JP4126213B2 - Positive displacement compressor - Google Patents

Positive displacement compressor Download PDF

Info

Publication number
JP4126213B2
JP4126213B2 JP2002267538A JP2002267538A JP4126213B2 JP 4126213 B2 JP4126213 B2 JP 4126213B2 JP 2002267538 A JP2002267538 A JP 2002267538A JP 2002267538 A JP2002267538 A JP 2002267538A JP 4126213 B2 JP4126213 B2 JP 4126213B2
Authority
JP
Japan
Prior art keywords
oil
compression
space
shield
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002267538A
Other languages
Japanese (ja)
Other versions
JP2004100661A (en
Inventor
勇 坪野
毅 小田島
和夫 関上
昌喜 小山
和巳 田村
敦 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2002267538A priority Critical patent/JP4126213B2/en
Publication of JP2004100661A publication Critical patent/JP2004100661A/en
Application granted granted Critical
Publication of JP4126213B2 publication Critical patent/JP4126213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、容積型圧縮機に関し、特に圧縮ガスに混入するオイルミストの低減構造に関する。
【0002】
【従来の技術】
容積型圧縮機は、通常、複数の部材で形成した閉空間にガスを吸い込み、それら部材の相対運動でその閉空間の容積を縮小して圧縮動作を行う。このため、閉空間は、それを形成する部材間に相対運動を可能にするための微小隙間が必須となり、厳密には密閉された空間ではない。この微小隙間は圧縮途中の漏れを起すため、その箇所のシール性を向上させる対策が必須となる。
【0003】
極めて有効でかつ実現容易な手段に、吸込み時または圧縮途中のガスへのオイルの注入がある。漏れ流れ内のオイルが漏れ隙間を油膜でシールするため、漏れ量を大幅に低減でき、オイルフリー機以外のほぼ全ての容積型圧縮機に採用されている。ところがこの手段には、吐出する圧縮ガスに多量のオイルが混入し、圧縮ガスの清浄性を損なう弊害がある。
【0004】
従来の容積型圧縮機として、オイルミストの混入した圧縮ガスを押除け容積の10倍以上の容積を有する圧縮部上部空間に吐出させ、圧縮ガスの流速を低下させ、比重の大きいオイルを圧縮ガスから分離した後、圧縮ガスを圧縮部下部空間に導き、そこに設けた吐出パイプから圧縮機外部へ吐出させることを行っていた(例えば、特許文献1参照。)。
【0005】
【特許文献1】
特開平9−170570号公報(実施例)
【0006】
【発明が解決しようとする課題】
特許文献1では、軸受に供給されたオイルが圧力差によって圧縮部の吸込み室に注入され、圧縮部上部空間に吐出された圧縮ガス中には多量のオイルが混入する。特許文献1ではこのオイルを、圧縮部上部空間で分離できるが、分離して液化したオイルのうちで圧縮部に付着したオイルを、密閉容器下部の貯油室に再ミスト化せずに戻す流路を考慮していなかった。このため、圧縮部の側面から下面を伝って、最終的に高速運動するシャフトや駆動部に滴下し、再ミスト化を起こしていた。この結果、オイルミストを混合する圧縮ガスの総質量に対するオイルの質量割合であるオイルレートが低減せず、空気圧縮機の場合、圧縮空気は最終的に大気開放するため、環境を汚染するという問題を生じた。また、冷凍空調用圧縮機の場合、伝熱管内壁への付着による熱交換効率の低減や、圧力損失の増大により、冷凍空調性能が低下するという問題が生じることがあった。
【0007】
本発明の目的は、オイルレートを低減した容積型圧縮機を提供することにある。
【0008】
【課題を解決するための手段】
前記本発明の目的は、
回転する部分と固定された巻き線及びステータとを有するモータと、
前記モータより上に配設されたフレームと、
を有する縦型スクロール式の容積型圧縮機において、
前記フレームと前記モータに挟まれるように筒状遮蔽体が配設され、
前記筒状遮蔽体の上部が前記フレームに固定され、
前記筒状遮蔽体の下部が前記巻き線と接し、
前記筒状遮蔽体の下端近傍には、前記巻き線から油が流れ込む返油路を有し、
前記ステータ上部に固定され、前記遮蔽体よりも前記モータのシャフト寄りに前記シャフトを取り囲む筒状の油リングを固定配置する
ことを特徴とする縦型スクロール式の容積型圧縮機
によって達成される。
【0013】
次に、課題を解決するための手段を用いた場合の作用を述べる。圧縮部上部空間で圧縮ガスから分離したオイルが重力により圧縮部の表面を伝って下部のシャフトや駆動部(つまり、モータの部分)回転部に滴下し、再ミスト化する。しかし、そのミストのうちで吐出パイプに向かって飛散するものは遮蔽体に付着し、吐出パイプに到達しない。そして、付着したオイルは再液化し再飛散の危険性が低下する。この液化オイルは、重力により遮蔽体のシャフト側の面を伝ってその下部に達する。遮蔽体の下部は圧縮部下部空間を形成する駆動部のうちの固定部の上部と接しているため、液化オイルは再ミスト化することなく圧縮部下部空間の下面を区画する駆動部固定部上部に達する。この近傍に返油るため、液化オイルが駆動部回転部側に流れる前に貯油室に戻る。この結果、Dパイプ口に達するオイルが極めて微量となり、オイルレートが大幅に低減する効果を奏する。
【0016】
また、圧縮部下部空間を形成する駆動部(つまり、モータの部分)のうちの固定部の上部に溜まった液化オイルの一部が上部返油口に至るため、シャフトや回転部(ロータ)に接触することを防ぐことができる。すなわち、再びミスト化することを回避できるため、さらに一層オイルレートを低減できる効果が有る。
【0017】
【発明の実施の形態】
以下、本発明をスクロール圧縮機に適用した場合の第一の実施例について、図1乃至図5を用いて詳細に説明する。
【0018】
まず、構成を説明する。旋回スクロール部材2を噛み合わせた固定スクロール部材1を、シャフト9が下部に突出したフレーム15にネジ固定して圧縮部200を形成する。このとき、フレーム15と旋回スクロール部材2の間にオルダムリング5を組み込む。
【0019】
圧縮部200から突出したシャフト9の下方には、駆動部であるモータ17の回転部であるロータ17aが固定され、それと外周面で対向する位置にモータ17の固定部である巻き線及びステータ17bが配されている。これら圧縮部200とシャフト9で連繋された駆動部であるモータ17を密閉容器203で包含する。この時に、圧縮部200の上部に、押除け容積の30倍程度の容積をもつ圧縮部上部空間204と、圧縮部200とモータ17の間に圧縮部下部空間205を設ける。
【0020】
ここで、圧縮部から圧縮ガスが吐出する吐出口1aは固定スクロール部材の上面中央寄りにあるため、この圧縮部上部空間204には吐出口1aが臨んでいる。また、最下部には油を溜める貯油室210を設ける。ここで圧縮部200の外周側に複数の流通溝201を設け、圧縮部上部空間と圧縮部下部空間を連繋する。
【0021】
また、ステータ17bには巻線17cを通す軸方向の巻線穴17dが多数開口しているが、巻線を施した後でも軸方向に貫通する空間が残っており、これが冷凍機油を貯油室210へ戻す返油路206としての役割を担う。さらに、ステータ側面に返油のための溝である返油溝207も設けてある。
【0022】
圧縮部にガスを送り込む吸い込みパイプ18は、密閉容器203を貫通して圧縮部200の吸込み空間まで挿入している。吐出パイプ19は、内側Dパイプ口19aを介して圧縮部下部空間205に挿入されている。
【0023】
本発明の一実施形態に所要の構成要素である筒状遮蔽体208を圧縮部200の下面にビス固定する。この筒状遮蔽体208は図2で示すように、金属製の遮蔽体ベース208aと圧縮機内での使用環境下で信頼性が確認されたプラスチック製の遮蔽リング208bをビス留めして形成されており、ステータの巻線に接触しても問題無いように絶縁性を確保している。この筒状遮蔽体208の下端は圧縮部下部空間の下側を区切る巻線17cの上部に接するか極めて近づけて配置される。これにより、下部流通口201aと内側Dパイプ口19aはともに筒状遮蔽体208の外側に配される。また、ステータ17bの上面で筒状遮蔽体208よりも内側、つまりシャフト9側に、油リング209を設ける。この油リング209は、図3に示した、その下部に突出した複数のつめ209aを上部返油口206aに押し込むか接着することにより、固定配置する。この筒状遮蔽体208は、吐出パイプ19に接続する内側Dパイプ口19aとロータ17a及びシャフト4を軸受けするフレーム15の軸受部とを遮蔽する。
【0024】
次に、動作を説明する。固定スクロール部材1に組み込まれた背圧制御弁100により旋回スクロール部材2の背面空間である背圧室16の圧力は中間的な圧力に制御される。吐出口1aが密閉容器内に臨んでいるため、密閉容器内は吐出圧となる。これらの圧力差により、下部の貯油室210からオイルがシャフトの縦穴9aを通って上昇し、軸受部を潤滑した後、背圧室16に入る。
【0025】
そこでオルダムリング5を潤滑した後、背圧制御弁100を通って、両スクロール部材間で形成される吸込み室と圧縮室にオイルが注入される。吸込み室と圧縮室との隙間での漏れを低減し、圧縮機の効率を向上させる。そして、このオイルは、ミスト状になって吐出口1aより圧縮ガスとともに容積の大きな圧縮室上部空間204に吐き出される。そこで、ガスの流速が急激に低下するため、ガスの有するオイルミストの搬送能力が急激に低下し、比重の大きなオイルは重力により圧縮部上面に付着し、これが集まって液化する。
【0026】
この液化したオイルは粘性があるために、圧縮部200の表面を伝って下部まで流れる。そして、液化オイルが筒状遮蔽体208に達するとその大部分は筒状遮蔽体208の外周面を流下し、接している巻き線17cを伝って、ステータ17bの上面に達する。この時、内側Dパイプ口19aと下部流通口201aは、ともに筒状遮蔽体208の外部に配置されているため、筒状遮蔽体208の内外空間を流れるガスはほとんど無い。よって、筒状遮蔽体208の下端が巻き線17cと接触していなくても、スムースにオイルが流下し、再ミスト化することはほとんど無い。そして、油リング209により、ロータに触ること無く返油路206に流れ込む。このためここでも再ミスト化が回避される。
【0027】
ステータ17b上面に溜まるオイルが多くて返油路206だけでは不足の時には、さらに外周に設けた返油溝207を通って下部の貯油室にオイルが戻る。よって、この実施形態では、巻き線17cが密となって返油路206の断面積が小さい場合でも、再ミスト化は回避できるという特有の効果が有る。
【0028】
一方、筒状遮蔽体208をビスでフレーム15に止めているため、フレームと筒状遮蔽体の間に若干の隙間ができる。この隙間にある程度のオイルが流れ込み、ロータ17aやシャフト9に滴下するものが生じる。これにより、オイルの再ミスト化が生じるが、この場合でも筒状遮蔽体208があらゆる方向に飛散したミストをその内面に付着させ液化させる。そして、その後は、筒状遮蔽体208の外周面を流下したオイルと同様に、再ミスト化することなく、貯油室210に戻る。この結果、吐出パイプに混入するオイルミストは極端に低減し、オイルレートの極めて低い圧縮機を提供できる。
【0029】
図1の実施形態で示した固定スクロール部材1は、図5に示すように、固定内線側のインボリュート区間が吸込み側まで延長した非対称歯形となっている。このため、固定スクロール渦巻き体1bの内線側で形成される圧縮室(圧縮室Aと称する)は外線側で形成される圧縮室(圧縮室Bと称する)よりも圧力の高い場合が多く、シール隙間の漏れは、圧縮室Aから圧縮室Bへ向かう流れが多い。よって、圧縮室Aへ主にオイルを注入すれば漏れが低減する。このため、固定スクロール部材1の内線側外周部に、図4で示す傾斜穴100hと通じた流出溝100aを配した背圧制御弁100を設ける。
【0030】
この背圧制御弁100の詳細構造を図4に示す。これは、図1中のR部の拡大図である。背圧制御弁100は、その内部に圧縮された弁ばね100b、弁板100c、弁キャップ100dを有する。これは、背圧室16に流入するオイルとそこに溶け込んでいた流体がガス化することにより上昇するガス及びオイルの背圧を下げるために、そのガス及びオイルを圧縮室Aへ抜く弁である。
【0031】
流出溝100aの開口先(圧縮室A)の圧力に、弁ばね100bの圧縮量に対応した一定値を足した圧力に背圧を調整する作用を有する。この結果、圧縮効率が向上し、高性能となる特有の効果が有る。
【0032】
また、この方式では、圧縮室B側へのオイル注入量が極端に減少する場合があり、これにより性能の低下が生じる可能性も有る。これを回避するために、鏡板溝1c(図5)の吸込み側を圧縮室Bが閉じる側へ配置した。この鏡板溝は、背圧室16から圧縮室へ漏れ込むオイルを捕獲する役目もあり、このオイルを集中して圧縮室Bに供給できるため、圧縮室Bの極端なオイル不足を緩和でき、性能が向上するという特有の効果が有る。また、この鏡板溝1cは鏡板部の摺動損失を低減する効果が有り、入力の低減にも寄与している。
【0033】
次に、本発明の第二の実施形態を、図6を用いて説明する。本発明に係る筒状遮蔽体208の下方斜視である。絶縁材料であるプラスチックで、図1及び図2における遮蔽体ベース208aと遮蔽リング208bとを一体で形成したものである。加工コストが低減する。その他は前記第一の実施例と同様なので、他の説明は省略する。
図7に、本発明に係る筒状遮蔽体の他の実施形態を示す。筒状遮蔽体208下部の下方斜視図で示したように、巻線17cの上部に対向する筒状遮蔽体208の最下部に切り込みを入れて、剛性を低下させ、多少巻線17cに干渉しても破損せず、寸法管理が容易となる。その他は前記第一及び第二の実施例と同様なので、他の説明は省略する。
また、以上の実施例によれば、以下のような構成としてもよい。
容積型圧縮機は、密閉容器内に、オイルの入ったガスの圧縮を行う圧縮部と、その圧縮部の下部から突出したシャフトを介して連繋する回転部と固定部とを有する駆動部と、前記密閉容器内の圧縮ガスを外部に導く吐出パイプと、を有し、前記圧縮部の上部に圧縮部から密閉容器内へ圧縮ガスが吐出する吐出口及び前記密閉容器内の下部に貯油室及び前記吐出口が臨む圧縮部の上部の圧縮部上部空間及び前記圧縮部と前記駆動部の間に圧縮部下部空間及び圧縮部上部空間と圧縮部下部空間を連繋する流通路及び前記圧縮部下部空間の下部と前記貯油室を連繋する返油路及び前記吐出パイプの密閉容器側開口部を前記圧縮部下部空間に設けた容積型圧縮機において、少なくとも前記吐出パイプの開口部から前記シャフト及び前記駆動部の回転部とが直接通じない遮蔽体を設け、その遮蔽体の下部は、前記駆動部の固定部の上部に延び、その遮蔽体の下端近傍には、前記返油路の上部返油口を設けてもよい。
また、オイルの入ったガスの圧縮を行う圧縮部及びその下部から突出したシャフトを介して連繋する駆動部及びそれらを包含する密閉容器及びその密閉容器内の圧縮ガスを外部に導く吐出パイプを有し、圧縮部の上部に圧縮部から密閉容器内へ圧縮ガスが吐出する吐出口及び密閉容器内の下部に貯油室及び吐出口が臨む圧縮部の上部に押除け容積の10倍以上の圧縮部上部空間及び圧縮部と駆動部の間に圧縮部下部空間及び圧縮部上部空間と圧縮部下部空間を連繋する流通路及び圧縮部下部空間の下部と貯油室を連繋する返油路及び吐出パイプの密閉容器側開口部である内側Dパイプ口を圧縮部下部空間に設けた容積型圧縮機において、少なくとも内側Dパイプ口からシャフト及び駆動部の回転部が見えないように遮蔽体を設け、その遮蔽体の下部が圧縮部下部空間の上部と固定され、その遮蔽体の下端近傍に返油路の圧縮部下部空間端部である上部返油口を設ける構成としてもよい。
上記手段を用いた場合の作用を述べる。圧縮部上部空間で圧縮ガスから分離したオイルが重力により圧縮部の表面を伝って下部のシャフトや駆動部の回転部に滴下し、再ミスト化する。しかし、そのミストのうちで吐出パイプに向かって飛散するものは遮蔽体内面に付着し、吐出パイプに到達しない。そして、付着したオイルは再液化し再飛散の危険性が低下する。この液化オイルは、重力により遮蔽体内面を伝ってその下部に達する。遮蔽体の下部は圧縮部下部空間を形成する駆動部のうちの固定部の上部と繋がっているため、液化オイルは再ミスト化することなく圧縮部下部空間の下面を区画する駆動部固定部上部に達する。この近傍に返油口が開口しているため、液化オイルが駆動部回転部側に流れる前に貯油室に戻る。この結果、Dパイプ口に達するオイルが極めて微量となり、オイルレートが大幅に低減する効果を奏する。
また、遮蔽体をシャフト及び駆動部回転部を取り囲む筒形状とし、流通路の圧縮部下部空間側端部である下部流通口をこの筒状遮蔽体の外側空間に設けたものとしてもよい。上記の手段を用いることにより、Dパイプ口とは異なる方向に飛散したミストも、液化したオイルとして貯油室に戻る。通常、密閉容器内は形状が複雑であるため、圧縮ガスの流れも複雑となっている。このため、初期的にシャフトや回転部から内側Dパイプ口とは異なる向きに飛散したオイルミストでも、最終的に内側Dパイプ口に到達するものがある。また、内側Dパイプ口と下部流通口はともに遮蔽体の外側空間にあるため、液化オイルが遮蔽体表面から圧縮部下部空間の下面を区画する駆動部固定部上部に移る箇所では基本的に圧縮ガスの流れは無く、一層再ミスト化しにくくなる。以上より上記の手段では、オイルレートが一層低減するという効果が有る。
また、遮蔽体を圧縮部の下部に押圧固定配置または接着または一体形成したものとしてもよい。
上記の手段を用いることにより、圧縮部上部空間で圧縮ガスから分離したオイルが重力により圧縮部下部に至るが、シャフトや駆動部の回転部に滴下することなく、筒状遮蔽体の外周面を伝って圧縮部下部空間を形成する駆動部のうちの固定部の上部に至る。この後は返油路を通って貯油室に戻る。すなわち、再ミスト化そのものを回避して、オイルレートを低減するものである。このため、さらに一層の低オイルレートを実現できる効果が有る。
また、圧縮部下部空間を形成する駆動部の固定部上面上で遮蔽体よりもシャフト寄りにシャフトを取り囲む筒状の油リングを固定配置したものとしてもよい。
上記の手段を用いることにより、圧縮部下部空間を形成する駆動部のうちの固定部の上部に溜まった液化オイルの一部が上部返油口に至るため、シャフトや回転部に接触することを防ぐことができる。すなわち、再びミスト化することを回避できるため、さらに一層オイルレートを低減できる効果が有る。
【0034】
【発明の効果】
本発明によれば、オイルレートを低減できる容積型圧縮機を実現できるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の第一実施例における圧縮機の縦断面図。
【図2】本発明の第一実施例における筒状遮蔽体の下方斜視図。
【図3】本発明の第一実施例における油リングの上方斜視図。
【図4】本発明の第一実施例における背圧制御弁の拡大縦断面図。
【図5】本発明の第一実施例における固定スクロール部材の下面図。
【図6】本発明の第二実施例における筒状遮蔽体の下方斜視図。
【図7】本発明の第三実施例における筒状遮蔽体下端部の下方斜視図。
【符号の説明】
1…固定スクロール部材、2…旋回スクロール部材、15…フレーム、17…モータ、19…吐出パイプ、100…背圧制御弁、200…圧縮部、201…流通路、204…圧縮部上部空間、205…圧縮部下部空間、206…返油路、208…筒状遮蔽体、209…油リング、210…貯油室。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a positive displacement compressor, and more particularly to a structure for reducing oil mist mixed in compressed gas.
[0002]
[Prior art]
A positive displacement compressor normally performs a compression operation by sucking gas into a closed space formed by a plurality of members and reducing the volume of the closed space by relative movement of these members. For this reason, the closed space requires a minute gap for enabling relative movement between the members forming the closed space, and is not strictly a sealed space. Since this minute gap causes leakage during compression, it is essential to take measures to improve the sealing performance at that location.
[0003]
An extremely effective and easy to implement means is the injection of oil into the gas during suction or during compression. Since the oil in the leakage flow seals the leakage gap with an oil film, the amount of leakage can be greatly reduced, and it is used in almost all positive displacement compressors other than oil-free machines. However, this means has a detrimental effect that a large amount of oil is mixed in the compressed gas to be discharged and the cleanliness of the compressed gas is impaired.
[0004]
As a conventional positive displacement compressor, compressed gas mixed with oil mist is discharged into the upper space of the compression section having a volume 10 times or more of the displacement volume, the flow rate of the compressed gas is lowered, and oil with a high specific gravity is compressed gas Then, the compressed gas is guided to the lower space of the compression section and discharged from the discharge pipe provided therein to the outside of the compressor (see, for example, Patent Document 1).
[0005]
[Patent Document 1]
JP-A-9-170570 (Example)
[0006]
[Problems to be solved by the invention]
In Patent Document 1, oil supplied to the bearing is injected into the suction chamber of the compression unit due to a pressure difference, and a large amount of oil is mixed in the compressed gas discharged into the upper space of the compression unit. In Patent Document 1, this oil can be separated in the upper space of the compression unit, but the oil that has adhered to the compression unit out of the separated and liquefied oil is returned to the oil storage chamber below the sealed container without being re-misted. Did not consider. For this reason, it traveled down from the side surface of the compression portion to the lower surface, and finally dropped onto a shaft or drive portion that moves at a high speed, thereby causing re-misting. As a result, the oil rate, which is the mass ratio of the oil to the total mass of the compressed gas mixed with the oil mist, does not decrease, and in the case of an air compressor, the compressed air is finally released to the atmosphere, which pollutes the environment. Produced. In the case of a compressor for refrigeration and air conditioning, there has been a problem that the refrigeration and air conditioning performance deteriorates due to a reduction in heat exchange efficiency due to adhesion to the inner wall of the heat transfer tube and an increase in pressure loss.
[0007]
An object of the present invention is to provide a positive displacement compressor with a reduced oil rate.
[0008]
[Means for Solving the Problems]
The object of the present invention is to
A motor having a rotating part and a fixed winding and stator ;
A frame disposed above the motor;
In a vertical scroll positive displacement compressor having
A cylindrical shield is disposed so as to be sandwiched between the frame and the motor,
The upper part of the cylindrical shield is fixed to the frame,
The lower part of the cylindrical shield is in contact with the winding,
In the vicinity of the lower end of the cylindrical shield, there is an oil return path through which oil flows from the winding,
This is achieved by a vertical scroll positive displacement compressor that is fixed to the upper portion of the stator and has a cylindrical oil ring that is fixedly disposed near the shaft of the motor rather than the shield.
[0013]
Next, the operation when means for solving the problem is used will be described. The oil separated from the compressed gas in the upper space of the compression section travels along the surface of the compression section by gravity and drops onto the rotating portion of the lower shaft and drive section (that is, the motor section) to re-mist. However, of the mist that scatters toward the discharge pipe adheres to the shield and does not reach the discharge pipe. And the attached oil reliquefies and the risk of re-scattering falls. This liquefied oil reaches the lower part of the shield along the shaft side surface of the shield by gravity. Since the lower part of the shield is in contact with the upper portion of the fixed portion of the drive unit forming the compression subordinate unit space, liquefied oil driver fixing portion upper partitioning the lower surface of the compression subordinate unit space without re misting To reach. Because the oil return passage to the vicinity of Oh, liquefied oil is returned to the oil reservoir before flowing to the drive unit rotating unit side. As a result, the amount of oil reaching the D pipe opening is extremely small, and the oil rate is greatly reduced.
[0016]
The driving unit for forming a compression subordinates portion space (i.e., the portion of the motor) part of the upper to the accumulated liquefied oil of the fixing unit is optimal because the upper oil return port of the shaft and the rotating part (rotor) Can be prevented from touching . That is , since it is possible to avoid mist formation again, there is an effect that the oil rate can be further reduced.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment when the present invention is applied to a scroll compressor will be described in detail with reference to FIGS.
[0018]
First, the configuration will be described. The fixed scroll member 1 engaged with the orbiting scroll member 2 is screwed to the frame 15 with the shaft 9 projecting downward to form the compression unit 200. At this time, the Oldham ring 5 is assembled between the frame 15 and the orbiting scroll member 2.
[0019]
A rotor 17a that is a rotating part of the motor 17 that is a driving part is fixed below the shaft 9 that protrudes from the compression part 200, and a winding that is a fixing part of the motor 17 and a stator 17b that are opposed to the rotor 17a on the outer peripheral surface thereof. Is arranged. The hermetic container 203 includes a motor 17 that is a drive unit connected to the compression unit 200 and the shaft 9. At this time, a compression unit upper space 204 having a volume about 30 times the displacement volume and a compression unit lower space 205 between the compression unit 200 and the motor 17 are provided above the compression unit 200.
[0020]
Here, since the discharge port 1a through which the compressed gas is discharged from the compression unit is located near the center of the upper surface of the fixed scroll member, the discharge port 1a faces the compression unit upper space 204. An oil storage chamber 210 for storing oil is provided at the bottom. Here, a plurality of flow grooves 201 are provided on the outer peripheral side of the compression unit 200 to link the compression unit upper space and the compression unit lower space.
[0021]
The stator 17b has a large number of axial winding holes 17d through which the windings 17c are passed. However, even after the winding, a space that passes through in the axial direction remains. It plays a role as an oil return path 206 returning to 210. Further, an oil return groove 207 which is a groove for oil return is also provided on the side surface of the stator.
[0022]
The suction pipe 18 that feeds gas into the compression unit passes through the sealed container 203 and is inserted into the suction space of the compression unit 200. The discharge pipe 19 is inserted into the compression unit lower space 205 through the inner D pipe port 19a.
[0023]
A cylindrical shield 208, which is a necessary component for one embodiment of the present invention, is screwed to the lower surface of the compression unit 200. As shown in FIG. 2, the cylindrical shield 208 is formed by screwing a metal shield base 208a and a plastic shield ring 208b whose reliability has been confirmed in the use environment in the compressor. Insulation is ensured so that there is no problem even if it contacts the windings of the stator. The lower end of the cylindrical shield 208 is disposed in contact with or very close to the upper part of the winding 17c that divides the lower side of the compression unit lower space. Thereby, both the lower circulation port 201a and the inner D pipe port 19a are arranged outside the cylindrical shield 208. An oil ring 209 is provided on the upper surface of the stator 17b on the inner side of the cylindrical shield 208, that is, on the shaft 9 side. The oil ring 209 is fixedly disposed by pushing or adhering a plurality of claws 209a protruding downward in the oil ring 209 shown in FIG. 3 into the upper oil return port 206a. The cylindrical shield 208 shields the inner D-pipe port 19 a connected to the discharge pipe 19 and the bearing portion of the frame 15 that supports the rotor 17 a and the shaft 4.
[0024]
Next, the operation will be described. The pressure in the back pressure chamber 16 which is the back space of the orbiting scroll member 2 is controlled to an intermediate pressure by the back pressure control valve 100 incorporated in the fixed scroll member 1. Since the discharge port 1a faces the sealed container, the inside of the sealed container becomes a discharge pressure. Due to these pressure differences, oil rises from the lower oil storage chamber 210 through the vertical hole 9a of the shaft, lubricates the bearing portion, and then enters the back pressure chamber 16.
[0025]
Therefore, after the Oldham ring 5 is lubricated, oil is injected into the suction chamber and the compression chamber formed between the scroll members through the back pressure control valve 100. Leakage in the gap between the suction chamber and the compression chamber is reduced, and the efficiency of the compressor is improved. Then, this oil becomes mist and is discharged from the discharge port 1a together with the compressed gas into the compression chamber upper space 204 having a large volume. Therefore, since the gas flow rate rapidly decreases, the oil mist carrying capability of the gas decreases rapidly, and oil having a large specific gravity adheres to the upper surface of the compression part due to gravity, and collects and liquefies.
[0026]
Since this liquefied oil has viscosity, it flows to the lower part along the surface of the compression part 200. When the liquefied oil reaches the cylindrical shield 208, most of the liquefied oil flows down the outer peripheral surface of the cylindrical shield 208 and reaches the upper surface of the stator 17b through the winding 17c that is in contact therewith. At this time, since the inner D pipe port 19a and the lower flow port 201a are both arranged outside the cylindrical shield 208, there is almost no gas flowing through the inner and outer spaces of the cylindrical shield 208. Therefore, even if the lower end of the cylindrical shield 208 is not in contact with the winding wire 17c, the oil flows smoothly and hardly re-mists. The oil ring 209 flows into the oil return path 206 without touching the rotor. For this reason, re-misting is avoided here.
[0027]
When a large amount of oil accumulates on the upper surface of the stator 17b and the oil return path 206 is insufficient, the oil returns to the lower oil storage chamber through the oil return groove 207 provided on the outer periphery. Therefore, in this embodiment, even when the winding 17c is dense and the cross-sectional area of the oil return path 206 is small, there is a specific effect that re-misting can be avoided.
[0028]
On the other hand, since the cylindrical shield 208 is fixed to the frame 15 with screws, a slight gap is formed between the frame and the cylindrical shield. A certain amount of oil flows into the gap and drops on the rotor 17 a and the shaft 9. This causes re-misting of the oil, but even in this case, the mist scattered in all directions by the cylindrical shield 208 adheres to the inner surface and is liquefied. And after that, it returns to the oil storage chamber 210, without re-misting similarly to the oil which flowed down the outer peripheral surface of the cylindrical shielding body 208. FIG. As a result, the oil mist mixed in the discharge pipe is extremely reduced, and a compressor having an extremely low oil rate can be provided.
[0029]
The fixed scroll member 1 shown in the embodiment of FIG. 1 has an asymmetric tooth profile in which the involute section on the fixed extension side extends to the suction side, as shown in FIG. For this reason, the compression chamber (referred to as the compression chamber A) formed on the inner line side of the fixed scroll spiral body 1b often has higher pressure than the compression chamber (referred to as the compression chamber B) formed on the outer line side. A large amount of gap leakage flows from the compression chamber A toward the compression chamber B. Therefore, if oil is mainly injected into the compression chamber A, leakage is reduced. For this reason, the back pressure control valve 100 in which the outflow groove 100a communicated with the inclined hole 100h shown in FIG.
[0030]
A detailed structure of the back pressure control valve 100 is shown in FIG. This is an enlarged view of a portion R in FIG. The back pressure control valve 100 includes a compressed valve spring 100b, a valve plate 100c, and a valve cap 100d. This is a valve that draws the gas and oil into the compression chamber A in order to lower the back pressure of the gas and oil that rises when the oil flowing into the back pressure chamber 16 and the fluid dissolved therein are gasified. .
[0031]
The back pressure is adjusted to a pressure obtained by adding a constant value corresponding to the compression amount of the valve spring 100b to the pressure at the opening end (compression chamber A) of the outflow groove 100a. As a result, there is a specific effect that the compression efficiency is improved and the performance becomes high.
[0032]
Further, in this method, the amount of oil injected into the compression chamber B side may be extremely reduced, which may cause a decrease in performance. In order to avoid this, the suction side of the end plate groove 1c (FIG. 5) is arranged on the side where the compression chamber B is closed. This end plate groove also serves to capture oil that leaks from the back pressure chamber 16 into the compression chamber, and since this oil can be concentrated and supplied to the compression chamber B, the extreme oil shortage in the compression chamber B can be alleviated, There is a unique effect of improving. Further, the end plate groove 1c has an effect of reducing sliding loss of the end plate portion and contributes to a reduction in input.
[0033]
Next, a second embodiment of the present invention will be described with reference to FIG. It is a downward perspective view of the cylindrical shield 208 which concerns on this invention. The shielding base 208a and the shielding ring 208b in FIGS. 1 and 2 are integrally formed of plastic which is an insulating material. Processing cost is reduced. Others are the same as those in the first embodiment, and other descriptions are omitted.
FIG. 7 shows another embodiment of the cylindrical shield according to the present invention. As shown in the lower perspective view of the lower part of the cylindrical shield 208, a cut is made in the lowermost part of the cylindrical shield 208 facing the upper part of the winding 17c to reduce the rigidity and somewhat interfere with the winding 17c. However, it is not damaged, and dimensional management becomes easy. Others are the same as those in the first and second embodiments, and other descriptions are omitted.
Moreover, according to the above Example, it is good also as following structures.
The positive displacement compressor has a compression unit that compresses a gas containing oil in a sealed container, a drive unit that includes a rotation unit and a fixed unit that are connected via a shaft protruding from a lower portion of the compression unit, and A discharge pipe for guiding the compressed gas in the sealed container to the outside, a discharge port for discharging the compressed gas from the compression part into the sealed container at the upper part of the compression part, and an oil storage chamber at the lower part in the sealed container; A compression unit upper space above the compression unit facing the discharge port, a compression unit lower space between the compression unit and the driving unit, a flow passage connecting the compression unit upper space and the compression unit lower space, and the compression unit lower space In the positive displacement compressor in which the oil return passage connecting the lower part of the oil storage chamber and the closed container side opening of the discharge pipe is provided in the lower space of the compression part, at least the shaft and the drive from the opening of the discharge pipe Rotating part May be provided, and a lower part of the shield may extend to an upper part of the fixed part of the drive unit, and an upper oil return port of the oil return path may be provided in the vicinity of the lower end of the shield. .
In addition, it has a compression section that compresses gas containing oil, a drive section that is connected via a shaft protruding from the lower part thereof, a sealed container that includes them, and a discharge pipe that guides the compressed gas in the sealed container to the outside. And a compression part that discharges compressed gas from the compression part into the sealed container at the upper part of the compression part and an upper part of the compression part that faces the oil storage chamber and the discharge port at the lower part of the sealed container, and a compression part of 10 times or more of the displacement volume The upper space, the compression portion lower space, the flow passage connecting the compression portion upper space and the compression portion lower space, the oil return passage connecting the lower portion of the compression portion lower space and the oil storage chamber, and the discharge pipe. In a positive displacement compressor in which an inner D pipe port, which is a closed container side opening, is provided in the lower space of the compression unit, a shield is provided so that at least the shaft and the rotating part of the drive unit cannot be seen from the inner D pipe port. body Lower is fixed to the upper compression subordinate unit space may be provided with a top oil return port is a compressed subordinate unit space end of Kaeaburaro near the lower end of the shield.
The operation when the above means is used will be described. The oil separated from the compressed gas in the upper space of the compression section travels along the surface of the compression section by gravity and drops onto the lower shaft and the rotation section of the drive section to re-mist. However, of the mist that scatters toward the discharge pipe adheres to the inner surface of the shield and does not reach the discharge pipe. And the attached oil reliquefies and the risk of re-scattering falls. This liquefied oil travels along the inner surface of the shield by gravity and reaches the lower part thereof. Since the lower part of the shield is connected to the upper part of the fixed part of the drive part that forms the lower part space of the compression part, the liquefied oil does not re-mist, and the upper part of the drive part fixed part that partitions the lower surface of the lower part of the compression part To reach. Since the oil return port is opened in the vicinity, the liquefied oil returns to the oil storage chamber before flowing to the drive unit rotating unit side. As a result, the amount of oil reaching the D pipe opening is extremely small, and the oil rate is greatly reduced.
Moreover, it is good also as what has a cylindrical shape surrounding a shaft and a drive part rotation part, and provided the lower distribution port which is a compression part lower space side edge part of a flow path in the outer space of this cylindrical shielding body. By using the above-mentioned means, the mist scattered in the direction different from the D pipe port also returns to the oil storage chamber as liquefied oil. Usually, since the inside of a closed container is complicated, the flow of compressed gas is also complicated. For this reason, even oil mist that has initially scattered from the shaft or rotating part in a direction different from the inner D-pipe port eventually reaches the inner D-pipe port. In addition, since both the inner D pipe port and the lower flow port are in the outer space of the shield, the liquefied oil is basically compressed at the location where the liquefied oil moves from the shield surface to the upper part of the drive unit fixing part that defines the lower surface of the lower part of the compression unit. There is no gas flow, making it more difficult to re-mist. From the above, the above means has an effect of further reducing the oil rate.
Moreover, it is good also as what formed the shielding body on the lower part of the compression part by pressing fixation arrangement | positioning, adhesion | attachment, or integrally forming.
By using the above means, the oil separated from the compressed gas in the upper space of the compression part reaches the lower part of the compression part by gravity, but the outer peripheral surface of the cylindrical shield is not dropped on the rotating part of the shaft or the drive part. It reaches to the upper part of the fixed part of the driving part that forms the lower space of the compression part. After this, it returns to the oil storage chamber through the oil return passage. That is, re-misting itself is avoided and the oil rate is reduced. For this reason, there is an effect that an even lower oil rate can be realized.
Moreover, it is good also as what fixedly arrange | positioned the cylindrical oil ring which surrounds a shaft on the upper surface of the fixing | fixed part of the drive part which forms compression part lower part space near a shaft rather than a shield.
By using the above means, a part of the accumulated liquefied oil on top of the fixed part of the drive unit forming the compression subordinate unit space is in contact with the upper oil return port optimum order, the shaft and the rotating part Can be prevented. That is , since it is possible to avoid mist formation again, there is an effect that the oil rate can be further reduced.
[0034]
【The invention's effect】
According to the present invention, there is an effect that a positive displacement compressor capable of reducing the oil rate can be realized.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a compressor in a first embodiment of the present invention.
FIG. 2 is a lower perspective view of the cylindrical shield in the first embodiment of the present invention.
FIG. 3 is an upper perspective view of the oil ring in the first embodiment of the present invention.
FIG. 4 is an enlarged longitudinal sectional view of a back pressure control valve in the first embodiment of the present invention.
FIG. 5 is a bottom view of the fixed scroll member in the first embodiment of the present invention.
FIG. 6 is a lower perspective view of a cylindrical shield according to a second embodiment of the present invention.
FIG. 7 is a lower perspective view of the lower end portion of the cylindrical shield in the third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Fixed scroll member, 2 ... Orbiting scroll member, 15 ... Frame, 17 ... Motor, 19 ... Discharge pipe, 100 ... Back pressure control valve, 200 ... Compression part, 201 ... Flow path, 204 ... Compression part upper space, 205 Compressor section lower space, 206, oil return path, 208, cylindrical shield, 209, oil ring, 210, oil storage chamber.

Claims (1)

回転する部分と固定された巻き線及びステータとを有するモータと、
前記モータより上に配設されたフレームと、
を有する縦型スクロール式の容積型圧縮機において、
前記フレームと前記モータに挟まれるように筒状遮蔽体が配設され、
前記筒状遮蔽体の上部が前記フレームに固定され、
前記筒状遮蔽体の下部が前記巻き線と接し、
前記筒状遮蔽体の下端近傍には、前記巻き線から油が流れ込む返油路を有し、
前記ステータ上部に固定され、前記遮蔽体よりも前記モータのシャフト寄りに前記シャフトを取り囲む筒状の油リングを固定配置する
ことを特徴とする縦型スクロール式の容積型圧縮機。
A motor having a rotating part and a fixed winding and stator ;
A frame disposed above the motor;
In a vertical scroll positive displacement compressor having
A cylindrical shield is disposed so as to be sandwiched between the frame and the motor,
The upper part of the cylindrical shield is fixed to the frame,
The lower part of the cylindrical shield is in contact with the winding,
In the vicinity of the lower end of the cylindrical shield, there is an oil return path through which oil flows from the winding,
A vertical scroll type positive displacement compressor, wherein a cylindrical oil ring is fixedly disposed on an upper portion of the stator and is disposed closer to the shaft of the motor than the shield, and surrounds the shaft.
JP2002267538A 2002-09-13 2002-09-13 Positive displacement compressor Expired - Fee Related JP4126213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002267538A JP4126213B2 (en) 2002-09-13 2002-09-13 Positive displacement compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002267538A JP4126213B2 (en) 2002-09-13 2002-09-13 Positive displacement compressor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007303873A Division JP4887265B2 (en) 2007-11-26 2007-11-26 Positive displacement compressor

Publications (2)

Publication Number Publication Date
JP2004100661A JP2004100661A (en) 2004-04-02
JP4126213B2 true JP4126213B2 (en) 2008-07-30

Family

ID=32266004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002267538A Expired - Fee Related JP4126213B2 (en) 2002-09-13 2002-09-13 Positive displacement compressor

Country Status (1)

Country Link
JP (1) JP4126213B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283608A (en) * 2005-03-31 2006-10-19 Matsushita Electric Ind Co Ltd Hermetic compressor
JP2006322377A (en) * 2005-05-19 2006-11-30 Matsushita Electric Ind Co Ltd Oil sensor and hermetic type electric compressor
AT9232U1 (en) 2006-05-22 2007-06-15 Acc Austria Gmbh REFRIGERANT COMPRESSOR

Also Published As

Publication number Publication date
JP2004100661A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
RU2600206C1 (en) Scroll compressor
US7628593B2 (en) Horizontal type scroll compressor including a first space and a second space
US4762477A (en) Scroll compressor with control of lubricant flow
US6637550B2 (en) Displacement type fluid machine
JPH109160A (en) Scroll compressor
EP1491768B1 (en) Compressor
WO2004081384A1 (en) Hermetic compressor
JP4126213B2 (en) Positive displacement compressor
JP4887265B2 (en) Positive displacement compressor
US6585496B1 (en) Self-regulating oil reservoir for scroll compressor
JP5209279B2 (en) Scroll compressor
JP6635672B2 (en) Displacement compressor
JP2006090180A (en) Hermetic compressor
JP2007154658A (en) Compressor
JPH0416639B2 (en)
JP2005282544A (en) Scroll compressor
JP2558737B2 (en) Hermetic compressor
JP2005155361A (en) Scroll compressor
JPH0726631B2 (en) Horizontal compressor
JPH10318166A (en) Horizontal scroll compressor
JP2005048689A (en) Scroll compressor
KR200150832Y1 (en) Rotary compressor
JP2539892B2 (en) Horizontal compressor
JPH0814181A (en) Sealed type electric compressor
JP4573614B2 (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060511

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4126213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees