JP4128552B2 - 半導体装置の作製方法 - Google Patents

半導体装置の作製方法 Download PDF

Info

Publication number
JP4128552B2
JP4128552B2 JP2004222717A JP2004222717A JP4128552B2 JP 4128552 B2 JP4128552 B2 JP 4128552B2 JP 2004222717 A JP2004222717 A JP 2004222717A JP 2004222717 A JP2004222717 A JP 2004222717A JP 4128552 B2 JP4128552 B2 JP 4128552B2
Authority
JP
Japan
Prior art keywords
film
silicon film
atmosphere
crystalline silicon
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004222717A
Other languages
English (en)
Other versions
JP2005012232A (ja
Inventor
直人 楠本
徹 高山
雅人 米澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2004222717A priority Critical patent/JP4128552B2/ja
Publication of JP2005012232A publication Critical patent/JP2005012232A/ja
Application granted granted Critical
Publication of JP4128552B2 publication Critical patent/JP4128552B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Description

本発明は、結晶性珪素膜を有する薄膜トランジスタの作製方法に関する。
本発明は、ガラス等の絶縁基板上に形成された非晶質(アモルファス)珪素膜や結晶性シリコン膜に対し、レーザーアニールを施して、結晶化させる、あるいは結晶性を向上させる方法に関する。
本発明は、結晶性珪素膜を用いた薄膜トランジスタのしきい値制御に関する。
近年、ガラス等の絶縁基板上に形成された非晶質珪素膜や結晶性珪素膜(単結晶でない、多結晶、微結晶等の結晶性を有する珪素膜)、すなわち、非単結晶珪素膜に対し、レーザーアニールを施して、結晶化させたり、結晶性を向上させる技術が、広く研究されている。
レーザーアニールを施して形成された結晶性珪素膜は、高い移動度を有するため、この結晶性珪素膜を用いて薄膜トランジスタ(TFT)を形成し、例えば、一枚のガラス基板上に、画素駆動用と駆動回路用のTFTを作製する、モノリシック型の液晶電気光学装置等に盛んに利用されている。
また、出力の大きい、エキシマレーザー等のパルスレーザービームを、被照射面において、数cm角の四角いスポットや、数ミリ幅×数10cmの線状となるように光学系にて加工し、レーザービームを走査させて(レーザービームの照射位置を被照射面に対し相対的に移動させて)、レーザーアニールを行う方法が、量産性が良く、工業的に優れているため、好んで使用される。
特に、線状レーザービームを用いると、前後左右の走査が必要なスポット状のレーザービームを用いた場合とは異なり、線方向に直角な一方向だけの走査で被照射面全体にレーザー照射を行うことができる場合が多いため、高い量産性が得られる。
結晶性珪素膜を用いたTFTは、チャネル形成領域を構成する結晶性珪素膜が真性の場合、一般的にそのしきい値は0Vよりやや負(−)側にシフトされ、立ち上がり開始電圧が、Nチャネル型の場合、−2〜−4Vぐらいになる傾向がある。その結果、ノーマリオン状態(ゲイト電圧が0Vであっても、ONとなる状態)の傾向が著しくなる。
ノーマリオン状態になると、例えば、TFTをスイッチング素子として用いた場合、ゲイト電圧が0Vでも電流が流れてしまうため、スイッチをOFF状態にするためには、ゲイト電圧を常に正(+)側にバイアスにしておく必要が生じ、このTFTを使用して構成された回路は、消費電流が大きくなり、またバイアス電圧印加用の回路を設ける必要が生じるなどの問題が生じてしまう。
この問題を解決するために、従来は、Nチャネル型のTFTを作製する場合でも、チャネル形成領域を構成する結晶性珪素膜に対して、P型の不純物、例えば硼素をドープして、しきい値電圧を正(+)側にシフトさせる、しきい値制御が行われている。その結果、ノーマリオフ状態(ゲイト電圧が0Vのとき、OFFとなる状態)のTFTを作製することができる。しかし、しきい値制御を行うために、作製工程数が増加してしまい、製造コスト低下の妨げになっている。
本発明は、上記課題を解決するものである。
上記課題を解決するために、本明細書で開示する構成は、
絶縁表面を有する基板上に設けられた非単結晶珪素膜を、水素雰囲気中でレーザーアニールする第1の工程と、
前記非単結晶珪素膜上に、ゲイト絶縁膜となる絶縁膜を形成する第2の工程とを有し、
前記第1の工程と前記第2の工程とが連続して行われることを特徴する半導体装置の作製方法である。
上記方法において、前記非単結晶珪素膜は、前記第1の工程と第2の工程との間において、大気に曝されないことは好ましい。
また、本明細書で開示する他の構成は、
レーザー照射室、基板搬送室、処理室を有し、前記各室は気密性を有する連続処理装置を用い、
前記レーザー処理室において、絶縁表面を有する基板上に設けられた非単結晶珪素膜を、水素雰囲気中でレーザーアニールする工程と、
前記基板搬送室を介して前記基板を前記処理室に運ぶ工程と、
前記処理室において、前記非単結晶珪素膜上に、ゲイト絶縁膜となる絶縁膜を形成する工程とでなることを特徴とする半導体装置の作製方法である。
上記方法において、絶縁膜として窒化珪素膜または窒化珪素膜を含む多層膜を用いることは好ましい。
また、上記方法において、窒化珪素膜を含む多層膜は、前記非単結晶珪素膜上に成膜される酸化窒化珪素膜と、該膜上に成膜される窒化珪素膜とでなるものとすることは好ましい。
また、窒化珪素膜を含む多層膜は、前記非単結晶珪素膜上に成膜される酸化珪素膜と、該膜上に成膜される窒化珪素膜とでなるものとすることは好ましい。
また、窒化珪素膜を含む多層膜は、前記非単結晶珪素膜の表面を窒化して形成される窒化珪素膜と、該膜上に成膜される窒化珪素膜とでなるものとすることは好ましい。
本明細書において、連続とは、第1の工程と第2の工程との間に、第1の工程終了後の非単結晶珪素膜の、組成、膜質、形状、構造を変化させる工程を含まないことを意味する。
したがって例えば、第1の工程と第2の工程との間に、基板搬送工程、アライメント工程、徐冷工程、第2の工程に必要な温度まで基板を加熱する工程等を有することは、本明細書における連続の範囲にあるといえる。
他方、非単結晶珪素膜を、膜質を変化させる特定の雰囲気(例えば酸化雰囲気)に曝す工程、結晶性珪素膜の膜質を意図的に変化させる加熱工程(例えば、水素離脱を意図する加熱工程、酸化雰囲気等における加熱工程)、イオンドーピング、成膜、エッチング、プラズマ処理、被膜の塗布といった工程が、第1の工程と第2の工程との間にある場合、本明細書でいう連続の定義には当てはまらない。
〔作用〕
本発明は、非単結晶珪素膜にレーザーアニールを施して、結晶化また結晶性を向上させるに際し、非単結晶珪素膜を、水素を含有する雰囲気中に配置した状態で、レーザー照射を行うものである。
水素含有雰囲気にて、非単結晶珪素膜に対してレーザーアニールを行って得られる結晶性珪素膜を用いて、TFTを作製すると、作製されたTFTはNチャネル型、Pチネャル型とも、しきい値が2〜4V程度正(+)側にシフトされ、立ち上がり開始電圧は0V付近またはそれ以上となる。理由はわかっていない。
したがって、従来行われていた、硼素をドープしてしきい値を制御する工程は全く不要とすることもできる。
レーザーアニール工程での雰囲気中の水素含有量が増えると、しきい値の正(+)側へのシフトの度合いが大きくなる傾向がある。したがって、雰囲気中の水素含有量でしきい値のシフトの度合いを制御することが可能である。
このようにすることで、TFTの製造工程において、新たな工程を設けることなく、しきい値制御をすることが可能となる。そのため、従来の硼素をドープして行われたしきい値制御方法に比較して、TFTの製造工程を簡略化することができ、低コスト化を図れる。
加えて、水素雰囲気でのレーザーアニールによってしきい値をシフトさせても、S値(V/decade)で示される、TFTの電流−電圧特性の立ち上がり状態はほとんど変化せず、シフトによりS値が大きくなる(立ち上がりが悪くなる)ことはほとんどない。すなわち、しきい値のシフトによりTFTのスイッチング時の立ち上がりが悪化することがない。
このように、水素雰囲気中のレーザーアニールにより、非単結晶珪素膜の結晶化、結晶性の向上をさせるとともに、結晶性珪素膜を用いて作製されたTFTのしきい値を、S値を大きくすることなく、正(+)側にシフトさせることができる。よって、スイッチング時の電流の立ち上がりのよい、ノーマリオフ状態を呈するTFTが、製造工程数を増加させることなく得られる。
そして上記した水素雰囲気中でのレーザーアニールを第1の工程とし、第1の工程終了後の非単結晶珪素膜にゲイト絶縁膜となる絶縁膜を形成する工程を第2の工程とする。そして、第1の工程と第2の工程とを連続して行うことで、第1の工程終了後の非単結晶珪素膜の状態の変化が極めて少ない状態で、ゲイト絶縁膜となる絶縁膜を形成できる。
そのため、水素雰囲気でのレーザーアニールで非単結晶珪素膜中に取り込まれて不対結合手を中和、補償している水素の離脱を極めて少なくし、チャネル形成領域中への水素の閉じ込めを良好に行うことができる。
その結果、しきい値の正側へのシフトの程度がより大きくなる。またチャネル形成領域の不対結合手の数が低減されるため、移動度が向上する。
また、チャネル形成領域とゲイト絶縁膜との間の界面が良好となって、S値が低減される。
さらに、第1の工程終了後の非単結晶半導体膜を大気に曝さないようにすることで、非単結晶珪素膜の表面への酸化膜の形成や不純物の付着を防ぐことができる。
その結果、界面の酸化膜や不純物といったトラップの要因を低減して、S値の低減、移動度の向上を得ると共に、不純物イオンによるしきい値の不安定性の発生を低減できる。
第1の工程と第2の工程を連続して、大気に曝さないように実施するために、レーザーアニールを行う室と絶縁膜を形成する室とが、気密性を有する基板搬送室を介して接続された、マルチャンバー型の連続処理装置を用いることは有効である。
さらに、作製されるゲイト絶縁膜を窒化珪素膜を含む多層膜とすることで、水素の閉じ込めが効果が増大し、より効果的である。
窒化珪素膜を含む多層膜としては、酸化珪素膜上に窒化珪素膜を設けたもの、酸化窒化珪素膜上に窒化珪素膜を設けたもの、非単結晶半導体の表面を窒化して得た窒化珪素膜上に窒化珪素膜を設けたもの等が好ましい。
絶縁膜として窒化珪素膜のみを用いてもよいが、多層膜に比較すると、作製された薄膜トランジスタの温度変化に対するしきい値の安定性が低下する。
水素雰囲気中でのレーザアニールを実施するには、雰囲気制御可能なレーザー照射室内において、非単結晶珪素膜にレーザーアニールを施すレーザーアニール装置であって、レーザー照射室内へ少なくとも水素を供給する手段を有するものを用いる。
また、水素を含有する雰囲気としては、水素と、窒素、ヘリウム、アルゴン、等の不活性気体や空気との混合気体が好ましい。
また、水素含有雰囲気において、水素は大気圧下において1ppm以上、好ましくは、0.1%以上、さらに好ましくは1%以上含有されていることが好ましい。
また、レーザーアニールを行う際の、水素を含有する雰囲気を構成する水素および不活性気体は、その純度が、99.9%(3N)以上、99.99999%(7N)以下のものが、特に好ましい。このような純度の気体を用いた雰囲気とすることで、安定した膜質、特性の結晶性珪素膜が得られる。雰囲気を構成する水素や不活性気体の純度が、3N未満であると、雰囲気中の不純物、例えば炭素、水、炭化水素等により、膜質や特性が不安定になりやすい。また、7Nより高純度のものを用いても、7N以下の場合と比べて効果に大差なく、コストが高くなるだけであるので、好ましくない。
レーザーアニール時の圧力は、大気圧でよい。また、レーザーアニール時の圧力を、大気圧以下、特に0.01Torr以上、700Torr以下に減圧して行う場合、パルスレーザーの複数回の照射による、結晶性珪素膜の上面や膜全体の荒れが少なくなり、好ましい。すなわち、耐パルスレーザー性が向上し、荒れの少ない膜が得られる。レーザーアニール時の圧力が、700Torrより大きいと、膜の荒れ方が大気圧とほとんど変わらなくなる。圧力が0.01Torr未満となると、水素含有雰囲気を用いることによる、しきい値のシフトは、ほとんど認められなくなる。
また、レーザービームの照射は、被照射面における断面形状が、スポット状または線状のレーザービームを走査して行われることが好ましい。
また、レーザービームは、パルスレーザーを光源とするものであることが好ましい。
本発明により、レーザーアニールにより、非単結晶珪素膜の結晶化、結晶性の向上をさせるとともに、こうして作製された結晶性珪素膜を用いて形成されたTFTのしきい値を、S値を大きくすることなく、正(+)側にシフトさせることができる。すなわち、スイッチング時の電流の立ち上がりのよい、ノーマリオフ状態を呈するTFTが、従来の硼素ドープによるしきい値制御のような製造工程数の増加を伴わずに、得ることができる。したがって、製造コストの低下を図ることができる。
また、水素雰囲気でのレーザーアニール工程とゲイト絶縁膜の形成工程を、途中で大気に曝さずに連続して行うことにより、TFTのチャネル形成領域の界面特性を向上させることができ、しきい値のシフトやS値を更に改善することができる。
〔実施例1〕
実施例1では、水素雰囲気中でのレーザーアニール工程の例を示す。
図2に、実施例の作製工程を示す。まず、基板201として、127mm角のコーニング1737上に、下地膜としての酸化珪素膜202が200nm、その上に、非晶質珪素膜が、50nm、共にプラズマCVD法にて、連続的に成膜される。
次に、10ppmの酢酸ニッケル水溶液が、スピンコート法により、非晶質珪素膜上に塗布され、酢酸ニッケル層が形成される。酢酸ニッケル水溶液には、界面活性剤を添加するとより好ましい。酢酸ニッケル層は、極めて薄いので、膜状となっているとは限らないが、以後の工程における問題はない。
次に、上記のようにして各膜が積層された基板201に、600℃で4時間の熱アニールが施され、非晶質珪素膜が結晶化し、結晶性珪素膜203が形成される。(図2(A))
このとき、触媒元素であるニッケルが結晶成長の核の役割を果たし、結晶化を促進させる。600℃、4時間という低温、短時間で結晶化を行うことができるのは、ニッケルの機能による。詳細については、特開平6−244104号に記載されている。
触媒元素の濃度は、1×1015〜1019原子/cm3 であると好ましい。1×1019原子/cm3 以上の高濃度では、結晶性珪素膜203に金属的性質が現れ、半導体としての特性が消滅する。本実施例において、結晶性珪素膜203中の触媒元素の濃度は、膜中のおける最小値で、1×1017〜5×1018原子/cm3 である。これらの値は、2次イオン質量分析法(SIMS)により分析、測定したものである。
このようにして得られる結晶性珪素膜203の結晶性をさらに高めるために、エキシマレーザーを用いてレーザーアニールを行う。
図1に、実施例におけるレーザー照射室を示す。図1は、レーザー照射室の側断面図である。
図3に、実施例におけるレーザーアニール装置の上面図を示す。ここでは、図3に示すマルチチャンバー型のレーザーアニール装置を用いる。図3におけるA−A’断面を示す図が図1に相当する。
図1において、レーザー照射室101は、レーザー発振装置102から照射され、光学系112により断面形状が線状に加工されたパルスレーザービームを、ミラー103で反射させ、石英で構成された窓104を介して被処理基板105に照射される機能を有している。
レーザー発振装置102は、ここでは、XeClエキシマレーザー(波長308nm)を発振するものを用いる。他に、KrFエキシマレーザー(波長248nm)を用いてもよい。
被処理基板105は、台106上に設けられたステージ111上に配置され、台106内に設置されたヒーターによって、所定の温度(100〜700℃)に保たれる。
台106は、移動機構107によって、線状レーザービームの線方向に対して直角方向に移動され、被処理基板105上面に対しレーザービームを走査しながら照射することを可能とする。
雰囲気制御が可能なレーザー照射室101は、減圧、排気手段として、真空排気ポンプ108を有する。また、気体供給手段として、バルブを介して水素ボンベに接続された気体供給管109と、窒素やその他の気体のボンベにバルブを介して接続された気体供給管110を有する。
レーザー照射室101は、ゲイトバルブ301を介して、基板搬送室302に連結されている。
図3において、図1のレーザー照射室101がゲイトバルブ301を介して基板搬送室302に連結されている。
図3に示す装置の説明をする。ロード/アンロード室306に、被処理基板105が多数枚、例えば20枚収納されたカセット312が配置される。ロボットアーム305により、カセット312から一枚の基板がアライメント室に移動される。
アライメント室303には、被処理基板105とロボットアーム305との位置関係を修正するための、アライメント機構が配置されている。アライメント室303は、ロード/アンロード室306とゲイトバルブ307を介して接続されている。
予備加熱室308は、レーザーアニールされる基板を所定の温度まで予備的に加熱して、レーザー照射室101において基板加熱に要する時間を短縮させ、スループットの向上を図るものである。
予備加熱室308は、その内部は円筒状の石英で構成されている。円筒状の石英はヒーターで囲まれている。また石英で構成された基板ホルダーを備えている。基板ホルダーには、基板が多数枚収容可能なサセプターが備えられている。基板ホルダーは、エレベーターにより上下される。基板はヒーターで加熱される。予備加熱室308は、基板搬送室302とは、ゲイトバルブ309によって連結されている。
予備加熱室308において、所定の時間予熱された基板は、ロボットアーム305によって基板搬送室302に引き戻され、アライメント室303にて再度アライメントされた後、ロボットアーム305によって、レーザー照射室101に移送される。
レーザー照射終了後、被処理基板105はロボットアーム305によって基板搬送室302に引き出され、徐冷室310に移送される。
徐冷室310は、ゲイトバルブ311を介して、基板搬送室302と接続されており、石英製のステージ上に配置された被処理基板105が、ランプ、反射板からの赤外光を浴びて、徐々に冷却される。
徐冷室310で徐冷された被処理基板105は、ロボットアーム305によって、ロード/アンロード室306に移送され、カセット312に収納される。
こうして、レーザーアニール工程が終了する。このようにして、上記工程を繰り返すことにより、多数の基板に対して、連続的に一枚づつ処理できる。
図1、図3に示す装置を用いてレーザーアニールを行う工程を説明する。まず、被処理基板105(結晶性珪素膜203を有する基板201)は、HF水溶液、またはHFとH2 2 の混合水溶液で洗浄されて自然酸化膜が除去された後、カセット312に納められ、カセット312がロード/アンロード室306に配置される。
図3において、本実施例においては、ロード/アンロード室306から搬送される被処理基板105は、予備加熱室における空気による酸化を防ぐため、アライメントされた後、予備加熱室308には搬送されず、直接レーザー照射室101に搬送される。ただし、予備加熱室308にて、結晶性珪素膜203上面が酸化されない程度に加熱することは有効である。また、予備加熱室308内を非酸化雰囲気、例えば窒素雰囲気として加熱を行ってもよい。
レーザー照射室101内は、真空排気ポンプ108により真空引きされた後、気体供給管109から水素が、気体供給管110から窒素がそれぞれ供給され、水素3%、窒素97%の雰囲気となる。レーザー照射室内に供給される水素、窒素とも、その純度は、ここでは、99.99999%(7N)である。このとき、圧力は大気圧とする。
レーザー照射室101に搬送された被処理基板105は、ステージ111上に載置された状態で、台106内のヒータにより、200℃に加熱される。
また、図1において、被処理基板105上に照射される線状レーザービームは、幅0.34mm×長さ135mmとする。被照射面におけるレーザービームのエネルギー密度は、100mJ/cm2 〜500mJ/cm2 の範囲で、例えば260mJ/cm2 とする。台106を2.5mm/sで一方向に移動させながら行うことで、線状レーザービームを走査させる。レーザーの発振周波数は200Hzとし、被照射物の一点に注目すると、10〜50ショットのレーザービームが照射される。
このようにして結晶性珪素膜203に対し、レーザーアニールが施され、結晶性が向上される。(図2(B))
上記水素含有雰囲気でのレーザーアニールを、大気圧ではなく、それ以下、特に、0.01Torr以上、700Torr以下の減圧下で行ってもよい。このような減圧下でレーザーアニールを行うことで、アニールされた結晶性珪素膜の表面や膜全体の荒れを少なくすることができる。
その後、被処理基板105が徐冷室310に搬送され、徐冷の後、ロード/アンロード室306のカセット312に収納される。その後、カセットがレーザーアニール装置の外に取り出される。
次に、作製された結晶性珪素膜203を用いてTFTを作製する。まず結晶性珪素膜203をエッチングして、島状領域205を形成する。
次に、ゲイト絶縁膜206となる酸化珪素膜が、プラズマCVD法によって厚さ120nmに形成される。原料ガスとして、TEOSおよび酸素を用いる。成膜時の基板温度は、250℃〜380℃、例えば、300℃とする。(図2(C))
次に、ゲイト電極207を作製する。アルミニウム膜をスパッタ法により、厚さ300nm〜800nm、例えば600nm堆積させる。アルミニウム膜中に0.1〜2%の珪素を含有させてもよい。該膜をエッチングして、ゲイト電極207が作製される。
次に、不純物を添加する。Nチャネル型のTFTを作製する場合、燐イオンが、ゲイト電極207をマスクとしてイオンドーピング法により、島状領域205に打ち込まれる。ドーピングガスとして、フォスフィン(PH3 )を用いる。加速電圧は10〜90kV、例えば80kV、ドーズ量は、1×1014〜5×1015原子/cm2 、例えば、1×1015原子/cm2 とする。基板温度は室温とする。この結果、チャネル形成領域210と、N型の不純物領域として、ソース208、ドレイン209が形成される。
また、Pチャネル型のTFTを作製する場合、硼素イオンが、ゲイト電極をマスクとしてイオンドーピング法により、島状領域205に打ち込まれる。ドーピングガスとして、水素で1〜10%、例えば5%に希釈されたジボラン(B2 6 )を用いる。加速電圧は60〜90kV、例えば65kV、ドーズ量は、2×1015〜5×1015原子/cm2 、例えば、3×1015原子/cm2 とする。基板温度は室温とする。この結果、チャネル形成領域210と、P型の不純物領域として、ソース208、ドレイン209が形成される。(図2(D ))
次に、ドーピングされた不純物を活性化するために、再び図3に示すレーザーアニール装置を用いて、線状レーザービームによりレーザーアニールを行う。レーザー照射室101内の雰囲気は、空気(大気圧)とする。被照射面におけるレーザービームのエネルギー密度は100mJ/cm2 〜350mJ/cm2 の範囲とし、ここでは160mJ/cm2 とする。線状レーザービームを走査させる。被照射物の一点に注目すると、20〜40ショットのレーザービームが照射される。基板温度は200℃とする。その後、窒素雰囲気中にて2時間、450℃の熱アニールを行う。(図2(E))
続いて、酸化珪素膜が厚さ600nm、プラズマCVD法により形成され、層間絶縁膜211が形成される。次に、エッチングにより層間絶縁膜211にコンタクトホールが開孔される。さらに、金属材料、例えば、チタンとアルミニウムの多層膜が形成、エッチングされることで、コンタクトホールを介して、ソース電極・配線212、ドレイン電極・配線213が形成される。
最後に、1気圧の水素雰囲気で、200〜350℃の熱アニール処理が行われる。
このようにして、複数のNチャネル型またはPチャネル型の結晶性TFTが形成される。これらのTFTの移動度は、Nチャネル型で、70〜120cm2 /Vs、Pチャネル型で60〜90cm2 /Vsを有する優れたものである。(図2(F))
次に、上記した方法において、レーザーアニール時の雰囲気、およびレーザービームのエネルギー密度を変化させて、同様にしてTFTを作製し、その特性の比較を行う。
図4に、しきい値電圧(Vth)の、雰囲気とレーザービームのエネルギー密の依存性を示す。図4において、(a)はNチャネル型、(b)はPチャネル型のTFTの特性を示す。図4(a)、図4(b)において、TFTを構成する結晶性珪素膜が、上記工程で示した水素含有雰囲気N2 /H2 (3%)で作製されたものを◇、N2 100%雰囲気で作製されたものを〇、O2 100%雰囲気で作製されたものを□、N2 /O2 (20%)雰囲気で作製されたものを▽で示す。各気体は、いずれも純度が99.99999%(7N)である。気圧は大気圧とする。
図4(a)、図4(b)に示すように、水素含有雰囲気で作製されたTFTは、他の雰囲気に比較して、Nチャネル型、Pチャネル型共に、しきい値電圧(Vth)が、正(+)側に大きくシフトしていることがわかる。すなわち、水素含有雰囲気でレーザーアニールを行うことにより、硼素をドープする等のしきい値制御を行わなくても、しきい値が正(+)側にシフトされ、ノーマリオフ状態を実現できる。
図5に、S値の、雰囲気とレーザービームのエネルギー密度の依存性を示す。図5において、(a)はNチャネル型、(b)はPチャネル型のTFTの特性を示す。TFTを構成する結晶性珪素膜作製時の雰囲気を示す記号は、図4と同じである。
図4にて示したように、水素雰囲気で作製されたTFTは、しきい値電圧が正(+)側にシフトしているが、図5に示すように、シフトしてもS値が大きくなることはなく、スイッチング時の電流の立ち上がりが良好なものが得られる。
〔実施例2〕
実施例2では、実施例1におけるレーザーアニール時の水素含有雰囲気を実施例1より低下させ、0.5%とし、他は同様として結晶性珪素膜を形成する。
この結晶性珪素膜を用いて作製されたTFTは、S値は実施例1のものとほとんど変わらない。また、従来の空気雰囲気でレーザーアニールされたものよりは、しきい値が正(+)側にシフトされているが、実施例1のTFTより少ないシフト量となる。すなわち、レーザーアニール時の雰囲気中の水素含有量により、しきい値のシフトの程度が制御できることがわかる。
〔実施例3〕
実施例3では、実施例4以降で使用する連続処理装置の例を示す。図8に実施例における連続処理装置の上面図を示す。図8の装置は、図3に示した装置に、プラズマ処理室を2つ加えた構成を有する。この装置を用いて、水素雰囲気中でのレーザーアニール工程に連続してゲイト絶縁膜を形成することができる。
図8において、基板搬送室801には、レーザー照射室802、予備加熱室803、徐冷室804、第1のプラズマ処理室807、第2のプラズマ処理室808、およびアライメント室806を介したロード/アンロード室805が、ゲイトバルブ809〜813を介して連結されている。
基板搬送室801には、基板搬送手段としてロボットアーム814が配置されている。ロード/アンロード室805には、複数枚の基板が納められるカセット815が配置される。
図8に示す構成のうち、基板搬送室801、レーザー照射室802、予備加熱室803、徐冷室804、ロード/アンロード室805、アライメント室806に関する説明は、実施例1で説明した図3に示す装置と同様の構成なので省略する。
図8において、第1の処理室807、第2の処理室808は、図示しない高周波電界発生手段および該手段に接続された平行平板型の電極を有し、基板上にプラズマ雰囲気を形成して各種のプラズマ処理が可能な、公知のプラズマ処理装置である。処理される基板は、平行平板型電極の一方の上に配置される。
第1の処理室807、第2の処理室808は、それぞれ気体供給手段および排気手段(図示せず)が設けられ、内部の雰囲気および圧力が制御可能となっている。
各処理室は、気体供給手段から室内に導入される気体を電極間に印加される高周波電界により活性化させ、基板上面に対して、成膜、窒化、酸化等のプラズマ処理を行うことかできる。
図8に示す装置は、各室および各室間の気密性が保たれている。また各室の雰囲気は任意に制御できる。このような装置によって処理される基板は、外部の雰囲気から遮断されるため、大気に触れることを防ぐことができる。
この装置により、結晶性珪素膜に対する水素雰囲気でのレーザーアニール工程とゲイト絶縁膜となる膜を形成する工程とを、工程間で結晶性珪素膜を大気に曝すことなく連続的に行うことができる。
〔実施例4〕
実施例4では、結晶性珪素膜に対する水素雰囲気でのレーザーアニールとゲイト絶縁膜の形成を連続的に行う例を示す。
図6に本実施例での薄膜トランジスタの作製工程を示す。実施例1と同様にして、コーニング1737等の基板601上に、下地膜としての酸化珪素膜602、非晶質珪素膜をプラズマCVD法にて連続的に成膜し、酢酸ニッケル水溶液を塗布した後、600℃、4時間の熱アニールを施し、結晶性珪素膜603が形成される。(図6(A))
次に、結晶性珪素膜603を公知の方法によりエッチングして、島状領域604を形成する。
次に、図8に示す連続処理装置により、基板上の島状領域604に対する水素雰囲気中でのレーザーアニール工程とゲイト絶縁膜となる膜の形成工程を連続的に行う。
本実施例では、図8に示す基板搬送室801内は、窒素雰囲気とした。
まず、島状領域604が形成された被処理基板は、HF水溶液、またはHFとH2 2 の混合水溶液で洗浄されて自然酸化膜が除去された後、カセット815に納められ、カセット815がロード/アンロード室805に配置される。
図8において、本実施例においては、ロード/アンロード室805から搬送される被処理基板は、予備加熱室における空気による酸化を防ぐため、アライメントされた後、予備加熱室803には搬送されず、直接レーザー照射室802に搬送される。ただし、予備加熱室803にて、島状領域604上面が酸化されない程度に加熱することは有効である。また、予備加熱室803内を非酸化雰囲気、例えば窒素雰囲気として加熱を行ってもよい。
レーザー照射室802内は、真空引きされた後、水素、窒素が供給され、水素3%、窒素97%の雰囲気となる。レーザー照射室内に供給される水素、窒素とも、その純度は、ここでは、99.99999%(7N)である。このとき、圧力は大気圧とする。
その後、実施例1と同様の条件により水素雰囲気中でレーザーアニールを行う。このようにして島状領域604に対し、水素雰囲気中でのレーザーアニールが施され、結晶性が向上される。(図6(B))
その後、被処理基板が徐冷室804に搬送され徐冷される。この徐冷工程は必要に応じて実施する。
次に、ゲイト絶縁膜を形成する。本実施例では、ゲイト絶縁膜として、酸化窒化珪素(SiON)膜と窒化珪素(SiN)膜との積層膜を用いる。
徐冷が終了し、徐冷室から搬出された基板は、大気に曝されることなく第1の処理室807に搬送され、レーザーアニール工程に連続して第1のゲイト絶縁膜606の形成が行われる。
まず、基板601が第1の処理室807に搬送され、該室内においてプラズマCVD法により酸化窒化珪素(SiON)膜が形成され、第1のゲイト絶縁膜606が得られる。原料ガスとして、例えばTEOSガスとN2 Oガスとを用いて、20〜200nm、例えば約150nmの膜厚に形成される。基板温度は400℃とする。
その後、基板601が第2の処理室808に搬送され、プラズマCVD法により窒化珪素(SiN)膜が形成され、第2のゲイト絶縁膜607が得られる。原料ガスとして、例えばシランとアンモニアを用いて、25〜100nm、例えば約50nmの膜厚に形成される。基板温度は300℃とする。
その後被処理基板は、必要に応じて徐冷室804にて徐冷の後、ロード/アンロード室805のカセット815に収納され、外部に取り出される。
このようにして、結晶性珪素膜を大気に曝さずに、レーザーアニール工程とゲイト絶縁膜の形成工程を、マルチチャンバー方式を用いて連続的に行う。(図6(C))。
次に、ゲイト電極608を作製する。アルミニウム膜をスパッタ法により、厚さ300nm〜800nm、例えば600nm堆積させる。ヒロックの発生を防ぐため、アルミニウム膜中に0.1〜2%の珪素を含有させてもよい。該膜をエッチングして、ゲイト電極608が作製される。
次に、ゲイト電極608をマスクとしたイオンドーピング法により、島状領域604に対しリンイオンまたはホウ素イオンの打ち込みが行われる。基板温度は室温とする。
この結果、チャネル形成領域610と、不純物領域として、ソース609、ドレイン611が形成される。図6(D))
次に、ドーピングされた不純物を活性化するために、レーザーアニールが行われる。条件は実施例1と同様とする。その後、窒素雰囲気中にて2時間、450℃の熱アニールを行う。(図6(E))
続いて実施例1と同様にして、層間絶縁膜612、ソース電極・配線613、ドレイン電極・配線614が形成される。最後に、1気圧の水素雰囲気で、200〜350℃の熱アニール処理が行われ、薄膜トランジスタが作製される。(図6(F))
本実施例で作製された薄膜トランジスタは、実施例1で作製されたものに比較して、薄膜トランジスタのしきい値のシフトが、正側に3〜5Vと、シフトの程度が大きくなる。またS値がより小さくなる。さらに移動度も若干向上する。
また、ゲイト絶縁膜を、酸化窒化珪素と窒化珪素膜の2層としたため、窒化珪素膜のみを用いる場合より、耐圧が向上する。
なお本実施例において、ゲイト絶縁膜を、実施例1と同様な酸化珪素膜のみとしてもよい。この場合、実施例1に比較してしきい値のシフトの程度は向上するものの、S値や移動度の向上はあまりみられない。
〔実施例5〕
本実施例では、実施例4に示した薄膜トランジスタの作製工程において、ゲイト絶縁膜を、第1の絶縁膜として酸化珪素(SiO2 )、第2の絶縁膜として窒化珪素(SiN)を用いた例を示す。ゲイト絶縁膜の構成以外は、実施例4と同じである。以下に本実施例を図6、図8を用いて説明する。
実施例4と同様の工程にて基板601上に非単結晶珪素膜でなる島状領域601を形成する。そして図8に示した装置により、基板601上の島状領域604に対する水素雰囲気でのレーザーアニールが行われる。工程、条件は実施例4と同じである。(図6(B))
その後、被処理基板が徐冷室804に搬送され徐冷される。この徐冷工程は必要に応じて実施する。
徐冷が終了し、徐冷室から搬出された基板は、大気に曝されることなく第1の処理室807に搬送され、レーザーアニール工程に連続して第1のゲイト絶縁膜の形成が行われる。
および徐冷終了後、基板601は大気に曝されることなく第1の処理室807に搬送され、レーザーアニール工程に連続して第1のゲイト絶縁膜606の形成が行われる。
まず、第1の処理室807において、プラズマCVD法により酸化珪素(SiO2 )膜が形成され、第1のゲイト絶縁膜606が得られる。原料ガスとして、例えばTEOSガスを用いて、100〜400nm、例えば約200nmの膜厚に形成する。
次に、基板601が第2の処理室808に搬送され、プラズマCVD法により窒化珪素膜(SiN)が第2のゲイト絶縁膜607として、約100nm形成される。原料ガスとして、例えばシランとアンモニアを用いる。基板温度は300℃とする。
このようにして、レーザーアニールとゲイト絶縁膜の形成を連続的に行う。結果として、チャネル形成領域となる島状領域610とゲイト絶縁膜との界面の、酸化膜の形成や不純物の混入を防ぎ、界面特性を良好なものとすることができる(図6(C))。
その後、実施例4と同様にして、薄膜トランジスタが完成される。
本実施例で作製された薄膜トランジスタも、実施例1で作製した薄膜トランジスタに比較して、しきい値のシフト量の増大、S値の低減、移動度の向上がみられた。
〔実施例6〕
実施例6では、第1の絶縁膜として結晶性珪素膜の上面を窒化して形成される窒化珪素膜を用いた例を示す。ゲイト絶縁膜の構成以外は、実施例4と同じである。
実施例6の薄膜トランジスタの作製工程を図7に示す。実施例4と同様にして、ガラス基板701、該基板上の酸化珪素膜でなる下地膜702の上に形成された非晶質珪素でなる島状領域704を形成し、熱結晶化を行う。
図8に示した連続処理装置を用い、レーザー照射室802内にて、実施例4と同様にして水素雰囲気でのレーザーアニールを行い、島状領域704を結晶化させる。(図7(A))
その後、被処理基板が徐冷室804に搬送され徐冷される。この徐冷工程は必要に応じて実施する。
徐冷終了後、基板701は徐冷室804から第1の処理室807に大気に曝されずに搬送さる。そして、レーザーアニール工程に連続して第1のゲイト絶縁膜706を形成する。
第1の処理室807には、アンモニア(NH3 )と窒素(N)が導入され、高周波電界によって、活性化されたアンモニア(NH3 * )を含んだプラズマ雰囲気が形成される。
このプラズマ雰囲気に島状領域704が曝され、島状領域704の表面が窒化されて窒化珪素(SiN)膜が10nm程度形成され、第1のゲイト絶縁膜706となる。基板温度は300〜400℃、例えば350℃とした。(図7(B))
次に、基板701が第2の処理室808に搬送され、プラズマCVD法により窒化珪素膜が第2のゲイト絶縁膜707として、連続して形成される。膜厚は20〜100nm、ここで約30nm形成される。原料ガスとして、例えばシランとアンモニアを用いる。基板温度は300℃とする。(図7(C))
その後、実施例4と同様にして、薄膜トランジスタが完成される。(図7(D)〜図7(F))
このようにして作製された薄膜トランジスタは、チャネル形成領域とゲイト絶縁膜との界面特性が極めて良好となる。その結果、実施例4で作製した薄膜トランジスタに比較して、更なるしきい値のシフト、S値の減少、移動度の向上といった効果が得られる。
これらの効果は、第1のゲイト絶縁膜である窒化珪素膜を島状領域表面を窒化して得たため、成膜による場合に比較してチャネル形成領域の水素を十分に閉じ込めることができること、良好な界面が得られること、などによるものと考えられる。
特に、窒化雰囲気として活性かされたアンモニアNH3 * 雰囲気としたため、島状領域表面は、窒化されると共に水素が導入されるため、水素によるしきい値のシフトや不対結合手の中和などが促進されると考えられる。
本明細書で示した実施例において、非晶質珪素膜の結晶化工程は、熱結晶化とレーザーアニールを併用した場合のものを示した。しかし、レーザーアニールのみとしてもよい。
実施例におけるレーザー照射室を示す図。 実施例の作製工程を示す図。 実施例におけるレーザーアニール装置の上面図。 しきい値電圧(Vth)の、雰囲気とレーザービームのエネルギー密の依存性を示す図。 S値の、雰囲気とレーザービームのエネルギー密度の依存性を示す図。 実施例の作製工程を示す図。 実施例き作製工程を示す図。 実施例における連続処理装置の上面図。
符号の説明
101 レーザー照射室
102 レーザー発振装置
103 ミラー
104 窓
105 被処理基板
106 台
107 移動機構
108 真空排気ポンプ
109、110 気体供給管
111 ステージ
112 光学系
201 基板
202 酸化珪素膜(下地膜)
203 結晶化珪素膜
205 島状領域
206 ゲイト絶縁膜
207 ゲイト電極
208 ソース
209 ドレイン
210 チャネル形成領域
211 層間絶縁膜
212 ソース電極・配線
213 ドレイン電極・配線
301 ゲイトバルブ
302 基板搬送室
303 アライメント室
305 ロボットアーム
306 ロード/アンロード室
307 ゲイトバルブ
308 予備加熱室
309 ゲイトバルブ
310 徐冷室
311 ゲイトバルブ
312 カセット

Claims (5)

  1. 基板上に下地膜を形成し、前記下地膜上に非晶質珪素膜を連続形成し、
    前記非晶質珪素膜上に酢酸ニッケル水溶液をスピンコート法にて塗布して、前記非晶質珪素膜上に酢酸ニッケル層を形成し、
    熱アニールによって前記非晶質珪素膜を結晶性珪素膜にし、
    水素含有雰囲気において、前記結晶性珪素膜にレーザーアニールを行って前記結晶性珪素膜の結晶性を向上させ、
    前記結晶性珪素膜を島状の結晶性珪素膜にし、
    前記島状の結晶性珪素膜上にゲート絶縁膜を形成し、
    前記ゲート絶縁膜上にゲート電極を形成し、
    前記ゲート電極をドーピングマスクとして、n型又はp型の不純物をドープして前記島状の結晶性珪素膜にソース領域及びドレイン領域を形成し、
    レーザーアニール及び窒素雰囲気下での熱アニールを行って前記ドーピングされた不純物を活性化し、
    前記ゲート電極及び前記ゲート絶縁膜上に層間絶縁膜を形成し、
    前記層間絶縁膜に、前記ソース領域及び前記ドレイン領域に達するコンタクトホールを形成し、
    金属膜を形成、エッチングしてソース電極及びドレイン電極を形成し、
    水素雰囲気下で熱アニールを行うことを特徴とする半導体装置の作製方法。
  2. 基板上に下地膜を形成し、前記下地膜上に非晶質珪素膜を連続形成し、
    前記非晶質珪素膜上に酢酸ニッケル水溶液をスピンコート法にて塗布して、前記非晶質珪素膜上に酢酸ニッケル層を形成し、
    熱アニールによって前記非晶質珪素膜を結晶性珪素膜にし、
    前記結晶性珪素膜を島状の結晶性珪素膜にし、
    水素含有雰囲気において、前記島状の結晶性珪素膜にレーザーアニールを行って前記島状の結晶性珪素膜の結晶性を向上させ、
    前記レーザーアニール後、大気に曝すことなく、前記島状の結晶性珪素膜上にゲート絶縁膜を形成し、
    前記ゲート絶縁膜上にゲート電極を形成し、
    前記ゲート電極をドーピングマスクとして、n型又はp型の不純物をドープして前記島状の結晶性珪素膜にソース領域及びドレイン領域を形成し、
    レーザーアニール及び窒素雰囲気下での熱アニールを行って前記ドーピングされた不純物を活性化し、
    前記ゲート電極及び前記ゲート絶縁膜上に層間絶縁膜を形成し、
    前記層間絶縁膜に、前記ソース領域及び前記ドレイン領域に達するコンタクトホールを形成し、
    金属膜を形成、エッチングしてソース電極及びドレイン電極を形成し、
    水素雰囲気下で熱アニールを行うことを特徴とする半導体装置の作製方法。
  3. 請求項2において、前記水素含有雰囲気でのレーザーアニール後、大気に曝すことなく、前記島状の結晶性珪素膜上に酸化珪素膜を形成し、前記酸化珪素膜上に窒化珪素膜を形成して、前記酸化珪素膜及び前記窒化珪素膜の積層膜からなるゲート絶縁膜を形成することを特徴とする半導体装置の作製方法。
  4. 請求項2において、前記水素含有雰囲気でのレーザーアニール後、大気に曝すことなく、活性化されたアンモニア雰囲気において、前記島状の結晶性珪素膜の表面にプラズマ窒化処理をすることにより、窒化珪素膜を形成してゲート絶縁膜を形成することを特徴とする半導体装置の作製方法。
  5. 請求項1乃至4のいずれか一において、前記水素含有雰囲気は水素と窒素の混合気体雰囲気であり、水素が1%以上含有されていることを特徴とする半導体装置の作製方法。
JP2004222717A 1995-10-25 2004-07-30 半導体装置の作製方法 Expired - Fee Related JP4128552B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222717A JP4128552B2 (ja) 1995-10-25 2004-07-30 半導体装置の作製方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30219095 1995-10-25
JP30813995 1995-11-01
JP2004222717A JP4128552B2 (ja) 1995-10-25 2004-07-30 半導体装置の作製方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP30125296A Division JPH09186342A (ja) 1995-10-25 1996-10-24 半導体装置の作製方法

Publications (2)

Publication Number Publication Date
JP2005012232A JP2005012232A (ja) 2005-01-13
JP4128552B2 true JP4128552B2 (ja) 2008-07-30

Family

ID=34108446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222717A Expired - Fee Related JP4128552B2 (ja) 1995-10-25 2004-07-30 半導体装置の作製方法

Country Status (1)

Country Link
JP (1) JP4128552B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073558A (ja) * 2005-09-02 2007-03-22 Kochi Prefecture Sangyo Shinko Center 薄膜トランジスタの製法

Also Published As

Publication number Publication date
JP2005012232A (ja) 2005-01-13

Similar Documents

Publication Publication Date Title
US6444506B1 (en) Method of manufacturing silicon thin film devices using laser annealing in a hydrogen mixture gas followed by nitride formation
KR100386202B1 (ko) 반도체 장치 제조 방법
US6391690B2 (en) Thin film semiconductor device and method for producing the same
KR100230485B1 (ko) 반도체 처리장치
US6017779A (en) Fabrication method for a thin film semiconductor device, the thin film semiconductor device itself, liquid crystal display, and electronic device
JP3072000B2 (ja) 半導体装置の作製方法
US5650338A (en) Method for forming thin film transistor
US5587330A (en) Method for manufacturing semiconductor device
US6905920B2 (en) Method for fabrication of field-effect transistor to reduce defects at MOS interfaces formed at low temperature
JPH06260436A (ja) 半導体装置の作製方法及び半導体処理装置
US6897100B2 (en) Method for processing semiconductor device apparatus for processing a semiconductor and apparatus for processing semiconductor device
JP3165324B2 (ja) 半導体装置の作製方法
JP3977455B2 (ja) 半導体装置の作製方法
EP0810640A1 (en) Thin film semiconductor device, method for manufacturing thin film semiconductor device, liquid crystal display, method for manufacturing liquid crystal display, electronic apparatus, method for manufacturing electronic apparatus, and method for depositing thin film
JP3927634B2 (ja) レーザーアニール方法及び薄膜トランジスタの作製方法
US6486046B2 (en) Method of forming polycrystalline semiconductor film
JPH06124890A (ja) 薄膜状半導体装置の作製方法。
JP3596188B2 (ja) 薄膜トランジスタの製造方法
JP4128552B2 (ja) 半導体装置の作製方法
JP4001906B2 (ja) 半導体装置の作製方法
JPH09186342A (ja) 半導体装置の作製方法
JP3565911B2 (ja) 半導体装置の作製方法
JP3897836B2 (ja) 半導体装置の作製方法
JP4001645B2 (ja) 結晶性珪素膜作製方法およびレーザー照射装置
JP3859946B2 (ja) 半導体装置の作製方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees