JP4126331B2 - Magnetic fiber manufacturing method and magnetic fiber - Google Patents

Magnetic fiber manufacturing method and magnetic fiber Download PDF

Info

Publication number
JP4126331B2
JP4126331B2 JP2002250845A JP2002250845A JP4126331B2 JP 4126331 B2 JP4126331 B2 JP 4126331B2 JP 2002250845 A JP2002250845 A JP 2002250845A JP 2002250845 A JP2002250845 A JP 2002250845A JP 4126331 B2 JP4126331 B2 JP 4126331B2
Authority
JP
Japan
Prior art keywords
magnetic
resin
fiber
magnetic fiber
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002250845A
Other languages
Japanese (ja)
Other versions
JP2004091932A (en
Inventor
博文 柳沢
章一 塚田
拓見 坂本
朋幸 三田
壮一 末藤
宣好 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2002250845A priority Critical patent/JP4126331B2/en
Publication of JP2004091932A publication Critical patent/JP2004091932A/en
Application granted granted Critical
Publication of JP4126331B2 publication Critical patent/JP4126331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、延伸性、強度及び平滑性に優れた磁性繊維を溶融紡糸法により連続生産できる磁性繊維の製造方法に関するものである。
【0002】
【従来の技術】
磁性粉末を繊維の原料となる樹脂に均一に分散させて繊維自身に磁性を帯びさせる磁性繊維の製造方法としては、例えば、特許文献1において、金属フェライト粉末を樹脂バインダーに分散させた混合物を溶融混練して均一に複合化されたペレットを作製し、更に、溶融紡糸法によりペレットを押出し機で連続的に溶融押出して延伸し、紡糸する方法が開示されている。
【0003】
磁性繊維の製造においては、磁性繊維の紡糸性を重視して樹脂バインダー中に分散する磁性粉末の充填率を低く設計するのが一般的であり、このような充填率の低い範囲では、繊維の原料となる樹脂として、一般的に平均分子量の比較的高い、例えば、粘度平均分子量20000以上の樹脂が使用されていた。粘度平均分子量20000以上の樹脂を使用して磁性繊維の溶融紡糸を行うことにより、優れた延伸性、製造時にかかる引っ張りに耐え得る適度な強度等の実用的な要求を満たす磁性繊維を製造することができる。
【0004】
近年、布帛;有害物質を吸着除去するフィルター;磁性トナーを使用している複写機、プリンター用のブラシ等の用途では、磁性粉末の含有量が20〜70重量%であるような磁性繊維が必要とされている。しかし、このような高濃度の磁性粉末と樹脂とが均一に複合化された樹脂組成物の溶融粘度は、磁性粉末を含まない樹脂単体の溶融粘度に比べて非常に高いために、粘度平均分子量20000以上の樹脂を使用して磁性粉末を20〜70重量%含有する磁性繊維の溶融紡糸を行うと、押出し機の樹脂圧が不安定になって、糸の吐出が不安定になり、押し出される糸が太くなったり細くなったりして、切れてしまうことがあった。また、糸が切れなかった場合であっても細くなっていると、押出しに引き続いて行われる延伸処理において糸切れが発生するため連続紡糸ができなかった。これに対して、粘度平均分子量20000以下の樹脂を使用して磁性繊維の溶融紡糸を行うと、樹脂組成物の溶融粘度が低いので、押出し機の樹脂圧はかなり安定するものの、延伸処理に耐えられず糸切れが発生するため連続紡糸ができないという製造上の問題があった。
【0005】
また、従来の磁性繊維の製造においては、磁性粉末の充填率が低いので、磁性粉末は分散しやすく、凝集等が品質上の問題になることは少なかった。したがって、一般的に充填剤の分散性を向上させる目的で使用される界面活性剤やカップリング剤により磁性粉末に表面処理を施すことは、製造コストアップに繋がるという経済的な理由から行われていなかった。
【0006】
しかし、磁性粉末の含有量が20〜70重量%である磁性繊維の製造においては、最終的な磁性繊維の太さに対して充分に小さい粒子径の磁性粉末を使用した場合であっても、延伸処理等により磁性粉末の一部が磁性繊維の表面に露出してしまうことがある。これにより、磁性繊維の表面の一部に凹凸が生じて平滑性が損なわれてしまい、磁性繊維の手触りが悪くなって、磁性繊維を紡織して製造した磁性布の手触りが悪くなる等の品質上の不具合を引き起こす問題があった。更に、磁性粉末の一部が磁性繊維の表面に露出してしまうと、磁性粉末の表面硬度が樹脂に比べて非常に高いことから、撚糸、紡織等の磁性繊維の後加工工程において設備の摩耗が著しく大きくなり、例えば、磁性繊維が通過する際に接触するガイドとの接触抵抗が大きくなって、ガイドの摩耗量が増加したり、糸切れ、糸同士のもつれを引き起こしたりする等の製造上の問題があった。
【0007】
【特許文献1】
特開昭55−30453号公報
【0008】
【発明が解決しようとする課題】
本発明は、上記現状に鑑み、延伸性、強度及び平滑性に優れた磁性繊維を溶融紡糸法により連続生産できる磁性繊維の製造方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明は、樹脂バインダーと磁性粉末とを複合化して樹脂組成物を作製する複合化工程と、前記樹脂組成物を溶融して糸状に押出す溶融紡糸工程と、得られた糸を延伸する延伸工程とを有する磁性繊維の製造方法であって、前記磁性粉末は、前記樹脂組成物中に20〜70重量%配合され、前記樹脂バインダーは、粘度平均分子量20000以上の熱可塑性樹脂と、粘度平均分子量7000〜15000の熱可塑性樹脂とからなり、前記粘度平均分子量7000〜15000の熱可塑性樹脂は、前記樹脂バインダー全量に対して1〜80重量%配合される磁性繊維の製造方法である。
以下に本発明を詳述する。
【0010】
本発明の磁性繊維の製造方法は、複合化工程、溶融紡糸工程及び延伸工程を有し、樹脂バインダー及び磁性粉末を含有し、上記磁性粉末の含有量が20〜70重量%である磁性繊維を製造する方法である。
上記樹脂バインダーは、粘度平均分子量20000以上の熱可塑性樹脂(以下、ベース樹脂ともいう)と、粘度平均分子量7000〜15000の熱可塑性樹脂(以下、低分子量樹脂ともいう)とからなる。
【0011】
上記ベース樹脂は、磁性繊維の延伸性、強度等を高めるために配合される。粘度平均分子量が20000未満であると、溶融紡糸工程において糸切れを生じたり、磁性繊維の強度低下を引き起こしたりする。
上記ベース樹脂としては溶融紡糸が可能なものであれば特に限定されず、例えば、ポリアミド系樹脂、ポリエステル系樹脂、ポリオレフィン、ポリエーテル等が挙げられる。なかでも、強度等の実用的観点からポリアミド系樹脂が好ましく、例えば、ナイロン12、ナイロン6、ナイロン66、各種ナイロンの共重合体;ポリアミド系エラストマー等の一部変性されたもの等が挙げられる。なお、上記ベース樹脂は、単独で用いられてもよく、2種以上が併用されてもよい。
【0012】
上記低分子量樹脂は、磁性繊維の溶融紡糸工程における押出し安定性を高めるために配合される。粘度平均分子量が7000未満であると、複合化工程及び溶融紡糸工程において樹脂バインダーの分解等により発生する気体の量が多くなって磁性繊維への気泡の巻き込みを引き起こしたり、磁性繊維の延伸性が低下して溶融紡糸工程において糸切れを生じたり、磁性繊維の強度が低下したりする問題があり、製造上又は品質上好ましくない。粘度平均分子量が15000を超えると、磁性繊維の溶融紡糸工程における押出し安定性を高める効果が充分に得られない。上記低分子量樹脂は、粘度平均分子量が7000〜15000であることが好ましく、更には7000〜11000であることがより好ましい。この範囲であれば、溶融紡糸工程における押出し安定性と強度等とのバランスに優れた磁性繊維を製造することができる。
【0013】
上記低分子量樹脂としては溶融紡糸が可能なものであれば特に限定されず、例えば、ポリアミド系樹脂、ポリエステル系樹脂、ポリオレフィン、ポリエーテル等が挙げられる。なかでも、強度等の実用的観点からポリアミド系樹脂が好ましく、例えば、ナイロン12、ナイロン6、ナイロン66、各種ナイロンの共重合体;ポリアミド系エラストマー等の一部変性されたもの等が挙げられる。なお、ベース樹脂と低分子量樹脂とは、必ずしも同一の樹脂でなくてもよいが、相溶性が高い方が好ましく、必要に応じて相溶化剤等を添加して相溶性を高めてもよい。また、上記低分子量樹脂は、単独で用いられてもよく、2種以上が併用されてもよい。
【0014】
上記低分子量樹脂の配合量は、溶融紡糸工程の条件に応じて選択されるが、樹脂バインダー全量に対して1〜80重量%である。1重量%未満であると、低分子量樹脂を配合することによる効果を充分に得ることができない。80重量%を超えると、磁性繊維の強度が低下し、延伸性が低下してしまうために、紡糸性が低下したり、撚糸、紡織等の後加工工程における糸切れが多くなったりする。例えば、50μm程度の繊維径で紡糸するには、60重量%以下であることが好ましい。
【0015】
上記樹脂バインダーの粘度平均分子量は特に限定されないが、得られる磁性繊維に高い延伸性を与えるためには15000以上であることが好ましい。15000未満であると、溶融紡糸工程における連続紡糸の安定性が低下したり、紡糸された磁性繊維の後加工工程における糸切れ等のトラブルの発生頻度が増加したり、磁性繊維の品質が低下したりすることがある。
【0016】
上記樹脂バインダーには、本発明の趣旨を逸脱しない限り、一般的な添加剤が添加されていてもよく、例えば、酸化防止剤、滑剤、可塑剤、分散剤、潤滑剤、難燃剤、着色剤、安定化剤等が添加されていてもよい。
【0017】
上記磁性粉末としては特に限定されず、例えば、フェライト、サマリウムコバルト、サマリウム鉄窒素、ネオジウム鉄ボロン等からなる粉末が挙げられる。なかでも、錆びが発生しにくい磁性材料からなる粉末が好ましく、例えば、フェライト、サマリウム鉄窒素等からなる粉末が挙げられる。
上記磁性粉末の平均粒子径は特に限定されないが、製造される磁性繊維の繊維径よりも充分に小さいことが好ましく、必要に応じて磁性粉末を粉砕して用いることが好ましい。例えば、製造される磁性繊維の繊維径が50μm程度であれば、平均粒子径は3μm以下であることが好ましく、より好ましくは1μm以下である。
【0018】
上記磁性粉末には、樹脂バインダーに対する濡れ性を向上させる表面処理を施すことが好ましい。
上記表面処理の方法としては、一般的な方法でよく、例えば、表面処理剤を希釈溶剤により希釈してから磁性粉末に添加し、万能混合機又は一般的なミキサーで充分に攪拌して分散させた後に希釈溶剤を乾燥させる方法等が挙げられる。
【0019】
上記表面処理剤としては樹脂バインダーに対する濡れ性を向上できる処理剤であれば特に限定されず、例えば、チタネート系カップリング剤、シラン系カップリング剤、相溶化剤、分散剤、界面活性剤等が挙げられる。上記表面処理剤は、上記磁性粉末の表面性状と上記樹脂バインダーとの組み合わせによって適宜選択され、例えば、フェライトからなる粉末及び/又はサマリウム鉄窒素からなる粉末とポリアミド系樹脂とを複合化させる場合には、アミノシラン系カップリング剤、チタネート系カップリング剤が好適である。
【0020】
上記希釈溶剤としては特に限定されず、例えば、水、アルコール等が挙げられるが、上記磁性粉末が酸化しやすい場合には、水、又は、極性が大きく吸湿性のある有機溶剤は磁性粉末の酸化を促進させるので用いない方がよい。
上記希釈溶剤を乾燥させる方法としては特に限定されず、例えば、高温に加熱して乾燥させてもよく、減圧してもよい。また、加熱乾燥する際には必要に応じて不活性ガスで置換してから加熱してもよい。
【0021】
本発明の磁性繊維の製造方法は、磁性粉末の含有量が20〜70重量%である磁性繊維を製造するのに好適に使用される。本発明の磁性繊維の製造方法は、磁性粉末の含有量が20重量%未満である磁性繊維の製造にも用いることができるが、特に従来の製造方法では実質的に溶融紡糸が不可能であった磁性粉末の含有量が20〜70重量%である磁性繊維を製造するのに有用である。磁性粉末の含有量が70重量%を超える磁性繊維は、溶融紡糸が不可能であったり、溶融紡糸ができたとしても、紡糸後の撚糸、紡織等の後加工工程における加工性に劣っていたり、磁性繊維を紡織して得られる磁性布の手触り等の質感に劣っていたりする。より好ましくは、磁性粉末の含有量が40〜60重量%である磁性繊維を製造するのに使用される。
【0022】
本発明の磁性繊維の製造方法は、複合化工程、溶融紡糸工程及び延伸工程を有する。
上記複合化工程では、樹脂バインダーと磁性粉末とを複合化して樹脂組成物を作製するが、この際、上記磁性粉末は、上記樹脂組成物中に20〜70重量%配合される。例えば、樹脂バインダー中に、得られる樹脂組成物全量に対して20〜70重量%の磁性粉末を機械的に充分に分散させて均一な混合物とし、得られた混合物を混練機で溶融混練することにより、磁性粉末と樹脂バインダーとが均一に複合化された樹脂組成物のペレットを作製できる。上記複合化工程において、樹脂バインダー中に磁性粉末を予め均一に複合化させておくことにより、溶融紡糸工程における押出し性が向上し、連続紡糸が可能となる。
上記混練機としては樹脂バインダーを溶融して樹脂バインダー中に磁性粉末を充分に分散させることができるものであれば特に限定されず、例えば、バッチ式のニーダー、単軸又は2軸の連続押出し機等が挙げられる。
【0023】
上記溶融紡糸工程では、上記樹脂組成物を溶融して糸状に押出す。例えば、磁性粉末と樹脂バインダーとからなる樹脂組成物のペレットを押出し機内で溶融した後に押出しを行って糸を製造する。
上記押出し機としては特に限定されず、例えば、樹脂の溶融紡糸に一般的に使用する押出し機を用いることができる。なお、上記押出し機内にスクリーンを設置することにより、樹脂組成物中の凝集粒子の除去等を行うことができ、連続紡糸等の生産安定性を向上することができる。
【0024】
上記延伸工程では、上記溶融紡糸工程で得られた糸を延伸する。上記糸を延伸することにより所望の繊維径の磁性繊維を製造できる。
上記延伸工程で用いられる延伸機としては特に限定されず、例えば、押し出機から得られた糸の延伸に一般的に使用する延伸機を用いることができる。
なお、上記押出し機により磁性粉末と樹脂バインダーとを充分に均一に複合化し、連続的に安定して押し出すことが可能であれば、磁性粉末、樹脂バインダー及び添加剤等を直接押出し機に投入して複合化工程、溶融紡糸工程及び延伸工程を連続的に行ってもよい。
【0025】
本発明の磁性繊維の製造方法では、一般的な繊維に使用される樹脂よりも平均分子量の低い樹脂を一定の割合で配合した樹脂バインダーを用いることにより、磁性繊維の延伸性を損なうことなく、磁性粉末と樹脂バインダーとからなる樹脂組成物の溶融粘度を低下させることができる。これにより、磁性粉末の含有量が20〜70重量%である磁性繊維を製造する場合であっても、溶融紡糸法において優れた紡糸性を発現し、押し出機からの溶融糸の押出しを安定した圧力で行うことができる。
更に、磁性粉末に対して樹脂バインダーへの濡れ性を向上させる表面処理を施し、安定で均一な樹脂バインダー層を磁性粉末の表面に形成させることにより、磁性繊維の表面近傍に含有される磁性粉末が直接磁性繊維の表面に露出することを防止して、磁性繊維の表面を平滑にし、摩擦抵抗を低下させることができる。これにより、設備への引っかかりにより引き起こされる糸切れ等の生産上のトラブルを防いで撚糸性を向上し、磁性繊維が接触することによるガイド等の設備の摩耗量を低減し、かつ、磁性繊維を紡織して得られる磁性布の手触り等の質感を向上することができる。
【0026】
本発明の磁性繊維の製造方法により製造された磁性繊維は、磁性粉末を20〜70重量%含有することから、紡糸後の撚糸、紡織等の後加工工程における、糸切れ、糸同士のもつれ等のトラブルの少ないものである。このような本発明の磁性繊維の製造方法により製造された磁性繊維もまた本発明の1つである。
本発明の磁性繊維の用途としては特に限定されないが、例えば、布帛;有害物質を吸着除去するフィルター;磁性トナーを使用している複写機、プリンター用のブラシ等が好適である。
【0027】
【実施例】
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれらの実施例のみに限定されるものではない。
【0028】
(実施例1)
平均粒子径0.8μmのフェライト粉末100重量部と、粘度平均分子量10000のナイロン6の50重量部と、粘度平均分子量20000のナイロン66の50重量部とを万能混合機で3分間攪拌し、充分に均一な混合物を作製した。この混合物を2軸押出し機へ投入し、2軸押出し機内で溶融混練することで複合化し、連続的に押出して、更に小さくカッティングすることで磁性粉末と樹脂バインダーとからなる樹脂組成物のペレットを得た。
【0029】
得られた樹脂組成物のペレットを紡糸用の押出し機へ投入し、100時間連続的に溶融紡糸を行った。押出し機には100メッシュのスクリーンを設置した。ノズルから押し出された溶融した糸を延伸倍率2.8倍で延伸して最終的に直径約50μmの磁性繊維を製造した。この磁性繊維について撚糸装置により1000時間連続的に撚糸を行った。
【0030】
(実施例2)
平均粒子径0.8μmのフェライト粉末100重量部に対して、アミノシラン系カップリング剤1重量部をイソプロピルアルコール10重量部で希釈した希釈溶液を添加し、万能混合機で3分間攪拌して充分にフェライト粉末を分散させた。この分散液を攪拌しながら減圧し、80℃に加熱して加熱乾燥を行い、樹脂バインダーに対する濡れ性を向上させる表面処理が施されたフェライト粉末を得た。表面処理されていないフェライト粉末の代りに、得られた樹脂バインダーに対する濡れ性を向上させる表面処理が施されたフェライト粉末を用いたこと以外は、実施例1と同様にして磁性繊維を製造し、撚糸装置により1000時間連続的に撚糸を行った。
【0031】
(比較例1)
平均粒子径0.8μmのフェライト粉末100重量部と粘度平均分子量20000のナイロン66の100重量部とを万能混合機で3分間攪拌し、充分に均一な混合物を作製した。この混合物を紡糸用の押出し機へ投入し、100時間連続的に溶融紡糸を行った。押出し機には100メッシュのスクリーンを設置した。ノズルから押し出された溶融した糸を延伸倍率2.8倍で延伸して最終的に直径約50μmの磁性繊維を製造した。この磁性繊維について撚糸装置により1000時間連続的に撚糸を行った。
【0032】
(比較例2)
粘度平均分子量20000のナイロン66の100重量部の代りに、粘度平均分子量14000のナイロン66の100重量部を用いたこと以外は比較例1と同様にして磁性繊維を製造し、撚糸装置により1000時間連続的に撚糸を行った。
【0033】
(評価)
実施例1、2及び比較例1、2について、それぞれ以下の方法により、紡糸性及び撚糸性を評価し、結果を表1に示した。
紡糸性は、100時間の連続的な溶融紡糸における糸切れ回数を計測して評価した。
撚糸性は、1000時間の連続的な撚糸における、糸切れ及びもつれ等により設備が停止した回数を計測して評価した。
また、1000時間の連続的な撚糸の後に、撚糸装置に設置されている磁性繊維が通過するガイドの外観変化を目視で確認し、磁性繊維がガイドを通過することによりついた傷の度合いからガイドの摩耗度合いを評価した。摩耗度合いの評価基準は、ガイド表面に傷が全くない状態を◎とし、ガイド表面にこすれた跡が見られるが実質的に摩耗がない状態を○とし、ガイド表面に傷が付き一部摩耗が見られる状態を△とし、ガイド表面に傷がかなり深く付き摩耗が激しい状態を×とした。
【0034】
【表1】

Figure 0004126331
【0035】
表1より、ベース樹脂に一定の割合で低分子量樹脂を添加した樹脂バインダーを用いた実施例1及び2では、連続溶融紡糸中に糸切れが全く生じず、押出しの際の樹脂圧も非常に安定しており、非常に優れた紡糸性を有していた。
一方、比較例1では、連続溶融紡糸を開始して30分後くらいから、押出しの際の樹脂圧の変動幅が急激に大きくなり、吐出不良による糸切れが頻繁に起ったために連続紡糸ができなかった。また、比較例2では、比較例1に比べて樹脂の押出し性に優れ、安定して連続的に溶融糸を押し出すことができたが、引き続き行われた糸の延伸処理により糸切れが頻繁に発生したため、結果的に糸切れ回数が多くなった。
また、実施例1及び2では、樹脂バインダーを構成する2種の熱可塑性樹脂の粘度平均分子量を算術平均した値が15000であり、比較例2で製造された磁性繊維の樹脂バインダーの粘度平均分子量14000よりも高かったが、優れた紡糸性を有していた。これは単に平均分子量の低い樹脂バインダーを使用するだけでは磁性繊維の紡糸性が改善しないことを示している。
【0036】
1000時間の連続撚糸後におけるガイドの磨耗度合いを比較すると、実施例1では、ガイド表面にこすれた跡は見られたが実質的に磨耗はほとんどない状態、実施例2では、ガイド表面に傷が全くない状態であった。
また、1000時間の連続撚糸における設備停止回数を比較すると、実施例1では6回、実施例2では1回であり、比較例2の48回と比べて、撚糸工程での設備停止回数は極めて少なかった。
【0037】
【発明の効果】
本発明によれば、延伸性、強度及び平滑性に優れた磁性繊維を溶融紡糸法により連続生産できる磁性繊維の製造方法を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a magnetic fiber capable of continuously producing a magnetic fiber excellent in stretchability, strength and smoothness by a melt spinning method.
[0002]
[Prior art]
For example, in Patent Document 1, a mixture of metal ferrite powder dispersed in a resin binder is melted as a method for producing magnetic fiber in which magnetic powder is uniformly dispersed in a resin that is a raw material of the fiber and the fiber itself becomes magnetized. A method is disclosed in which a uniformly compounded pellet is produced by kneading, and further, the pellet is continuously melt-extruded by an extruder by the melt spinning method, stretched, and spun.
[0003]
In the production of magnetic fibers, it is common to design the filling rate of the magnetic powder dispersed in the resin binder low with an emphasis on the spinnability of the magnetic fibers. In such a low filling rate range, Generally, a resin having a relatively high average molecular weight, for example, a viscosity average molecular weight of 20000 or more has been used as a raw material resin. Producing magnetic fibers satisfying practical requirements such as excellent stretchability and appropriate strength capable of withstanding tension during production by melt spinning of magnetic fibers using a resin having a viscosity average molecular weight of 20000 or more. Can do.
[0004]
In recent years, fabrics; filters that adsorb and remove harmful substances; and magnetic fibers containing 20 to 70% by weight of magnetic powder are required for applications such as copying machines and printer brushes that use magnetic toner. It is said that. However, since the melt viscosity of such a resin composition in which a high concentration of magnetic powder and resin are uniformly combined is very high compared to the melt viscosity of a resin alone that does not contain magnetic powder, the viscosity average molecular weight When melt spinning of a magnetic fiber containing 20 to 70% by weight of a magnetic powder using 20000 or more resin, the resin pressure of the extruder becomes unstable, and the discharge of the yarn becomes unstable and extruded. The thread may become thicker or thinner and break. Further, even if the yarn was not cut, if it was too thin, continuous spinning could not be performed because yarn breakage occurred in the stretching process performed after extrusion. On the other hand, when melt spinning of magnetic fibers using a resin having a viscosity average molecular weight of 20000 or less, the melt viscosity of the resin composition is low, so that the resin pressure of the extruder is considerably stable, but it can withstand the stretching process. There was a problem in production that continuous spinning could not be performed because yarn breakage occurred.
[0005]
In the production of conventional magnetic fibers, since the filling rate of the magnetic powder is low, the magnetic powder is easy to disperse, and aggregation and the like rarely become a quality problem. Therefore, the surface treatment of the magnetic powder with a surfactant or a coupling agent generally used for the purpose of improving the dispersibility of the filler is performed for the economic reason that the production cost is increased. There wasn't.
[0006]
However, in the production of a magnetic fiber having a magnetic powder content of 20 to 70% by weight, even when a magnetic powder having a particle size sufficiently small with respect to the final thickness of the magnetic fiber is used, A part of the magnetic powder may be exposed on the surface of the magnetic fiber due to stretching treatment or the like. As a result, unevenness occurs on a part of the surface of the magnetic fiber, the smoothness is impaired, the touch of the magnetic fiber is deteriorated, and the touch of the magnetic cloth manufactured by weaving the magnetic fiber is deteriorated. There was a problem that caused the above bug. Furthermore, if a part of the magnetic powder is exposed on the surface of the magnetic fiber, the surface hardness of the magnetic powder is much higher than that of the resin. For example, the contact resistance with the guide that contacts when the magnetic fiber passes increases, the wear amount of the guide increases, the thread breaks, and the threads are tangled. There was a problem.
[0007]
[Patent Document 1]
JP-A-55-30453
[Problems to be solved by the invention]
The present invention has been made in view of the above situation, and an object of the present invention is to provide a method for producing a magnetic fiber capable of continuously producing a magnetic fiber excellent in stretchability, strength and smoothness by a melt spinning method.
[0009]
[Means for Solving the Problems]
The present invention includes a compounding step in which a resin binder and a magnetic powder are combined to produce a resin composition, a melt spinning step in which the resin composition is melted and extruded into a yarn shape, and a drawing in which the obtained yarn is stretched The magnetic powder is blended in an amount of 20 to 70% by weight in the resin composition, the resin binder includes a thermoplastic resin having a viscosity average molecular weight of 20000 or more, and a viscosity average It is a manufacturing method of the magnetic fiber which consists of a thermoplastic resin of molecular weight 7000-15000, and the said thermoplastic resin of the viscosity average molecular weight 7000-15000 is mix | blended 1-80 weight% with respect to the said resin binder whole quantity.
The present invention is described in detail below.
[0010]
The method for producing a magnetic fiber of the present invention comprises a magnetic fiber having a compounding step, a melt spinning step, and a drawing step, containing a resin binder and magnetic powder, wherein the content of the magnetic powder is 20 to 70% by weight. It is a manufacturing method.
The resin binder comprises a thermoplastic resin having a viscosity average molecular weight of 20000 or more (hereinafter also referred to as a base resin) and a thermoplastic resin having a viscosity average molecular weight of 7000 to 15000 (hereinafter also referred to as a low molecular weight resin).
[0011]
The base resin is blended to improve the stretchability, strength, etc. of the magnetic fiber. If the viscosity average molecular weight is less than 20000, yarn breakage may occur in the melt spinning process, or the strength of the magnetic fiber may decrease.
The base resin is not particularly limited as long as it can be melt-spun, and examples thereof include polyamide resins, polyester resins, polyolefins, and polyethers. Of these, polyamide resins are preferable from a practical viewpoint such as strength, and examples thereof include nylon 12, nylon 6, nylon 66, various nylon copolymers; partially modified polyamide resins and the like. In addition, the said base resin may be used independently and 2 or more types may be used together.
[0012]
The low molecular weight resin is blended in order to enhance the extrusion stability in the melt spinning process of magnetic fibers. When the viscosity average molecular weight is less than 7000, the amount of gas generated due to decomposition of the resin binder in the compounding process and the melt spinning process increases, causing entrainment of bubbles in the magnetic fiber, and the stretchability of the magnetic fiber. There is a problem that it is lowered and breakage occurs in the melt spinning process, and the strength of the magnetic fiber is lowered, which is not preferable in terms of production or quality. When the viscosity average molecular weight exceeds 15,000, the effect of enhancing the extrusion stability in the melt spinning step of the magnetic fiber cannot be sufficiently obtained. The low molecular weight resin preferably has a viscosity average molecular weight of 7000 to 15000, and more preferably 7,000 to 11,000. If it is this range, the magnetic fiber excellent in the balance of the extrusion stability in a melt spinning process, intensity | strength, etc. can be manufactured.
[0013]
The low molecular weight resin is not particularly limited as long as it can be melt-spun, and examples thereof include polyamide resins, polyester resins, polyolefins, and polyethers. Of these, polyamide resins are preferable from a practical viewpoint such as strength, and examples thereof include nylon 12, nylon 6, nylon 66, various nylon copolymers; partially modified polyamide resins and the like. Note that the base resin and the low molecular weight resin are not necessarily the same resin, but preferably have a high compatibility, and if necessary, a compatibility agent or the like may be added to improve the compatibility. Moreover, the said low molecular weight resin may be used independently and 2 or more types may be used together.
[0014]
The blending amount of the low molecular weight resin is selected according to the conditions of the melt spinning process, but is 1 to 80% by weight based on the total amount of the resin binder. If it is less than 1% by weight, the effect of blending the low molecular weight resin cannot be sufficiently obtained. If it exceeds 80% by weight, the strength of the magnetic fiber is lowered and the stretchability is lowered, so that the spinnability is lowered and yarn breakage is increased in post-processing steps such as twisting and spinning. For example, in order to spin with a fiber diameter of about 50 μm, it is preferably 60% by weight or less.
[0015]
Although the viscosity average molecular weight of the said resin binder is not specifically limited, In order to give high drawability to the magnetic fiber obtained, it is preferable that it is 15000 or more. If it is less than 15000, the stability of continuous spinning in the melt spinning process will decrease, the frequency of troubles such as yarn breakage in the post-processing process of the spun magnetic fiber will increase, and the quality of the magnetic fiber will decrease. Sometimes.
[0016]
A general additive may be added to the resin binder without departing from the gist of the present invention. For example, an antioxidant, a lubricant, a plasticizer, a dispersant, a lubricant, a flame retardant, and a colorant. Further, a stabilizer or the like may be added.
[0017]
The magnetic powder is not particularly limited, and examples thereof include powder made of ferrite, samarium cobalt, samarium iron nitrogen, neodymium iron boron, and the like. Especially, the powder which consists of a magnetic material which does not generate | occur | produce rust easily is preferable, for example, the powder which consists of ferrite, samarium iron nitrogen, etc. is mentioned.
The average particle diameter of the magnetic powder is not particularly limited, but is preferably sufficiently smaller than the fiber diameter of the magnetic fiber to be produced, and it is preferable to pulverize and use the magnetic powder as necessary. For example, if the fiber diameter of the manufactured magnetic fiber is about 50 μm, the average particle diameter is preferably 3 μm or less, more preferably 1 μm or less.
[0018]
The magnetic powder is preferably subjected to a surface treatment that improves wettability with respect to the resin binder.
As the surface treatment method, a general method may be used. For example, the surface treatment agent is diluted with a diluting solvent and then added to the magnetic powder, and sufficiently stirred and dispersed with a universal mixer or a general mixer. And a method of drying the diluted solvent after that.
[0019]
The surface treatment agent is not particularly limited as long as it is a treatment agent that can improve the wettability with respect to the resin binder. For example, titanate coupling agents, silane coupling agents, compatibilizers, dispersants, surfactants, and the like. Can be mentioned. The surface treatment agent is appropriately selected depending on the combination of the surface properties of the magnetic powder and the resin binder. For example, when a powder composed of ferrite and / or a powder composed of samarium iron nitrogen is combined with a polyamide resin. Aminosilane coupling agents and titanate coupling agents are preferred.
[0020]
The diluting solvent is not particularly limited, and examples thereof include water, alcohol, and the like. However, when the magnetic powder is easily oxidized, water or an organic solvent having high polarity and hygroscopicity is oxidized of the magnetic powder. It is better not to use it.
The method for drying the dilution solvent is not particularly limited. For example, the dilution solvent may be dried by heating to a high temperature or reduced pressure. Moreover, when drying by heating, it may be heated after substituting with an inert gas as necessary.
[0021]
The manufacturing method of the magnetic fiber of this invention is used suitably for manufacturing the magnetic fiber whose content of magnetic powder is 20 to 70 weight%. The method for producing a magnetic fiber of the present invention can also be used for producing a magnetic fiber having a magnetic powder content of less than 20% by weight. However, melt spinning is substantially impossible particularly with the conventional production method. It is useful for producing magnetic fibers having a magnetic powder content of 20 to 70% by weight. Magnetic fibers having a magnetic powder content of more than 70% by weight cannot be melt-spun or have poor workability in post-processing steps such as twisted yarn and spinning even after melt spinning. The texture of the magnetic cloth obtained by weaving magnetic fibers is inferior. More preferably, it is used for producing a magnetic fiber having a magnetic powder content of 40 to 60% by weight.
[0022]
The method for producing a magnetic fiber of the present invention includes a compounding step, a melt spinning step, and a stretching step.
In the compounding step, a resin binder and magnetic powder are compounded to produce a resin composition. At this time, the magnetic powder is blended in an amount of 20 to 70% by weight in the resin composition. For example, 20 to 70% by weight of magnetic powder with respect to the total amount of the resin composition to be obtained is mechanically sufficiently dispersed in a resin binder to form a uniform mixture, and the obtained mixture is melt-kneaded with a kneader. Thus, pellets of the resin composition in which the magnetic powder and the resin binder are uniformly combined can be produced. In the compounding step, the magnetic powder is uniformly compounded in advance in the resin binder, thereby improving the extrudability in the melt spinning step and enabling continuous spinning.
The kneader is not particularly limited as long as it can melt the resin binder and sufficiently disperse the magnetic powder in the resin binder. For example, the kneader is a batch kneader, a single screw or a twin screw continuous extruder. Etc.
[0023]
In the melt spinning step, the resin composition is melted and extruded into a yarn shape. For example, a pellet of a resin composition composed of a magnetic powder and a resin binder is melted in an extruder and then extruded to produce a yarn.
The extruder is not particularly limited, and for example, an extruder generally used for melt spinning of a resin can be used. In addition, by installing a screen in the extruder, aggregated particles in the resin composition can be removed, and production stability such as continuous spinning can be improved.
[0024]
In the drawing step, the yarn obtained in the melt spinning step is drawn. A magnetic fiber having a desired fiber diameter can be produced by drawing the yarn.
It does not specifically limit as a drawing machine used at the said extending process, For example, the drawing machine generally used for extending | stretching the thread | yarn obtained from the extruder can be used.
If the above-mentioned extruder can be used to sufficiently and uniformly combine the magnetic powder and the resin binder and can be continuously and stably extruded, the magnetic powder, the resin binder, and the additive are directly fed into the extruder. Thus, the compounding step, the melt spinning step and the stretching step may be performed continuously.
[0025]
In the method for producing a magnetic fiber of the present invention, by using a resin binder in which a resin having a lower average molecular weight than a resin used for a general fiber is blended at a certain ratio, without impairing the stretchability of the magnetic fiber, The melt viscosity of the resin composition comprising the magnetic powder and the resin binder can be reduced. As a result, even when producing a magnetic fiber having a magnetic powder content of 20 to 70% by weight, excellent spinnability is exhibited in the melt spinning method, and the extrusion of the molten yarn from the extruder is stable. At a reduced pressure.
Furthermore, the magnetic powder contained in the vicinity of the surface of the magnetic fiber is formed by subjecting the magnetic powder to a surface treatment for improving the wettability to the resin binder and forming a stable and uniform resin binder layer on the surface of the magnetic powder. Can be prevented from being directly exposed to the surface of the magnetic fiber, the surface of the magnetic fiber can be smoothed, and the frictional resistance can be reduced. This prevents production troubles such as yarn breakage caused by catching on equipment, improves twisting properties, reduces the amount of wear of equipment such as guides due to contact with magnetic fibers, and reduces magnetic fibers The texture such as the touch of the magnetic cloth obtained by spinning can be improved.
[0026]
Since the magnetic fiber produced by the method for producing magnetic fiber of the present invention contains 20 to 70% by weight of magnetic powder, yarn breakage, entanglement between yarns, etc. in post-processing steps such as twisted yarn after spinning, weaving, etc. There are few troubles. The magnetic fiber produced by such a method for producing a magnetic fiber of the present invention is also one aspect of the present invention.
The use of the magnetic fiber of the present invention is not particularly limited. For example, a fabric; a filter that adsorbs and removes harmful substances; a copying machine using magnetic toner, a brush for a printer, and the like are suitable.
[0027]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited only to these examples.
[0028]
(Example 1)
100 parts by weight of ferrite powder having an average particle diameter of 0.8 μm, 50 parts by weight of nylon 6 having a viscosity average molecular weight of 10000, and 50 parts by weight of nylon 66 having a viscosity average molecular weight of 20,000 are stirred for 3 minutes with a universal mixer, A homogeneous mixture was prepared. This mixture is charged into a twin screw extruder, melted and kneaded in the twin screw extruder to be compounded, continuously extruded, and further cut to obtain pellets of a resin composition comprising a magnetic powder and a resin binder. Obtained.
[0029]
The obtained resin composition pellets were put into an extruder for spinning, and melt spinning was performed continuously for 100 hours. A 100 mesh screen was installed in the extruder. The melted yarn extruded from the nozzle was drawn at a draw ratio of 2.8 times to finally produce a magnetic fiber having a diameter of about 50 μm. The magnetic fiber was continuously twisted by a twisting device for 1000 hours.
[0030]
(Example 2)
A diluted solution obtained by diluting 1 part by weight of an aminosilane coupling agent with 10 parts by weight of isopropyl alcohol is added to 100 parts by weight of ferrite powder having an average particle diameter of 0.8 μm, and the mixture is sufficiently stirred for 3 minutes with a universal mixer. Ferrite powder was dispersed. The dispersion was depressurized while being stirred, heated to 80 ° C. and dried by heating to obtain a ferrite powder having been subjected to a surface treatment for improving the wettability with respect to the resin binder. A magnetic fiber was produced in the same manner as in Example 1 except that a ferrite powder subjected to a surface treatment for improving the wettability with respect to the obtained resin binder was used instead of the ferrite powder not subjected to the surface treatment. The yarn was continuously twisted for 1000 hours by a twisting device.
[0031]
(Comparative Example 1)
100 parts by weight of ferrite powder having an average particle diameter of 0.8 μm and 100 parts by weight of nylon 66 having a viscosity average molecular weight of 20000 were stirred for 3 minutes with a universal mixer to prepare a sufficiently uniform mixture. This mixture was put into an extruder for spinning, and melt spinning was performed continuously for 100 hours. A 100 mesh screen was installed in the extruder. The melted yarn extruded from the nozzle was drawn at a draw ratio of 2.8 times to finally produce a magnetic fiber having a diameter of about 50 μm. The magnetic fiber was continuously twisted by a twisting device for 1000 hours.
[0032]
(Comparative Example 2)
A magnetic fiber was produced in the same manner as in Comparative Example 1 except that 100 parts by weight of nylon 66 having a viscosity average molecular weight of 14,000 was used instead of 100 parts by weight of nylon 66 having a viscosity average molecular weight of 20000, and 1000 hours by a twisting device. Continuous twisting was performed.
[0033]
(Evaluation)
For Examples 1 and 2 and Comparative Examples 1 and 2, spinnability and twistability were evaluated by the following methods, and the results are shown in Table 1.
Spinnability was evaluated by measuring the number of yarn breaks in 100 hours of continuous melt spinning.
The twisting property was evaluated by measuring the number of times that the equipment was stopped due to yarn breakage, entanglement, etc. in continuous twisting for 1000 hours.
In addition, after 1000 hours of continuous twisting, the appearance change of the guide through which the magnetic fiber installed in the twisting device passes is visually confirmed, and the guide is determined from the degree of scratches caused by the magnetic fiber passing through the guide. The degree of wear was evaluated. The evaluation criteria for the degree of wear are ◎ when the guide surface is not scratched at all and ◎ when the guide surface is rubbed but there is virtually no wear, and the guide surface is scratched and partly worn. The state where it was seen was marked with △, and the state where the guide surface was deeply scratched and severely worn was marked with ×.
[0034]
[Table 1]
Figure 0004126331
[0035]
From Table 1, in Examples 1 and 2 using a resin binder in which a low molecular weight resin was added to the base resin at a certain ratio, no thread breakage occurred during continuous melt spinning, and the resin pressure during extrusion was very high. It was stable and had excellent spinnability.
On the other hand, in Comparative Example 1, about 30 minutes after the start of continuous melt spinning, the fluctuation range of the resin pressure at the time of extrusion suddenly increased, and continuous yarn spinning occurred frequently due to yarn breakage due to ejection failure. could not. In Comparative Example 2, the resin extrudability was superior to that of Comparative Example 1, and the molten yarn could be stably and continuously extruded. However, the yarn was frequently broken due to the subsequent yarn drawing process. As a result, the number of yarn breaks increased.
In Examples 1 and 2, the value obtained by arithmetically averaging the viscosity average molecular weights of the two thermoplastic resins constituting the resin binder is 15000, and the viscosity average molecular weight of the resin binder of the magnetic fiber produced in Comparative Example 2 was obtained. Although it was higher than 14000, it had excellent spinnability. This indicates that simply using a resin binder having a low average molecular weight does not improve the spinnability of the magnetic fiber.
[0036]
Comparing the degree of wear of the guide after 1000 hours of continuous twisting, in Example 1, there was a trace of rubbing on the guide surface but there was virtually no wear. In Example 2, the guide surface was scratched. There was no state at all.
Moreover, when the number of equipment stoppages in continuous twist yarn of 1000 hours is compared, it is 6 times in Example 1 and 1 time in Example 2, compared with 48 times in Comparative Example 2, the number of equipment stoppages in the twisting process is extremely small. There were few.
[0037]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the magnetic fiber which can produce continuously the magnetic fiber excellent in the drawability, intensity | strength, and smoothness by the melt spinning method can be provided.

Claims (3)

樹脂バインダーと磁性粉末とを複合化して樹脂組成物を作製する複合化工程と、前記樹脂組成物を溶融して糸状に押出す溶融紡糸工程と、得られた糸を延伸する延伸工程とを有する磁性繊維の製造方法であって、
前記磁性粉末は、フェライトであり、前記樹脂組成物中に20〜70重量%配合され、
前記樹脂バインダーは、粘度平均分子量20000のナイロン66と、粘度平均分子量10000のナイロン6とからなり、前記粘度平均分子量10000のナイロン6は、前記樹脂バインダー全量に対して1〜80重量%配合される
ことを特徴とする磁性繊維の製造方法。
A compounding step in which a resin binder and a magnetic powder are compounded to produce a resin composition; a melt spinning step in which the resin composition is melted and extruded into a yarn; and a drawing step in which the obtained yarn is drawn. A method of manufacturing a magnetic fiber,
The magnetic powder is ferrite and is blended in the resin composition by 20 to 70% by weight,
The resin binder comprises nylon 66 having a viscosity average molecular weight of 20,000 and nylon 6 having a viscosity average molecular weight of 10,000, and the nylon 6 having a viscosity average molecular weight of 10,000 is blended in an amount of 1 to 80% by weight based on the total amount of the resin binder. The manufacturing method of the magnetic fiber characterized by the above-mentioned.
樹脂バインダーに対する濡れ性を向上させる表面処理を磁性粉末に施す請求項1記載の磁性繊維の製造方法。  The method for producing a magnetic fiber according to claim 1, wherein the magnetic powder is subjected to a surface treatment for improving wettability to the resin binder. 請求項1又は2記載の磁性繊維の製造方法により製造された磁性繊維。The magnetic fiber manufactured by the manufacturing method of the magnetic fiber of Claim 1 or 2 .
JP2002250845A 2002-08-29 2002-08-29 Magnetic fiber manufacturing method and magnetic fiber Expired - Fee Related JP4126331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002250845A JP4126331B2 (en) 2002-08-29 2002-08-29 Magnetic fiber manufacturing method and magnetic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002250845A JP4126331B2 (en) 2002-08-29 2002-08-29 Magnetic fiber manufacturing method and magnetic fiber

Publications (2)

Publication Number Publication Date
JP2004091932A JP2004091932A (en) 2004-03-25
JP4126331B2 true JP4126331B2 (en) 2008-07-30

Family

ID=32057576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002250845A Expired - Fee Related JP4126331B2 (en) 2002-08-29 2002-08-29 Magnetic fiber manufacturing method and magnetic fiber

Country Status (1)

Country Link
JP (1) JP4126331B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2786417C1 (en) * 2022-03-15 2022-12-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Cold cathode of a glow discharge gas discharge device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102198928A (en) * 2010-03-25 2011-09-28 李国锋 Proton energy parent rock amorphous nanometer composite material
KR101295527B1 (en) 2011-09-26 2013-08-12 한국과학기술연구원 Magnetic nanowires comprising carbon nanofibers and its preparation method
CN106477520A (en) * 2015-08-24 2017-03-08 李国锋 A kind of proton energy parent rock amorphous nanometer composite material
CN114805914B (en) * 2022-05-19 2023-05-12 武汉纺织大学 Magnetic nanofiber aerogel for thick oil separation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5120063B2 (en) * 1973-01-24 1976-06-22
JPS59112018A (en) * 1982-12-15 1984-06-28 Teijin Ltd Magnetizable fiber, their bundle, production, magnetic fiber and magnetic fiber structure
JP3272832B2 (en) * 1993-10-13 2002-04-08 旭化成株式会社 Polishing monofilament
JPH07142276A (en) * 1993-11-22 1995-06-02 Shizuoka Prefecture Manufacture of thread-like magnet and its equipment
JPH07216649A (en) * 1994-01-21 1995-08-15 Unitika Ltd Polyimide fiber having high strength and high shrinkage and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2786417C1 (en) * 2022-03-15 2022-12-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Cold cathode of a glow discharge gas discharge device

Also Published As

Publication number Publication date
JP2004091932A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
TWI393730B (en) Conductive masterbatches and conductive monofilaments
JP4126331B2 (en) Magnetic fiber manufacturing method and magnetic fiber
TW201714958A (en) Masterbatch for abrasion resistant fiber and method of preparing the same and abrasion resistant fiber prepared by using the same
JPH06207316A (en) Fiber containing filler
JP2008266873A (en) Polyester monofilament and woven fabric
CN113683835A (en) Melt-blown soft master batch and preparation method thereof
JP3265714B2 (en) High toughness black raw polyamide fiber
JP3330098B2 (en) Black-dyed polyamide fiber and method for producing the same
JP2012241150A (en) Polymer alloy including polylactic acid resin and polyethylene terephthalate resin, and method of manufacturing the same
JP3463469B2 (en) Polyamide pellets
JP2004003088A (en) Polypropylene-based electroconductive conjugated fiber and method for producing the same
JPS60444B2 (en) conductive fiber
JPH11217492A (en) Polyester resin composition for fiber
JP7048060B2 (en) Manufacturing method of multifilament yarn made of high density fiber
JPH10121328A (en) Polyamide staple fiber
KR100714782B1 (en) Process for preparing flameproof polyester based synthetic hair
JP2019026991A (en) Black spun-dyed polyester fiber
JP2011162928A (en) Conductive polytetrafluoroethylene fiber and production method therefor
JP2021155525A (en) Polyamide resin composition
JP3813893B2 (en) Method for determining the amount of chlorinated polyvinyl chloride resin added to polyvinyl chloride fiber
JP4771250B2 (en) Conductive yarn and its use
CN117802658A (en) Preparation method of antibacterial flame-retardant yarn
JP2006348439A (en) Conductive acrylic fiber
JPH04281071A (en) Production of polyester fiber
JP2002266160A (en) Vinyl chloride-based resin fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071017

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees