flux LR to be transmitted as the 0th-order transmitted light is increased in transmittance by setting the center wavelength λL within the range of the formula (E2), and the luminous flux LT to be converted into the 0th-order reflected light. The reflectance is increased by setting the center wavelength λ S within the range of the equation (E3).

光学装置5においては、回折格子52が、光束LT、LRの双方に対して0次の回折を生じさせる、つまり、回折を生じさせないようにしているため、光束LT、LRの広がりを招くことがなく、細い光ファイバ31に光束LTを全て入射させることや、小さな受光部41に光束LRを全て入射させることは容易である。   In the optical device 5, the diffraction grating 52 causes zero-order diffraction to both the light beams LT and LR, that is, does not cause diffraction, so that the light beams LT and LR are spread. It is easy to make all the light beam LT enter the thin optical fiber 31 and to make all the light beam LR enter the small light receiving portion 41.

光束LTの波長帯域が波長λSを中心に±50nmの幅を有するときの光束LTに関するパラメータを表5−2および表5−3に示し、光束LRの波長帯域が波長λLを中心に±10nmの幅を有するときの光束LRに関するパラメータを表5−4および表5−5に示す。他のパラメータは表5−1と同じである。   Table 5-2 and Table 5-3 show parameters related to the light beam LT when the wavelength band of the light beam LT has a width of ± 50 nm centered on the wavelength λ S. The wavelength band of the light beam LR is ± 10 nm centered on the wavelength λ L. Tables 5-4 and 5-5 show parameters related to the light flux LR when having a width. Other parameters are the same as in Table 5-1.

[表5−2]
光束LT
最短波長(λS−50):1260nm
周期/波長(Λ/(λS−50)):0.529
入射角θ1:36゜
出射角θ2:36゜
反射率:0.85(−1.39dB)
[表5−3]
光束LT
最長波長(λS+50):1360nm
周期/波長(Λ/(λS+50)):0.490
入射角θ1:36゜
出射角θ2:36゜
反射率:0.59(−4.65dB)
[Table 5-2]
Luminous flux LT
Shortest wavelength (λS-50): 1260nm
Period / wavelength (Λ / (λS-50)): 0.529
Incident angle θ1: 36 ° Output angle θ2: 36 ° Reflectance: 0.85 (−1.39 dB)
[Table 5-3]
Luminous flux LT
Longest wavelength (λS + 50): 1360 nm
Period / wavelength (Λ / (λS + 50)): 0.490
Incident angle θ1: 36 ° Output angle θ2: 36 ° Reflectance: 0.59 (−4.65 dB)

[表5−4]
光束LR
最短波長(λL−10):1480nm
周期/波長(Λ/(λL−10)):0.451
入射角θ1:36゜
出射角θ2:61.8゜
p偏光透過率:0.90(−0.92dB)
s偏光透過率:0.76(−2.44dB)
平均透過率:0.83(−1.64dB)
[表5−5]
光束LR
最長波長(λL+10):1500nm
周期/波長(Λ/(λL+10)):0.445
入射角θ1:36゜
出射角θ2:61.8゜
p偏光透過率:0.91(−0.80dB)
s偏光透過率:0.77(−2.25dB)
平均透過率:0.84(−1.50dB)
[Table 5-4]
Luminous flux LR
Shortest wavelength (λL-10): 1480 nm
Period / wavelength (Λ / (λL−10)): 0.451
Incident angle θ1: 36 ° Output angle θ2: 61.8 ° p-polarized light transmittance: 0.90 (−0.92 dB)
s-polarized light transmittance: 0.76 (−2.44 dB)
Average transmittance: 0.83 (−1.64 dB)
[Table 5-5]
Luminous flux LR
Maximum wavelength (λL + 10): 1500 nm
Period / wavelength (Λ / (λL + 10)): 0.445
Incident angle θ1: 36 ° Output angle θ2: 61.8 ° p-polarized light transmittance: 0.91 (−0.80 dB)
s-polarized light transmittance: 0.77 (-2.25 dB)
Average transmittance: 0.84 (−1.50 dB)

回折格子52は、光束LT、LRに回折を生じさせないため、それらの波長帯域の最短波長および最長波長でも出射角に変化はなく、また、各々の最短波長および最長波長でも高い反射率や透過率となる。   Since the diffraction grating 52 does not cause diffraction in the light beams LT and LR, there is no change in the emission angle even at the shortest wavelength and the longest wavelength of those wavelength bands, and high reflectivity and transmittance at each shortest wavelength and longest wavelength. It becomes.

<第6の実施形態>
第6の実施形態の光学装置6の構成を図10に模式的に示す。光学装置6は、第5の実施形態の光学装置5と同様に送受信用の装置であるが、光ファイバ31を介して、波長帯域の異なる2つの光束LT1、LT2を送出する。このため、前述の発光部21、発光制御部22、光ファイバ31、受光部41、信号検出部42、および回折格子素子51に加えて、発光部23と発光制御部24を有し、回折格子素子51は、送出する光束LT1、LT2と受ける光束LRの、計3光束を回折の対象とする。光束LT1が最も短波長、光束LRが最も長波長、光束LT2が中間の波長である。
<Sixth Embodiment>
FIG. 10 schematically shows the configuration of the optical device 6 according to the sixth embodiment. The optical device 6 is a transmission / reception device similar to the optical device 5 of the fifth embodiment, but sends out two light beams LT1 and LT2 having different wavelength bands via the optical fiber 31. Therefore, in addition to the light emitting unit 21, the light emission control unit 22, the optical fiber 31, the light receiving unit 41, the signal detection unit 42, and the diffraction grating element 51, the light emitting unit 23 and the light emission control unit 24 are provided. The element 51 uses a total of three light fluxes, that is, the light fluxes LT1 and LT2 to be transmitted and the light flux LR to be received, as a diffraction target. The light beam LT1 has the shortest wavelength, the light beam LR has the longest wavelength, and the light beam LT2 has an intermediate wavelength.

光学装置6における回折格子素子51の回折格子52の設定について説明する。ここで回折格子52の凹凸の周期をΛ、回折格子52の凹凸の高低差をh、回折格子52を挟む2つの媒質のうち、光束LT1の入射側に位置する方の屈折率をn1、他方の屈折率をn2、回折格子52への光束の入射角をθ1、回折格子52からの光束の出射角をθ2、最も短波長の光束LT1の中心波長をλS、最も長波長の光束LRの中心波長をλL、中間の波長の光束LT2の中心波長をλMとする。   The setting of the diffraction grating 52 of the diffraction grating element 51 in the optical device 6 will be described. Here, the period of the concave and convex portions of the diffraction grating 52 is Λ, the height difference of the concave and convex portions of the diffraction grating 52 is h, and the refractive index of the two media sandwiching the diffraction grating 52 that is located on the incident side of the light beam LT1 is n1. Is the refractive index of n2, the incident angle of the light beam on the diffraction grating 52 is θ1, the emission angle of the light beam from the diffraction grating 52 is θ2, the center wavelength of the shortest light beam LT1 is λs, and the center of the longest light beam LR Let λL be the wavelength, and λM be the center wavelength of the light beam LT2 having an intermediate wavelength.

回折格子52は式(F1)〜(F4)の関係を満たす。
n2 ≧ n1・sinθ1 ・・・ 式(F1)
Λ/λL ≦ 1/(n2+n1・sinθ1) ・・・ 式(F2)
1/(n2+n1・sinθ1)−0.04 < Λ/λM < 1/(n2+n1・sinθ1)+0.02
・・・ 式(F3)
Λ/λS ≧ 1/(n2+n1・sinθ1) ・・・ 式(F4)
The diffraction grating 52 satisfies the relationships of formulas (F1) to (F4).
n2 ≧ n1 · sinθ1 Formula (F1)
Λ / λL ≦ 1 / (n2 + n1 · sinθ1) Equation (F2)
1 / (n2 + n1 · sin θ1) −0.04 <Λ / λM <1 / (n2 + n1 · sin θ1) +0.02
... Formula (F3)
Λ / λS ≧ 1 / (n2 + n1 · sinθ1) Expression (F4)

このようにすると、回折格子52は、最も長波長の光束LRと最も短波長の光束LT1を0次で回折透過させ、中間の波長の光束LT2を0次で回折反射(正反射)するものとなる。   In this way, the diffraction grating 52 diffracts and transmits the longest wavelength light beam LR and the shortest wavelength light beam LT1 in the 0th order, and diffracts and reflects (regular reflection) the intermediate wavelength light beam LT2 in the 0th order. Become.

<第7の実施形態>
本実施形態の光学装置7は、光ファイバ31を介して波長帯域の異なる2つの光束LR1、LR2を受ける第4の実施形態の光学装置4を修飾したものである。光学装置7における回折格子素子51および光束LR1、LR2の光路を図11に示す。回折格子素子51の回折格子52が設けられていない表面のうち、回折後の光束LR1、LR2が通る部位53は、回折格子52の周期の方向に対して垂直な軸を中心とする円柱状の曲面とされており、光束LR1、LR2に対して凸レンズとして作用する。
<Seventh Embodiment>
The optical device 7 of the present embodiment is a modification of the optical device 4 of the fourth embodiment that receives two light beams LR1 and LR2 having different wavelength bands via an optical fiber 31. The optical path of the diffraction grating element 51 and the light beams LR1 and LR2 in the optical device 7 is shown in FIG. Of the surface of the diffraction grating element 51 where the diffraction grating 52 is not provided, a portion 53 through which the diffracted light beams LR1 and LR2 pass is a cylindrical shape centering on an axis perpendicular to the direction of the period of the diffraction grating 52. It is a curved surface and acts as a convex lens for the light beams LR1 and LR2.

光束LR1、LR2は、回折光であるため波長帯域の幅に応じて広がるが、それらが通る部位53にこのように集光機能をもたせることで、光束LR1、LR2を平行光束に近づけるたり、収束光束としたりすることが可能である。したがって、受光部41、43を大きくすることなく、光束LR1、LR3を全て受光部41、43に入射させることができる。また、部位53の曲面形状によって収差を抑えることも可能である。
Since the light beams LR1 and LR2 are diffracted light, the light beams LR1 and LR2 expand according to the width of the wavelength band. By providing the condensing function to the portion 53 through which the light beams LR1 and LR2 pass in this way, the light beams LR1 and LR2 are brought close to a parallel light beam or converged. Or a light beam. Therefore, all the light beams LR1 and LR3 can be incident on the light receiving units 41 and 43 without increasing the size of the light receiving units 41 and 43. In addition, the aberration can be suppressed by the curved shape of the portion 53.

曲面である部位53の曲率半径を、回折格子52への光束の入射点から部位53までの距離に等しくすれば、部位53は集光機能をもたないことになる。しかし、それでも、部位53が平面である場合のように、屈折によって光束LR1、LR2がさらに広がるのを、防止することができる。   If the radius of curvature of the portion 53 that is a curved surface is made equal to the distance from the incident point of the light beam to the diffraction grating 52 to the portion 53, the portion 53 does not have a condensing function. However, it is possible to prevent the light beams LR1 and LR2 from further spreading due to refraction as in the case where the portion 53 is flat.

なお、本実施形態では、光束LR1の中心波長λMを1480nm、光束LR2の中心波長λLを1500nmとしている。光束LR1、LR2の入射角θ1は51゜であり、光束LR1の反射角θ2は52.3゜、光束LR2の反射角θ2は54.3゜である。また、図示していないが、送出する光束LTは、中心波長LSが1260nmのとき入射角55.49゜、中心波長LSが1310nmのとき入射角51.8゜、中心波長LSが1360nmのとき入射角48.39゜である。   In the present embodiment, the center wavelength λM of the light beam LR1 is 1480 nm, and the center wavelength λL of the light beam LR2 is 1500 nm. The incident angle θ1 of the light beams LR1 and LR2 is 51 °, the reflection angle θ2 of the light beam LR1 is 52.3 °, and the reflection angle θ2 of the light beam LR2 is 54.3 °. Although not shown, the transmitted light beam LT is incident at an incident angle of 55.49 ° when the center wavelength LS is 1260 nm, at an incident angle of 51.8 ° when the center wavelength LS is 1310 nm, and incident when the center wavelength LS is 1360 nm. The angle is 48.39 °.

<第8の実施形態>
本実施形態の光学装置8は、送出する光束LTを−1次で回折反射する第2の実施形態の光学装置2を修飾したものである。光学装置8における回折格子素子51および光束LTの光路を図12に示す。回折格子素子51の回折格子52が設けられていない表面のうち、入射前の光束LTが通る部位54は、回折格子52の周期の方向に対して垂直な軸を中心とする円柱状の曲面とされており、光束LTに対して凸レンズとして作用する。発光部21からの光束LTが発散光である場合でも、このように部位54に集光機能をもたせることで、回折格子52に入射する光束LTを平行光束に近づけることができる。
<Eighth Embodiment>
The optical device 8 of this embodiment is a modification of the optical device 2 of the second embodiment that diffracts and reflects the transmitted light beam LT in the −1st order. The optical path of the diffraction grating element 51 and the light beam LT in the optical device 8 is shown in FIG. Of the surface of the diffraction grating element 51 where the diffraction grating 52 is not provided, a portion 54 through which the light beam LT before incidence passes is a cylindrical curved surface centered on an axis perpendicular to the direction of the period of the diffraction grating 52. It acts as a convex lens for the light beam LT. Even when the light beam LT from the light emitting unit 21 is diverging light, the light beam LT incident on the diffraction grating 52 can be made close to a parallel light beam by providing the condensing function to the portion 54 in this way.

光学装置8は、回折格子52上の光束LTの入射位置を中心とし、回折格子51に垂直でその周期の方向に平行な平面上に位置する円弧状のレール25を備えている。発光部21はレール25に沿って可動に設定されており、発光部21の位置によって、回折格子52に対する光束LTの入射角は変わる。また、発光部21には温度センサ26が取り付けられており、発光部21の位置は温度センサ26によって検出された温度に応じて制御される。   The optical device 8 includes an arc-shaped rail 25 that is located on a plane perpendicular to the diffraction grating 51 and parallel to the direction of the period, centered on the incident position of the light beam LT on the diffraction grating 52. The light emitting unit 21 is set to be movable along the rail 25, and the incident angle of the light beam LT with respect to the diffraction grating 52 varies depending on the position of the light emitting unit 21. A temperature sensor 26 is attached to the light emitting unit 21, and the position of the light emitting unit 21 is controlled according to the temperature detected by the temperature sensor 26.

光束LTを発する発光部21のレーザダイオードの特性は温度によって変動し、そのため、光束LTの波長も温度によって変動する。波長が変動すると、回折格子52による光束LTの回折角も変動し、回折後の光束LTの一部が光ファイバ31に入射しなくなることがある。しかし、このように、回折格子52に対する光束LTの入射角を温度に応じて変えるようにすることで、確実に光束LTを全て光ファイバ31に入射させることができる。   The characteristics of the laser diode of the light emitting unit 21 that emits the light beam LT vary depending on the temperature. Therefore, the wavelength of the light beam LT also varies depending on the temperature. When the wavelength fluctuates, the diffraction angle of the light beam LT by the diffraction grating 52 also fluctuates, and a part of the diffracted light beam LT may not enter the optical fiber 31 in some cases. However, by changing the incident angle of the light beam LT with respect to the diffraction grating 52 in accordance with the temperature as described above, the entire light beam LT can be reliably incident on the optical fiber 31.

温度センサ26を備えることに代えて、光ファイバ31の端部近傍に複数の光センサ35を備えて、どの光センサ35に光束LTが入射するかに応じて、発光部21の位置を制御するようにしてもよい。その場合、どの光センサ35にも光束LTが入射しないよう発光部21の位置を設定することで、光束LTの全てを光ファイバ31に入射させることができる。   Instead of providing the temperature sensor 26, a plurality of optical sensors 35 are provided near the end of the optical fiber 31, and the position of the light emitting unit 21 is controlled according to which optical sensor 35 the light beam LT is incident on. You may do it. In that case, by setting the position of the light emitting unit 21 so that the light beam LT does not enter any of the optical sensors 35, all of the light beam LT can be incident on the optical fiber 31.

なお、光束LT、LRの波長、回折格子52の設定等は第2の実施形態と同様である。   The wavelengths of the light beams LT and LR, the setting of the diffraction grating 52, and the like are the same as in the second embodiment.

<第9の実施形態>
本実施形態の光学装置9の回折格子素子11を図13に示す。図13において、(a)は側面図、(b)は平面図である。本実施形態では、回折格子素子11の表面を凸の曲面とし、その曲面上に回折格子52を設けている。回折格子52を曲面上に設けることで、回折格子52が屈折による光学的パワーを有することになり、出射する光束の広がりを抑えることができる。したがって、出射後の光束の広がりを抑える手段を別途備える必要がなくなる。
<Ninth Embodiment>
A diffraction grating element 11 of the optical device 9 of this embodiment is shown in FIG. In FIG. 13, (a) is a side view and (b) is a plan view. In the present embodiment, the surface of the diffraction grating element 11 is a convex curved surface, and the diffraction grating 52 is provided on the curved surface. By providing the diffraction grating 52 on the curved surface, the diffraction grating 52 has optical power due to refraction, and the spread of the emitted light beam can be suppressed. Therefore, it is not necessary to separately provide means for suppressing the spread of the luminous flux after emission.

回折格子52に入射する光束が平行光束でない場合は、回折格子52の凹凸の間隔を一定にせずに次第に変化するようにすることで、あるいは、個々の凸部52aおよび凹部52bを直線とせずに曲線状とすることで、光束の広がりとなる原因となる収差を抑えることができる。   In the case where the light beam incident on the diffraction grating 52 is not a parallel light beam, the distance between the concave and convex portions of the diffraction grating 52 is changed without being constant, or the individual convex portions 52a and concave portions 52b are not made straight. By using a curved shape, it is possible to suppress aberrations that cause the light beam to spread.

なお、本実施形態のように、曲面上に回折格子52を設ける場合、回折格子52上の任意の位置における接平面Pに回折格子52を投影し、接平面Pに対する入射角をθ1、接平面P上の周期をΛとして、前述の式(A1)〜(A3)から式(F1)〜(F4)までの各組の条件を満たすようにする。これで、上述の各実施形態で述べた効果が得られる。   When the diffraction grating 52 is provided on the curved surface as in the present embodiment, the diffraction grating 52 is projected onto the tangent plane P at an arbitrary position on the diffraction grating 52, the incident angle with respect to the tangential plane P is θ1, and the tangential plane. The period on P is set as Λ, so that the conditions of each group from the above-described equations (A1) to (A3) to equations (F1) to (F4) are satisfied. Thus, the effects described in the above embodiments can be obtained.

<第10の実施形態>
第10の実施形態の光学装置10の構成を図14に模式的に示す。光学装置10は、光を用いて記録媒体に情報を記録し記録媒体から情報を読み出す光記録再生装置であり、3つの発光部27、28、29、2つの回折格子素子55、57、および対物レンズ61を有する。回折格子素子55、57はいずれもプリズム状であり、それぞれ1つの表面に回折格子56、58(図15参照)が設けられている。
<Tenth Embodiment>
The configuration of the optical device 10 according to the tenth embodiment is schematically shown in FIG. The optical device 10 is an optical recording / reproducing device that records information on a recording medium using light and reads information from the recording medium. The optical device 10 includes three light emitting units 27, 28, 29, two diffraction grating elements 55, 57, and an objective. A lens 61 is provided. The diffraction grating elements 55 and 57 are both prism-shaped, and the diffraction gratings 56 and 58 (see FIG. 15) are provided on one surface, respectively.

発光部27、28、29は、記録媒体Mに照射するための波長帯域の異なる光束LT1、LT2、LT3をそれぞれ発する。図示しないが、発光部27〜29は、レーザダイオードと集光レンズを備えており、レーザダイオードが発した光を集光レンズによって平行光束として射出する。   The light emitting units 27, 28, and 29 emit light beams LT1, LT2, and LT3 having different wavelength bands for irradiating the recording medium M, respectively. Although not shown, the light emitting units 27 to 29 include a laser diode and a condensing lens, and emit light emitted from the laser diode as a parallel light beam by the condensing lens.

回折格子素子55は、発光部27からの光束LT1と発光部28からの光束LT2を結合する。また、回折格子素子57は、回折格子素子55によって結合された光束LT1、LT2と発光部29からの光束LT3とを結合する。   The diffraction grating element 55 combines the light beam LT1 from the light emitting unit 27 and the light beam LT2 from the light emitting unit 28. The diffraction grating element 57 combines the light beams LT1 and LT2 combined by the diffraction grating element 55 and the light beam LT3 from the light emitting unit 29.

対物レンズ61は、回折格子素子55によって結合された光束LT1、LT2、LT3を記録媒体M上に収束させる。   The objective lens 61 converges the light beams LT1, LT2, and LT3 combined by the diffraction grating element 55 on the recording medium M.

回折格子素子55、57の回折格子56、58の設定について説明する。ここで、回折格子56、58の凹凸の周期をΛ、回折格子56、58の凹凸の高低差をh、回折格子56、58を挟む2つの媒質のうち、光束の入射側に位置する方の屈折率をn1、他方の屈折率をn2、回折格子56、58への光束の入射角をθ1、回折格子56、58からの光束の出射角をθ2、光束LT1、LT2、LT3の波長帯域のうち最も短波長のものの中心波長をλS、最も長波長のものの中心波長をλL、中間の波長のものの中心波長をλMとする。なお、ここでは、回折格子56と回折格子58の各パラメータを同じ符号で表しているが、各パラメータ(例えば周期Λ)は、回折格子56と回折格子58とで異なる。   The setting of the diffraction gratings 56 and 58 of the diffraction grating elements 55 and 57 will be described. Here, the period of the concave and convex portions of the diffraction gratings 56 and 58 is Λ, the height difference of the concave and convex portions of the diffraction gratings 56 and 58 is h, and one of the two media sandwiching the diffraction gratings 56 and 58 is located on the incident side of the light flux. The refractive index is n1, the other refractive index is n2, the incident angle of the light beam on the diffraction gratings 56 and 58 is θ1, the emission angle of the light beam from the diffraction gratings 56 and 58 is θ2, and the light beams LT1, LT2, and LT3 are in the wavelength band. The center wavelength of the shortest wavelength is λS, the center wavelength of the longest wavelength is λL, and the center wavelength of the intermediate wavelength is λM. Here, although each parameter of the diffraction grating 56 and the diffraction grating 58 is represented by the same symbol, each parameter (for example, the period Λ) is different between the diffraction grating 56 and the diffraction grating 58.

回折格子56、58は式(G1)〜(G4)の関係を満たす。
n2 ≧ n1・sinθ1 ・・・ 式(G1)
Λ/λL ≦ 1/(n2+n1・sinθ1) ・・・ 式(G2)
Λ/λM ≒ 1/(n2+n1・sinθ1) ・・・ 式(G3)
Λ/λS ≧ 1/(n2+n1・sinθ1) ・・・ 式(G4)
The diffraction gratings 56 and 58 satisfy the relationships of the expressions (G1) to (G4).
n2 ≧ n1 · sinθ1 Expression (G1)
Λ / λL ≦ 1 / (n2 + n1 · sinθ1) Equation (G2)
Λ / λM ≒ 1 / (n2 + n1 ・ sinθ1) Equation (G3)
Λ / λS ≥ 1 / (n2 + n1 · sinθ1) Equation (G4)

これらの関係を満たすことで、回折格子56、58は、光束LT1、LT2、LT3のいずれに対しても、0次の回折を生じさせて、すなわち回折を生じさせずに、透過または反射するものとなる。   By satisfying these relationships, the diffraction gratings 56 and 58 transmit or reflect the zero-order diffraction with respect to any of the light beams LT1, LT2, and LT3, that is, without generating diffraction. It becomes.

光束LT1、LT2、LT3の各波長帯域の中心波長をそれぞれ650nm、780nm、405nmとし、回折格子素子55の回折格子56に、素子55の内部側から光束LT1を入射させ、空気側から光束LT2を入射させ、回折格子素子57の回折格子58に、光束LT1、LT2を空気側から入射させ、光束LT3を素子57の内部側から入射させるようにした設定例における光路を図15に模式的に示し、諸パラメータを表6−1、6−2に示す。この例では、光束LT3の中心波長が最短波長λS、光束LT2の中心波長が最長波長λL、光束LT1の中心波長が中間の波長λMである。   The center wavelengths of the respective wavelength bands of the light beams LT1, LT2, and LT3 are set to 650 nm, 780 nm, and 405 nm, respectively. The light beam LT1 is incident on the diffraction grating 56 of the diffraction grating element 55 from the inside of the element 55, and the light beam LT2 is input from the air side. FIG. 15 schematically shows an optical path in a setting example in which the light beams LT1 and LT2 are incident on the diffraction grating 58 of the diffraction grating element 57 from the air side and the light beam LT3 is incident on the inner side of the element 57. Various parameters are shown in Tables 6-1 and 6-2. In this example, the center wavelength of the light beam LT3 is the shortest wavelength λS, the center wavelength of the light beam LT2 is the longest wavelength λL, and the center wavelength of the light beam LT1 is the intermediate wavelength λM.

また、回折格子56、58に対して、光束LT1はs偏光、光束LT2はp偏光、光束LT3はs偏光である。なお、図15における両頭の矢印は偏光面が紙面に平行であることを表し、二重の丸印は偏光面が紙面に垂直であることを表している。   For the diffraction gratings 56 and 58, the light beam LT1 is s-polarized light, the light beam LT2 is p-polarized light, and the light beam LT3 is s-polarized light. Note that double-headed arrows in FIG. 15 indicate that the plane of polarization is parallel to the plane of the paper, and double circles indicate that the plane of polarization is perpendicular to the plane of the paper.

[表6−1]
回折格子56
断面形状:矩形
凹凸周期Λ:326nm
凹凸高低差h:571nm
凸部幅:163nm
媒質屈折率:1.5
光束LT1
波長(λM):650nm
周期/波長(Λ/λM):0.502
入射角θ1:38゜
出射角θ2:38゜
s偏光反射率:0.962
光束LT2
波長(λL):780nm
周期/波長(Λ/λL):0.418
入射角θ1:67.4゜
出射角θ2:38゜
p偏光透過率:0.952
[Table 6-1]
Diffraction grating 56
Cross-sectional shape: Rectangle Concavity and convexity Λ: 326 nm
Uneven height difference h: 571 nm
Convex width: 163 nm
Medium refractive index: 1.5
Luminous flux LT1
Wavelength (λM): 650 nm
Period / wavelength (Λ / λM): 0.502
Incident angle θ1: 38 ° Output angle θ2: 38 ° s Polarized reflectance: 0.962
Luminous flux LT2
Wavelength (λL): 780 nm
Period / wavelength (Λ / λL): 0.418
Incident angle θ1: 67.4 ° Output angle θ2: 38 ° p-polarized light transmittance: 0.952

[表6−2]
回折格子58
断面形状:矩形
凹凸周期Λ:203nm
凹凸高低差h:571nm
凸部幅:163nm
媒質屈折率:1.5
光束LT1
波長(λM):650nm
周期/波長(Λ/λM):0.312
入射角θ1:67.4゜
出射角θ2:38゜
s偏光透過率:0.74
光束LT2
波長(λL):780nm
周期/波長(Λ/λL):0.260
入射角θ1:67.4゜
出射角θ2:38゜
p偏光透過率:0.944
光束LT3
波長(λS):405nm
周期/波長(Λ/λS):0.501
入射角θ1:38゜
出射角θ2:38゜
s偏光反射率:0.962
[Table 6-2]
Diffraction grating 58
Cross-sectional shape: Rectangle Concavity and convexity Λ: 203 nm
Uneven height difference h: 571 nm
Convex width: 163 nm
Medium refractive index: 1.5
Luminous flux LT1
Wavelength (λM): 650 nm
Period / wavelength (Λ / λM): 0.312
Incident angle θ1: 67.4 ° Output angle θ2: 38 ° s Polarized light transmittance: 0.74
Luminous flux LT2
Wavelength (λL): 780 nm
Period / wavelength (Λ / λL): 0.260
Incident angle θ1: 67.4 ° Output angle θ2: 38 ° p-polarized light transmittance: 0.944
Luminous flux LT3
Wavelength (λS): 405 nm
Period / wavelength (Λ / λS): 0.501
Incident angle θ1: 38 ° Output angle θ2: 38 ° s Polarized reflectance: 0.962

表6−1、6−2において、回折格子の凸部幅とは、回折格子素子55、57の内部に向かって凸部となっている部分の幅である。また、回折格子56、58以外の回折格子素子55、57の表面に対する光束LT1、LT2、LT3の入射角は90゜である。回折格子56、58以外の面での透過率を1とすると、回折格子素子55、57を経た後の各光束LT1、LT2、LT3の光量は、経る前の光量に比べて、0.712、0.899、0.962倍となる。なお、1/(1.5+sin38゜)の値は0.520である。   In Tables 6-1 and 6-2, the convex width of the diffraction grating is the width of the portion that is convex toward the inside of the diffraction grating elements 55 and 57. The incident angles of the light beams LT1, LT2, and LT3 with respect to the surfaces of the diffraction grating elements 55 and 57 other than the diffraction gratings 56 and 58 are 90 °. Assuming that the transmittance on the surface other than the diffraction gratings 56 and 58 is 1, the light quantity of each of the light beams LT1, LT2, and LT3 after passing through the diffraction grating elements 55 and 57 is 0.712, compared to the light quantity before passing through. 0.899 and 0.962 times. The value of 1 / (1.5 + sin 38 °) is 0.520.

<第11の実施形態>
第11の実施形態の光学装置11は、光通信における送受信用の装置であり、図6に示した第4の実施形態の光学装置4と同様に、光ファイバ31を介して光束LTを送出するとともに、光ファイバ31を介して2つの光束LR1、LR2を受ける。光束LT、LR1、LR2の波長帯域は異なる。
<Eleventh embodiment>
The optical device 11 of the eleventh embodiment is a device for transmission / reception in optical communication, and sends out a light beam LT via an optical fiber 31 as in the optical device 4 of the fourth embodiment shown in FIG. At the same time, the two light beams LR1 and LR2 are received via the optical fiber 31. The wavelength bands of the light beams LT, LR1, and LR2 are different.

また、回折格子素子51の回折格子52は、互いに垂直な第1の方向と第2の方向に凹凸の周期を有する。図16に回折格子52を模式的に示す。凹凸の周期は第1の方向と第2の方向とで異なり、第1の方向の周期の方が短い。以下、第1の方向の周期を主周期、第2の方向の周期を副周期という。また、主周期をΛx、副周期をΛyとし、主周期方向の凸部52a間の距離をWx、副周期方向の凸部52a間の距離をWyとする。
In addition, the diffraction grating 52 of the diffraction grating element 51 has an uneven period in the first direction and the second direction perpendicular to each other. FIG. 16 schematically shows the diffraction grating 52. Period of the unevenness is different in the first direction and the second direction, towards the cycle of the first direction is short. Hereinafter, the period in the first direction is referred to as a main period, and the period in the second direction is referred to as a sub period. Further, the main period is Λx, the subperiod is Λy, the distance between the convex parts 52a in the main period direction is Wx, and the distance between the convex parts 52a in the subperiod direction is Wy.

回折格子52と光束の角度の関係を図17に示す。回折格子52に垂直で主周期の方向に平行な平面と、回折格子52に入射する光束の入射面との成す角φを方位角という。なお、入射角θ1は、入射する光束の主光線と回折格子52の法線との成す角であり、入射面内での角である。   The relationship between the diffraction grating 52 and the angle of the light beam is shown in FIG. An angle φ formed by a plane perpendicular to the diffraction grating 52 and parallel to the direction of the main period and the incident surface of the light beam incident on the diffraction grating 52 is referred to as an azimuth angle. The incident angle θ1 is an angle formed between the principal ray of the incident light beam and the normal line of the diffraction grating 52, and is an angle within the incident plane.

光学装置11では、光束LT、LR1、LR2を、それらの入射面が主周期の方向に対してやや傾くように、回折格子52に入射させる。したがって、光束LT、LR1、LR2の方位角φは0でない。   In the optical device 11, the light beams LT, LR1, and LR2 are incident on the diffraction grating 52 such that their incident surfaces are slightly inclined with respect to the direction of the main period. Accordingly, the azimuth angle φ of the light beams LT, LR1, and LR2 is not zero.

光学装置11における回折格子素子51の回折格子52の設定について説明する。ここで、回折格子52の凹凸の主周期(Λx)をΛ、回折格子52の凹凸の高低差をh、回折格子52を挟む2つの媒質のうち、光束の入射側に位置する方の屈折率をn1、他方の屈折率をn2、回折格子52への光束の入射角をθ1、回折格子52からの光束の出射角をθ2、光束LT、LR1、LR2の波長帯域のうち、最も短波長の帯域の最短波長、最長波長をそれぞれλ1L、λ1U、最も長波長の帯域の最短波長、最長波長をそれぞれλ3L、λ31U、中間の帯域の最短波長、最長波長をそれぞれλ2L、λ2Uとする。   The setting of the diffraction grating 52 of the diffraction grating element 51 in the optical device 11 will be described. Here, the main period (Λx) of the concave and convex portions of the diffraction grating 52 is Λ, the height difference of the concave and convex portions of the diffraction grating 52 is h, and the refractive index of the two media sandwiching the diffraction grating 52 is located on the incident side of the light beam. Is n1, the other refractive index is n2, the incident angle of the light beam to the diffraction grating 52 is θ1, the emission angle of the light beam from the diffraction grating 52 is θ2, and the shortest wavelength among the wavelength bands of the light beams LT, LR1, and LR2 The shortest wavelength and the longest wavelength of the band are λ1L and λ1U, respectively. The shortest wavelength and the longest wavelength of the longest wavelength band are λ3L and λ31U, respectively. The shortest wavelength and the longest wavelength of the intermediate band are λ2L and λ2U, respectively.

回折格子52は式(H1)〜(H5)の関係を満たす。
λ1L < λ1U < λ2L < λ2U < λ3L < λ3U ・・・ 式(H1)
n2 < n1・sinθ1 ・・・ 式(H2)
φ≠0 ・・・ 式(H3)
1/[n1・(1−sin2θ1・sin2φ)1/2+n1・sinθ1・cosφ] ≦ Λ/λ3U < Λ/λ2L ≦ 1/[(n22−n12・sin2θ1・sin2φ)1/2+n1・sinθ1・cosφ] ・・・ 式(H4)
1/[(n22−n12・sin2θ1・sin2φ)1/2+n1・sinθ1・cosφ] ≦ Λ/λ1U < Λ/λ1L ≦ 2/[n1・(1−sin2θ1・sin2φ)1/2+n1・sinθ1・cosφ] ・・・ 式(H5)
The diffraction grating 52 satisfies the relations (H1) to (H5).
λ1L <λ1U <λ2L <λ2U <λ3L <λ3U (H1)
n2 <n1 · sinθ1 Formula (H2)
φ ≠ 0 ... Formula (H3)
1 / [n1 · (1-sin 2 θ1 · sin 2 φ) 1/2 + n1 · sinθ1 · cosφ] ≤ Λ / λ3U <Λ / λ2L ≤ 1 / [(n2 2 −n1 2 · sin 2 θ1 · sin 2 φ) 1/2 + n1 ・ sinθ1 ・ cosφ] ... Formula (H4)
1 / [(n2 2 −n1 2 · sin 2 θ1 · sin 2 φ) 1/2 + n1 · sinθ1 · cosφ] ≤ Λ / λ1U <Λ / λ1L ≤ 2 / [n1 · (1-sin 2 θ1 · sin 2 φ) 1/2 + n1 ・ sinθ1 ・ cosφ] Formula (H5)

これらの関係を満たすことで、回折格子52は、送出する光LTを0次で回折反射(正反射)し、受ける2つの光束LR1、LR2を−1次で回折反射するものとなる。回折格子52と光束LR1、LR2はリトロー配置に近い関係である。   By satisfying these relationships, the diffraction grating 52 diffracts and reflects (regular reflection) the transmitted light LT in the 0th order, and diffracts and reflects the two received light beams LR1 and LR2 in the −1st order. The diffraction grating 52 and the light beams LR1 and LR2 have a relationship close to a Littrow arrangement.

送出する光束LTの中心波長を1310nm、受ける光束LR1、LR2の中心波長をそれぞれ1490nm、1555nmとし、回折格子52に光束LT、LR1、LR2を回折格子素子51の内部側から入射させるようにした設定例における光路を図18に模式的に示し、諸パラメータを表7−1に示す。光束LT、LR1、LR2の方位角φは10゜である。   Setting that the center wavelength of the transmitted light beam LT is 1310 nm, the center wavelengths of the received light beams LR1 and LR2 are 1490 nm and 1555 nm, respectively, and the light beams LT, LR1 and LR2 are incident on the diffraction grating 52 from the inside of the diffraction grating element 51. The optical path in the example is schematically shown in FIG. 18, and parameters are shown in Table 7-1. The azimuth angle φ of the light beams LT, LR1, and LR2 is 10 °.

[表7−1]
回折格子52
断面形状:矩形
凹凸主周期Λx(Λ):0.649μm
凹凸副周期Λy:1.298μm
凹凸高低差h:0.649μm
凸部主周期方向幅Wx:0.389μm
凸部副周期方向幅Wy:0.13μm
媒質屈折率:1.48
光束LT
波長(λS):1310nm
周期/波長(Λx/λS):0.495
方位角φ:10゜
入射角θ1:52.5゜
出射角θ2:52.5゜
反射率:0.77(−1.14dB)
光束LR1
波長(λM):1490nm
周期/波長(Λx/λM):0.436
方位角φ:10゜
入射角θ1:52.5゜
出射角θ2:−49.3゜
p偏光反射回折効率:0.92(−0.35dB)
s偏光反射回折効率:0.95(−0.22dB)
平均反射回折効率:0.94(−0.28dB)
光束LR2
波長(λL):1555nm
周期/波長(Λx/λL):0.417
方位角φ:10゜
入射角θ1:52.5゜
出射角θ2:−55.7゜
p偏光反射回折効率:0.82(−0.85dB)
s偏光反射回折効率:0.90(−0.45dB)
平均反射回折効率:0.86(−0.64dB)
[Table 7-1]
Diffraction grating 52
Cross-sectional shape: rectangle Uneven main period Λx (Λ): 0.649 μm
Uneven sub-period Λy: 1.298 μm
Uneven height difference h: 0.649 μm
Convex main period direction width Wx: 0.389 μm
Protrusion sub-cycle direction width Wy: 0.13 μm
Medium refractive index: 1.48
Luminous flux LT
Wavelength (λS): 1310nm
Period / wavelength (Λx / λS): 0.495
Azimuth angle φ: 10 ° Incident angle θ1: 52.5 ° Output angle θ2: 52.5 ° Reflectivity: 0.77 (−1.14 dB)
Luminous flux LR1
Wavelength (λM): 1490 nm
Period / wavelength (Λx / λM): 0.436
Azimuth angle φ: 10 ° Incident angle θ1: 52.5 ° Output angle θ2: −49.3 ° p-polarization reflection diffraction efficiency: 0.92 (−0.35 dB)
s-polarized reflection diffraction efficiency: 0.95 (−0.22 dB)
Average reflection diffraction efficiency: 0.94 (−0.28 dB)
Luminous flux LR2
Wavelength (λL): 1555nm
Period / wavelength (Λx / λL): 0.417
Azimuth angle φ: 10 ° Incident angle θ1: 52.5 ° Output angle θ2: -55.7 ° p-polarized reflection diffraction efficiency: 0.82 (−0.85 dB)
s-polarized reflection diffraction efficiency: 0.90 (−0.45 dB)
Average reflection diffraction efficiency: 0.86 (−0.64 dB)

なお、表7−1において、回折格子の凸部幅とは、光束LT、LR1、LR2の入射側(回折格子素子51の内部)に向かって凸部となっている部分の幅である。   In Table 7-1, the width of the convex portion of the diffraction grating is the width of the portion that is convex toward the incident side of the light beams LT, LR1, and LR2 (inside the diffraction grating element 51).

波長帯域の幅が100nmのときの光束LTの最短波長(λ1L)、最長波長(λ1U)に関するパラメータを表7−2、7−3に示し、波長帯域の幅が20nmのときの光束LR1の最短波長(λ2L)、最長波長(λ2U)に関するパラメータを表7−4、7−5に示し、波長帯域の幅が10nmのときの光束LR2の最短波長(λ3L)、最長波長(λ3U)に関するパラメータを表7−6、7−7に示す。   Parameters relating to the shortest wavelength (λ1L) and longest wavelength (λ1U) of the light beam LT when the wavelength band width is 100 nm are shown in Tables 7-2 and 7-3, and the shortest light beam LR1 when the wavelength band width is 20 nm. Parameters relating to the wavelength (λ2L) and the longest wavelength (λ2U) are shown in Tables 7-4 and 7-5, and the parameters relating to the shortest wavelength (λ3L) and the longest wavelength (λ3U) of the light beam LR2 when the wavelength band width is 10 nm. Tables 7-6 and 7-7 show.

[表7−2]
光束LT
最短波長(λ1L):1260nm
周期/波長(Λx/λ1L):0.515
方位角φ:10゜
入射角θ1:52.5゜
出射角θ2:52.5゜
反射率:0.82(−0.86dB)
[表7−3]
光束LT
最長波長(λ1U):1360nm
周期/波長(Λx/λ1U):0.477
方位角φ:10゜
入射角θ1:52.5゜
出射角θ2:52.5゜
反射率:0.72(−1.46dB)
[Table 7-2]
Luminous flux LT
Shortest wavelength (λ1L): 1260nm
Period / wavelength (Λx / λ1L): 0.515
Azimuth angle φ: 10 ° Incident angle θ1: 52.5 ° Outgoing angle θ2: 52.5 ° Reflectivity: 0.82 (−0.86 dB)
[Table 7-3]
Luminous flux LT
Maximum wavelength (λ1U): 1360 nm
Period / wavelength (Λx / λ1U): 0.477
Azimuth angle φ: 10 ° Incident angle θ1: 52.5 ° Output angle θ2: 52.5 ° Reflectivity: 0.72 (−1.46 dB)

[表7−4]
光束LR1
最短波長(λ2L):1480nm
周期/波長(Λx/λ2L):0.438
方位角φ:10゜
入射角θ1:52.5゜
出射角θ2:−48.4゜
p偏光反射回折効率:0.91(−0.40dB)
s偏光反射回折効率:0.92(−0.35dB)
平均反射回折効率:0.92(−0.37dB)
[表7−5]
光束LR1
最長波長(λ2U):1500nm
周期/波長(Λx/λ2U):0.433
方位角φ:10゜
入射角θ1:52.5゜
出射角θ2:−50.2゜
p偏光反射回折効率:0.93(−0.34dB)
s偏光反射回折効率:0.96(−0.16dB)
平均反射回折効率:0.95(−0.25dB)
[Table 7-4]
Luminous flux LR1
Shortest wavelength (λ2L): 1480 nm
Period / wavelength (Λx / λ2L): 0.438
Azimuth angle φ: 10 ° Incident angle θ1: 52.5 ° Output angle θ2: -48.4 ° p-polarization reflection diffraction efficiency: 0.91 (-0.40 dB)
s-polarized reflection diffraction efficiency: 0.92 (−0.35 dB)
Average reflection diffraction efficiency: 0.92 (−0.37 dB)
[Table 7-5]
Luminous flux LR1
Maximum wavelength (λ2U): 1500nm
Period / wavelength (Λx / λ2U): 0.433
Azimuth angle φ: 10 ° Incident angle θ1: 52.5 ° Outgoing angle θ2: −50.2 ° p-polarized reflection diffraction efficiency: 0.93 (−0.34 dB)
s-polarized reflection diffraction efficiency: 0.96 (−0.16 dB)
Average reflection diffraction efficiency: 0.95 (−0.25 dB)

[表7−6]
光束LR2
最短波長(λ3L):1550nm
周期/波長(Λx/λ3L):0.419
方位角φ:10゜
入射角θ1:52.5゜
出射角θ2:−55.1゜
p偏光反射回折効率:0.84(−0.77dB)
s偏光反射回折効率:0.92(−0.38dB)
平均反射回折効率:0.88(−0.57dB)
[表7−7]
光束LR2
最長波長(λ3U):1560nm
周期/波長(Λx/λ3U):0.416
方位角φ:10゜
入射角θ1:52.5゜
出射角θ2:−56.2゜
p偏光反射回折効率:0.81(−0.94dB)
s偏光反射回折効率:0.89(−0.52dB)
平均反射回折効率:0.85(−0.72dB)
[Table 7-6]
Luminous flux LR2
Shortest wavelength (λ3L): 1550 nm
Period / wavelength (Λx / λ3L): 0.419
Azimuth angle φ: 10 ° Incident angle θ1: 52.5 ° Output angle θ2: -55.1 ° p-polarization reflection diffraction efficiency: 0.84 (-0.77 dB)
s-polarized reflection diffraction efficiency: 0.92 (−0.38 dB)
Average reflection diffraction efficiency: 0.88 (−0.57 dB)
[Table 7-7]
Luminous flux LR2
Longest wavelength (λ3U): 1560 nm
Period / wavelength (Λx / λ3U): 0.416
Azimuth angle φ: 10 ° Incident angle θ1: 52.5 ° Output angle θ2: -56.2 ° p-polarization reflection diffraction efficiency: 0.81 (-0.94 dB)
s-polarized reflection diffraction efficiency: 0.89 (−0.52 dB)
Average reflection diffraction efficiency: 0.85 (−0.72 dB)

式(H4)の下限値および上限値、すなわち、次の2式の値はそれぞれ0.381および0.468であり、光束LR1、LR2の周期/波長の値は式(H4)を満たしている。
1/[n1・(1−sin2θ1・sin2φ)1/2+n1・sinθ1・cosφ]
1/[(n22−n12・sin2θ1・sin2φ)1/2+n1・sinθ1・cosφ]
The lower limit value and upper limit value of the formula (H4), that is, the values of the following two formulas are 0.381 and 0.468, respectively, and the period / wavelength values of the light beams LR1 and LR2 satisfy the formula (H4). .
1 / [n1 ・ (1-sin 2 θ1 ・ sin 2 φ) 1/2 + n1 ・ sinθ1 ・ cosφ]
1 / [(n2 2 −n1 2 · sin 2 θ1 · sin 2 φ) 1/2 + n1 · sinθ1 · cosφ]

また、式(H5)の下限値および上限値、すなわち次の2式の値はそれぞれ0.468および0.763であり、光束LTの周期/波長の値は式(H5)を満たしている。
1/[(n22−n12・sin2θ1・sin2φ)1/2+n1・sinθ1・cosφ]
2/[n1・(1−sin2θ1・sin2φ)1/2+n1・sinθ1・cosφ]
Further, the lower limit value and upper limit value of the formula (H5), that is, the values of the following two formulas are 0.468 and 0.763, respectively, and the period / wavelength value of the light beam LT satisfies the formula (H5).
1 / [(n2 2 −n1 2・ sin 2 θ1 ・ sin 2 φ) 1/2 + n1 ・ sinθ1 ・ cosφ]
2 / [n1 ・ (1-sin 2 θ1 ・ sin 2 φ) 1/2 + n1 ・ sinθ1 ・ cosφ]

式(H4)を満たすことで、−1次の回折反射光とする比較的長波長の光束LR1、LR2の回折効率を高くすることができる。また、式(H5)を満たすことで、回折させずに正反射する比較的短波長の光束LTの反射率を高くすることができる。   By satisfying the formula (H4), it is possible to increase the diffraction efficiency of the light beams LR1 and LR2 having a relatively long wavelength as the −1st order diffraction reflected light. Further, by satisfying the formula (H5), it is possible to increase the reflectance of the light beam LT having a relatively short wavelength that is regularly reflected without being diffracted.

本実施形態の光学装置では、回折格子52と光束LR1、LR2がリトロー配置に近い関係であるが、方位角φが0でないため、光ファイバ31と受光部41、43(図6)との干渉を低減できて、装置全体の設計が容易である。ただし、方位角φが0〜0.5゜の範囲では光ファイバ31と受光部41、43とが干渉し易くなる。また、方位角φが15゜を超えると、不要な次数の回折光が多くなる。したがって、方位角φは0.5゜以上、15゜以下とするのが好ましい。   In the optical device according to the present embodiment, the diffraction grating 52 and the light beams LR1 and LR2 are in a relationship close to the Littrow arrangement, but the azimuth angle φ is not 0, so that the optical fiber 31 and the light receiving units 41 and 43 (FIG. 6) interfere with each other. The overall design of the apparatus is easy. However, when the azimuth angle φ is in the range of 0 to 0.5 °, the optical fiber 31 and the light receiving portions 41 and 43 easily interfere with each other. Further, when the azimuth angle φ exceeds 15 °, unnecessary orders of diffracted light increase. Therefore, the azimuth angle φ is preferably 0.5 ° or more and 15 ° or less.

比較のために、光束LT、LR1、LR2の方位角φを0゜としたときのパラメータを表8−1〜8−7に示す。   For comparison, Tables 8-1 to 8-7 show parameters when the azimuth angle φ of the light beams LT, LR1, and LR2 is 0 °.

[表8−1]
回折格子
断面形状:矩形
凹凸主周期Λx(Λ):0.649μm
凹凸副周期Λy:1.298μm
凹凸高低差h:0.649μm
凸部主周期方向幅Wx:0.389μm
凸部副周期方向幅Wy:0.13μm
媒質屈折率:1.48
光束LT
波長(λS):1310nm
周期/波長(Λx/λS):0.495
方位角φ:0゜
入射角θ1:52.5゜
出射角θ2:52.5゜
反射率:0.81(−0.90dB)
光束LR1
波長(λM):1490nm
周期/波長(Λx/λM):0.436
方位角φ:0゜
入射角θ1:52.5゜
出射角θ2:−49.3゜
p偏光反射回折効率:0.88(−0.55dB)
s偏光反射回折効率:0.85(−0.71dB)
平均反射回折効率:0.86(−0.63dB)
光束LR2
波長(λL):1555nm
周期/波長(Λx/λL):0.417
方位角φ:0゜
入射角θ1:52.5゜
出射角θ2:−55.7゜
p偏光反射回折効率:0.87(−0.59dB)
s偏光反射回折効率:0.95(−0.23dB)
平均反射回折効率:0.91(−0.41dB)
[Table 8-1]
Diffraction grating Cross-sectional shape: Rectangle Uneven main period Λx (Λ): 0.649 μm
Uneven sub-period Λy: 1.298 μm
Uneven height difference h: 0.649 μm
Convex main period direction width Wx: 0.389 μm
Protrusion sub-cycle direction width Wy: 0.13 μm
Medium refractive index: 1.48
Luminous flux LT
Wavelength (λS): 1310nm
Period / wavelength (Λx / λS): 0.495
Azimuth angle φ: 0 ° Incident angle θ1: 52.5 ° Output angle θ2: 52.5 ° Reflectivity: 0.81 (−0.90 dB)
Luminous flux LR1
Wavelength (λM): 1490 nm
Period / wavelength (Λx / λM): 0.436
Azimuth angle φ: 0 ° Incident angle θ1: 52.5 ° Output angle θ2: -49.3 ° p-polarization reflection diffraction efficiency: 0.88 (-0.55 dB)
s-polarized reflection diffraction efficiency: 0.85 (−0.71 dB)
Average reflection diffraction efficiency: 0.86 (−0.63 dB)
Luminous flux LR2
Wavelength (λL): 1555nm
Period / wavelength (Λx / λL): 0.417
Azimuth angle φ: 0 ° Incident angle θ1: 52.5 ° Output angle θ2: -55.7 ° p-polarization reflection diffraction efficiency: 0.87 (−0.59 dB)
s-polarized reflection diffraction efficiency: 0.95 (−0.23 dB)
Average reflection diffraction efficiency: 0.91 (−0.41 dB)

[表8−2]
光束LT
最短波長(λ1L):1260nm
周期/波長(Λx/λ1L):0.515
方位角φ:0゜
入射角θ1:52.5゜
出射角θ2:52.5゜
反射率:0.88(−0.57dB)
[表8−3]
光束LT
最長波長(λ1U):1360nm
周期/波長(Λx/λ1U):0.477
方位角φ:0゜
入射角θ1:52.5゜
出射角θ2:52.5゜
反射率:0.76(−1.21dB)
[Table 8-2]
Luminous flux LT
Shortest wavelength (λ1L): 1260nm
Period / wavelength (Λx / λ1L): 0.515
Azimuth angle φ: 0 ° Incident angle θ1: 52.5 ° Output angle θ2: 52.5 ° Reflectivity: 0.88 (−0.57 dB)
[Table 8-3]
Luminous flux LT
Maximum wavelength (λ1U): 1360 nm
Period / wavelength (Λx / λ1U): 0.477
Azimuth angle φ: 0 ° Incident angle θ1: 52.5 ° Output angle θ2: 52.5 ° Reflectivity: 0.76 (−1.21 dB)

[表8−4]
光束LR1
最短波長(λ2L):1480nm
周期/波長(Λx/λ2L):0.438
方位角φ:0゜
入射角θ1:52.5゜
出射角θ2:−48.4゜
p偏光反射回折効率:0.85(−0.70dB)
s偏光反射回折効率:0.79(−1.00dB)
平均反射回折効率:0.82(−0.85dB)
[表8−5]
光束LR1
最長波長(λ2U):1500nm
周期/波長(Λx/λ2U):0.433
方位角φ:0゜
入射角θ1:52.5゜
出射角θ2:−50.2゜
p偏光反射回折効率:0.90(−0.45dB)
s偏光反射回折効率:0.89(−0.50dB)
平均反射回折効率:0.90(−0.48dB)
[Table 8-4]
Luminous flux LR1
Shortest wavelength (λ2L): 1480 nm
Period / wavelength (Λx / λ2L): 0.438
Azimuth angle φ: 0 ° Incident angle θ1: 52.5 ° Output angle θ2: -48.4 ° p-polarization reflection diffraction efficiency: 0.85 (−0.70 dB)
s-polarized reflection diffraction efficiency: 0.79 (-1.00 dB)
Average reflection diffraction efficiency: 0.82 (−0.85 dB)
[Table 8-5]
Luminous flux LR1
Maximum wavelength (λ2U): 1500nm
Period / wavelength (Λx / λ2U): 0.433
Azimuth angle φ: 0 ° Incident angle θ1: 52.5 ° Output angle θ2: -50.2 ° p-polarization reflection diffraction efficiency: 0.90 (-0.45 dB)
s-polarized reflection diffraction efficiency: 0.89 (−0.50 dB)
Average reflection diffraction efficiency: 0.90 (−0.48 dB)

[表8−6]
光束LR2
最短波長(λ3L):1550nm
周期/波長(Λx/λ3L):0.419
方位角φ:0゜
入射角θ1:52.5゜
出射角θ2:−55.1゜
p偏光反射回折効率:0.88(−0.53dB)
s偏光反射回折効率:0.95(−0.21dB)
平均反射回折効率:0.92(−0.37dB)
[表8−7]
光束LR2
最長波長(λ3U):1560nm
周期/波長(Λx/λ3U):0.416
方位角φ:0゜
入射角θ1:52.5゜
出射角θ2:−56.2゜
p偏光反射回折効率:0.86(−0.64dB)
s偏光反射回折効率:0.94(−0.26dB)
平均反射回折効率:0.90(−0.45dB)
[Table 8-6]
Luminous flux LR2
Shortest wavelength (λ3L): 1550 nm
Period / wavelength (Λx / λ3L): 0.419
Azimuth angle φ: 0 ° Incident angle θ1: 52.5 ° Output angle θ2: -55.1 ° p-polarization reflection diffraction efficiency: 0.88 (-0.53 dB)
s-polarized reflection diffraction efficiency: 0.95 (−0.21 dB)
Average reflection diffraction efficiency: 0.92 (−0.37 dB)
[Table 8-7]
Luminous flux LR2
Longest wavelength (λ3U): 1560 nm
Period / wavelength (Λx / λ3U): 0.416
Azimuth angle φ: 0 ° Incident angle θ1: 52.5 ° Output angle θ2: -56.2 ° p-polarization reflection diffraction efficiency: 0.86 (-0.64 dB)
s-polarized reflection diffraction efficiency: 0.94 (−0.26 dB)
Average reflection diffraction efficiency: 0.90 (−0.45 dB)

表7−1〜7−7と表8−1〜8−7との比較より、方位角φを10゜としても、方位角φが0゜の場合に匹敵する良好な回折効率が得られることが判る。   From the comparison between Tables 7-1 to 7-7 and Tables 8-1 to 8-7, even when the azimuth angle φ is 10 °, a good diffraction efficiency comparable to that when the azimuth angle φ is 0 ° is obtained. I understand.

回折後の光束と主周期方向との角度についてついて説明する。回折格子52上に投影した回折後の光束の主光線と主周期の方向との成す角をαとし、波長をλとすると、式(J1)、(J2)の関係を満たす必要がある。また、本実施形態のようにリトロー配置に近い場合、式(J3)が成り立つ。
{n1・sinθ1−(λ/Λ)・cosφ}2+{(λ/Λ)・sinφ}2 = (n1・sinθ2)2
・・・ 式(J1)
sinα = λ・sinφ/(n1・Λ・sinθ2) ・・・ 式(J2)
λ/Λ = 2・n1・sinθ1 ・・・ 式(J3)
The angle between the diffracted light beam and the main period direction will be described. When the angle formed by the principal ray of the diffracted light beam projected onto the diffraction grating 52 and the direction of the principal period is α and the wavelength is λ, it is necessary to satisfy the relations of the expressions (J1) and (J2). Further, when close to the Littrow arrangement as in the present embodiment, Expression (J3) is established.
{N1 · sinθ1− (λ / Λ) · cosφ} 2 + {(λ / Λ) · sinφ} 2 = (n1 · sinθ2) 2
... Formula (J1)
sinα = λ · sinφ / (n1 · Λ · sinθ2) Equation (J2)
λ / Λ = 2 ・ n1 ・ sinθ1 Formula (J3)

式(J1)〜(J3)より式(J4)が得られる。式(J4)は、回折後の光束が、方位角φの2倍の角度で主周期の方向から分離することを示している。
sinα ≒ 2・sinφ ・・・ 式(J4)
The formula (J4) is obtained from the formulas (J1) to (J3). Equation (J4) indicates that the diffracted light beam is separated from the direction of the main period at an angle twice the azimuth angle φ.
sinα ≒ 2 ・ sinφ ... Formula (J4)

なお、回折格子52を曲面上に設けることも可能である。その場合、第9の実施形態で説明したように、回折格子52上の任意の位置における接平面Pに回折格子52を投影し、接平面Pに対する入射角をθ1、接平面P上の周期をΛとして、式(H1)〜(H5)の条件を満たすようにする。   It is also possible to provide the diffraction grating 52 on a curved surface. In that case, as described in the ninth embodiment, the diffraction grating 52 is projected onto the tangent plane P at an arbitrary position on the diffraction grating 52, the incident angle with respect to the tangential plane P is θ1, and the period on the tangent plane P is As Λ, the conditions of the expressions (H1) to (H5) are satisfied.

また、本実施形態の回折格子は2つの光束R1、R2を受けるものであるが、波長帯域が異なる3つ以上の光束を受けるようにすることも可能である。その場合、受ける光束のうち最も長波長の波長帯域の最長波長をλ3U、2番目に長波長の波長帯域の最短波長をλ2Lとして、式(H4)を満たすようにすればよい。   Moreover, although the diffraction grating of this embodiment receives two light beams R1 and R2, it is also possible to receive three or more light beams having different wavelength bands. In this case, the longest wavelength band of the received light flux is λ3U, the shortest wavelength of the second longest wavelength band is λ2L, and the equation (H4) may be satisfied.

<第12の実施形態>
第12の実施形態の光学装置12も、光通信における送受信用の装置であり、図6に示した第4の実施形態の光学装置4と同様に、光ファイバ31を介して光束LTを送出するとともに、光ファイバ31を介して2つの光束LR1、LR2を受ける。光束LT、LR1、LR2の波長帯域は異なる。
<Twelfth Embodiment>
The optical device 12 of the twelfth embodiment is also a device for transmission / reception in optical communication, and sends out the light beam LT via the optical fiber 31 as in the optical device 4 of the fourth embodiment shown in FIG. At the same time, the two light beams LR1 and LR2 are received via the optical fiber 31. The wavelength bands of the light beams LT, LR1, and LR2 are different.

光学装置12における回折格子素子51の回折格子52の設定について説明する。ここで、回折格子52の凹凸の主周期をΛ、回折格子52の凹凸の高低差をh、回折格子52を挟む2つの媒質のうち、光束の入射側に位置する方の屈折率をn1、他方の屈折率をn2、回折格子52への光束の入射角をθ1、回折格子52からの光束の出射角をθ2、光束LT、LR1、LR2の波長帯域のうち、最も短波長の帯域の最短波長、最長波長をそれぞれλ1L、λ1U、最も長波長の帯域の最短波長、最長波長をそれぞれλ3L、λ31U、中間の帯域の最短波長、最長波長をそれぞれλ2L、λ2Uとする。   The setting of the diffraction grating 52 of the diffraction grating element 51 in the optical device 12 will be described. Here, the main period of the concave and convex portions of the diffraction grating 52 is Λ, the difference in height of the concave and convex portions of the diffraction grating 52 is h, and the refractive index of the two media sandwiching the diffraction grating 52 that is located on the incident side of the light beam is n1. The other refractive index is n2, the incident angle of the light beam to the diffraction grating 52 is θ1, the emission angle of the light beam from the diffraction grating 52 is θ2, and the shortest of the shortest wavelength bands among the wavelength bands of the light beams LT, LR1, and LR2. The wavelength and the longest wavelength are λ1L and λ1U, respectively, the shortest wavelength in the longest wavelength band, the longest wavelength is λ3L and λ31U, respectively, and the shortest wavelength and the longest wavelength in the intermediate band are λ2L and λ2U, respectively.

回折格子52は式(K1)〜(K5)の関係を満たす。
λ1L < λ1U < λ2L < λ2U < λ3L < λ3U ・・・ 式(K1)
n2 < n1・sinθ1 ・・・ 式(K2)
1/(n1+n1・sinθ1) ≦ Λ/λ3U < Λ/λ2L ≦ 1/(n2+n1・sinθ1)
・・・ 式(K3)
1/(n2+n1・sinθ1) ≦ Λ/λ1U < Λ/λ1L ≦ 2/(n1+n1・sinθ1)
・・・ 式(K4)
Λ/λ3L < 1/(2・n1・sinθ1) < Λ/λ2U ・・・ 式(K5)
The diffraction grating 52 satisfies the relationships of equations (K1) to (K5).
λ1L <λ1U <λ2L <λ2U <λ3L <λ3U Equation (K1)
n2 <n1 · sinθ1 Equation (K2)
1 / (n1 + n1 · sinθ1) ≤ Λ / λ3U <Λ / λ2L ≤ 1 / (n2 + n1 · sinθ1)
... Formula (K3)
1 / (n2 + n1 · sinθ1) ≦ Λ / λ1U <Λ / λ1L ≦ 2 / (n1 + n1 · sinθ1)
... Formula (K4)
Λ / λ3L <1 / (2 · n1 · sinθ1) <Λ / λ2U Equation (K5)

これらの関係を満たすことで、回折格子52は、送出する光束LTを0次で回折反射(正反射)し、受ける2つの光束LR1、LR2を−1次で回折反射するものとなる。
By satisfying these relationships, the diffraction grating 52 diffracts and reflects (regular reflection) the transmitted light beam LT in the 0th order, and diffracts and reflects the received two light beams LR1 and LR2 in the −1st order .

送出する光束LTの中心波長を1310nm、受ける光束LR1、LR2の中心波長をそれぞれ1490nm、1555nmとし、回折格子52に光束LT、LR1、LR2を回折格子素子51の内部側から入射させるようにした設定例における光路を図19に模式的に示し、諸パラメータを表9−1に示す。   Setting that the center wavelength of the transmitted light beam LT is 1310 nm, the center wavelengths of the received light beams LR1 and LR2 are 1490 nm and 1555 nm, respectively, and the light beams LT, LR1 and LR2 are incident on the diffraction grating 52 from the inside of the diffraction grating element 51. The optical path in the example is schematically shown in FIG. 19, and various parameters are shown in Table 9-1.

[表9−1]
回折格子52
断面形状:矩形
凹凸周期Λ:0.645μm
凹凸高低差h:0.709μm
凸部幅:0.451μm
媒質屈折率:1.48
光束LT
波長(λS):1310nm
周期/波長(Λ/λS):0.492
入射角θ1:53゜
出射角θ2:53゜
反射率:0.96(−0.18dB)
光束LR1
波長(λM):1490nm
周期/波長(Λ/λM):0.433
入射角θ1:53゜
出射角θ2:−49.7゜
p偏光反射回折効率:0.81(−0.92dB)
s偏光反射回折効率:0.83(−0.79dB)
平均反射回折効率:0.82(−0.85dB)
p偏光、s偏光回折効率差:0.13dB
光束LR2
波長(λL):1555nm
周期/波長(Λ/λL):0.415
入射角θ1:53゜
出射角θ2:−56.2゜
p偏光反射回折効率:0.88(−0.56dB)
s偏光反射回折効率:0.90(−0.45dB)
平均反射回折効率:0.89(−0.51dB)
p偏光、s偏光回折効率差:0.11dB
[Table 9-1]
Diffraction grating 52
Cross-sectional shape: Rectangle Unevenness period Λ: 0.645 μm
Uneven height difference h: 0.709 μm
Convex width: 0.451 μm
Medium refractive index: 1.48
Luminous flux LT
Wavelength (λS): 1310nm
Period / wavelength (Λ / λS): 0.492
Incident angle θ1: 53 ° Output angle θ2: 53 ° Reflectance: 0.96 (−0.18 dB)
Luminous flux LR1
Wavelength (λM): 1490 nm
Period / wavelength (Λ / λM): 0.433
Incident angle θ1: 53 ° Output angle θ2: −49.7 ° p-polarization reflection diffraction efficiency: 0.81 (−0.92 dB)
s-polarized reflection diffraction efficiency: 0.83 (−0.79 dB)
Average reflection diffraction efficiency: 0.82 (−0.85 dB)
Difference in diffraction efficiency between p-polarized light and s-polarized light: 0.13 dB
Luminous flux LR2
Wavelength (λL): 1555nm
Period / wavelength (Λ / λL): 0.415
Incident angle θ1: 53 ° Output angle θ2: −56.2 ° p-polarization reflection diffraction efficiency: 0.88 (−0.56 dB)
s-polarized reflection diffraction efficiency: 0.90 (−0.45 dB)
Average reflection diffraction efficiency: 0.89 (−0.51 dB)
Difference in diffraction efficiency between p-polarized light and s-polarized light: 0.11 dB

なお、表9−1において、回折格子の凸部幅とは、光束LT、LR1、LR2の入射側(回折格子素子51の内部)に向かって凸部となっている部分の幅である。   In Table 9-1, the width of the convex portion of the diffraction grating is the width of the portion that is convex toward the incident side (inside the diffraction grating element 51) of the light beams LT, LR1, and LR2.

波長帯域の幅が100nmのときの光束LTの最短波長(λ1L)、最長波長(λ1U)に関するパラメータを表9−2、9−3に示し、波長帯域の幅が20nmのときの光束LR1の最短波長(λ2L)、最長波長(λ2U)に関するパラメータを表9−4、9−5に示し、波長帯域の幅が10nmのときの光束LR2の最短波長(λ3L)、最長波長(λ3U)に関するパラメータを表9−6、9−7に示す。   Parameters relating to the shortest wavelength (λ1L) and longest wavelength (λ1U) of the light beam LT when the wavelength band width is 100 nm are shown in Tables 9-2 and 9-3, and the shortest light beam LR1 when the wavelength band width is 20 nm. The parameters relating to the wavelength (λ2L) and the longest wavelength (λ2U) are shown in Tables 9-4 and 9-5, and the parameters relating to the shortest wavelength (λ3L) and the longest wavelength (λ3U) of the light beam LR2 when the wavelength band width is 10 nm. Tables 9-6 and 9-7 show.

[表9−2]
光束LT
最短波長(λ1L):1260nm
周期/波長(Λ/λ1L):0.512
入射角θ1:53゜
出射角θ2:53゜
反射率:1.00(−0.01dB)
[表9−3]
光束LT
最長波長(λ1U):1360nm
周期/波長(Λ/λ1U):0.474
入射角θ1:53゜
出射角θ2:53゜
反射率:0.89(−0.49dB)
[Table 9-2]
Luminous flux LT
Shortest wavelength (λ1L): 1260nm
Period / wavelength (Λ / λ1L): 0.512
Incident angle θ1: 53 ° Output angle θ2: 53 ° Reflectance: 1.00 (−0.01 dB)
[Table 9-3]
Luminous flux LT
Maximum wavelength (λ1U): 1360 nm
Period / wavelength (Λ / λ1U): 0.474
Incident angle θ1: 53 ° Output angle θ2: 53 ° Reflectance: 0.89 (−0.49 dB)

[表9−4]
光束LR1
最短波長(λ2L):1480nm
周期/波長(Λ/λ2L):0.436
入射角θ1:53゜
出射角θ2:−48.8゜
p偏光反射回折効率:0.76(−1.19dB)
s偏光反射回折効率:0.78(−1.09dB)
平均反射回折効率:0.77(−1.14dB)
p偏光、s偏光回折効率差:0.10dB
[表9−5]
光束LR1
最長波長(λ2U):1500nm
周期/波長(Λ/λ2U):0.430
入射角θ1:53゜
出射角θ2:−50.7゜
p偏光反射回折効率:0.85(−0.73dB)
s偏光反射回折効率:0.88(−0.58dB)
平均反射回折効率:0.86(−0.65dB)
p偏光、s偏光回折効率差:0.15dB
[Table 9-4]
Luminous flux LR1
Shortest wavelength (λ2L): 1480 nm
Period / wavelength (Λ / λ2L): 0.436
Incident angle θ1: 53 ° Output angle θ2: −48.8 ° p-polarization reflection diffraction efficiency: 0.76 (−1.19 dB)
s-polarized reflection diffraction efficiency: 0.78 (−1.09 dB)
Average reflection diffraction efficiency: 0.77 (−1.14 dB)
Difference in diffraction efficiency between p-polarized light and s-polarized light: 0.10 dB
[Table 9-5]
Luminous flux LR1
Maximum wavelength (λ2U): 1500nm
Period / wavelength (Λ / λ2U): 0.430
Incident angle θ1: 53 ° Output angle θ2: −50.7 ° p-polarization reflection diffraction efficiency: 0.85 (−0.73 dB)
s-polarized reflection diffraction efficiency: 0.88 (−0.58 dB)
Average reflection diffraction efficiency: 0.86 (−0.65 dB)
Difference in diffraction efficiency between p-polarized light and s-polarized light: 0.15 dB

[表9−6]
光束LR2
最短波長(λ3L):1550nm
周期/波長(Λ/λ3L):0.416
入射角θ1:53゜
出射角θ2:−55.7゜
p偏光反射回折効率:0.89(−0.52dB)
s偏光反射回折効率:0.91(−0.41dB)
平均反射回折効率:0.90(−0.47dB)
p偏光、s偏光回折効率差:0.11dB
[表9−7]
光束LR2
最長波長(λ3U):1560nm
周期/波長(Λ/λ3U):0.413
入射角θ1:53゜
出射角θ2:−56.8゜
p偏光反射回折効率:0.87(−0.60dB)
s偏光反射回折効率:0.89(−0.50dB)
平均反射回折効率:0.88(−0.55dB)
p偏光、s偏光回折効率差:0.10dB
[Table 9-6]
Luminous flux LR2
Shortest wavelength (λ3L): 1550 nm
Period / wavelength (Λ / λ3L): 0.416
Incident angle θ1: 53 ° Output angle θ2: −55.7 ° p-polarization reflection diffraction efficiency: 0.89 (−0.52 dB)
s-polarized reflection diffraction efficiency: 0.91 (−0.41 dB)
Average reflection diffraction efficiency: 0.90 (−0.47 dB)
Difference in diffraction efficiency between p-polarized light and s-polarized light: 0.11 dB
[Table 9-7]
Luminous flux LR2
Longest wavelength (λ3U): 1560 nm
Period / wavelength (Λ / λ3U): 0.413
Incident angle θ1: 53 ° Output angle θ2: −56.8 ° p-polarization reflection diffraction efficiency: 0.87 (−0.60 dB)
s-polarized reflection diffraction efficiency: 0.89 (−0.50 dB)
Average reflection diffraction efficiency: 0.88 (−0.55 dB)
Difference in diffraction efficiency between p-polarized light and s-polarized light: 0.10 dB

式(K3)の下限値および上限値、すなわち、次の2式の値はそれぞれ0.376および0.458であり、光束LR1、LR2の周期/波長の値は式(K3)を満たしている。
1/(n1+n1・sinθ1)
1/(n2+n1・sinθ1)
The lower limit value and upper limit value of the equation (K3), that is, the values of the following two equations are 0.376 and 0.458, respectively, and the period / wavelength values of the light beams LR1 and LR2 satisfy the equation (K3). .
1 / (n1 + n1 · sinθ1)
1 / (n2 + n1 ・ sinθ1)

また、式(K4)の下限値および上限値、すなわち次の2式の値はそれぞれ0.458および0.751であり、光束LTの周期/波長の値は式(K4)を満たしている。
1/(n2+n1・sinθ1)
2/(n1+n1・sinθ1)
Further, the lower limit value and the upper limit value of the formula (K4), that is, the values of the following two formulas are 0.458 and 0.751, respectively, and the period / wavelength value of the light beam LT satisfies the formula (K4).
1 / (n2 + n1 ・ sinθ1)
2 / (n1 + n1 · sinθ1)

さらに、次の式の値は0.423であり、光束LR1、LR2の周期/波長の値は式(K5)を満たしている。
1/(2・n1・sinθ1)
Further, the value of the following equation is 0.423, and the period / wavelength values of the light beams LR1 and LR2 satisfy the equation (K5).
1 / (2 ・ n1 ・ sinθ1)

式(K3)を満たすことで、−1次の回折反射光とする比較的長波長の光束LR1、LR2の回折効率を高くすることができる。また、式(K4)を満たすことで、回折させずに正反射する比較的短波長の光束LTの反射率を高くすることができる。さらに、式(K5)を満たすことで、比較的長波長の光束LR1、LR2のp偏光とs偏光の回折効率の差を小さくすることができる。上記の設定では、p偏光とs偏光の回折効率の差は、光束LR1では0.10〜0.15dB、光束LR2では0.10〜0.11dBとなっている。   By satisfying the expression (K3), it is possible to increase the diffraction efficiency of the light beams LR1 and LR2 having a relatively long wavelength as the −1st order diffraction reflected light. Further, by satisfying the equation (K4), the reflectance of the light beam LT having a relatively short wavelength that is regularly reflected without being diffracted can be increased. Furthermore, by satisfying the equation (K5), the difference in diffraction efficiency between the p-polarized light and the s-polarized light of the light beams LR1 and LR2 having relatively long wavelengths can be reduced. In the above setting, the difference in diffraction efficiency between the p-polarized light and the s-polarized light is 0.10 to 0.15 dB for the light beam LR1 and 0.10 to 0.11 dB for the light beam LR2.

比較のために、式(K1)〜(K4)を満たすものの、式(K5)を満たさない設定でのパラメータを表10−1〜10−7に示す。   For comparison, Tables 10-1 to 10-7 show parameters with settings that satisfy Expressions (K1) to (K4) but do not satisfy Expression (K5).

[表10−1]
回折格子
断面形状:矩形
凹凸周期Λ:0.629μm
凹凸高低差h:0.645μm
凸部幅:0.239μm
媒質屈折率:1.5
光束LT
波長(λS):1310nm
周期/波長(Λ/λS):0.480
入射角θ1:51゜
出射角θ2:51゜
反射率:0.76(−1.21dB)
光束LR1
波長(λM):1490nm
周期/波長(Λ/λM):0.422
入射角θ1:51゜
出射角θ2:−53.3゜
p偏光反射回折効率:0.95(−0.22dB)
s偏光反射回折効率:0.85(−0.72dB)
平均反射回折効率:0.90(−0.46dB)
p偏光、s偏光回折効率差:0.51dB
光束LR2
波長(λL):1555nm
周期/波長(Λ/λL):0.405
入射角θ1:51゜
出射角θ2:−60.6゜
p偏光反射回折効率:0.76(−1.17dB)
s偏光反射回折効率:0.75(−1.23dB)
平均反射回折効率:0.76(−1.20dB)
p偏光、s偏光回折効率差:0.06dB
[Table 10-1]
Diffraction grating Cross-sectional shape: Rectangle Unevenness period Λ: 0.629 μm
Uneven height difference h: 0.645 μm
Convex width: 0.239 μm
Medium refractive index: 1.5
Luminous flux LT
Wavelength (λS): 1310nm
Period / wavelength (Λ / λS): 0.480
Incident angle θ1: 51 ° Output angle θ2: 51 ° Reflectance: 0.76 (−1.21 dB)
Luminous flux LR1
Wavelength (λM): 1490 nm
Period / wavelength (Λ / λM): 0.422
Incident angle θ1: 51 ° Output angle θ2: −53.3 ° p-polarization reflection diffraction efficiency: 0.95 (−0.22 dB)
s-polarized reflection diffraction efficiency: 0.85 (−0.72 dB)
Average reflection diffraction efficiency: 0.90 (−0.46 dB)
p-polarization, s-polarization diffraction efficiency difference: 0.51 dB
Luminous flux LR2
Wavelength (λL): 1555nm
Period / wavelength (Λ / λL): 0.405
Incident angle θ1: 51 ° Output angle θ2: −60.6 ° p-polarized reflection diffraction efficiency: 0.76 (−1.17 dB)
s-polarized reflection diffraction efficiency: 0.75 (−1.23 dB)
Average reflection diffraction efficiency: 0.76 (−1.20 dB)
Difference in diffraction efficiency between p-polarized light and s-polarized light: 0.06 dB

[表10−2]
光束LT
最短波長(λ1L):1260nm
周期/波長(Λ/λ1L):0.499
入射角θ1:51゜
出射角θ2:51゜
反射率:0.87(−0.63dB)
[表10−3]
光束LT
最長波長(λ1U):1360nm
周期/波長(Λ/λ1U):0.463
入射角θ1:51゜
出射角θ2:51゜
反射率:0.74(−1.32dB)
[Table 10-2]
Luminous flux LT
Shortest wavelength (λ1L): 1260nm
Period / wavelength (Λ / λ1L): 0.499
Incident angle θ1: 51 ° Output angle θ2: 51 ° Reflectance: 0.87 (−0.63 dB)
[Table 10-3]
Luminous flux LT
Maximum wavelength (λ1U): 1360 nm
Period / wavelength (Λ / λ1U): 0.463
Incident angle θ1: 51 ° Output angle θ2: 51 ° Reflectance: 0.74 (−1.32 dB)

[表10−4]
光束LR1
最短波長(λ2L):1480nm
周期/波長(Λ/λ2L):0.425
入射角θ1:51゜
出射角θ2:−52.3゜
p偏光反射回折効率:0.96(−0.17dB)
s偏光反射回折効率:0.84(−0.76dB)
平均反射回折効率:0.90(−0.45dB)
p偏光、s偏光回折効率差:0.59dB
[表10−5]
光束LR1
最長波長(λ2U):1500nm
周期/波長(Λ/λ2U):0.419
入射角θ1:51゜
出射角θ2:−54.4゜
p偏光反射回折効率:0.93(−0.30dB)
s偏光反射回折効率:0.85(−0.73dB)
平均反射回折効率:0.89(−0.51dB)
p偏光、s偏光回折効率差:0.43dB
[Table 10-4]
Luminous flux LR1
Shortest wavelength (λ2L): 1480 nm
Period / wavelength (Λ / λ2L): 0.425
Incident angle θ1: 51 ° Output angle θ2: −52.3 ° p-polarization reflection diffraction efficiency: 0.96 (−0.17 dB)
s-polarized reflection diffraction efficiency: 0.84 (−0.76 dB)
Average reflection diffraction efficiency: 0.90 (−0.45 dB)
p-polarization, s-polarization diffraction efficiency difference: 0.59 dB
[Table 10-5]
Luminous flux LR1
Maximum wavelength (λ2U): 1500nm
Period / wavelength (Λ / λ2U): 0.419
Incident angle θ1: 51 ° Output angle θ2: −54.4 ° p-polarization reflection diffraction efficiency: 0.93 (−0.30 dB)
s-polarized reflection diffraction efficiency: 0.85 (−0.73 dB)
Average reflection diffraction efficiency: 0.89 (−0.51 dB)
Difference in diffraction efficiency between p-polarized light and s-polarized light: 0.43 dB

[表10−6]
光束LR2
最短波長(λ3L):1550nm
周期/波長(Λ/λ3L):0.406
入射角θ1:51゜
出射角θ2:−60.0゜
p偏光反射回折効率:0.78(−1.06dB)
s偏光反射回折効率:0.77(−1.15dB)
平均反射回折効率:0.78(−1.11dB)
p偏光、s偏光回折効率差:0.09dB
[表10−7]
光束LR2
最長波長(λ3U):1560nm
周期/波長(Λ/λ3U):0.403
入射角θ1:51゜
出射角θ2:−61.2゜
p偏光反射回折効率:0.74(−1.28dB)
s偏光反射回折効率:0.74(−1.31dB)
平均反射回折効率:0.74(−1.30dB)
p偏光、s偏光回折効率差:0.03dB
[Table 10-6]
Luminous flux LR2
Shortest wavelength (λ3L): 1550 nm
Period / wavelength (Λ / λ3L): 0.406
Incident angle θ1: 51 ° Output angle θ2: −60.0 ° p-polarization reflection diffraction efficiency: 0.78 (−1.06 dB)
s-polarized reflection diffraction efficiency: 0.77 (−1.15 dB)
Average reflection diffraction efficiency: 0.78 (−1.11 dB)
Difference in diffraction efficiency between p-polarized light and s-polarized light: 0.09 dB
[Table 10-7]
Luminous flux LR2
Longest wavelength (λ3U): 1560 nm
Period / wavelength (Λ / λ3U): 0.403
Incident angle θ1: 51 ° Output angle θ2: −61.2 ° p-polarization reflection diffraction efficiency: 0.74 (−1.28 dB)
s-polarized reflection diffraction efficiency: 0.74 (−1.31 dB)
Average reflection diffraction efficiency: 0.74 (−1.30 dB)
Difference in diffraction efficiency between p-polarized light and s-polarized light: 0.03 dB

この設定では、式(K3)の下限値および上限値はそれぞれ0.375および0.462、式(K4)の下限値および上限値は0.462および0.750であり、式(K3)、(K4)は満たす。しかし、1/(2・n1・sinθ)の値は0.429であり、式(K5)は満たさない。   In this setting, the lower limit value and the upper limit value of the formula (K3) are 0.375 and 0.462, respectively, and the lower limit value and the upper limit value of the formula (K4) are 0.462 and 0.750, respectively. (K4) is met. However, the value of 1 / (2 · n1 · sinθ) is 0.429, which does not satisfy the equation (K5).

また、p偏光とs偏光の回折効率の差は、光束LR2については0.03〜0.09と小さいものの、光束LR3について0.43〜0.59と大きくなっている。このため、光束LR2を受ける受光部43(図6参照)の受光量が、光束LT3の偏光面の向きに大きく依存することになる。したがって、受光部43の受光量を高く保つためには、装置ごとに光束LT3の偏光面の向きを考慮しなければならず、光ファイバ31と回折格子素子51をはじめとする他の部材との相対配置の設定が難しくなる。   The difference in diffraction efficiency between the p-polarized light and the s-polarized light is as small as 0.03 to 0.09 for the light beam LR2, but as large as 0.43 to 0.59 for the light beam LR3. For this reason, the amount of light received by the light receiving unit 43 (see FIG. 6) that receives the light beam LR2 greatly depends on the direction of the polarization plane of the light beam LT3. Therefore, in order to keep the amount of light received by the light receiving unit 43 high, the direction of the polarization plane of the light beam LT3 must be considered for each device, and the optical fiber 31 and the diffraction grating element 51 and other members Setting relative placement becomes difficult.

これに対し、表9−1〜9−7に例を示した本実施形態の光学装置12では、前述のように、光束LR1、LR2のいずれについてもp偏光とs偏光の回折効率の差が小さく、受光部42、43の受光量は光束LR1、LR2の偏光面の向きにはあまり依存しない。したがって、光束LR1、LR2の偏光面の向きを考慮しなくても、受光部42、43の受光量を高く保つことができる。   On the other hand, in the optical device 12 of this embodiment whose examples are shown in Tables 9-1 to 9-7, as described above, there is a difference in diffraction efficiency between p-polarized light and s-polarized light for both the light beams LR1 and LR2. The amount of light received by the light receiving portions 42 and 43 is not so dependent on the direction of the polarization plane of the light beams LR1 and LR2. Therefore, the amount of light received by the light receiving portions 42 and 43 can be kept high without considering the direction of the polarization plane of the light beams LR1 and LR2.

なお、回折格子52を曲面上に設けることも可能である。その場合、第9の実施形態で説明したように、回折格子52上の任意の位置における接平面Pに回折格子52を投影し、接平面Pに対する入射角をθ1、接平面P上の周期をΛとして、式(K1)〜(K5)の条件を満たすようにする。   It is also possible to provide the diffraction grating 52 on a curved surface. In that case, as described in the ninth embodiment, the diffraction grating 52 is projected onto the tangent plane P at an arbitrary position on the diffraction grating 52, the incident angle with respect to the tangential plane P is θ1, and the period on the tangent plane P is As Λ, the conditions of the expressions (K1) to (K5) are satisfied.

表9−1〜9−7に示した設定例において、回折格子52の凸部の幅が0.05μm変動した場合の回折効率を表11に示す。表11においては、光束LT、LR1、LR2それそれについて、最短波長、中心波長および最長波長のうち最も回折効率が低い波長での回折効率を掲げている。なお、値はdB換算値である。   In the setting examples shown in Tables 9-1 to 9-7, Table 11 shows diffraction efficiency when the width of the convex portion of the diffraction grating 52 varies by 0.05 μm. Table 11 lists the diffraction efficiencies of the light beams LT, LR1, and LR2 at the wavelength with the lowest diffraction efficiency among the shortest wavelength, the center wavelength, and the longest wavelength. In addition, a value is a dB conversion value.

[表11]
凸部幅
減少 設計値 増大
0.401μm 0.451μm 0.501μm
光束LT(1310nm波長帯域)
反射率 −1.337 −0.490 −0.095
反射率変動量 −0.847 0.395
光束LR1(1490nm波長帯域)
回折効率 −1.226 −1.136 −2.562
回折効率変動量 −0.090 −1.425
p偏光、s偏光回折効率差 1.851 0.149 3.458
p偏光、s偏光回折効率差変動量 1.702 3.309
光束LR2(1555nm波長帯域)
回折効率 −0.501 −0.552 −1.184
回折効率変動量 0.051 −0.632
p偏光、s偏光回折効率差 0.558 0.113 1.762
p偏光、s偏光回折効率差変動量 0.445 1.649
[Table 11]
Convex width
Decrease Design value Increase
0.401 μm 0.451 μm 0.501 μm
Light beam LT (1310 nm wavelength band)
Reflectance -1.337 -0.490 -0.095
Reflectance fluctuation amount -0.847 0.395
Light beam LR1 (1490 nm wavelength band)
Diffraction efficiency -1.226-1.136 -2.562
Diffraction efficiency fluctuation amount -0.090 -1.425
Difference in diffraction efficiency between p-polarized light and s-polarized light 1.851 0.149 3.458
P-polarized light and s-polarized light diffraction efficiency difference variation 1.702 3.309
Light flux LR2 (1555 nm wavelength band)
Diffraction efficiency -0.501 -0.552 -1.184
Diffraction efficiency fluctuation amount 0.051 -0.632
Difference in diffraction efficiency between p-polarized light and s-polarized light 0.558 0.113 1.762
p-polarized light and s-polarized light diffraction efficiency difference variation 0.445 1.649

表11より、凸部の幅が設計値から変動すると、比較的長波長の光束LR1、LR2のp偏光とs偏光の回折効率の差に大きな変動が生じることが判る。しかし、以下に述べるように、凸部の幅の変動による回折効率差の変動は低減することが可能である。   From Table 11, it can be seen that when the width of the convex portion fluctuates from the design value, a large fluctuation occurs in the difference in diffraction efficiency between the p-polarized light and the s-polarized light of the relatively long wavelength light beams LR1 and LR2. However, as will be described below, it is possible to reduce the variation in the diffraction efficiency difference due to the variation in the width of the convex portion.

<第13の実施形態>
第13の実施形態の光学装置13は、上記の光学装置12を修飾して、回折格子52の凸部の幅が変動してもp偏光とs偏向の回折効率の差に大きな変動が生じないようにしたものである。光学装置13においては、第11の実施形態の光学装置11の如く、図16に示したように、回折格子52の凹凸に互いに垂直な第1の方向と第2の方向に周期をもたせている。第1の方向の周期Λxは第2の方向の周期Λy以下であり、前者を主周期、後者を副周期という。ただし、光学装置13では、光束LT、LR1、LR3は、副周期の方向に対して垂直な方向から回折格子52に入射させる。したがって、図17に示した方位角φは0゜である。
<13th Embodiment>
In the optical device 13 of the thirteenth embodiment, the optical device 12 is modified so that the difference in diffraction efficiency between p-polarized light and s-polarized light does not vary greatly even if the width of the convex portion of the diffraction grating 52 varies. It is what I did. In the optical device 13, as in the optical device 11 of the eleventh embodiment, as shown in FIG. 16, the first and second directions perpendicular to the irregularities of the diffraction grating 52 have a period. . The period Λx in the first direction is less than or equal to the period Λy in the second direction, and the former is called a main period and the latter is called a sub period. However, in the optical device 13, the light beams LT, LR1, and LR3 are incident on the diffraction grating 52 from a direction perpendicular to the direction of the sub period. Accordingly, the azimuth angle φ shown in FIG. 17 is 0 °.

本実施形態においても、回折格子52は、前述の式(K1)〜(K5)の関係を満たす。ここで、主周期Λxを式(K3)〜(K5)におけるΛとする。   Also in the present embodiment, the diffraction grating 52 satisfies the relationships of the above-described formulas (K1) to (K5). Here, the main period Λx is Λ in the equations (K3) to (K5).

表9−1〜9−7に対応する設定での諸パラメータを表12−1〜12−7に示す。ここでは、主周期Λxと副周期Λyを等しくしている。なお、光束LT、LR1、LR2の光路は図19に示したとおりである。   Tables 12-1 to 12-7 show parameters in the settings corresponding to Tables 9-1 to 9-7. Here, the main period Λx and the subperiod Λy are made equal. The optical paths of the light beams LT, LR1, and LR2 are as shown in FIG.

[表12−1]
回折格子52
断面形状:矩形
凹凸主周期Λx(Λ):0.645μm
凹凸副周期Λy:0.645μm
副周期/主周期(Λy/Λx):1
凹凸高低差h:0.645μm
凸部主周期方向幅Wx:0.387μm
凸部副周期方向幅Wy:0.064μm
媒質屈折率:1.48
光束LT
波長(λS):1310nm
周期/波長(Λx/λS):0.492
入射角θ1:53゜
出射角θ2:53゜
反射率:0.84(−0.77dB)
光束LR1
波長(λM):1490nm
周期/波長(Λx/λM):0.433
入射角θ1:53゜
出射角θ2:−49.7゜
p偏光反射回折効率:0.89(−0.50dB)
s偏光反射回折効率:0.85(−0.68dB)
平均反射回折効率:0.87(−0.59dB)
p偏光、s偏光回折効率差:0.18dB
光束LR2
波長(λL):1555nm
周期/波長(Λx/λL):0.415
入射角θ1:53゜
出射角θ2:−56.2゜
p偏光反射回折効率:0.87(−0.62dB)
s偏光反射回折効率:0.96(−0.20dB)
平均反射回折効率:0.91(−0.40dB)
p偏光、s偏光回折効率差:0.42dB
[Table 12-1]
Diffraction grating 52
Cross-sectional shape: Rectangle Uneven main period Λx (Λ): 0.645 μm
Uneven sub-period Λy: 0.645 μm
Sub period / main period (Λy / Λx): 1
Uneven height difference h: 0.645 μm
Convex main period direction width Wx: 0.387 μm
Protrusion sub-period direction width Wy: 0.064 μm
Medium refractive index: 1.48
Luminous flux LT
Wavelength (λS): 1310nm
Period / wavelength (Λx / λS): 0.492
Incident angle θ1: 53 ° Output angle θ2: 53 ° Reflectance: 0.84 (−0.77 dB)
Luminous flux LR1
Wavelength (λM): 1490 nm
Period / wavelength (Λx / λM): 0.433
Incident angle θ1: 53 ° Output angle θ2: −49.7 ° p-polarization reflection diffraction efficiency: 0.89 (−0.50 dB)
s-polarized reflection diffraction efficiency: 0.85 (−0.68 dB)
Average reflection diffraction efficiency: 0.87 (−0.59 dB)
p-polarized light, s-polarized light diffraction efficiency difference: 0.18 dB
Luminous flux LR2
Wavelength (λL): 1555nm
Period / wavelength (Λx / λL): 0.415
Incident angle θ1: 53 ° Output angle θ2: −56.2 ° p-polarization reflection diffraction efficiency: 0.87 (−0.62 dB)
s-polarized reflection diffraction efficiency: 0.96 (−0.20 dB)
Average reflection diffraction efficiency: 0.91 (−0.40 dB)
Difference in diffraction efficiency between p-polarized light and s-polarized light: 0.42 dB

[表12−2]
光束LT
最短波長(λ1L):1260nm
周期/波長(Λx/λ1L):0.512
入射角θ1:53゜
出射角θ2:53゜
反射率:0.91(−0.40dB)
[表12−3]
光束LT
最長波長(λ1U):1360nm
周期/波長(Λx/λ1U):0.474
入射角θ1:53゜
出射角θ2:53゜
反射率:0.76(−1.19dB)
[Table 12-2]
Luminous flux LT
Shortest wavelength (λ1L): 1260nm
Period / wavelength (Λx / λ1L): 0.512
Incident angle θ1: 53 ° Output angle θ2: 53 ° Reflectance: 0.91 (−0.40 dB)
[Table 12-3]
Luminous flux LT
Maximum wavelength (λ1U): 1360 nm
Period / wavelength (Λx / λ1U): 0.474
Incident angle θ1: 53 ° Output angle θ2: 53 ° Reflectance: 0.76 (−1.19 dB)

[表12−4]
光束LR1
最短波長(λ2L):1480nm
周期/波長(Λx/λ2L):0.436
入射角θ1:53゜
出射角θ2:−48.8゜
p偏光反射回折効率:0.86(−0.63dB)
s偏光反射回折効率:0.80(−0.96dB)
平均反射回折効率:0.83(−0.80dB)
p偏光、s偏光回折効率差:0.33dB
[表12−5]
光束LR1
最長波長(λ2U):1500nm
周期/波長(Λx/λ2U):0.430
入射角θ1:53゜
出射角θ2:−50.7゜
p偏光反射回折効率:0.91(−0.42dB)
s偏光反射回折効率:0.90(−0.47dB)
平均反射回折効率:0.90(−0.45dB)
p偏光、s偏光回折効率差:0.05dB
[Table 12-4]
Luminous flux LR1
Shortest wavelength (λ2L): 1480 nm
Period / wavelength (Λx / λ2L): 0.436
Incident angle θ1: 53 ° Output angle θ2: −48.8 ° p-polarization reflection diffraction efficiency: 0.86 (−0.63 dB)
s-polarized reflection diffraction efficiency: 0.80 (−0.96 dB)
Average reflection diffraction efficiency: 0.83 (−0.80 dB)
Difference in diffraction efficiency between p-polarized light and s-polarized light: 0.33 dB
[Table 12-5]
Luminous flux LR1
Maximum wavelength (λ2U): 1500nm
Period / wavelength (Λx / λ2U): 0.430
Incident angle θ1: 53 ° Output angle θ2: −50.7 ° p-polarization reflection diffraction efficiency: 0.91 (−0.42 dB)
s-polarized reflection diffraction efficiency: 0.90 (−0.47 dB)
Average reflection diffraction efficiency: 0.90 (−0.45 dB)
Difference in diffraction efficiency between p-polarized light and s-polarized light: 0.05 dB

[表12−6]
光束LR2
最短波長(λ3L):1550nm
周期/波長(Λx/λ3L):0.416
入射角θ1:53゜
出射角θ2:−55.7゜
p偏光反射回折効率:0.88(−0.56dB)
s偏光反射回折効率:0.96(−0.17dB)
平均反射回折効率:0.92(−0.36dB)
p偏光、s偏光回折効率差:0.39dB
[表12−7]
光束LR2
最長波長(λ3U):1560nm
周期/波長(Λx/λ3U):0.413
入射角θ1:53゜
出射角θ2:−56.8゜
p偏光反射回折効率:0.85(−0.68dB)
s偏光反射回折効率:0.95(−0.23dB)
平均反射回折効率:0.90(−0.45dB)
p偏光、s偏光回折効率差:0.45dB
[Table 12-6]
Luminous flux LR2
Shortest wavelength (λ3L): 1550 nm
Period / wavelength (Λx / λ3L): 0.416
Incident angle θ1: 53 ° Output angle θ2: −55.7 ° p-polarization reflection diffraction efficiency: 0.88 (−0.56 dB)
s-polarized reflection diffraction efficiency: 0.96 (−0.17 dB)
Average reflection diffraction efficiency: 0.92 (−0.36 dB)
Difference in diffraction efficiency between p-polarized light and s-polarized light: 0.39 dB
[Table 12-7]
Luminous flux LR2
Longest wavelength (λ3U): 1560 nm
Period / wavelength (Λx / λ3U): 0.413
Incident angle θ1: 53 ° Output angle θ2: −56.8 ° p-polarization reflection diffraction efficiency: 0.85 (−0.68 dB)
s-polarized reflection diffraction efficiency: 0.95 (−0.23 dB)
Average reflection diffraction efficiency: 0.90 (−0.45 dB)
Difference in diffraction efficiency between p-polarized light and s-polarized light: 0.45 dB

この設定では、式(K3)の下限値および上限値はそれぞれ0.376および0.458、式(K4)の下限値および上限値は0.458および0.751であり、式(K3)、(K4)を満たす。また、1/(2・n1・sinθ1)の値は0.423であり、式(K5)も満たす。   In this setting, the lower limit value and the upper limit value of the formula (K3) are 0.376 and 0.458, respectively, and the lower limit value and the upper limit value of the formula (K4) are 0.458 and 0.751, respectively, Satisfies (K4). Also, the value of 1 / (2 · n1 · sinθ1) is 0.423, which also satisfies the equation (K5).

表12−1〜12−7に示した設定例において、回折格子52の主周期方向と副周期方向の凸部の幅が0.05μm変動した場合の回折効率を表13−1、13−2に示す。表13−1、13−2においては、光束LT、LR1、LR2それそれについて、最短波長、中心波長および最長波長のうち最も回折効率が低い波長での回折効率を掲げている。なお、値はdB換算値である。   In the setting examples shown in Tables 12-1 to 12-7, the diffraction efficiencies when the widths of the convex portions in the main period direction and the sub period direction of the diffraction grating 52 are changed by 0.05 μm are shown in Tables 13-1 and 13-2. Shown in Tables 13-1 and 13-2 list the diffraction efficiencies of the light beams LT, LR1, and LR2 at the wavelength with the lowest diffraction efficiency among the shortest wavelength, the center wavelength, and the longest wavelength. In addition, a value is a dB conversion value.

[表13−1]
主周期方向凸部幅
減少 設計値 増大
0.337μm 0.387μm 0.437μm
光束LT(1310nm波長帯域)
反射率 −1.608 −1.188 −0.589
反射率変動量 −0.419 0.599
光束LR1(1490nm波長帯域)
回折効率 −0.724 −0.795 −1.071
回折効率変動量 0.071 −0.276
p偏光、s偏光回折効率差 0.678 0.332 1.052
p偏光、s偏光回折効率差変動量 0.346 0.720
光束LR2(1555nm波長帯域)
回折効率 −0.394 −0.448 −0.663
回折効率変動量 0.054 −0.214
p偏光、s偏光回折効率差 0.458 0.453 0.928
p偏光、s偏光回折効率差変動量 0.004 0.475
[Table 13-1]
Convex width in main period direction
Decrease Design value Increase
0.337 μm 0.387 μm 0.437 μm
Light beam LT (1310 nm wavelength band)
Reflectance-1.608-1.188 -0.589
Reflectance fluctuation amount -0.419 0.599
Light beam LR1 (1490 nm wavelength band)
Diffraction efficiency -0.724 -0.795 -1.071
Diffraction efficiency variation 0.071 -0.276
Difference between p-polarized light and s-polarized light diffraction efficiency 0.678 0.332 1.052
p-polarized light, s-polarized light diffraction efficiency difference variation 0.346 0.720
Light flux LR2 (1555 nm wavelength band)
Diffraction efficiency -0.394 -0.448 -0.663
Diffraction efficiency variation 0.054-0.214
Difference in diffraction efficiency between p-polarized light and s-polarized light 0.458 0.453 0.928
p-polarized light, s-polarized light diffraction efficiency difference fluctuation amount 0.004 0.475

[表13−2]
副周期方向凸部幅
減少 設計値 増大
0.014μm 0.064μm 0.114μm
光束LT(1310nm波長帯域)
反射率 −1.556 −1.188 −0.806
反射率変動量 −0.367 0.383
光束LR1(1490nm波長帯域)
回折効率 −0.757 −0.795 −0.937
回折効率変動量 0.038 −0.142
p偏光、s偏光回折効率差 0.754 0.332 0.511
p偏光、s偏光回折効率差変動量 0.422 0.179
光束LR2(1555nm波長帯域)
回折効率 −0.375 −0.448 −0.580
回折効率変動量 0.073 −0.131
p偏光、s偏光回折効率差 0.256 0.453 0.768
p偏光、s偏光回折効率差変動量 −0.198 0.314
[Table 13-2]
Convex width in sub period direction
Decrease Design value Increase
0.014 μm 0.064 μm 0.114 μm
Light beam LT (1310 nm wavelength band)
Reflectance -1.556-1.188 -0.806
Reflectance fluctuation amount -0.367 0.383
Light beam LR1 (1490 nm wavelength band)
Diffraction efficiency -0.757 -0.795 -0.937
Diffraction efficiency variation 0.038 -0.142
Difference between p-polarized light and s-polarized light diffraction efficiency 0.754 0.332 0.511
P-polarized light and s-polarized light diffraction efficiency difference variation 0.422 0.179
Light flux LR2 (1555 nm wavelength band)
Diffraction efficiency -0.375 -0.448 -0.580
Diffraction efficiency variation 0.073 -0.131
p-polarized light, s-polarized diffraction efficiency difference 0.256 0.453 0.768
p-polarized light, s-polarized light diffraction efficiency difference fluctuation amount -0.198 0.314

回折格子52の凸部の幅の変動量は表11と表13−1、13−2とで同じ(±0.05μm)であるが、本実施形態では比較的長波長の光束LR1、LR2のp偏光とs偏光の回折効率の差の増大が抑えられていることが判る。   The variation amount of the width of the convex portion of the diffraction grating 52 is the same (± 0.05 μm) in Table 11 and Tables 13-1 and 13-2, but in this embodiment, the light fluxes LR1 and LR2 having relatively long wavelengths are used. It can be seen that an increase in the difference in diffraction efficiency between p-polarized light and s-polarized light is suppressed.

回折格子52の副周期Λyと回折光の関係について説明する。光の波長をλ、主周期Λxによって生じる回折の次数をmx、副周期Λyによって生じる回折の次数をmyとすると、回折次数(mx、my)の回折光が生じる条件は式(M1)で表される。
[(n2/n1)・sinθ1・cosφ+mx・λ/(n2・Λx)]2
[(n2/n1)・sinθ1・cosφ+my・λ/(n2・Λy)]2 ≦ 1 ・・・ 式(M1)
The relationship between the sub period Λy of the diffraction grating 52 and the diffracted light will be described. Assuming that the wavelength of light is λ, the order of diffraction generated by the main period Λx is mx, and the order of diffraction generated by the subperiod Λy is my, the condition for generating the diffracted light of the diffraction order (mx, my) is Is done.
[(n2 / n1) · sinθ1 · cosφ + mx · λ / (n2 / Λx)] 2 +
[(n2 / n1) · sinθ1 · cosφ + my · λ / (n2 · Λy)] 2 ≦ 1 Equation (M1)

光学装置13では光束LR1、LR2に(−1、0)次つまりmx=−1、my=0の回折を生じさせ、その回折効率を高くする必要があるが、そのためには他の次数の回折を抑えなければならない。ここで、(−1、0)次以外で最も生じやすいのは(−1、±1)次つまりmx=−1、my=±1の回折光である。光束LR1、LR2に(−1、±1)次の回折光が生じないための条件は式(M2)で表される。
[sinθ1−λ2L/(n1・Λx)]2+[λ2L/(n1・Λy)]2 > 1 ・・・ 式(M2)
In the optical device 13, it is necessary to cause diffraction of the (−1, 0) order, that is, mx = −1 and my = 0 in the light beams LR <b> 1 and LR <b> 2 to increase the diffraction efficiency. Must be suppressed. Here, diffracted light of the (−1, ± 1) order, that is, mx = −1 and my = ± 1 is most likely to occur except the (−1, 0) order. A condition for preventing (−1, ± 1) -order diffracted light from being generated in the light beams LR1 and LR2 is expressed by the equation (M2).
[sinθ1−λ2L / (n1 · Λx)] 2 + [λ2L / (n1 · Λy)] 2 > 1 Equation (M2)

式(M2)を変形すると式(M3)となる。
Λy2/λ2L2 < 1/[n12・[1−(sinθ1−λ2L/(n1・Λx))2]] ・・・ 式(M3)
When formula (M2) is transformed, formula (M3) is obtained.
Λy 2 / λ2L 2 <1 / [n1 2 · [1- (sinθ1−λ2L / (n1 · Λx)) 2 ]] Equation (M3)

ただし、式(M4)を満たせば、光束LR1、LR2に生じる(−1、±1)次の回折光を抑えることが可能である。
Λy2/λ2L2 < 1/[n12・[1−(sinθ1−1.1・λ2L/(n1・Λx))2]]
・・・ 式(M4)
However, if the expression (M4) is satisfied, it is possible to suppress the (−1, ± 1) -order diffracted light generated in the light beams LR1 and LR2.
Λy 2 / λ2L 2 <1 / [n1 2 · [1- (sinθ1−1.1 · λ2L / (n1 · Λx)) 2 ]]
... Formula (M4)

また、回折格子52の作成を容易にするために、副周期Λyは主周期Λx以上とするのがよい。つまり、式(M5)を満たすのが好ましい。
Λx2/λ2L2 ≦ Λy2/λ2L2 ・・・ 式(M5)
In order to facilitate the creation of the diffraction grating 52, the sub period Λy is preferably set to be equal to or greater than the main period Λx. That is, it is preferable to satisfy the formula (M5).
Λx 2 / λ2L 2 ≤ Λy 2 / λ2L 2 Equation (M5)

式(K1)〜(K5)に加えて式(M4)、(M5)も満たすようにした設定の諸パラメータを表14−1〜14−7に示す。なお、副周期Λyは主周期Λxの2倍である。   Tables 14-1 to 14-7 show various parameters set so as to satisfy the expressions (M4) and (M5) in addition to the expressions (K1) to (K5). The sub period Λy is twice the main period Λx.

[表14−1]
回折格子52
断面形状:矩形
凹凸主周期Λx(Λ):0.649μm
凹凸副周期Λy:1.298μm
副周期/主周期(Λy/Λx):2
凹凸高低差h:0.649μm
凸部主周期方向幅Wx:0.389μm
凸部副周期方向幅Wy:0.130μm
媒質屈折率:1.48
光束LT
波長(λS):1310nm
周期/波長(Λx/λS):0.495
入射角θ1:52.5゜
出射角θ2:52.5゜
反射率:0.81(−0.90dB)
光束LR1
波長(λM):1490nm
周期/波長(Λx/λM):0.436
入射角θ1:52.5゜
出射角θ2:−49.3゜
p偏光反射回折効率:0.88(−0.55dB)
s偏光反射回折効率:0.85(−0.71dB)
平均反射回折効率:0.86(−0.63dB)
p偏光、s偏光回折効率差:0.16dB
光束LR2
波長(λL):1555nm
周期/波長(Λx/λL):0.417
入射角θ1:52.5゜
出射角θ2:−55.7゜
p偏光反射回折効率:0.87(−0.59dB)
s偏光反射回折効率:0.95(−0.23dB)
平均反射回折効率:0.91(−0.41dB)
p偏光、s偏光回折効率差:0.35dB
[Table 14-1]
Diffraction grating 52
Cross-sectional shape: rectangle Uneven main period Λx (Λ): 0.649 μm
Uneven sub-period Λy: 1.298 μm
Sub period / main period (Λy / Λx): 2
Uneven height difference h: 0.649 μm
Convex main period direction width Wx: 0.389 μm
Protrusion sub-cycle direction width Wy: 0.130 μm
Medium refractive index: 1.48
Luminous flux LT
Wavelength (λS): 1310nm
Period / wavelength (Λx / λS): 0.495
Incident angle θ1: 52.5 ° Output angle θ2: 52.5 ° Reflectivity: 0.81 (−0.90 dB)
Luminous flux LR1
Wavelength (λM): 1490 nm
Period / wavelength (Λx / λM): 0.436
Incident angle θ1: 52.5 ° Output angle θ2: −49.3 ° p-polarization reflection diffraction efficiency: 0.88 (−0.55 dB)
s-polarized reflection diffraction efficiency: 0.85 (−0.71 dB)
Average reflection diffraction efficiency: 0.86 (−0.63 dB)
Difference in diffraction efficiency between p-polarized light and s-polarized light: 0.16 dB
Luminous flux LR2
Wavelength (λL): 1555nm
Period / wavelength (Λx / λL): 0.417
Incident angle θ1: 52.5 ° Output angle θ2: −55.7 ° p-polarization reflection diffraction efficiency: 0.87 (−0.59 dB)
s-polarized reflection diffraction efficiency: 0.95 (−0.23 dB)
Average reflection diffraction efficiency: 0.91 (−0.41 dB)
Difference in diffraction efficiency between p-polarized light and s-polarized light: 0.35 dB

[表14−2]
光束LT
最短波長(λ1L):1260nm
周期/波長(Λx/λ1L):0.515
入射角θ1:52.5゜
出射角θ2:52.5゜
反射率:0.88(−0.57dB)
[表14−3]
光束LT
最長波長(λ1U):1360nm
周期/波長(Λx/λ1U):0.477
入射角θ1:52.5゜
出射角θ2:52.5゜
反射率:0.76(−1.21dB)
[Table 14-2]
Luminous flux LT
Shortest wavelength (λ1L): 1260nm
Period / wavelength (Λx / λ1L): 0.515
Incident angle θ1: 52.5 ° Output angle θ2: 52.5 ° Reflectance: 0.88 (−0.57 dB)
[Table 14-3]
Luminous flux LT
Maximum wavelength (λ1U): 1360 nm
Period / wavelength (Λx / λ1U): 0.477
Incident angle θ1: 52.5 ° Output angle θ2: 52.5 ° Reflectivity: 0.76 (–1.21 dB)

[表14−4]
光束LR1
最短波長(λ2L):1480nm
周期/波長(Λx/λ2L):0.438
入射角θ1:52.5゜
出射角θ2:−48.4゜
p偏光反射回折効率:0.85(−0.70dB)
s偏光反射回折効率:0.79(−1.00dB)
平均反射回折効率:0.82(−0.85dB)
p偏光、s偏光回折効率差:0.30dB
[表14−5]
光束LR1
最長波長(λ2U):1500nm
周期/波長(Λx/λ2U):0.433
入射角θ1:52.5゜
出射角θ2:−50.2゜
p偏光反射回折効率:0.90(−0.45dB)
s偏光反射回折効率:0.89(−0.50dB)
平均反射回折効率:0.90(−0.48dB)
p偏光、s偏光回折効率差:0.05dB
[Table 14-4]
Luminous flux LR1
Shortest wavelength (λ2L): 1480 nm
Period / wavelength (Λx / λ2L): 0.438
Incident angle θ1: 52.5 ° Output angle θ2: −48.4 ° p-polarization reflection diffraction efficiency: 0.85 (−0.70 dB)
s-polarized reflection diffraction efficiency: 0.79 (-1.00 dB)
Average reflection diffraction efficiency: 0.82 (−0.85 dB)
Difference in diffraction efficiency between p-polarized light and s-polarized light: 0.30 dB
[Table 14-5]
Luminous flux LR1
Maximum wavelength (λ2U): 1500nm
Period / wavelength (Λx / λ2U): 0.433
Incident angle θ1: 52.5 ° Output angle θ2: −50.2 ° p-polarized reflection diffraction efficiency: 0.90 (−0.45 dB)
s-polarized reflection diffraction efficiency: 0.89 (−0.50 dB)
Average reflection diffraction efficiency: 0.90 (−0.48 dB)
Difference in diffraction efficiency between p-polarized light and s-polarized light: 0.05 dB

[表14−6]
光束LR2
最短波長(λ3L):1550nm
周期/波長(Λx/λ3L):0.419
入射角θ1:52.5゜
出射角θ2:−55.1゜
p偏光反射回折効率:0.88(−0.53dB)
s偏光反射回折効率:0.95(−0.21dB)
平均反射回折効率:0.92(−0.37dB)
p偏光、s偏光回折効率差:0.33dB
[表14−7]
光束LR2
最長波長(λ3U):1560nm
周期/波長(Λx/λ3U):0.416
入射角θ1:52.5゜
出射角θ2:−56.2゜
p偏光反射回折効率:0.86(−0.64dB)
s偏光反射回折効率:0.94(−0.26dB)
平均反射回折効率:0.90(−0.45dB)
p偏光、s偏光回折効率差:0.38dB
[Table 14-6]
Luminous flux LR2
Shortest wavelength (λ3L): 1550 nm
Period / wavelength (Λx / λ3L): 0.419
Incident angle θ1: 52.5 ° Output angle θ2: −55.1 ° p-polarized reflection diffraction efficiency: 0.88 (−0.53 dB)
s-polarized reflection diffraction efficiency: 0.95 (−0.21 dB)
Average reflection diffraction efficiency: 0.92 (−0.37 dB)
Difference in diffraction efficiency between p-polarized light and s-polarized light: 0.33 dB
[Table 14-7]
Luminous flux LR2
Longest wavelength (λ3U): 1560 nm
Period / wavelength (Λx / λ3U): 0.416
Incident angle θ1: 52.5 ° Output angle θ2: −56.2 ° p-polarized reflection diffraction efficiency: 0.86 (−0.64 dB)
s-polarized reflection diffraction efficiency: 0.94 (−0.26 dB)
Average reflection diffraction efficiency: 0.90 (−0.45 dB)
p-polarization, s-polarization diffraction efficiency difference: 0.38 dB

この設定例では、式(K3)の下限値および上限値はそれぞれ0.377および0.460、式(K4)の下限値および上限値は0.460および0.754である。また、式(K5)中の
1/(2・n1・sinθ1)の値は0.426である。なお、式(M3)の上限値に相当する副周期Λyは1.338μmである。
In this setting example, the lower limit value and the upper limit value of the formula (K3) are 0.377 and 0.460, respectively, and the lower limit value and the upper limit value of the formula (K4) are 0.460 and 0.754, respectively. In addition, the value of 1 / (2 · n1 · sinθ1) in the formula (K5) is 0.426. The sub period Λy corresponding to the upper limit value of the equation (M3) is 1.338 μm.

表14−1〜14−7に示した設定例において、回折格子52の主周期方向と副周期方向の凸部の幅が0.05μm変動した場合の回折効率を表15−1、15−2に示す。表15−1、15−2においては、光束LT、LR1、LR2それそれについて、最短波長、中心波長および最長波長のうち最も回折効率が低い波長での回折効率を掲げている。なお、値はdB換算値である。   In the setting examples shown in Tables 14-1 to 14-7, the diffraction efficiencies when the widths of the convex portions in the main period direction and the sub period direction of the diffraction grating 52 are changed by 0.05 μm are shown in Tables 15-1 and 15-2. Shown in Tables 15-1 and 15-2 list the diffraction efficiencies of the light beams LT, LR1, and LR2 at the wavelength with the lowest diffraction efficiency among the shortest wavelength, the center wavelength, and the longest wavelength. In addition, a value is a dB conversion value.

[表15−1]
主周期方向凸部幅
減少 設計値 増大
0.339μm 0.389μm 0.439μm
光束LT(1310nm波長帯域)
反射率 −1.685 −1.208 −0.597
反射率変動量 −0.477 0.611
光束LR1(1490nm波長帯域)
回折効率 −0.796 −0.848 −1.125
回折効率変動量 0.052 −0.276
p偏光、s偏光回折効率差 0.808 0.300 1.155
p偏光、s偏光回折効率差変動量 0.508 0.855
光束LR2(1555nm波長帯域)
回折効率 −0.370 −0.449 −0.649
回折効率変動量 0.079 −0.200
p偏光、s偏光回折効率差 0.340 0.382 0.898
p偏光、s偏光回折効率差変動量 −0.042 0.515
[Table 15-1]
Convex width in main period direction
Decrease Design value Increase
0.339 μm 0.389 μm 0.439 μm
Light beam LT (1310 nm wavelength band)
Reflectance -1.685-1.208 -0.597
Reflectance fluctuation amount -0.477 0.611
Light beam LR1 (1490 nm wavelength band)
Diffraction efficiency -0.796 -0.848 -1.125
Diffraction efficiency fluctuation amount 0.052-0.276
Difference in diffraction efficiency between p-polarized light and s-polarized light 0.808 0.300 1.155
p-polarized light, s-polarized diffraction efficiency difference variation amount 0.508 0.855
Light flux LR2 (1555 nm wavelength band)
Diffraction efficiency -0.370 -0.449 -0.649
Diffraction efficiency variation 0.079 -0.200
Difference in diffraction efficiency between p-polarized light and s-polarized light 0.340 0.382 0.898
p-polarized light, s-polarized light diffraction efficiency difference fluctuation amount -0.042 0.515

[表15−2]
副周期方向凸部幅
減少 設計値 増大
0.080μm 0.130μm 0.180μm
光束LT(1310nm波長帯域)
反射率 −1.388 −1.208 −1.103
反射率変動量 −0.180 0.105
光束LR1(1490nm波長帯域)
回折効率 −0.803 −0.848 −0.933
回折効率変動量 0.045 −0.085
p偏光、s偏光回折効率差 0.808 0.300 0.327
p偏光、s偏光回折効率差変動量 0.508 0.027
光束LR2(1555nm波長帯域)
回折効率 −0.370 −0.449 −0.522
回折効率変動量 0.079 −0.073
p偏光、s偏光回折効率差 0.340 0.382 0.579
p偏光、s偏光回折効率差変動量 −0.042 0.197
[Table 15-2]
Convex width in sub period direction
Decrease Design value Increase
0.080 μm 0.130 μm 0.180 μm
Light beam LT (1310 nm wavelength band)
Reflectance -1.388 -1.208 -1.103
Reflectance fluctuation amount -0.180 0.105
Light beam LR1 (1490 nm wavelength band)
Diffraction efficiency -0.803 -0.848 -0.933
Diffraction efficiency variation 0.045 -0.085
Difference in diffraction efficiency between p-polarized light and s-polarized light 0.808 0.300 0.327
p-polarization, s-polarization diffraction efficiency difference variation amount 0.508 0.027
Light flux LR2 (1555 nm wavelength band)
Diffraction efficiency -0.370 -0.449 -0.522
Diffraction efficiency variation 0.079 -0.073
p-polarized light, s-polarized light diffraction efficiency difference 0.340 0.382 0.579
p-polarized light, s-polarized light diffraction efficiency difference fluctuation amount -0.042 0.197

表13−1、13−2と表15−1、15−2の比較より、副周期Λyを主周期Λxよりも大きくすることにより、凸部の幅の変動による光束LR1、LR2のp偏光とs偏向の回折効率の差の増大が、より良好に抑えられることが判る。   From comparison between Tables 13-1 and 13-2 and Tables 15-1 and 15-2, by making the sub period Λy larger than the main period Λx, the p-polarized light beams LR1 and LR2 due to fluctuations in the width of the convex portions It can be seen that an increase in the difference in diffraction efficiency of s-deflection can be suppressed better.

第1の実施形態の光学装置の構成を模式的に示す図。The figure which shows typically the structure of the optical apparatus of 1st Embodiment. 第1の実施形態の光学装置の回折格子の一設定例における光路を模式的に示す図。The figure which shows typically the optical path in the setting example of the diffraction grating of the optical apparatus of 1st Embodiment. 第1の実施形態の光学装置の回折格子におけるパラメータの変化と回折効率の変化の関係を示す図。The figure which shows the relationship between the change of the parameter in the diffraction grating of the optical apparatus of 1st Embodiment, and the change of diffraction efficiency. 第2の実施形態の光学装置の回折格子の一設定例における光路を模式的に示す図。The figure which shows typically the optical path in the setting example of the diffraction grating of the optical apparatus of 2nd Embodiment. 第3の実施形態の光学装置の回折格子の一設定例における光路を模式的に示す図。The figure which shows typically the optical path in the setting example of the diffraction grating of the optical apparatus of 3rd Embodiment. 第4の実施形態の光学装置の構成を模式的に示す図。The figure which shows typically the structure of the optical apparatus of 4th Embodiment. 第4の実施形態の光学装置の回折格子の一設定例における光路を模式的に示す図。The figure which shows typically the optical path in the setting example of the diffraction grating of the optical apparatus of 4th Embodiment. 第5の実施形態の光学装置の回折格子の一設定例における光路を模式的に示す図。The figure which shows typically the optical path in the setting example of the diffraction grating of the optical apparatus of 5th Embodiment. 第5の実施形態の光学装置の回折格子におけるパラメータの変化と回折効率の変化の関係を示す図。The figure which shows the relationship between the change of the parameter in the diffraction grating of the optical apparatus of 5th Embodiment, and the change of diffraction efficiency. 第6の実施形態の光学装置の構成を模式的に示す図。The figure which shows typically the structure of the optical apparatus of 6th Embodiment. 第7の実施形態の光学装置の要部を模式的に示す図。The figure which shows typically the principal part of the optical apparatus of 7th Embodiment. 第8の実施形態の光学装置の要部を模式的に示す図。The figure which shows typically the principal part of the optical apparatus of 8th Embodiment. 第9の実施形態の光学装置の回折格子素子を模式的に示す側面図(a)および平面図(b)。The side view (a) and top view (b) which show typically the diffraction grating element of the optical apparatus of 9th Embodiment. 第10の実施形態の光学装置の構成を模式的に示す図。The figure which shows typically the structure of the optical apparatus of 10th Embodiment. 第10の実施形態の光学装置の回折格子の一設定例における光路を模式的に示す図。The figure which shows typically the optical path in the setting example of the diffraction grating of the optical apparatus of 10th Embodiment. 第11の実施形態の光学装置の回折格子を模式的に示す平面図。The top view which shows typically the diffraction grating of the optical apparatus of 11th Embodiment. 第11の実施形態の光学装置の回折格子と光束の角度との関係を模式的に示す斜視図。The perspective view which shows typically the relationship between the diffraction grating of the optical apparatus of 11th Embodiment, and the angle of a light beam. 第11の実施形態の光学装置の回折格子の一設定例における光路を模式的に示す図。The figure which shows typically the optical path in the example of 1 setting of the diffraction grating of the optical apparatus of 11th Embodiment. 第12の実施形態の光学装置の回折格子の一設定例における光路を模式的に示す図。The figure which shows typically the optical path in the setting example of the diffraction grating of the optical apparatus of 12th Embodiment.

符号の説明Explanation of symbols

1〜13 光学装置
21、23 発光部
22、24 発光制御部
25 円弧状レール
26 温度センサ
27、28、29 発光部
31 光ファイバ
35 光センサ
41、43 受光部
42、44 信号検出部
51 回折格子素子
52 回折格子
52a 回折格子凸部
52b 回折格子凹部
53、54 凸部
55、57 回折格子素子
56、58 回折格子
61 対物レンズ
DESCRIPTION OF SYMBOLS 1-13 Optical apparatus 21, 23 Light emission part 22, 24 Light emission control part 25 Arc-shaped rail 26 Temperature sensor 27, 28, 29 Light emission part 31 Optical fiber 35 Optical sensor 41, 43 Light reception part 42, 44 Signal detection part 51 Diffraction grating Element 52 Diffraction grating 52a Diffraction grating convex part 52b Diffraction grating concave part 53, 54 Convex part 55, 57 Diffraction grating element 56, 58 Diffraction grating 61 Objective lens

Claims (9)

第1の波長の第1の光束と第1の波長よりも長波長の第2の光束を異なる方向から入射させて、第1の光束を第2の光束の入射元の方向に出射させる回折格子素子を有する光学装置において、
回折格子を挟む媒質のうち第1の光束の入射側に位置する第1の媒質およびその反対側に位置する第2の媒質の屈折率をそれぞれn1およびn2、回折格子の凹凸の周期をΛ、第1の光束および第2の光束の波長をそれぞれλSおよびλL、回折格子への第1の光束の入射角をθと表すとき、
n2 ≧ n1・sinθ
Λ/λL ≦ 1/(n1+n1・sinθ)
および
Λ/λS > 1/(n1+n1・sinθ)−0.04
の関係を満たすことを特徴とする光学装置。
A diffraction grating that causes a first light flux having a first wavelength and a second light flux having a longer wavelength than the first wavelength to enter from different directions and emits the first light flux in the direction of the incident source of the second light flux. In an optical device having an element,
Of the medium sandwiching the diffraction grating, the refractive index of the first medium located on the incident side of the first light beam and the second medium located on the opposite side are n1 and n2, respectively, and the period of the irregularities of the diffraction grating is Λ, When the wavelengths of the first light beam and the second light beam are represented by λs and λL, respectively, and the incident angle of the first light beam on the diffraction grating is represented by θ,
n2 ≧ n1 ・ sinθ
Λ / λL ≤ 1 / (n1 + n1 · sinθ)
And Λ / λ S> 1 / (n 1 + n 1 · sin θ) −0.04
An optical device characterized by satisfying the relationship:
第1の波長の第1の光束と第1の波長よりも長波長の第2の光束を異なる方向から入射させて、第1の光束を第2の光束の入射元の方向に出射させる回折格子素子を有する光学装置において、A diffraction grating that causes a first light flux having a first wavelength and a second light flux having a longer wavelength than the first wavelength to enter from different directions and emits the first light flux in the direction of the incident source of the second light flux. In an optical device having an element,
回折格子を挟む媒質のうち第1の光束の入射側に位置する第1の媒質およびその反対側に位置する第2の媒質の屈折率をそれぞれn1およびn2、回折格子の凹凸の周期をΛ、第1の光束および第2の光束の波長をそれぞれλSおよびλL、回折格子への第1の光束の入射角をθと表すとき、Of the medium sandwiching the diffraction grating, the refractive index of the first medium located on the incident side of the first light flux and the second medium located on the opposite side are n1 and n2, respectively, and the period of the irregularities of the diffraction grating is Λ, When the wavelengths of the first light beam and the second light beam are represented by λs and λL, respectively, and the incident angle of the first light beam on the diffraction grating is represented by θ,
n2 ≧ n1・sinθn2 ≧ n1 ・ sinθ
Λ/λL ≦ 1/(n2+n1・sinθ)Λ / λL ≤ 1 / (n2 + n1 · sinθ)
およびand
1/(n2+n1・sinθ)−0.04 < Λ/λS < 1/(n2+n1・sinθ)+0.021 / (n2 + n1 · sinθ) −0.04 <Λ / λS <1 / (n2 + n1 · sinθ) +0.02
の関係を満たすことを特徴とする光学装置。An optical device characterized by satisfying the relationship:
回折格子が設けられている面のほかに集光機能を有する面を備えることを特徴とする請求項1または2に記載の光学装置。3. The optical apparatus according to claim 1, further comprising a surface having a light collecting function in addition to the surface on which the diffraction grating is provided. 回折格子が曲面上に設けられていることを特徴とする請求項1または2に記載の光学装置。The optical apparatus according to claim 1, wherein the diffraction grating is provided on a curved surface. 回折格子が設けられている曲面の任意の位置における接平面に回折格子を投影し、その平面上での回折格子の凹凸の周期をΛ、その平面に対する入射角をθとしたときに、前記関係を満たすことを特徴とする請求項4に記載の光学装置。When the diffraction grating is projected onto a tangential plane at an arbitrary position on the curved surface where the diffraction grating is provided, the period of the irregularities of the diffraction grating on the plane is Λ, and the incident angle with respect to the plane is θ, the above relationship The optical device according to claim 4, wherein: 回折格子の凹凸の周期の方向に平行な各凹凸の断面が略矩形であることを特徴とする請求項1または2に記載の光学装置。3. The optical apparatus according to claim 1, wherein a cross section of each unevenness parallel to the direction of the period of the unevenness of the diffraction grating is substantially rectangular. 回折格子に対する光束の入射角を変化させる機構を備えることを特徴とする請求項1または2に記載の光学装置。The optical apparatus according to claim 1, further comprising a mechanism that changes an incident angle of the light beam with respect to the diffraction grating. 回折格子に第2の波長の光束を入射させるとともに、回折格子から出射した第1の波長の光束を受ける光学部品を備えることを特徴とする請求項1または2に記載の光学装置。The optical apparatus according to claim 1, further comprising an optical component that causes the light beam having the second wavelength to enter the diffraction grating and that receives the light beam having the first wavelength emitted from the diffraction grating. 回折格子に入射する光束または回折格子から出射した光束を集光させる光学部品を備えることを特徴とする請求項1または2に記載の光学装置。The optical apparatus according to claim 1, further comprising an optical component that collects a light beam incident on the diffraction grating or a light beam emitted from the diffraction grating.
JP2004342485A 2004-11-26 2004-11-26 Optical device Expired - Fee Related JP4129596B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004342485A JP4129596B2 (en) 2004-11-26 2004-11-26 Optical device
US11/091,801 US7199926B2 (en) 2004-11-26 2005-03-28 Diffraction grating device and optical apparatus
US11/704,741 US7385761B2 (en) 2004-11-26 2007-02-09 Diffraction grating device and optical apparatus
US12/112,260 US7633680B2 (en) 2004-11-26 2008-04-30 Diffraction grating device and optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004342485A JP4129596B2 (en) 2004-11-26 2004-11-26 Optical device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008015740A Division JP2008116988A (en) 2008-01-28 2008-01-28 Optical apparatus

Publications (2)

Publication Number Publication Date
JP2006154096A JP2006154096A (en) 2006-06-15
JP4129596B2 true JP4129596B2 (en) 2008-08-06

Family

ID=36632512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004342485A Expired - Fee Related JP4129596B2 (en) 2004-11-26 2004-11-26 Optical device

Country Status (1)

Country Link
JP (1) JP4129596B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020134638A (en) 2019-02-15 2020-08-31 パナソニックIpマネジメント株式会社 Optical module mounting structure

Also Published As

Publication number Publication date
JP2006154096A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
US7199926B2 (en) Diffraction grating device and optical apparatus
JP3976457B2 (en) Optical head
KR100519636B1 (en) Diffraction optical element and optical head using the same
JP4510367B2 (en) Compatible optical pickup
US5373519A (en) Semiconductor laser device, an optical device and a method of producing the same
JPH06242373A (en) Chromatic aberration correcting single lens
JP4098951B2 (en) Light source device for optical head
US8000210B2 (en) Quarter-wave plate, and optical pickup device
JP4484115B2 (en) Optical element, optical pickup and information recording / reproducing apparatus
JP4013944B2 (en) Optical device
JP4059245B2 (en) Optical device
JP4129596B2 (en) Optical device
JPWO2011001641A1 (en) Optical element
JP3817438B2 (en) Optical member and optical device using the same
KR100200848B1 (en) Dual focusing method and optical pickup using the method
JP2008116988A (en) Optical apparatus
US20040208109A1 (en) Objective optical system for correcting aberration and optical head employing the same
JP4816258B2 (en) Optical device with surface reflection diffraction grating
JP4397471B2 (en) Optical head
KR101061324B1 (en) Light source device and optical pickup device
JP4138321B2 (en) Light separation method, light synthesis method, light separation / synthesis optical element, and light separation coupling device
US8483033B2 (en) Optical information recording/reproducing apparatus and objective optical system for the same
JP4324523B2 (en) Optical element
JP4501609B2 (en) Optical pickup device
JPWO2004090598A1 (en) Imaging optical element and design method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070905

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080505

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees