JP4126860B2 - Battery assembly - Google Patents

Battery assembly Download PDF

Info

Publication number
JP4126860B2
JP4126860B2 JP2000259326A JP2000259326A JP4126860B2 JP 4126860 B2 JP4126860 B2 JP 4126860B2 JP 2000259326 A JP2000259326 A JP 2000259326A JP 2000259326 A JP2000259326 A JP 2000259326A JP 4126860 B2 JP4126860 B2 JP 4126860B2
Authority
JP
Japan
Prior art keywords
module
voltage
battery
remaining capacity
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000259326A
Other languages
Japanese (ja)
Other versions
JP2002078217A (en
Inventor
晴義 山下
敏宏 勝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000259326A priority Critical patent/JP4126860B2/en
Publication of JP2002078217A publication Critical patent/JP2002078217A/en
Application granted granted Critical
Publication of JP4126860B2 publication Critical patent/JP4126860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、組電池の異常検出装置および組電池装置に関し、詳しくは、少なくとも一つの単電池により構成される複数のモジュール電池を直列接続してなる組電池の異常検出装置およびこうした組電池と組電池の異常検出装置とを備える組電池装置に関する。
【0002】
【従来の技術】
従来、この種の組電池装置としては、モジュール電池毎に充放電電圧を検出して充放電の際の過充電や過放電,故障を抑止するものが提案されている(例えば、特開平5−64377号公報や特開平8−140204号公報など)。この装置では、複数の単電池により構成されるモジュール電池を複数直列接続して組電池を構成し、組電池の充放電の際に各モジュール電池毎に充放電の際の電圧を検出している。
【0003】
【発明が解決しようとする課題】
しかしながら、こうした組電池装置では、電圧検出系に生じる異常を検出することができず、電圧検出系に異常が生じている場合に適正に充放電の管理ができない。モジュール電池毎に電圧の均等化を行なう組電池装置では、電圧検出系に異常が生じた場合でもモジュール電池の電圧の均等化を行なうから、モジュール電池を過放電したり過充電したりする場合が生じる。
【0004】
本発明の組電池の異常検出装置は、モジュール電池の電圧検出系に生じ得る異常を検出することを目的とする。また、本発明の組電池装置は、モジュール電池の電圧検出系に異常が生じたときでも組電池をより適正に使用することを目的とする。
【0005】
なお、出願人は、この種の組電池装置としてモジュール電池の異常を検出するものを提案している(特願平9−339123号)。この装置では、モジュール電池の電圧を検出し、検出した電圧が許容範囲内にあるか否かによりモジュール電池の異常を判定している。
【0006】
【課題を解決するための手段およびその作用・効果】
本発明の組電池の異常検出装置および組電池装置は、上述の目的の少なくとも一部を達成するために以下の手段を採った。
【0007】
本発明の組電池装置は、少なくとも一つの単電池により構成される複数のモジュール電池を直列接続してなる組電池を有する組電池装置であって、前記複数のモジュール電池の各々の電圧を検出するモジュール電圧検出手段と、該検出された各モジュール電池の電圧に基づいて各モジュール電池の電圧の均等化を行なう均等化手段と、前記複数のモジュール電池の各々の残容量を検出する残容量検出手段と、該検出された各モジュール電池の残容量に基づいて前記モジュール電圧検出手段の異常を判定する異常判定手段と、を備える組電池の異常検出装置と、前記異常検出装置により異常が検出されたとき、前記モジュール電池の電圧と残容量との関係に基づいて、異常なモジュール電圧検出手段により検出された電圧から異常に係るモジュール電池の残容量を推定し、推定した前記異常に係るモジュール電池の残容量を他のモジュール電池の電圧と残容量との関係に当てはめることにより、前記異常に係るモジュール電池の電圧を補正する異常時電圧補正手段と、前記均等化手段による均等化とは異なり、前記他のモジュール電池の電圧が前記補正した電圧に近づく方向に前記他のモジュール電池の残容量を調整する残容量調整手段と、を備える。
【0008】
この本発明の組電池装置では、残容量検出手段により検出された各モジュール電池の残容量に基づいてモジュール電圧検出手段の異常を判定することができる。この異常の判定は、モジュール電池の残容量とモジュール電池の電圧との関係に基づく。また、本発明の組電池装置では、異常検出装置により異常が検出されたときには、モジュール電池の電圧と残容量との関係に基づいて、異常なモジュール電圧検出手段により検出された電圧から異常に係るモジュール電池の残容量を推定し、推定した異常に係るモジュール電池の残容量を他のモジュール電池の電圧と残容量との関係に当てはめることにより、異常に係るモジュール電池の電圧を補正する異常時電圧補正手段と、均等化手段による均等化とは異なり、前記他のモジュール電池の電圧が前記補正した電圧に近づく方向に前記他のモジュール電池の残容量を調整する残容量調整手段と、を備えているため、モジュール電池の過放電や過充電の抑止、異常に係るモジュール電池のより確からしい電圧を用いて組電池を使用すること、及び各モジュール電池の残容量のバラツキを小さくすることができる。
【0009】
また、前記組電池装置において、前記異常判定手段は、各モジュール電池の残容量の変化率に基づいて異常を判定する手段であることが好ましい。
【0010】
また、前記組電池装置において、前記異常判定手段は、各モジュール電池の残容量の変化率の平均値を演算する変化率平均値演算手段を備え、いずれかのモジュール電池の残容量の変化率が前記変化率平均値演算手段により演算された変化率の平均値より所定倍以上大きいとき又は小さいときに前記モジュール電池検出手段のうちの該モジュール電池の電圧検出系の異常と判定する手段であることが好ましい。
【0011】
また、前記組電池装置において、前記異常判定手段は、各モジュール電池の残容量の変化率の平均値を演算する変化率平均値演算手段を備え、いずれかのモジュール電池の残容量の変化率が前記変化率平均値演算手段により演算された変化率の平均値を含む所定範囲外のときに前記モジュール電池検出手段のうちの該モジュール電池の電圧検出系の異常と判定する手段であることが好ましい。
【0015】
【発明の実施の形態】
次に、本発明の実施の形態を実施例を用いて説明する。図1は、本発明の一実施例である組電池の異常検出装置を備える組電池装置20の構成の概略を示す構成図である。実施例の組電池装置20は、図示するように、出力端子が電源ラインにより負荷10に接続された組電池21と、組電池21を管理する電子制御ユニット40とを備える。
【0016】
組電池21は、例えばリチウムイオン電池などの複数の単電池22を直列接続してなる複数のモジュール電池24a〜24nを直列接続して構成されている。各モジュール電池24a〜24nには、各単電池22の電圧を検出する電圧検出ライン26a〜26nを用いて各単電池22の電圧の均等化を行なうセル均等化回路28a〜28nが取り付けられている。以下、n個のモジュール電池24a〜24nに対応する各部の符号には、数字とa〜nのアルファベットによる添え字とを用いて表示する。
【0017】
電子制御ユニット40は、CPU42を中心とするマイクロプロセッサとして構成されており、処理プログラムを記憶したROM44と、一時的にデータを記憶するRAM46とを備える。この電子制御ユニット40には、各モジュール電池24a〜24nの接続端に接続された導電ライン32a〜32n+1が接続されており、導電ライン32a〜32n+1のライン間の電位差を検出することにより各モジュール電池24a〜24nの電圧を検出できるようになっている。電子制御ユニット40では、この検出した各モジュール電池24a〜24nの電圧に基づいて各モジュール電池24a〜24nの残容量Sa〜Snを演算している。電圧に基づく残容量(SOC)の演算は周知なのでその説明は省略する。また、各導電ライン32a〜32n+1の間には、抵抗34a〜34nとトランジスタ36a〜36nとが直列に接続されており、各トランジスタ36a〜36nのベースは信号ライン38a〜38nにより電子制御ユニット40に接続されている。したがって、電子制御ユニット40は、信号ライン38a〜38nにオンオフ信号を出力することによりトランジスタ36a〜36nをオンオフすることができる。また、電子制御ユニット40からは、組電池21やモジュール電池24a〜24nの電圧検出系の異常の際に点灯するインジケータ48への点灯信号も出力されている。
【0018】
次に、こうして構成された実施例の組電池装置20の動作、特にモジュール電池24a〜24nの電圧検出系の異常を検出する動作とこの異常を検出したときの動作について説明する。図2は、実施例の組電池装置20の電子制御ユニット40により実行される異常検出処理ルーチンの一例を示すフローチャートである。このルーチンは所定時間毎(例えば、1時間毎など)に繰り返し実行される。
【0019】
異常検出処理ルーチンが実行されると、電子制御ユニット40のCPU42は、まず、各導電ライン32a〜32n+1の間の電位差を検出して各モジュール電池24a〜24nの電圧Va〜Vnを検出する処理を実行する(ステップS100)。続いて、検出した各モジュール電池24a〜24nの電圧Va〜Vnに基づいて各モジュール電池24a〜24nの残容量Sa〜Snを演算すると共に(ステップS102)、演算した残容量Sa〜Snと前回このルーチンが実行されたときに演算された残容量Sa〜Snとを用いて残容量の時間変化率DSa〜DSnを計算する(ステップS104)。具体的には、今回の残容量Sa〜Snと前回の残容量Sa〜Snの偏差を異常検出処理ルーチンが実行される時間間隔で除することにより行なわれる。
【0020】
そして、残容量の時間変化率DSa〜DSnの平均値Aを計算し(ステップS106)、計算した平均値Aに所定係数aを乗じたものや平均値Aに所定係数bを乗じたものと各残容量の時間変化率DSa〜DSnとを比較する(ステップS108)。ここで、所定係数aおよび所定係数bは、残容量の時間変化率DSa〜DSnの平均値Aからの許容されるバラツキの上限および下限を定める係数であり、単電池22やモジュール電池24a〜24nの特性や仕様などにより定められる。いずれの残容量の時間変化率DSa〜DSnも平均値Aに所定係数aを乗じたものより小さく平均値Aに所定係数bを乗じたものより大きいときには、すべての電圧検出系に異常は生じていないと判断して、本ルーチンを終了する。一方、いずれかの残容量の時間変化率DSが平均値Aに所定係数aを乗じたものより大きいときや平均値Aに所定係数bを乗じたものより小さいときには、その残容量の時間変化率DSに係るモジュール電池24の電圧検出系に異常が生じていると判定すると共にインジケータ48を点灯して(ステップS110)、本ルーチンを終了する。ここで、残容量の時間変化率DSに基づいて電圧検出系の異常が判定できるのは次の理由による。
【0021】
図3は、正常な電圧検出系によるモジュール電池の残容量と電圧との関係と異常な電圧検出系によるモジュール電池の残容量と電圧との関係の一例を示す説明図である。図3中の異常な電圧検出系は、電圧を高めに検出するものである。後述する図4の均等化処理ルーチンのステップS204の処理としての均等化処理では、各モジュール電池24a〜24nの残容量Sa〜Snが均等になるように電圧が高いモジュール電池に対してトランジスタ36をオンして抵抗34により電力を消費させる。したがって、電圧が高めに検出される異常な電圧検出系により電圧が検出されるモジュール電池では必要以上に放電されるから、同じ電圧として検出されても正常な電圧検出系により電圧が検出されるモジュール電池に比して残容量(SOC)が小さくなる。残容量(SOC)と電圧との関係は、図示するように、残容量(SOC)が小さな領域と大きな領域では変化率が大きい。このため、異常な電圧検出系により電圧が検出されたモジュール電池の残容量(SOC)の小さな領域ではその残容量の時間変化率は正常な電圧検出系により電圧が検出されたモジュール電池の残容量の時間変化率に比して大きくなり、残容量(SOC)の大きな領域ではその残容量の時間変化率は正常な電圧検出系により電圧が検出されたモジュール電池の残容量の時間変化率に比して小さくなる。
【0022】
逆に、電圧が低めに検出される異常な電圧検出系により電圧が検出されるモジュール電池では均等化処理による放電が行なわれないから、同じ電圧として検出されても正常な電圧検出系により電圧が検出されるモジュール電池に比して残容量(SOC)が大きくなる。このため、異常な電圧検出系により電圧が検出されたモジュール電池の残容量(SOC)の小さな領域ではその残容量の時間変化率は正常な電圧検出系により電圧が検出されたモジュール電池の残容量の時間変化率に比して小さくなり、残容量(SOC)の大きな領域ではその残容量の時間変化率は正常な電圧検出系により電圧が検出されたモジュール電池の残容量の時間変化率に比して大きくなる。こうした考えを用いて、実施例では、残容量の時間変化率DSa〜DSnの平均値Aを含む許容範囲を超える時間変化率DSのモジュール電池の電圧検出系の異常を判定するのである。
【0023】
実施例の組電池装置20では、こうした異常検出処理の他にモジュール電池24a〜24nを均等化する処理も行なっている。図4は、実施例の組電池装置20の電子制御ユニット40により実行される均等化処理ルーチンの一例を示すフローチャートである。このルーチンは、所定時間毎(例えば30分毎など)に繰り返し実行される。
【0024】
均等化処理ルーチンが実行されると、電子制御ユニット40のCPU42は、まず、各導電ライン32a〜32n+1の間の電位差を検出して各モジュール電池24a〜24nの電圧Va〜Vnを検出する処理を実行する(ステップS200)。続いて、電圧検出系の異常が判定されたか否かを調べ(ステップS202)、異常が判定されていないときには、各モジュール電池24a〜24nの残容量Sa〜Snが均等になるように均等化処理を実行して(ステップS204)、本ルーチンを終了する。この均等化処理は、各モジュール電池24a〜24nの残容量Sa〜Snが均等になるように電圧が高いモジュール電池に対してトランジスタ36をオンして抵抗34により電力を消費させることにより行なう。
【0025】
一方、電圧検出系の異常が判定されているときには、異常が判定された電圧検出系により電圧が検出されるモジュール電池の電圧を残容量の時間変化に基づいて補正し(ステップS206)、各モジュール電池24a〜24nの電圧が補正した電圧に近づくように調整して(ステップS208)、本ルーチンを終了する。電圧の補正は、図3に例示するように、モジュール電池の電圧と残容量との関係から、異常な電圧検出系により検出された電圧からモジュール電池の残容量を推定できるから、推定した残容量を正常な電圧検出系により検出される電圧と残容量との関係に当てはめて電圧を推定することにより行なう。各モジュール電池24a〜24nの電圧を補正した電圧に近づくように行なう調整は、電圧を高めに検出する異常な電圧検出系の場合には、正常な電圧検出系により電圧が検出される各モジュール電池24に対してトランジスタ36をオンとして抵抗34により電力を消費させることにより行なうが、均等化処理とは異なり、補正した電圧になるまで放電は行なわず、補正した電圧より高い電圧までで放電が終了される。一方、電圧を低めに検出する異常な電圧検出系の場合には、異常な電圧検出系により電圧が検出されるモジュール電池24に対してトランジスタ36をオンとして抵抗34により電力を消費させることにより行なう。この場合も、補正した電圧が正常な電圧検出系により検出される電圧になるまで放電するのではなく、若干高い電圧までで放電を終了する。
【0026】
以上説明した実施例の組電池装置20によれば、モジュール電池24a〜24nの電圧検出系の異常を検出することができる。この結果、電圧検出系の異常に基づくモジュール電池24の過放電や過充電を防止することができる。また、実施例の組電池装置20によれば、電圧検出系の異常を検出したときには、異常に係るモジュール電池24の電圧を補正すると共に他のモジュール電池24a〜24nの電圧が補正した電圧に近づくよう調整するから、電圧検出系の異常に基づくモジュール電池24の過放電や過充電を更に防止することができると共にその後の使用に資することができる。
【0027】
実施例の組電池装置20では、残容量の時間変化率DSが平均値Aに所定係数aを乗じたものと所定係数bを乗じたものとにより設定される許容範囲外となるときにその残容量の時間変化率DSに係る電圧検出系を異常と判定したが、残容量の時間変化率DSが平均値Aに所定値cを減じたものと所定値dを加えたものとにより設定される許容範囲外となるときにその残容量の時間変化率DSに係る電圧検出系を異常と判定するものとしてもよい。ここで、所定値cおよび所定値dは、残容量の時間変化率DSa〜DSnの平均値Aからの許容されるバラツキの上限および下限を定める定数であり、単電池22やモジュール電池24a〜24nの特性や仕様などにより定められる。
【0028】
実施例の組電池装置20では、電圧検出系の異常を検出したときには、異常に係るモジュール電池24の電圧を補正し、他のモジュール電池24の電圧の調整を行なうものとしたが、電圧検出系の異常を検出したときには単に均等化処理を行なわないだけで、異常に係るモジュール電池24の電圧の補正や他のモジュール電池24の電圧の調整を行なわないものとしてもよい。
【0029】
実施例の組電池装置20では、異常検出処理ルーチンと均等化処理ルーチンとを別々のルーチンとして電子制御ユニット40により実行するものとしたが、均等化処理ルーチンのステップS202処理の前に異常検出処理ルーチンのステップS102〜S110の処理を行なうものとして均等化処理ルーチンの中で電圧検出系の異常を検出するものとしてもよい。
【0030】
実施例の組電池装置20では、各モジュール電池24a〜24nの残容量Sa〜Snを各モジュール電池24a〜24nの電圧Va〜Vnに基づいて演算により求めるものとしたが、各モジュール電池24a〜24nの残容量Sa〜Snを直接検出するものとしてもよいし、電圧Va〜Vn以外の状態値を用いて演算したものを用いるものとしてもよい。
【0031】
実施例の組電池装置20では、複数の単電池22を直列に接続してモジュール電池24a〜24nを構成したが、一つの単電池22によりモジュール電池24a〜24nを構成するものとしてもよい。この場合、セル均等化回路28a〜28nは不要となる。
【0032】
以上、本発明の実施の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
【図面の簡単な説明】
【図1】 本発明の一実施例である組電池の異常検出装置を備える組電池装置20の構成の概略を示す構成図である。
【図2】 実施例の組電池装置20の電子制御ユニット40により実行される異常検出処理ルーチンの一例を示すフローチャートである。
【図3】 正常な電圧検出系によるモジュール電池の残容量と電圧との関係と異常な電圧検出系によるモジュール電池の残容量と電圧との関係の一例を示す説明図である。
【図4】 実施例の組電池装置20の電子制御ユニット40により実行される均等化処理ルーチンの一例を示すフローチャートである。
【符号の説明】
10 負荷、20 組電池装置、21 組電池、22 単電池、24a〜24n モジュール電池、26a〜26n 電圧検出ライン、28a〜28n セル均等化回路、32a〜32n+1 導電ライン、34a〜34n 抵抗、36a〜36n トランジスタ、38a〜38n 信号ライン、40 電子制御ユニット、42 CPU、44 ROM、46 RAM、48 インジケータ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an assembled battery abnormality detection device and an assembled battery device. More specifically, the present invention relates to an assembled battery abnormality detection device in which a plurality of module batteries each composed of at least one single battery are connected in series, and such an assembled battery and assembly. The present invention relates to an assembled battery device including a battery abnormality detection device.
[0002]
[Prior art]
Conventionally, as this type of assembled battery device, a device that detects a charge / discharge voltage for each module battery and suppresses overcharge, overdischarge, and failure at the time of charge / discharge has been proposed (for example, Japanese Patent Laid-Open No. Hei 5- No. 64377 and JP-A-8-140204). In this device, a plurality of module batteries composed of a plurality of single cells are connected in series to form an assembled battery, and the voltage at the time of charging / discharging is detected for each module battery at the time of charging / discharging of the assembled battery. .
[0003]
[Problems to be solved by the invention]
However, in such an assembled battery device, an abnormality occurring in the voltage detection system cannot be detected, and charge / discharge cannot be properly managed when an abnormality occurs in the voltage detection system. In an assembled battery device that performs voltage equalization for each module battery, even if an abnormality occurs in the voltage detection system, the voltage of the module battery is equalized, so the module battery may be overdischarged or overcharged. Arise.
[0004]
An object of the present invention is to detect an abnormality that can occur in a voltage detection system for a module battery. Moreover, the assembled battery apparatus of this invention aims at using an assembled battery more appropriately, even when abnormality arises in the voltage detection system of a module battery.
[0005]
In addition, the applicant has proposed what detects abnormality of a module battery as this kind of assembled battery apparatus (Japanese Patent Application No. 9-339123). In this apparatus, the voltage of the module battery is detected, and the abnormality of the module battery is determined based on whether or not the detected voltage is within an allowable range.
[0006]
[Means for solving the problems and their functions and effects]
The battery pack abnormality detection apparatus and battery pack apparatus of the present invention employ the following means in order to achieve at least a part of the above-described object.
[0007]
An assembled battery device according to the present invention is an assembled battery device having an assembled battery formed by connecting a plurality of module batteries configured by at least one single battery in series, and detects a voltage of each of the plurality of module batteries. Module voltage detection means, equalization means for equalizing the voltage of each module battery based on the detected voltage of each module battery, and remaining capacity detection means for detecting the remaining capacity of each of the plurality of module batteries An abnormality determination device for determining abnormality of the module voltage detection means based on the detected remaining capacity of each module battery, and an abnormality is detected by the abnormality detection device. when, on the basis of the relationship between the voltage and the remaining capacity of the module battery, according to the abnormality from the voltage detected by the abnormal module voltage detector module Estimating the remaining capacity of the Le battery, by fitting the remaining capacity of the module battery according to the estimated the abnormality in the relationship between the voltage and the remaining capacity of another battery module, anomaly correcting the voltage of the module battery according to the abnormality Unlike the equalization by the time voltage correction means and the equalization means, the remaining capacity adjustment means for adjusting the remaining capacity of the other module battery in a direction in which the voltage of the other module battery approaches the corrected voltage; Is provided.
[0008]
In the assembled battery device of the present invention, it is possible to determine the abnormality of the module voltage detecting means based on the remaining capacity of each module battery detected by the remaining capacity detecting means. This abnormality determination is based on the relationship between the remaining capacity of the module battery and the voltage of the module battery. Further, in the assembled battery device of the present invention, when an abnormality is detected by the abnormality detection device, the abnormality is detected from the voltage detected by the abnormal module voltage detection means based on the relationship between the voltage of the module battery and the remaining capacity. Estimate the remaining capacity of the module battery, and apply the remaining capacity of the module battery related to the estimated abnormality to the relationship between the voltage of the other module battery and the remaining capacity, thereby correcting the voltage of the module battery related to the abnormality Unlike the equalization by the correction means and the equalization means, the remaining capacity adjustment means for adjusting the remaining capacity of the other module battery in a direction in which the voltage of the other module battery approaches the corrected voltage. Therefore, it is necessary to use an assembled battery with a more probable voltage of the module battery related to abnormality, suppression of overdischarge and overcharge of the module battery, Beauty variations of the remaining capacity of each battery module can be reduced.
[0009]
In the assembled battery device, it is preferable that the abnormality determination unit is a unit that determines abnormality based on a rate of change in remaining capacity of each module battery.
[0010]
Further, in the assembled battery device, the abnormality determination means includes a change rate average value calculating means for calculating an average value of the change rate of the remaining capacity of each module battery, and the change rate of the remaining capacity of any of the module batteries is The module battery detecting means is a means for determining that the voltage detection system of the module battery is abnormal when the average value of the change rate calculated by the change rate average value calculating means is larger or smaller than a predetermined multiple. Is preferred.
[0011]
Further, in the assembled battery device, the abnormality determination means includes a change rate average value calculating means for calculating an average value of the change rate of the remaining capacity of each module battery, and the change rate of the remaining capacity of any of the module batteries is Preferably, the module battery detection means is a means for determining an abnormality in the voltage detection system of the module battery when the average value of the change rate calculated by the change rate average value calculation means is outside a predetermined range. .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described using examples. FIG. 1 is a configuration diagram showing an outline of a configuration of an assembled battery device 20 including an assembled battery abnormality detection device according to an embodiment of the present invention. As illustrated, the assembled battery device 20 of the embodiment includes an assembled battery 21 whose output terminal is connected to the load 10 by a power line, and an electronic control unit 40 that manages the assembled battery 21.
[0016]
The assembled battery 21 is configured by connecting a plurality of module batteries 24a to 24n formed by connecting a plurality of unit cells 22 such as lithium ion batteries in series. Cell equalization circuits 28a to 28n for equalizing the voltages of the unit cells 22 using the voltage detection lines 26a to 26n for detecting the voltages of the unit cells 22 are attached to the module batteries 24a to 24n. . Hereinafter, the numerals of the parts corresponding to the n module batteries 24a to 24n are displayed using numerals and subscripts of alphabets a to n.
[0017]
The electronic control unit 40 is configured as a microprocessor centered on a CPU 42 and includes a ROM 44 that stores a processing program and a RAM 46 that temporarily stores data. The electronic control unit 40 is connected to conductive lines 32a to 32n + 1 connected to the connection ends of the module batteries 24a to 24n, and each module battery is detected by detecting a potential difference between the conductive lines 32a to 32n + 1. The voltages 24a to 24n can be detected. In the electronic control unit 40, the remaining capacities Sa to Sn of the module batteries 24a to 24n are calculated based on the detected voltages of the module batteries 24a to 24n. Since the calculation of the remaining capacity (SOC) based on the voltage is well known, its description is omitted. Further, resistors 34a to 34n and transistors 36a to 36n are connected in series between the conductive lines 32a to 32n + 1, and the bases of the transistors 36a to 36n are connected to the electronic control unit 40 by signal lines 38a to 38n. It is connected. Therefore, the electronic control unit 40 can turn on and off the transistors 36a to 36n by outputting on / off signals to the signal lines 38a to 38n. The electronic control unit 40 also outputs a lighting signal to the indicator 48 that lights when the voltage detection system of the assembled battery 21 or the module batteries 24a to 24n is abnormal.
[0018]
Next, the operation of the assembled battery device 20 of the embodiment configured as described above, particularly the operation for detecting the abnormality of the voltage detection system of the module batteries 24a to 24n and the operation when this abnormality is detected will be described. FIG. 2 is a flowchart illustrating an example of an abnormality detection processing routine executed by the electronic control unit 40 of the assembled battery device 20 according to the embodiment. This routine is repeatedly executed every predetermined time (for example, every hour).
[0019]
When the abnormality detection processing routine is executed, the CPU 42 of the electronic control unit 40 first detects a potential difference between the conductive lines 32a to 32n + 1 to detect the voltages Va to Vn of the module batteries 24a to 24n. Execute (Step S100). Subsequently, the remaining capacity Sa to Sn of each module battery 24a to 24n is calculated based on the detected voltage Va to Vn of each module battery 24a to 24n (step S102), and the calculated remaining capacity Sa to Sn and the previous time The remaining capacity time change rates DSa to DSn are calculated using the remaining capacity Sa to Sn calculated when the routine is executed (step S104). Specifically, this is performed by dividing the deviation between the current remaining capacity Sa to Sn and the previous remaining capacity Sa to Sn by the time interval at which the abnormality detection processing routine is executed.
[0020]
Then, an average value A of the remaining capacity time change rates DSa to DSn is calculated (step S106), and the calculated average value A is multiplied by a predetermined coefficient a, the average value A is multiplied by a predetermined coefficient b, and each The time change rates DSa to DSn of the remaining capacity are compared (step S108). Here, the predetermined coefficient a and the predetermined coefficient b are coefficients that determine an upper limit and a lower limit of the allowable variation from the average value A of the time change rates DSa to DSn of the remaining capacity, and the single battery 22 and the module batteries 24a to 24n. It is determined by the characteristics and specifications. When any of the remaining capacity time change rates DSa to DSn is smaller than the average value A multiplied by the predetermined coefficient a and larger than the average value A multiplied by the predetermined coefficient b, an abnormality has occurred in all voltage detection systems. If it is determined that there is no, this routine is terminated. On the other hand, when the time change rate DS of any remaining capacity is larger than the average value A multiplied by the predetermined coefficient a or smaller than the average value A multiplied by the predetermined coefficient b, the time change rate of the remaining capacity It is determined that an abnormality has occurred in the voltage detection system of the module battery 24 related to DS, and the indicator 48 is turned on (step S110), and this routine ends. Here, the abnormality of the voltage detection system can be determined based on the time change rate DS of the remaining capacity for the following reason.
[0021]
FIG. 3 is an explanatory diagram showing an example of the relationship between the remaining capacity and voltage of the module battery by the normal voltage detection system and the relationship between the remaining capacity and voltage of the module battery by the abnormal voltage detection system. The abnormal voltage detection system in FIG. 3 detects a high voltage. In the equalization process as the process of step S204 of the equalization process routine of FIG. 4 described later, the transistor 36 is connected to the module battery having a high voltage so that the remaining capacities Sa to Sn of the module batteries 24a to 24n are equalized. It is turned on and power is consumed by the resistor 34. Therefore, a module battery in which the voltage is detected by an abnormal voltage detection system that detects a high voltage is discharged more than necessary, so even if it is detected as the same voltage, the module can detect the voltage by a normal voltage detection system The remaining capacity (SOC) is smaller than that of the battery. As shown in the figure, the rate of change between the remaining capacity (SOC) and the voltage is large in a region where the remaining capacity (SOC) is small and a large region. For this reason, in the region where the remaining capacity (SOC) of the module battery in which the voltage is detected by the abnormal voltage detection system is small, the time change rate of the remaining capacity is the remaining capacity of the module battery in which the voltage is detected by the normal voltage detection system. In the region where the remaining capacity (SOC) is large, the time changing rate of the remaining capacity is compared with the time changing rate of the remaining capacity of the module battery whose voltage is detected by the normal voltage detection system. And get smaller.
[0022]
On the contrary, the module battery in which the voltage is detected by the abnormal voltage detection system in which the voltage is detected at a low voltage does not discharge by the equalization process. Therefore, even if it is detected as the same voltage, the voltage is detected by the normal voltage detection system. The remaining capacity (SOC) becomes larger than the detected module battery. For this reason, in the region where the remaining capacity (SOC) of the module battery in which the voltage is detected by the abnormal voltage detection system is small, the time change rate of the remaining capacity is the remaining capacity of the module battery in which the voltage is detected by the normal voltage detection system. In the region where the remaining capacity (SOC) is large, the time change rate of the remaining capacity is compared with the time change ratio of the remaining capacity of the module battery whose voltage is detected by the normal voltage detection system. And get bigger. Using this idea, in the embodiment, the abnormality of the voltage detection system of the module battery having the time change rate DS exceeding the allowable range including the average value A of the time change rates DSa to DSn of the remaining capacity is determined.
[0023]
In the assembled battery device 20 of the embodiment, in addition to such abnormality detection processing, processing for equalizing the module batteries 24a to 24n is also performed. FIG. 4 is a flowchart illustrating an example of an equalization processing routine executed by the electronic control unit 40 of the assembled battery device 20 according to the embodiment. This routine is repeatedly executed every predetermined time (for example, every 30 minutes).
[0024]
When the equalization processing routine is executed, the CPU 42 of the electronic control unit 40 first detects a potential difference between the conductive lines 32a to 32n + 1 to detect voltages Va to Vn of the module batteries 24a to 24n. Execute (Step S200). Subsequently, it is checked whether or not an abnormality of the voltage detection system has been determined (step S202). When the abnormality has not been determined, an equalization process is performed so that the remaining capacities Sa to Sn of the module batteries 24a to 24n are equalized. Is executed (step S204), and this routine is terminated. This equalization processing is performed by turning on the transistor 36 and consuming power by the resistor 34 with respect to the module battery having a high voltage so that the remaining capacities Sa to Sn of the module batteries 24 a to 24 n are equalized.
[0025]
On the other hand, when the abnormality of the voltage detection system is determined, the voltage of the module battery whose voltage is detected by the voltage detection system where the abnormality is determined is corrected based on the time change of the remaining capacity (step S206), and each module Adjustment is made so that the voltages of the batteries 24a to 24n approach the corrected voltage (step S208), and this routine ends. As illustrated in FIG. 3, the voltage correction can estimate the remaining capacity of the module battery from the voltage detected by the abnormal voltage detection system from the relationship between the voltage of the module battery and the remaining capacity. Is applied to the relationship between the voltage detected by the normal voltage detection system and the remaining capacity to estimate the voltage. In the case of an abnormal voltage detection system in which the voltage of each module battery 24a to 24n is approximated to the corrected voltage, in the case of an abnormal voltage detection system that detects the voltage higher, each module battery whose voltage is detected by the normal voltage detection system 24, the transistor 36 is turned on and power is consumed by the resistor 34. However, unlike the equalization process, the discharge is not performed until the corrected voltage is reached, and the discharge is terminated at a voltage higher than the corrected voltage. Is done. On the other hand, in the case of an abnormal voltage detection system that detects a voltage at a low level, the module battery 24 whose voltage is detected by the abnormal voltage detection system is turned on and the power is consumed by the resistor 34 by turning on the transistor 36. . Also in this case, the discharge is not finished until the corrected voltage becomes a voltage detected by a normal voltage detection system, but the discharge is terminated at a slightly higher voltage.
[0026]
According to the assembled battery device 20 of the embodiment described above, the abnormality of the voltage detection system of the module batteries 24a to 24n can be detected. As a result, overdischarge and overcharge of the module battery 24 based on abnormality of the voltage detection system can be prevented. Further, according to the assembled battery device 20 of the embodiment, when the abnormality of the voltage detection system is detected, the voltage of the module battery 24 related to the abnormality is corrected and the voltages of the other module batteries 24a to 24n approach the corrected voltage. Thus, the module battery 24 can be further prevented from being overdischarged or overcharged due to an abnormality in the voltage detection system, and can be used for subsequent use.
[0027]
In the assembled battery device 20 according to the embodiment, when the time change rate DS of the remaining capacity falls outside the allowable range set by the average value A multiplied by the predetermined coefficient a and the predetermined coefficient b. Although the voltage detection system related to the time change rate DS of the capacity is determined to be abnormal, the time change rate DS of the remaining capacity is set based on a value obtained by subtracting the predetermined value c from the average value A and a value obtained by adding the predetermined value d. The voltage detection system related to the time change rate DS of the remaining capacity may be determined to be abnormal when it falls outside the allowable range. Here, the predetermined value c and the predetermined value d are constants that define an upper limit and a lower limit of an allowable variation from the average value A of the time change rates DSa to DSn of the remaining capacity, and the single battery 22 and the module batteries 24a to 24n. It is determined by the characteristics and specifications.
[0028]
In the assembled battery device 20 of the embodiment, when the abnormality of the voltage detection system is detected, the voltage of the module battery 24 related to the abnormality is corrected and the voltage of the other module battery 24 is adjusted. When an abnormality is detected, the equalization process is not performed, and the voltage of the module battery 24 related to the abnormality or the voltage of another module battery 24 may not be adjusted.
[0029]
In the assembled battery device 20 of the embodiment, the abnormality detection processing routine and the equalization processing routine are executed by the electronic control unit 40 as separate routines, but the abnormality detection processing is performed before step S202 of the equalization processing routine. It is good also as what detects abnormality of a voltage detection system in an equalization processing routine as what performs processing of Steps S102-S110 of a routine.
[0030]
In the assembled battery device 20 of the embodiment, the remaining capacities Sa to Sn of the module batteries 24a to 24n are obtained by calculation based on the voltages Va to Vn of the module batteries 24a to 24n, but the module batteries 24a to 24n are calculated. The remaining capacities Sa to Sn may be directly detected, or those calculated using state values other than the voltages Va to Vn may be used.
[0031]
In the assembled battery device 20 of the embodiment, the plurality of unit cells 22 are connected in series to form the module batteries 24a to 24n. However, the single unit cell 22 may constitute the module batteries 24a to 24n. In this case, the cell equalization circuits 28a to 28n are not necessary.
[0032]
The embodiments of the present invention have been described using the embodiments. However, the present invention is not limited to these embodiments, and can be implemented in various forms without departing from the gist of the present invention. Of course you get.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an outline of a configuration of an assembled battery device 20 including an assembled battery abnormality detection device according to an embodiment of the present invention.
FIG. 2 is a flowchart illustrating an example of an abnormality detection processing routine executed by the electronic control unit 40 of the assembled battery device 20 according to the embodiment.
FIG. 3 is an explanatory diagram showing an example of the relationship between the remaining capacity and voltage of the module battery by a normal voltage detection system and the relationship between the remaining capacity and voltage of the module battery by an abnormal voltage detection system;
FIG. 4 is a flowchart illustrating an example of an equalization processing routine executed by the electronic control unit 40 of the assembled battery device 20 according to the embodiment.
[Explanation of symbols]
10 load, 20 assembled battery device, 21 assembled battery, 22 single battery, 24a-24n module battery, 26a-26n voltage detection line, 28a-28n cell equalization circuit, 32a-32n + 1 conductive line, 34a-34n resistance, 36a- 36n transistor, 38a-38n signal line, 40 electronic control unit, 42 CPU, 44 ROM, 46 RAM, 48 indicator.

Claims (4)

少なくとも一つの単電池により構成される複数のモジュール電池を直列接続してなる組電池を有する組電池装置であって、
前記複数のモジュール電池の各々の電圧を検出するモジュール電圧検出手段と、該検出された各モジュール電池の電圧に基づいて各モジュール電池の電圧の均等化を行なう均等化手段と、前記複数のモジュール電池の各々の残容量を検出する残容量検出手段と、該検出された各モジュール電池の残容量に基づいて前記モジュール電圧検出手段の異常を判定する異常判定手段と、を備える組電池の異常検出装置と、
前記異常検出装置により異常が検出されたとき、前記モジュール電池の電圧と残容量との関係に基づいて、異常なモジュール電圧検出手段により検出された電圧から異常に係るモジュール電池の残容量を推定し、推定した前記異常に係るモジュール電池の残容量を他のモジュール電池の電圧と残容量との関係に当てはめることにより、前記異常に係るモジュール電池の電圧を補正する異常時電圧補正手段と、
前記均等化手段による均等化とは異なり、前記他のモジュール電池の電圧が前記補正した電圧に近づく方向に前記他のモジュール電池の残容量を調整する残容量調整手段と、を備える組電池装置。
An assembled battery device having an assembled battery formed by connecting a plurality of module batteries constituted by at least one single battery in series,
Module voltage detection means for detecting the voltage of each of the plurality of module batteries, equalization means for equalizing the voltage of each module battery based on the detected voltage of each module battery, and the plurality of module batteries A battery pack abnormality detection device comprising: a remaining capacity detection means for detecting each remaining capacity of the battery module; and an abnormality determination means for determining an abnormality of the module voltage detection means based on the detected remaining capacity of each module battery. When,
When an abnormality is detected by the abnormality detection device , the remaining capacity of the module battery related to the abnormality is estimated from the voltage detected by the abnormal module voltage detection means based on the relationship between the voltage of the module battery and the remaining capacity. An abnormal voltage correction means for correcting the voltage of the module battery related to the abnormality by applying the estimated remaining capacity of the module battery related to the abnormality to the relationship between the voltage of the other module battery and the remaining capacity;
Unlike the equalization by the equalization means, an assembled battery device comprising: a remaining capacity adjustment means for adjusting a remaining capacity of the other module battery in a direction in which the voltage of the other module battery approaches the corrected voltage.
前記異常判定手段は、各モジュール電池の残容量の変化率に基づいて異常を判定する手段である請求項1記載の組電池装置。  The assembled battery device according to claim 1, wherein the abnormality determination unit is a unit that determines abnormality based on a change rate of a remaining capacity of each module battery. 前記異常判定手段は、各モジュール電池の残容量の変化率の平均値を演算する変化率平均値演算手段を備え、いずれかのモジュール電池の残容量の変化率が前記変化率平均値演算手段により演算された変化率の平均値より所定倍以上大きいとき又は小さいときに前記モジュール電池検出手段のうちの該モジュール電池の電圧検出系の異常と判定する手段である請求項2記載の組電池装置。  The abnormality determining means includes a change rate average value calculating means for calculating an average value of the change rate of the remaining capacity of each module battery, and the change rate of the remaining capacity of any module battery is calculated by the change rate average value calculating means. 3. The assembled battery device according to claim 2, which is means for determining that the module battery voltage detection system has an abnormality in the module battery detection means when the calculated change rate is greater or less than a predetermined multiple of the average value. 前記異常判定手段は、各モジュール電池の残容量の変化率の平均値を演算する変化率平均値演算手段を備え、いずれかのモジュール電池の残容量の変化率が前記変化率平均値演算手段により演算された変化率の平均値を含む所定範囲外のときに前記モジュール電池検出手段のうちの該モジュール電池の電圧検出系の異常と判定する手段である請求項2記載の組電池装置。  The abnormality determining means includes a change rate average value calculating means for calculating an average value of the change rate of the remaining capacity of each module battery, and the change rate of the remaining capacity of any module battery is calculated by the change rate average value calculating means. 3. The assembled battery device according to claim 2, which is means for determining that the voltage detection system abnormality of the module battery among the module battery detection means is outside a predetermined range including an average value of the calculated change rate.
JP2000259326A 2000-08-29 2000-08-29 Battery assembly Expired - Fee Related JP4126860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000259326A JP4126860B2 (en) 2000-08-29 2000-08-29 Battery assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000259326A JP4126860B2 (en) 2000-08-29 2000-08-29 Battery assembly

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005357365A Division JP2006101699A (en) 2005-12-12 2005-12-12 Battery pack arrangement

Publications (2)

Publication Number Publication Date
JP2002078217A JP2002078217A (en) 2002-03-15
JP4126860B2 true JP4126860B2 (en) 2008-07-30

Family

ID=18747515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000259326A Expired - Fee Related JP4126860B2 (en) 2000-08-29 2000-08-29 Battery assembly

Country Status (1)

Country Link
JP (1) JP4126860B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6405942B2 (en) * 2014-11-27 2018-10-17 三菱自動車工業株式会社 Battery pack abnormality determination device
KR20210087294A (en) * 2020-01-02 2021-07-12 주식회사 엘지에너지솔루션 Apparatus and method for managing battery

Also Published As

Publication number Publication date
JP2002078217A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
US10310025B2 (en) Control device and control method for electric vehicle
US7856328B2 (en) Systems, methods and circuits for determining potential battery failure based on a rate of change of internal impedance
JP6264231B2 (en) Battery monitoring device
JP7289113B2 (en) Management device and power supply system
EP2838152B1 (en) Discharging device for electricity storage device
US7923969B2 (en) State of charge equalizing device and assembled battery system including same
US6930465B2 (en) Residual capacity correction method for battery
EP3742539B1 (en) Battery control method and battery control device
KR102167428B1 (en) Effective battery cell-balancing method and system through the duty control
US11774510B2 (en) Apparatus and method for detecting low-voltage defective battery cell
JP6770933B2 (en) Power storage system
US20160252559A1 (en) Deterioration detecting apparatus and deterioration detecting method
JP4529246B2 (en) Abnormality detection device for battery pack
JP6853884B2 (en) Battery monitoring device
JP2002008732A (en) Voltage compensating device for battery assembly in electric vehicle
JP2006101699A (en) Battery pack arrangement
JP3709766B2 (en) Battery capacity adjustment method
JP3624800B2 (en) Battery capacity adjustment method
JP2018050373A (en) Battery system
JP4126860B2 (en) Battery assembly
KR20200058998A (en) Apparatus and method for diagnosing battery abnormality, and battery pack including the apparatus
JP6515867B2 (en) Cell disconnection inspection method
JP2004031123A (en) Capacity calculation method and device for battery pack connected in parallel
JP2020193850A (en) Battery pack
CN115825750A (en) SOC calibration method and device and energy storage battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080505

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees