JP4128929B2 - Machining method for confirming displacement amount of machine tool and workpiece for confirming displacement amount - Google Patents

Machining method for confirming displacement amount of machine tool and workpiece for confirming displacement amount Download PDF

Info

Publication number
JP4128929B2
JP4128929B2 JP2003328682A JP2003328682A JP4128929B2 JP 4128929 B2 JP4128929 B2 JP 4128929B2 JP 2003328682 A JP2003328682 A JP 2003328682A JP 2003328682 A JP2003328682 A JP 2003328682A JP 4128929 B2 JP4128929 B2 JP 4128929B2
Authority
JP
Japan
Prior art keywords
machine tool
workpiece
thermal displacement
machining
row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003328682A
Other languages
Japanese (ja)
Other versions
JP2005088172A (en
Inventor
俊介 若岡
孝男 長谷部
通 山本
治光 千田
礼士 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Priority to JP2003328682A priority Critical patent/JP4128929B2/en
Publication of JP2005088172A publication Critical patent/JP2005088172A/en
Application granted granted Critical
Publication of JP4128929B2 publication Critical patent/JP4128929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)

Description

本発明は、フライス盤、マシニングセンタ、複合加工旋盤などの工作機械において、加工時の工作機械の変位を求める加工方法に関するものであり、特に詳しくは加工時における工作機械の変位量を容易に確認する加工方法、及びこの加工方法により得られる変位量確認用工作物に関する。   The present invention relates to a machining method for obtaining a displacement of a machine tool during machining in a machine tool such as a milling machine, a machining center, or a combined machining lathe, and more particularly, machining for easily confirming a displacement amount of a machine tool during machining. The present invention relates to a method and a displacement amount confirmation workpiece obtained by this processing method.

フライス盤、マシニングセンタ、複合加工旋盤などの工作機械で、フライス、エンドミルなど回転工具を用いて加工を行う場合、回転工具がワークを切削する際の発熱や、工作機械各部を動作させるモータや送りネジなど駆動系の発熱、或いは気温の変化などにより、工作機械各部が熱変形を起こす。こうした熱変位は、工具とワークとの相対位置を変化させることになるため、加工中に工作機械に熱変位が生じると、ワークの加工精度が悪化してしまう。
これに対し従来より、工作機械各部を冷却して機械の温度をコントロールしたり、気温を管理した部屋の中においたり、充分な暖機運転により予め熱変位させた状態で工具とワークの位置関係を設定したり、或いは熱変位を実験から予測して、工作機械の動作指令値に補正を加えるなどを行っている。
この内、工作機械や気温をコントロールする方法では複雑で高価な設備を要し、また設置スペースなども必要となる。暖気を行う方法では充分な暖気を行ってもその後熱変位が生じてしまう、などの問題があり、近年では、熱変位を実験結果から予測してこれを補正する技術の研究が盛んに行われ、実用化されている。
このような場合、熱変位を実測、或いは実験結果から予測するためには、実験などの段階で熱変位を正確に評価する必要がある。
When machining with a rotating tool such as a milling machine or end mill on a machine tool such as a milling machine, machining center, or combined machining lathe, heat generated when the rotating tool cuts a workpiece, motors and feed screws that operate each part of the machine tool, etc. Each part of the machine tool undergoes thermal deformation due to heat generated in the drive system or changes in temperature. Since such thermal displacement changes the relative position between the tool and the workpiece, if thermal displacement occurs in the machine tool during machining, the workpiece machining accuracy deteriorates.
On the other hand, the positional relationship between the tool and the workpiece in a state where the machine temperature is controlled by cooling each part of the machine tool, in a room where the temperature is controlled, or in the state where the heat is displaced in advance by sufficient warm-up operation. Or predicting the thermal displacement from the experiment and correcting the operation command value of the machine tool.
Of these, the machine tool and the method of controlling the temperature require complicated and expensive equipment, and also requires installation space. In the method of performing warm-up, there is a problem that thermal displacement occurs after sufficient warm-up, and in recent years, research on techniques for predicting and correcting thermal displacement from experimental results has been actively conducted. Has been put to practical use.
In such a case, in order to predict the thermal displacement from the actual measurement or the experimental result, it is necessary to accurately evaluate the thermal displacement at the stage of the experiment or the like.

熱変位量を測定するには、例えば以下の3つの方法が知られている。
1つ目は図6に示すように、主軸にテストバー10を装着してテーブルからダイヤルゲージをテストバーに当てて時間経過と共にその測定をするものである。なお、ダイヤルゲージに代えて非接触センサーを用いることもある。図6において矢印A、B、Cはテーブル上からテストバー10上にダイヤルゲージもしくは非接触変位センサーを設置する位置である。X、Y、Z方向に時間経過とともに測定して、テーブルに対する変位が判る。
その他、非接触センサを用いたものとしては、特許文献1に開示の技術も存在している。
In order to measure the amount of thermal displacement, for example, the following three methods are known.
First, as shown in FIG. 6, a test bar 10 is attached to the main shaft, a dial gauge is applied to the test bar from the table, and the measurement is performed over time. A non-contact sensor may be used instead of the dial gauge. In FIG. 6, arrows A, B, and C are positions where dial gauges or non-contact displacement sensors are installed on the test bar 10 from the table. By measuring in the X, Y, and Z directions with time, the displacement relative to the table is known.
In addition, as a technique using a non-contact sensor, there is a technique disclosed in Patent Document 1.

2つ目は図7及び図8に示すように、ボールエンドミルにより縦方向と横方向との溝切削を行い、時間経過と共に溝切削を逐一増やしていく方法で、一方向の溝に対して他方の溝は必ず交わる経路とし、その溝底に顕れた溝幅の状態から変位を読み取るものである。
図7においては、横溝Aの加工と同時に溝Bを加工し、その後、時間経過とともに溝C、D、E・・と逐一加工していく。溝Aに対してC,Dは深さが深く、Eは元に戻っている。Fは逆に浅くなっている、ボール径が一緒であることから、図8に示す幅aからZの基準位置からの変位を幾何学的に求めることができる。
Secondly, as shown in FIGS. 7 and 8, the ball end mill performs groove cutting in the vertical direction and the horizontal direction, and increases the groove cutting step by step with the passage of time. This groove is always a crossing path, and the displacement is read from the state of the groove width that appears on the groove bottom.
In FIG. 7, the groove B is processed simultaneously with the processing of the lateral groove A, and thereafter, the grooves C, D, E,. C and D are deep with respect to the groove A, and E is restored. On the other hand, since F is shallower and the ball diameter is the same, the displacement from the reference position of the width a to Z shown in FIG. 8 can be obtained geometrically.

3つ目は図9に示すように、時間経過と共にワークWの平面上にフラットエンドミル11で一定の深さの溝切削もしくは片肉切削を行い、加工底面の高さの差から熱変位を測定するものである。
このようにフラットエンドミル11で溝切削または片肉切削を時間経過と共に逐次行い、底面の高さを測定することでZ軸の熱変位を測定すれば、一定の溝深さを指示したときの実際測定値との差から変位量が測定できることになる。
Third, as shown in FIG. 9, as time passes, a flat end mill 11 performs groove cutting or single-wall cutting at a certain depth on the plane of the workpiece W, and measures thermal displacement from the height difference of the processing bottom surface. To do.
In this way, if the flat end mill 11 sequentially performs groove cutting or single-sided cutting with the passage of time and measures the thermal displacement of the Z axis by measuring the height of the bottom surface, the actual condition when a constant groove depth is indicated. The amount of displacement can be measured from the difference from the measured value.

特開平5−92353号公報Japanese Patent Laid-Open No. 5-92353

しかしながら、図6に示す方法では、測定データを元に作成したグラフデータとなり、直接熱変位を表現できない。
図7及び図8に示す方法では、切削ワークを直接視認できるものの、数値的なものは別途計算する必要があり、測定の為にはスケールのついた顕微鏡などが必要となって容易ではない。
図9に示す方法では、切削ワークを見ても加工底面からの高さは測定しないと判らない。
すなわち、何れの測定方法においても、工作物を見てそのまま数値評価できるものではなかったのである。
However, in the method shown in FIG. 6, the graph data is created based on the measurement data, and the thermal displacement cannot be expressed directly.
In the method shown in FIGS. 7 and 8, although the cutting work can be directly visually recognized, numerical values need to be calculated separately, and a microscope with a scale is required for measurement, which is not easy.
In the method shown in FIG. 9, even if the cutting workpiece is viewed, it cannot be understood that the height from the processing bottom surface is not measured.
That is, in any measurement method, it was not possible to evaluate the numerical value as it was by looking at the workpiece.

そこで、本発明は、熱等による変位の評価が切削完了と同時に容易に行える変位量確認用加工方法及び、この方法により得られる変位量確認用工作物を提案することを目的としたものである。   Therefore, the present invention has an object of proposing a displacement amount confirmation machining method in which displacement evaluation by heat or the like can be easily performed simultaneously with the completion of cutting, and a displacement amount confirmation workpiece obtained by this method. .

上記目的を達成するために、請求項1に記載の発明は、回転工具軸に直交する平面を有する工作物の前記平面に対し、工作機械に装着した回転工具によって所定形状の加工を、回転工具軸方向への切込量を所定ピッチで変えながら加工箇所を前記平面上の所定方向へ順番に移動させて複数回列状に行い、さらにこの列加工を、工作機械の温度を変化させながら所定時間毎に、且つ各列内では殆ど温度変化がない状態で、各列が互いに平行となるように複数回繰り返して行うことを特徴とするものである。
請求項に記載の発明は、請求項の目的に加えて、熱変位補正機能を備えた工作機械において、当該機能の有効性をより明確にするために、同一の温度状態でこの熱変位補正機能をONにした状態とOFFにした状態とに分けて夫々列加工を行うものである。
In order to achieve the above object, according to the first aspect of the present invention, a predetermined shape is processed by a rotary tool mounted on a machine tool on the plane of a workpiece having a plane perpendicular to the rotary tool axis. While changing the cutting amount in the axial direction at a predetermined pitch, the machining position is sequentially moved in a predetermined direction on the plane to perform a plurality of times in a row, and this row processing is further performed while changing the temperature of the machine tool. It is characterized in that the process is repeated a plurality of times every time and in a state where there is almost no temperature change in each column so that the columns are parallel to each other.
Invention according to claim 2, in addition to the purpose of claim 1, a machine tool equipped with a temperature compensation function, in order to clarify the effectiveness of the function, the thermal displacement at the same temperature conditions Row processing is performed separately for the state in which the correction function is turned on and the state in which the correction function is turned off.

上記目的を達成するために、請求項に記載の発明は、請求項1又は2に記載の変位量確認用加工方法により得られる変位量確認用工作物である。
なお、本発明において、回転工具軸方向への切込量の変化は、工作物に接触しない+(プラス)側の数値も含む。
In order to achieve the above object, a third aspect of the present invention is a displacement amount confirmation workpiece obtained by the displacement amount confirmation processing method according to the first or second aspect .
In the present invention, the change in the amount of cut in the direction of the rotary tool axis includes a numerical value on the + (plus) side that does not contact the workpiece.

請求項1及びに記載の発明によれば、温度変化により工作機械に生じる熱変位を、加工完了と同時に加工跡の有無によって明確に認識できる。特に、所定形状の列加工を場所を変えて順番に行うので、加工跡が棒グラフ状になり、工作物を視認した際の理解が容易となる。また、この列加工が所定時間毎に行われているから、時間毎の熱変位量の変化についても容易に理解できる。
さらに、所定時間毎の列加工を互いに平行となるように行うので、所定時間毎の熱変位量の変化についても容易に理解できる。
そして、所定時間毎に工作機械温度を変化させる手法と列加工の結果とを比較検討するなどにより、対象となる工作機械の熱変位の特性などを確認することが容易となる。
According to invention of Claim 1 and 3 , the thermal displacement which arises in a machine tool by temperature change can be recognized clearly by the presence or absence of a process trace simultaneously with completion of a process. In particular, since row processing of a predetermined shape is performed in order from different places, the machining trace becomes a bar graph shape, which facilitates understanding when the workpiece is visually recognized. Moreover, since this row | line process is performed for every predetermined time, the change of the thermal displacement amount for every time can also be understood easily.
Furthermore, since the row processing for each predetermined time is performed in parallel with each other, it is possible to easily understand the change in the amount of thermal displacement for each predetermined time.
Then, by comparing and examining the method of changing the machine tool temperature every predetermined time and the result of the row machining, it becomes easy to confirm the characteristics of the thermal displacement of the target machine tool.

請求項に記載の発明によれば、請求項の効果に加えて、熱変位補正機能のON/OFFそれぞれについて熱変位量の変化が容易に理解でき、発生する熱変位と、それを補正する熱変位補正機能の有効性とが一目瞭然となる。 According to the second aspect of the present invention, in addition to the effect of the first aspect , the change of the thermal displacement amount can be easily understood for each of ON / OFF of the thermal displacement correction function, and the generated thermal displacement is corrected. The effectiveness of the thermal displacement compensation function is obvious.

以下、本発明の実施の形態を図面に基づいて説明する。
《形態1》
図1は本発明の変位量確認用加工方法により加工された変位量確認用工作物(以下単に「工作物」という。)1の説明図で、上側がX−Yの上面で示す平面図、下側が列t0の加工部分の断面図である。図2は図1円形部分での加工状態を示す説明図、図3は工作物の一部斜視図である。
工作物1は、四角板状を呈し、Z軸と直交する平面となる上面には、エンドミル4により溝2,2・・(実線で示す四角)がX、Y夫々の方向に形成されている。なお、同図に2点鎖線で示す四角3,3・・は、エンドミル4がその上を加工するように移動したが実際には加工されなかった部分を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<< Form 1 >>
FIG. 1 is an explanatory view of a displacement amount confirmation workpiece (hereinafter simply referred to as “workpiece”) 1 processed by the displacement amount confirmation processing method of the present invention. The lower side is a cross-sectional view of the processed portion of the row t0. 2 is an explanatory view showing a machining state in the circular portion of FIG. 1, and FIG. 3 is a partial perspective view of the workpiece.
The workpiece 1 has a square plate shape, and grooves 2, 2,... (Squares shown by solid lines) are formed in the X and Y directions by an end mill 4 on an upper surface that is a plane orthogonal to the Z axis. . In addition, squares 3, 3,... Indicated by two-dot chain lines in the same figure indicate portions where the end mill 4 has been moved so as to be processed but not actually processed.

図1において一番上の列の溝2,2・・を切削する際のエンドミル4の切り込み深さ(Z軸)は、−10μmで一定としたもので、2列目以降の溝の有無の確認の目安となっている。2列目(図中左側にt0を記載)より下の溝2,2・・は、図中上側に記載されているように、右方向へ移動する度に1μmごとZ方向に上げて切削している。すなわち、工作物1の上面高さをZ=0として、Z指令が、−3〜+5となる高さで、各ピッチ毎に切削箇所を移動させながら9回切削する列加工を行ったものである。但し、ここでは、一つの列内での溝2は殆んど同時期に切削を行うが、Y軸方向の各列ごとでは、以下に示すように、所定の時間をおいて同様の列加工を、最初の切削箇所をY方向に整列させて、各列が互いに平行となるように行っている。   In FIG. 1, the cutting depth (Z axis) of the end mill 4 when cutting the uppermost grooves 2, 2,... Is constant at −10 μm. It is a standard for confirmation. The grooves 2, 2... Below the second row (showing t0 on the left side in the figure) are cut by raising each 1 μm in the Z direction every time they move to the right as shown on the upper side in the figure. ing. That is, the top surface height of the workpiece 1 is set to Z = 0, and the Z command is a height that is −3 to +5, and the row machining is performed nine times while moving the cutting portion for each pitch. is there. However, here, the grooves 2 in one row are cut almost at the same time. However, in each row in the Y-axis direction, as shown below, similar row machining is performed after a predetermined time. The first cutting points are aligned in the Y direction so that the columns are parallel to each other.

まず、t0の列加工は、スタート時、すなわち熱変位が生じていない状態での切削で、これがZ軸0μm位置で辛うじて溝2が見え、それより左側(主軸位置がマイナス、すなわちZ−)では加工跡(溝2)が残るが、それより右側では加工跡が残っていない(四角3)。
上記t0での列加工の後、図4に示すように、時間の経過と共に工作機械の温度が上昇、一定、下降するように室温を変化させる。これは、マシニングセンタ等の工作機械を恒温室等の温度を管理できる状況に設置することで実現可能である。
First, row processing at t0 is cutting at the start, that is, in a state where no thermal displacement has occurred, and this is barely visible at the Z axis 0 μm position, and on the left side (main axis position is minus, that is, Z−). A processing mark (groove 2) remains, but no processing mark remains on the right side (square 3).
After the row machining at t0, as shown in FIG. 4, the room temperature is changed so that the temperature of the machine tool rises, stays constant, and falls with time. This can be realized by installing a machine tool such as a machining center in a temperature-controlled room.

こうしてまず3列目の列加工t1では、室温が変化しており、この影響を受け主軸はZ方向へ−(マイナス)に変位している。そのため、t0の時と同じZ指令で列加工を行った結果、+1μmより以下で溝2が切削されているが、それより右側では加工跡が残っていない。
次の列加工t2はさらに室温が変化しているが、この時は主軸はZ方向に2μm変化している。よって、この状態での列加工では+2μm以下で溝2が切削されている。
続いて単位時間を経過させた列加工t3〜t4はさらに室温変化しているが、工作機械の熱変位はt2の時と同じ状態を維持しているため、加工跡もt2の時と同じ状態となっている。
t5は室温変化が元に戻り始めたため、Z方向に変化も元に戻り始めている。この状態での列加工の結果、t1と同じ熱変位となっている。
t6は室温が元に戻った為、Z方向の変位も元に戻り、スタート時t0と同じ加工結果となり、溝2は0μm以下の位置でのみ加工されている。
Thus, at the first row processing t1 in the third row, the room temperature is changed, and due to this influence, the main shaft is displaced in the Z direction to-(minus). For this reason, as a result of performing the row machining with the same Z command as at time t0, the groove 2 is cut below +1 μm, but no machining trace remains on the right side.
In the next row processing t2, the room temperature further changes, but at this time, the main axis changes by 2 μm in the Z direction. Therefore, in the row processing in this state, the groove 2 is cut at +2 μm or less.
Subsequently, the row processing t3 to t4 after a unit time has further changed at room temperature, but since the thermal displacement of the machine tool maintains the same state as at t2, the machining trace is also in the same state as at t2. It has become.
At t5, since the change in room temperature has started to return, the change in the Z direction has also started to return. As a result of the row processing in this state, the thermal displacement is the same as t1.
Since the room temperature has returned to the original at t6, the displacement in the Z direction also returns to the original, resulting in the same processing result as at time t0, and the groove 2 is processed only at a position of 0 μm or less.

このように、上記形態1の変位量確認用加工方法及び工作物1によれば、工作物1の上面に対し、エンドミル4によって溝加工を、Z軸方向への切込量を所定ピッチ(1μm)で変えながらそのピッチ毎に加工箇所を順番に移動させて複数回実施する列加工を行い、この列加工を、工作機械の温度を変化させながら所定時間毎に、各列が互いに平行となるように複数回行うようにしたことで、温度変化により生じる熱変位を、加工完了と同時に溝2の有無によって明確に認識できる。特に、所定形状の列加工をZ軸方向に徐変した指令値により順番に行うので、時間経過に応じた熱変位量が溝2によって棒グラフ状になり、工作物1を視認した際の理解が容易となる。また、所定時間毎に工作機械温度を変化させる手法と列加工の結果とを比較検討するなどにより、対象となる工作機械の熱変位の特性などを確認することが容易となる。
そして、ここでは、各列加工の最初の加工箇所を、列加工の方向と直交する方向へ整列させているから、所定時間毎の熱変位量の変化がより容易に理解できるようになっている。
As described above, according to the displacement amount confirmation processing method and workpiece 1 of the first aspect, the end mill 4 performs grooving on the upper surface of the workpiece 1, and the cut amount in the Z-axis direction is set to a predetermined pitch (1 μm). ) Is performed in order to move the machining position in order for each pitch while changing the number of times, and the row machining is performed a plurality of times, and the rows are parallel to each other at predetermined time intervals while changing the temperature of the machine tool. As described above, the thermal displacement caused by the temperature change can be clearly recognized by the presence / absence of the groove 2 simultaneously with the completion of the processing. In particular, since row processing of a predetermined shape is sequentially performed by a command value that is gradually changed in the Z-axis direction, the amount of thermal displacement corresponding to the passage of time becomes a bar graph shape by the groove 2, and understanding when the workpiece 1 is visually recognized. It becomes easy. Further, by comparing and examining the method of changing the machine tool temperature every predetermined time and the result of row machining, it becomes easy to confirm the characteristics of the thermal displacement of the target machine tool.
Here, since the first machining locations of each row machining are aligned in the direction orthogonal to the row machining direction, the change in the amount of thermal displacement per predetermined time can be more easily understood. .

なお、上記形態では、各列の四角の数は−3〜+5μmと9個のデータから構成されているが、精度によってはこれより増減することは可能である。また、列加工はt0〜t6と7列実施しているが、室温変化による違いをもっと正確に見るために、同様の時間間隔のまま、計測時間を増やしたり、列加工の間隔を縮めて加工回数を増やすことも可能で、室温変化の態様も適宜変更できる。さらに、X方向の四角でのZ方向の切り込みの変化量を1μmピッチとしているが、工作機械の熱変位特性や、変化させる室温の幅に合わせて、これより大きくすることも小さくすることも可能である。   In the above embodiment, the number of squares in each column is comprised of 9 pieces of data, from −3 to +5 μm, but it can be increased or decreased depending on the accuracy. In addition, row processing is carried out in 7 rows from t0 to t6, but in order to see the difference due to room temperature change more accurately, the measurement time is increased or the row processing interval is shortened while keeping the same time interval. The number of times can be increased, and the mode of room temperature change can be changed as appropriate. Furthermore, although the amount of change in the Z direction cut in the X direction square is 1 μm pitch, it can be made larger or smaller depending on the thermal displacement characteristics of the machine tool and the width of the room temperature to be changed. It is.

また、溝の形状を○形状にしても良いし、その他の図形、数値文字、マーク、あるいはこれらの組合わせでも良いし、各形状を一種類に統一せずにバラバラでも良く、NCプログラムで作成できる形状であれば適宜変更して差し支えない。また、上記形態では所定のピッチ毎に形状を分けているが、例えば複数のピッチ・加工箇所に跨る直線等の形状を加工するようにしても良く、この場合にはピッチ・加工箇所を細分化することにより、連続したピッチの変化が滑らかな一本の形状(例えば直線)に加工することができる。さらに、数値とZ方向のピッチを一致させて、数値が残っている部位から熱変位が直接わかるように関連づけた方法でも構わない。その他、切削工具としては、フラットエンドミルを使わずにラジアスエンドミルあるいはボールエンドミルを使用しても構わない。ボールエンドミル使用時は切り込み深さによって、切削される図形の線幅が異なるのでさらにZ方向の表示分解能力を上げることも可能である。   In addition, the shape of the groove may be a circle shape, other figures, numerical characters, marks, or a combination of these may be used, and each shape may be separated without being unified, and created by an NC program. The shape can be changed as appropriate as long as it is possible. Further, in the above embodiment, the shape is divided for each predetermined pitch. However, for example, a shape such as a straight line extending over a plurality of pitches / processing points may be processed. In this case, the pitch / processing points are subdivided. By doing so, it can be processed into a single shape (for example, a straight line) with a smooth change in pitch. Further, the numerical value may be matched with the pitch in the Z direction so that the thermal displacement can be directly recognized from the portion where the numerical value remains. In addition, as a cutting tool, a radius end mill or a ball end mill may be used without using a flat end mill. When using a ball end mill, the line width of the figure to be cut differs depending on the depth of cut, so that it is possible to further increase the display disassembly capability in the Z direction.

一方、上記形態では、室温を変化させて熱変位を生じさせているが、工作機械の温度を変化させる手法としては、単位時間間隔の間に、実際の生産活動としての工作物(例えば金型)を列加工する、または所定のプログラムを用意して主軸・送り軸を定期的に動作させるいわゆる空運転を行うことによって、切削点・主軸や送り軸のモータ・送り軸など発熱による工作機械自身の温度変化をさせたりすることもでき、またこれらを室温の制御と組み合わせて行うようにしても良い。   On the other hand, in the above embodiment, thermal displacement is generated by changing the room temperature. However, as a method of changing the temperature of the machine tool, a workpiece (for example, a mold) as an actual production activity is performed during a unit time interval. ), Or by preparing a predetermined program and performing a so-called idle operation that periodically operates the spindle and feed axis, the machine tool itself due to heat generated by the cutting point, spindle and feed axis motors and feed axes, etc. The temperature may be changed, or these may be combined with room temperature control.

《形態2》
次に、本発明の他の形態を説明する。なお、形態1と同じ符号は同じ構成部を示すため、重複する説明は省略する。
工作機械には、例えば本件出願人の先願である特開2003−39278号公報に開示のように、機械各部の温度を測定する温度検出部と、温度検出部により測定された温度に対応した熱変位補正量を推定する補正量推定部と、補正量推定部からの熱変位補正量に基づく軸補正座標を演算し補正対象軸に補正指令を出力する加工制御部とを備えて、工作機械の温度に基づいて熱変位を自動的に補正する機能が備えられているものが多い。この場合、工作機械の熱変位量を確認するだけでなく、この熱変位補正機能の特性も確認することがある。よって、形態1で説明した熱変位量確認方法を熱変位補正のON/OFFごとに行えば、両者が比較可能となって熱変位補正機能の特性が確認できる。
<< Form 2 >>
Next, another embodiment of the present invention will be described. In addition, since the same code | symbol as the form 1 shows the same structure part, the overlapping description is abbreviate | omitted.
For example, as disclosed in Japanese Patent Application Laid-Open No. 2003-39278, which is the prior application of the present applicant, the machine tool corresponds to a temperature detection unit that measures the temperature of each part of the machine, and the temperature measured by the temperature detection unit. A machine tool comprising: a correction amount estimating unit for estimating a thermal displacement correction amount; and a machining control unit for calculating an axis correction coordinate based on the thermal displacement correction amount from the correction amount estimating unit and outputting a correction command to a correction target axis. In many cases, a function of automatically correcting the thermal displacement based on the temperature is provided. In this case, not only the thermal displacement amount of the machine tool but also the characteristics of the thermal displacement correction function may be confirmed. Therefore, if the thermal displacement amount confirmation method described in the first embodiment is performed for each ON / OFF of the thermal displacement correction, both can be compared and the characteristics of the thermal displacement correction function can be confirmed.

具体的には、形態1と同様に、右へ移動するたびに1μmずつZ方向に上げて一列に溝2を9個切削する列加工を、図4のように時間の経過と共に加工機の温度が上昇、一定、下降するよう温度変化させて、所定時間毎に7列行うものであるが、その際、所定時間(t0〜t6)毎に、図5に示すように、板状体の工作物1aの上面に、熱変位補正のOFF(左)とON(右)との状態とに分けて夫々列加工を複数回行うものである。   Specifically, in the same manner as in the first mode, every time when moving to the right, the row processing in which the groove 2 is raised by 1 μm in the Z direction and the nine grooves 2 are cut in a row is processed as shown in FIG. 7 is performed every predetermined time by changing the temperature so that the temperature rises, stays constant, and descends. At this time, as shown in FIG. 5, the plate-like body is machined every predetermined time (t0 to t6). The row processing is performed a plurality of times on the upper surface of the object 1a in each of the states of thermal displacement correction OFF (left) and ON (right).

まず、スタート時t0における列加工では、工具先端がZ=0に合わせてあるため、Z=0までの4本の溝2が生成され、Z=1μm以降の加工では加工跡は生成されず表面は初期状態のままとなる(右側の5個の四角3)。
t1以降の列加工では、初期状態から温度が上昇するため、機械は熱変位し、例えば工具先端が工作物1aに近づくよう変形すると、熱変位補正がOFFの状態では、Z=0指令で加工しても工具は工作物1aに接触するだけでなく切り込まれる。従って、温度が上昇するに従い、図5の左半分で示すように生成される四角(溝2)は増えてくこととなる。この各列ごとの溝2の数の変化は図1において説明したものと同一である。
一方、熱変位補正をONの状態にして列加工すると、上記機械の熱変位が補正され、温度が上昇しても図5の右半分に示すように生成される溝2の数はスタート時t0から変化しない。
First, in the row machining at the start t0, the tool tip is set to Z = 0, so that four grooves 2 up to Z = 0 are generated, and the machining trace is not generated in the machining after Z = 1 μm. Remains in its initial state (the five squares 3 on the right).
In the row machining after t1, since the temperature rises from the initial state, the machine is thermally displaced. For example, when the tool tip is deformed so as to approach the workpiece 1a, machining is performed with Z = 0 command in a state where the thermal displacement correction is OFF. Even so, the tool is not only in contact with the workpiece 1a but also cut. Therefore, as the temperature rises, the squares (grooves 2) generated as shown in the left half of FIG. 5 increase. The change in the number of grooves 2 for each row is the same as that described in FIG.
On the other hand, when row processing is performed with the thermal displacement correction turned ON, the thermal displacement of the machine is corrected, and the number of grooves 2 generated as shown in the right half of FIG. Does not change.

このように上記形態2の熱変位量確認方法及び工作物1aによれば、温度変化により生じる熱変位を、棒グラフ状の溝2によって明確に認識できるといった形態1と同様の効果を得ることができる。特に、熱変位補正機能をONにした状態と、OFFにした状態とに分けて夫々列加工を複数回行うようにしたことで、熱変位補正機能のON/OFFそれぞれについての熱変位量の変化が、工作物1aを視認することで容易に理解でき、発生する熱変位と、それを補正する熱変位補正機能の有効性とが一目瞭然となる。
さらにここでは、熱変位補正機能のON/OFF状態共に同じ工作物1aに対して同一の温度状態で加工するので、熱変位量を確認する対象となっている工作機械が有する熱変位補正機能の性能を把握することが容易となる。
Thus, according to the thermal displacement amount confirmation method and workpiece 1a of the above-described form 2, the same effect as in form 1 can be obtained in which the thermal displacement caused by the temperature change can be clearly recognized by the bar graph-like groove 2. . In particular, by changing the thermal displacement correction function to ON and OFF by changing the thermal displacement correction function to ON and OFF, the row processing is performed a plurality of times. However, it can be easily understood by visually recognizing the workpiece 1a, and the generated thermal displacement and the effectiveness of the thermal displacement correction function for correcting the thermal displacement become obvious at a glance.
Further, here, since the same workpiece 1a is processed at the same temperature state in both the ON / OFF states of the thermal displacement correction function, the thermal displacement correction function of the machine tool to be checked for the amount of thermal displacement is provided. It becomes easy to grasp the performance.

なお、上記形態2では、熱変位ON/OFF各々での加工を同一工作物上に形成しているが、別々の工作物としても良い。また、t0〜t6の各時点で熱変位補正OFF(左側)を加工し、続いて熱変位補正機能をONにして右側を加工するようにしているが、これらは同一タイミングで行っても良いし、温度状態とその変化とを同一にすることができれば、別々に行っても良い。すなわち、室温の変化を同じにする、或いは単位時間間隔の間に実際の生産活動として同じ工作物(例えば金型)を加工する、または所定のプログラムを用意して主軸・送り軸を定期的に動作させるいわゆる空運転を行う、またこれらを室温の制御と組み合わせて行う、といった変更実施が可能である。   In the above-described embodiment 2, the machining with each of the thermal displacements ON / OFF is formed on the same workpiece, but may be a separate workpiece. In addition, the thermal displacement correction OFF (left side) is processed at each time point from t0 to t6, and then the thermal displacement correction function is turned ON to process the right side. However, these may be performed at the same timing. If the temperature state and the change can be made the same, they may be performed separately. That is, the same room temperature change is made, or the same workpiece (for example, a mold) is processed as an actual production activity during a unit time interval, or a predetermined program is prepared and the spindle and feed axis are periodically It is possible to carry out modifications such as so-called idling that is operated, or in combination with room temperature control.

また、上記形態1,2では、工具と工作物との相対位置の変化を、熱変位を例に挙げて説明したが、本発明はこれに限定されるものではなく、例えば工具交換、パレット交換、ロボットによるワーク着脱等、工作機械に工具または工作物を着脱位置決めする動作における繰り返し精度についても、同様に評価できることは言うまでもない。すなわち、工具交換であれば、工具交換時間が所定時間となり、自動工具交換装置を用いて工具交換動作を繰り返し行わせ、主軸に工具が取り付けられた時点で、形態1に示した加工を行わせれば良い。同様に、パレット交換であれば、自動パレット交換装置を用いて工作機械にパレットが取り付けられた時点で、パレット上に固定された工作物1に対し加工を行わせるようにすれば良い。
In the first and second embodiments, the change in the relative position between the tool and the workpiece has been described by taking the thermal displacement as an example. However, the present invention is not limited to this. For example, tool change, pallet change Needless to say, the repeatability in the operation of attaching and detaching a tool or workpiece to or from a machine tool, such as attaching or detaching a workpiece by a robot, can be similarly evaluated. That is, in the case of tool change, the tool change time becomes a predetermined time, the tool change operation is repeatedly performed using the automatic tool changer, and the processing shown in the form 1 is performed when the tool is attached to the spindle. It ’s fine. Similarly, in the case of pallet exchange, the workpiece 1 fixed on the pallet may be processed when the pallet is attached to the machine tool using an automatic pallet exchange device.

形態1の工作物の説明図である。It is explanatory drawing of the workpiece of form 1. 溝の加工状態を示す説明図である。It is explanatory drawing which shows the process state of a groove | channel. 工作物の一部斜視図である。It is a partial perspective view of a workpiece. 時間経過と室温変化とを示すグラフである。It is a graph which shows time passage and room temperature change. 形態2の工作物の説明図である。It is explanatory drawing of the workpiece of form 2. 従来の熱変位量測定方法を示す説明図である。It is explanatory drawing which shows the conventional thermal displacement amount measuring method. 従来の熱変位量測定方法を示す説明図である。It is explanatory drawing which shows the conventional thermal displacement amount measuring method. 従来の熱変位量測定方法を示す説明図である。It is explanatory drawing which shows the conventional thermal displacement amount measuring method. 従来の熱変位量測定方法を示す説明図である。It is explanatory drawing which shows the conventional thermal displacement amount measuring method.

符号の説明Explanation of symbols

1,1a・・工作物、2・・溝、3・・四角、4・・エンドミル。
1, 1a ... Workpiece, 2. Groove, 3 .... Square, 4 .... End mill.

Claims (3)

回転工具軸に直交する平面を有する工作物の前記平面に対し、工作機械に装着した回転工具によって所定形状の加工を、回転工具軸方向への切込量を所定ピッチで変えながら加工箇所を前記平面上の所定方向へ順番に移動させて複数回列状に行い、さらにこの列加工を、工作機械の温度を変化させながら所定時間毎に、且つ各列内では殆ど温度変化がない状態で、各列が互いに平行となるように複数回繰り返して行うことを特徴とする工作機械の変位量確認用加工方法。 To said plane of the workpiece with a plane perpendicular to the rotary tool axis, the machining of a predetermined shape by a rotary tool mounted on the machine tool, the machining portion while changing the depth of cut of the rotary tool axis direction at a predetermined pitch Move in order in a predetermined direction on a plane and perform a plurality of times in a row, and further, this row processing is performed every predetermined time while changing the temperature of the machine tool, and there is almost no temperature change in each row, A machining method for confirming a displacement amount of a machine tool, which is repeated a plurality of times so that each row is parallel to each other. 工作機械が熱変位を自動的に補正する機能を有しているものにあっては、同一の温度状態でこの熱変位補正機能をONにした状態とOFFにした状態とに分けて夫々列加工を行う請求項に記載の工作機械の変位量確認用加工方法。 If the machine tool has a function to automatically correct the thermal displacement, it is divided into a state where this thermal displacement correction function is turned on and a state where it is turned off at the same temperature state. The machining method for confirming the amount of displacement of the machine tool according to claim 1 . 請求項1又は2に記載の変位量確認用加工方法により得られる変位量確認用工作物。 Claim 1 or displacement confirmation workpiece obtained by the displacement amount confirmation processing method according to 2.
JP2003328682A 2003-09-19 2003-09-19 Machining method for confirming displacement amount of machine tool and workpiece for confirming displacement amount Expired - Fee Related JP4128929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003328682A JP4128929B2 (en) 2003-09-19 2003-09-19 Machining method for confirming displacement amount of machine tool and workpiece for confirming displacement amount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003328682A JP4128929B2 (en) 2003-09-19 2003-09-19 Machining method for confirming displacement amount of machine tool and workpiece for confirming displacement amount

Publications (2)

Publication Number Publication Date
JP2005088172A JP2005088172A (en) 2005-04-07
JP4128929B2 true JP4128929B2 (en) 2008-07-30

Family

ID=34458178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003328682A Expired - Fee Related JP4128929B2 (en) 2003-09-19 2003-09-19 Machining method for confirming displacement amount of machine tool and workpiece for confirming displacement amount

Country Status (1)

Country Link
JP (1) JP4128929B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190002098A (en) * 2017-06-29 2019-01-08 현대위아 주식회사 Test method for thermal deformation according to continuous operation of machine tool

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4730357B2 (en) * 2007-08-31 2011-07-20 ダイキン工業株式会社 Screw rotor processing method and processing apparatus
JP2011152613A (en) * 2010-01-27 2011-08-11 Okuma Corp Method of confirming machining accuracy of multiple spindle machine tool, and workpiece for confirming machining accuracy
JP2012086325A (en) * 2010-10-21 2012-05-10 Mitsubishi Heavy Ind Ltd Displacement evaluation method for machine tool
JP6159647B2 (en) * 2013-11-12 2017-07-05 三菱重工工作機械株式会社 On-machine measuring method using machining inspection work of machine tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190002098A (en) * 2017-06-29 2019-01-08 현대위아 주식회사 Test method for thermal deformation according to continuous operation of machine tool
KR101949604B1 (en) * 2017-06-29 2019-02-18 현대위아 주식회사 Test method for thermal deformation according to continuous operation of machine tool

Also Published As

Publication number Publication date
JP2005088172A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
US10209107B2 (en) Geometric error identification method of multi-axis machine tool and multi-axis machine tool
CN103567815B (en) Based on the test of numerical control machine tool cutting Thermal Error and the evaluation method of milling aperture
JP4229698B2 (en) Measuring method and apparatus for cutting edge position of tool, workpiece processing method, and machine tool
JP4902316B2 (en) Posture assurance system for 5-axis machine for oblique machining
JP5235284B2 (en) Measuring method and machine tool
WO2016051543A1 (en) Control device for machine tool, and machine tool
JP5673855B2 (en) Machine Tools
JP2006212765A (en) Thermal displacement correcting method of machine tool
JP5719625B2 (en) Machine Tools
US8244396B2 (en) Turning machine and machining method by the same
JP2008114322A (en) Position correcting method and position correcting device in machine tool
JP2008073813A (en) Machining method by machining center
JPH1158179A (en) Heat displacement correcting method of machine tool and device therefor
CN110539020A (en) Precision self-diagnosis method for double five-axis mirror milling machine tool
JP4128929B2 (en) Machining method for confirming displacement amount of machine tool and workpiece for confirming displacement amount
JP4172614B2 (en) Ball screw feed drive correction method
KR102053465B1 (en) Automatic conversion device of themal deformation compensation parameter automatic conversion for machine tool and method thereof
JP4799472B2 (en) Measuring method and apparatus for tool edge position, workpiece processing method and machine tool
JP5846400B2 (en) Machine tool and its thermal deformation correction method
JP2008246620A (en) Machine tool, control program for correcting thermal expansion, and storage medium
JP2009251621A (en) Reference position correction device for machine tool
JP2023084538A (en) Error estimation method in machine tool and control device of machine tool
JP2012086325A (en) Displacement evaluation method for machine tool
JP4069323B2 (en) Automatic centering jig for machine tools
JP2008030127A (en) Arithmetic method for thermal displacement amount used for correcting thermal displacement of machine tool, arithmetic system for thermal displacement amount, method for correcting thermal displacement of machine tool and thermal displacement correcting system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4128929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees