JP2007154658A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2007154658A
JP2007154658A JP2003388339A JP2003388339A JP2007154658A JP 2007154658 A JP2007154658 A JP 2007154658A JP 2003388339 A JP2003388339 A JP 2003388339A JP 2003388339 A JP2003388339 A JP 2003388339A JP 2007154658 A JP2007154658 A JP 2007154658A
Authority
JP
Japan
Prior art keywords
main bearing
oil
working fluid
refrigerating machine
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003388339A
Other languages
Japanese (ja)
Inventor
Hiroshi Hasegawa
寛 長谷川
Atsuo Okaichi
敦雄 岡市
Fumitoshi Nishiwaki
文俊 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003388339A priority Critical patent/JP2007154658A/en
Priority to PCT/JP2004/017436 priority patent/WO2005050023A1/en
Publication of JP2007154658A publication Critical patent/JP2007154658A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/10Fluid working
    • F04C2210/1027CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/10Fluid working
    • F04C2210/1072Oxygen (O2)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly efficient refrigerating cycle by reducing the amount of the refrigerating machine oil discharged from a compressor while being mixed in a working fluid to increase the reliability and performance of the compressor. <P>SOLUTION: A cover member 32 is provided on the upper surface 7e of a main bearing member 7. A space 31 between the main bearing member 7 and the cover member 32 is a passage through which the refrigerating machine oil lubricating a main bearing 7a is returned to an oil sump 16. The refrigerating machine oil which returns to the oil sump 16 is isolated from a main flowing place of the working fluid. With this, refrigerating machine oil and the working fluid are prevented from being mixed with each other, and the amount of the refrigerating machine oil discharged from the compressor together with the working fluid is reduced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷凍冷蔵庫や空調機等に用いられる密閉型回転圧縮機に関する。   The present invention relates to a hermetic rotary compressor used for a refrigerator-freezer, an air conditioner, or the like.

密閉型回転圧縮機は、そのコンパクト性や構造が簡単なことから、冷凍冷蔵庫や空調機等に多く用いられている。ロータリ圧縮機等の密閉型回転圧縮機の構成については、非特許文献1に記載されている。以下に、密閉型回転圧縮機の構成を、ロータリ圧縮機を例に図4から図5を用いて説明する。
図4は、従来のロータリ圧縮機の縦断面図である。図に示すロータリ圧縮機は、密閉容器1と、偏心部2aを有するシャフト2と、シリンダ3と、ローラ4と、ベーン5と、バネ6と、シャフト2を支える主軸受7aや吐出孔7c等を有する主軸受部材7と、シャフト2を支える副軸受8aを有する副軸受部材8と、密閉容器1内部に焼嵌めされた固定子11と、シャフト2に焼嵌めされた回転子12とを含み構成される。また、主軸受7aと副軸受8aの摺動面には螺旋溝7b,8bが設けられている。上記構成のうち、固定子11と回転子12から構成される部分を回転電動機部と、シリンダ3内に吸入室及び圧縮室(図示せず)を形成し、回転子12の回転運動に伴い作動流体を圧縮する部分を圧縮機構部と呼称する。
また、固定子11の外周側には、作動流体の流路とするための複数の切欠き11aが設けられ、固定子11と回転子12の間に、隙間18が設けられている。そして、密閉容器1には、固定子11に通電するための導入端子13と、作動流体を冷凍サイクルからシリンダ3内に導く吸入管(図示せず)と、作動流体を閉容器1の内部から冷凍サイクルに吐出する吐出管15と、冷凍機油が貯留される油溜り16とが設けられている構成である。
Hermetic rotary compressors are often used in refrigerators and air conditioners because of their compactness and simple structure. Non-patent document 1 describes the configuration of a hermetic rotary compressor such as a rotary compressor. The configuration of the hermetic rotary compressor will be described below with reference to FIGS. 4 to 5 by taking a rotary compressor as an example.
FIG. 4 is a longitudinal sectional view of a conventional rotary compressor. The rotary compressor shown in the figure includes a sealed container 1, a shaft 2 having an eccentric portion 2a, a cylinder 3, a roller 4, a vane 5, a spring 6, a main bearing 7a that supports the shaft 2, a discharge hole 7c, and the like. Main bearing member 7, sub-bearing member 8 having sub-bearing 8 a that supports shaft 2, stator 11 that is shrink-fitted inside sealed container 1, and rotor 12 that is shrink-fitted to shaft 2. Composed. Also, spiral grooves 7b and 8b are provided on the sliding surfaces of the main bearing 7a and the auxiliary bearing 8a. Of the above-described configuration, a portion constituted by the stator 11 and the rotor 12 is formed as a rotary electric motor part, and a suction chamber and a compression chamber (not shown) are formed in the cylinder 3, and actuates in accordance with the rotational movement of the rotor 12 A portion that compresses the fluid is referred to as a compression mechanism portion.
Further, a plurality of notches 11 a for providing a working fluid flow path are provided on the outer peripheral side of the stator 11, and a gap 18 is provided between the stator 11 and the rotor 12. The sealed container 1 includes an introduction terminal 13 for energizing the stator 11, a suction pipe (not shown) for guiding the working fluid from the refrigeration cycle into the cylinder 3, and working fluid from the inside of the closed container 1. This is a configuration in which a discharge pipe 15 that discharges to the refrigeration cycle and an oil reservoir 16 in which refrigeration oil is stored are provided.

上記構成のロータリ圧縮機の動作について説明する。
導入端子13を介して固定子11に通電して回転子12を回転させると、偏心部2aによりローラ4は偏心回転運動を行い、吸入室と圧縮室の容積が変化する。これに伴い作動流体は、吸入室に吸入され圧縮室にて圧縮される。圧縮された作動流体は、吐出孔7cを経て回転電動機部の下部空間17に噴出する。噴出した作動流体の主たる流れ場は、作動流体の回転子12の下端面12aに対する衝突による、回転子12の回転運動によって強い旋回流となる。その後、作動流体は、切欠き11aや隙間18を通過し、回転電動機部の上部空間19に噴出した後、吐出管15から密閉容器1の外部に吐出される。
一方、油溜り16の冷凍機油は、シャフト2の回転運動に伴い螺旋溝8bを通り、副軸受8aを潤滑しながら偏心部2aまで汲み上げられる。汲み上げられた冷凍機油の一部は、偏心部2aとローラ4の嵌合部やローラ4の上下端面と主軸受部材7及び副軸受部材8の間の隙間を、潤滑及びシールしながら吸入室や圧縮室に流れ込み、作動流体と混合された状態となって吐出孔7cから下部空間17に吐出される。
また、その残りの冷凍機油は、シャフト2の回転運動に伴い螺旋溝7bを通り、主軸受7aを潤滑しながら主軸受7aの上端部7dまで汲み上げられる。その後、上端部7dから溢れ出し、主軸受部材7の上面7eを流れ、その冷凍機油の一部は、下部空間17に生じた作動流体の旋回流により巻き上げられて作動流体と混合され、残りの冷凍機油は、主軸受部材7の外周側に設けられた複数の連通孔7fを通って油溜り16に戻る。そして、作動流体と混合された冷凍機油の一部は、回転電動機部の下部空間17や上部空間19で重力や旋回流の遠心力等により分離されて油溜り16に戻り、残りの冷凍機油は、作動流体とともに吐出管15から密閉容器1の外部に吐出される。
The operation of the rotary compressor having the above configuration will be described.
When the stator 11 is energized through the introduction terminal 13 to rotate the rotor 12, the roller 4 performs eccentric rotational movement by the eccentric portion 2a, and the volumes of the suction chamber and the compression chamber change. Accordingly, the working fluid is sucked into the suction chamber and compressed in the compression chamber. The compressed working fluid is ejected into the lower space 17 of the rotary electric motor section through the discharge hole 7c. The main flow field of the ejected working fluid becomes a strong swirl flow due to the rotational movement of the rotor 12 due to the collision of the working fluid against the lower end surface 12 a of the rotor 12. Thereafter, the working fluid passes through the notch 11 a and the gap 18, and is ejected to the upper space 19 of the rotary electric motor unit, and then discharged from the discharge pipe 15 to the outside of the sealed container 1.
On the other hand, the refrigerating machine oil in the oil sump 16 is pumped up to the eccentric portion 2a while lubricating the auxiliary bearing 8a through the spiral groove 8b as the shaft 2 rotates. Part of the refrigerating machine oil pumped up is the suction chamber or the fitting portion of the eccentric portion 2a and the roller 4 and the clearance between the upper and lower end surfaces of the roller 4 and the main bearing member 7 and the auxiliary bearing member 8 while lubricating and sealing. It flows into the compression chamber, is mixed with the working fluid, and is discharged from the discharge hole 7 c to the lower space 17.
Further, the remaining refrigerating machine oil passes through the spiral groove 7b as the shaft 2 rotates, and is pumped up to the upper end 7d of the main bearing 7a while lubricating the main bearing 7a. Thereafter, it overflows from the upper end portion 7d and flows on the upper surface 7e of the main bearing member 7, and a part of the refrigerating machine oil is wound up by the swirling flow of the working fluid generated in the lower space 17 and mixed with the working fluid, and the rest The refrigerating machine oil returns to the oil reservoir 16 through a plurality of communication holes 7 f provided on the outer peripheral side of the main bearing member 7. A part of the refrigerating machine oil mixed with the working fluid is separated by gravity, centrifugal force of the swirling flow or the like in the lower space 17 and the upper space 19 of the rotary electric motor unit and returned to the oil sump 16, and the remaining refrigerating machine oil is , And discharged from the discharge pipe 15 to the outside of the sealed container 1 together with the working fluid.

以上のように、ロータリ圧縮機等の密閉型圧縮機では、油溜り16に貯留されている冷凍機油の一部は、圧縮機の運転の過程で密閉容器1から吐出される。その結果、冷凍機油の吐出が多い圧縮機では、油溜り16における冷凍機油の油面が低下するため、圧縮機構部への冷凍機油の供給量が不足し、潤滑が不十分となって異常摩耗の発生などで信頼性が低下したり、圧縮機構部での作動流体のシールが不十分となって効率が低下したりする。
また、圧縮機から吐出された冷凍機油は、熱交換器の内壁に付着して作動流体と内壁間の熱伝達率を低下させるので、冷凍サイクルの性能が低下する。従って、作動流体に混合して吐出される冷凍機油の量を低減している。
冷凍機油の吐出量を低減するための構成としては、例えば特許文献1に示されているように、ロータリ圧縮機の回転子12の上部に設けた油分離板を用いる方法がある。図5に油分離板の周辺の詳細断面図を示す。回転子12には永久磁石12bの挿入孔を閉塞する上側端板12c及び下側端板12dが具備されるとともに、回転子12に上下方向に貫通形成された複数の貫通孔12eと、貫通孔12eの出口の上方に配されて回転子12の上側端板12cとの間に油分離空間20を形成する油分離板21とが、固定部材22によって回転子12に固定されている。
As described above, in a hermetic compressor such as a rotary compressor, a part of the refrigerating machine oil stored in the oil reservoir 16 is discharged from the hermetic container 1 during the operation of the compressor. As a result, in a compressor with a large amount of refrigerating machine oil discharged, the oil level of the refrigerating machine oil in the oil sump 16 is lowered, so that the amount of refrigerating machine oil supplied to the compression mechanism is insufficient, and lubrication becomes insufficient and abnormal wear occurs. As a result, the reliability is reduced, and the working fluid is not sufficiently sealed in the compression mechanism, resulting in a reduction in efficiency.
Moreover, since the refrigeration oil discharged from the compressor adheres to the inner wall of the heat exchanger and reduces the heat transfer coefficient between the working fluid and the inner wall, the performance of the refrigeration cycle is lowered. Therefore, the amount of refrigerating machine oil mixed and discharged with the working fluid is reduced.
As a configuration for reducing the discharge amount of refrigerating machine oil, for example, as disclosed in Patent Document 1, there is a method of using an oil separation plate provided on an upper portion of a rotor 12 of a rotary compressor. FIG. 5 shows a detailed sectional view of the periphery of the oil separation plate. The rotor 12 is provided with an upper end plate 12c and a lower end plate 12d that close the insertion hole of the permanent magnet 12b, and a plurality of through holes 12e formed through the rotor 12 in the vertical direction, and through holes An oil separation plate 21 disposed above the outlet 12e and forming an oil separation space 20 between the rotor 12 and the upper end plate 12c of the rotor 12 is fixed to the rotor 12 by a fixing member 22.

このように構成された圧縮機では、圧縮機構部から回転電動機の下部空間17に吐出された冷凍機油の油滴を含む作動流体の一部は、回転子12に設けられた貫通孔12eを通って油分離空間20に流入する。そして、ここで遠心力により油分離板21の外周出口から作動流体を放射状に吐出し、固定子11のコイルエンド11bに吹き付けられて作動流体とこれに含まれた冷凍機油が分離される。そして、冷凍機油を分離した作動流体だけが上昇し、密閉容器1内の上部に設けられた吐出管15から外部へ吐出される。一方、固定子11のコイルエンド11bに付着した冷凍機油は下方へ伝わって落ち、密閉容器1の底部に貯留されている油溜り16へ戻される。
「冷凍空調便覧、新版第5版、II巻 機器編」、日本冷凍協会、平成5年、第30項〜第43項 特開平8−28476号公報(第6項、図1〜図3)
In the compressor configured as described above, a part of the working fluid including the oil droplets of the refrigerating machine oil discharged from the compression mechanism portion to the lower space 17 of the rotary electric motor passes through the through hole 12e provided in the rotor 12. Into the oil separation space 20. And here, working fluid is discharged radially from the outer periphery outlet of the oil separation plate 21 by centrifugal force, and sprayed to the coil end 11b of the stator 11 to separate the working fluid and the refrigerating machine oil contained therein. Then, only the working fluid from which the refrigerating machine oil is separated rises and is discharged to the outside from the discharge pipe 15 provided at the upper part in the sealed container 1. On the other hand, the refrigerating machine oil adhering to the coil end 11 b of the stator 11 is transmitted downward and returned to the oil sump 16 stored at the bottom of the sealed container 1.
"Refrigeration and Air Conditioning Handbook, New Edition 5th Edition, Volume II Equipment", Japan Refrigeration Association, 1993, Paragraphs 30-43 JP-A-8-28476 (Section 6, FIGS. 1 to 3)

前述のように、従来のロータリ圧縮機では、冷凍機油が、偏心部2aとローラ4の嵌合部やローラ4と主軸受部材7及び副軸受部材8の隙間を潤滑及びシールするとき、シリンダ3内に流れ込んで作動流体と混合され、あるいは、主軸受7aの上端部7dから溢れ出して油溜り16に戻る途中に、下部空間17で旋回流に巻き込まれて作動流体と混合され、作動流体とともに吐出管15から密閉容器1の外部に吐出されていた。
また、作動流体から分離する手段として図5に示す構成が用いられるが、このような分離方法では、作動流体に混合した冷凍機油をコイルエンド11bに吹き付けても完全には付着せず、特に作動流体に混合した冷凍機油の量が多い場合には冷凍機油の吐出量を十分に減らすことはできない。さらに、下部空間17から上部空間19へ流れる作動流体のうち、回転子12に設けられた貫通孔12eを通過する作動流体に対してしか機能せず、切欠き11aや隙間18を通過する作動流体から冷凍機油を分離することは不可能である。
As described above, in the conventional rotary compressor, when the refrigerating machine oil lubricates and seals the fitting portion between the eccentric portion 2a and the roller 4 and the gap between the roller 4 and the main bearing member 7 and the auxiliary bearing member 8, the cylinder 3 Or mixed with the working fluid or mixed with the working fluid by being swirled into the swirling flow in the lower space 17 while overflowing from the upper end 7d of the main bearing 7a and returning to the oil sump 16 together with the working fluid. It was discharged from the discharge pipe 15 to the outside of the sealed container 1.
Further, the structure shown in FIG. 5 is used as means for separating from the working fluid. In such a separation method, even if the refrigerating machine oil mixed with the working fluid is sprayed onto the coil end 11b, it does not adhere completely, and the operation is particularly effective. When the amount of refrigerating machine oil mixed with the fluid is large, the discharge amount of refrigerating machine oil cannot be reduced sufficiently. Further, the working fluid that flows from the lower space 17 to the upper space 19 only functions for the working fluid that passes through the through hole 12 e provided in the rotor 12, and that passes through the notch 11 a and the gap 18. It is impossible to separate refrigeration oil from

したがって本発明は、上記問題を解決するためのものであり、圧縮機から作動流体に混じって吐出される冷凍機油の量を低減し、圧縮機の信頼性と性能を向上させ、かつ、高効率の冷凍サイクルを得ることを目的としている。   Therefore, the present invention is for solving the above-mentioned problems, and reduces the amount of refrigeration oil discharged from the compressor mixed with the working fluid, improves the reliability and performance of the compressor, and is highly efficient. The purpose is to obtain a refrigeration cycle.

請求項1記載の本発明の圧縮機は、固定子及び回転子から構成された回転電動機部と、前記回転電動機部の下側に下部空間を設けて配置されるとともに前記回転子によって回転させられて作動流体を圧縮する圧縮機構部と、前記回転電動機部及び前記圧縮機構部を内包して底部に潤滑油の油溜りを有する密閉容器とを備え、前記圧縮機構部が、少なくとも、前記回転子が固定されたシャフトと、前記シャフトを支持する主軸受と、前記油溜りから前記主軸受へ前記潤滑油を供給する油供給手段と、前記主軸受を潤滑した前記潤滑油を前記油溜りへ戻す油戻し経路とを有した圧縮機であって、前記油戻し経路を、前記圧縮機構部から前記下部空間内に吐出された前記作動流体の主たる流れ場から隔離したことを特徴とする。
請求項2記載の本発明は、請求項1に記載の圧縮機において、前記油戻し経路を、前記主軸受の上端部から排出された前記潤滑油を前記油溜りへ戻す経路としたことを特徴とする。
請求項3記載の本発明は、請求項1又は請求項2に記載の圧縮機において、前記圧縮機構部は、シリンダと、前記シリンダの上側に前記主軸受を形成する主軸受部材を備え、前記主軸受部材の上面側に、当該主軸受部材の少なくとも一部を覆うカバー部材を設け、前記油戻し経路を前記主軸受部材と前記カバー部材との間の空間としたことを特徴とする。
請求項4記載の本発明は、請求項3に記載の圧縮機において、前記カバー部材の形状を、前記主軸受部材の上面に沿う形状としたことを特徴とする。
請求項5記載の本発明は、請求項3に記載の圧縮機において、前記カバー部材の形状を、前記シャフトを中心とする円形としたことを特徴とする。
請求項6記載の本発明は、請求項1から請求項5のいずれかに記載の圧縮機において、前記作動流体として二酸化炭素を用いたことを特徴とする。
According to a first aspect of the present invention, there is provided a compressor according to the first aspect of the present invention, wherein a rotary electric motor unit including a stator and a rotor, and a lower space is provided below the rotary electric motor unit and are rotated by the rotor. A compression mechanism portion that compresses the working fluid, and a hermetic container including the rotary electric motor portion and the compression mechanism portion and having a sump of lubricating oil in a bottom portion, and the compression mechanism portion includes at least the rotor A shaft to which the shaft is fixed, a main bearing that supports the shaft, oil supply means that supplies the lubricating oil from the oil reservoir to the main bearing, and the lubricating oil that has lubricated the main bearing is returned to the oil reservoir. A compressor having an oil return path, wherein the oil return path is isolated from a main flow field of the working fluid discharged from the compression mechanism portion into the lower space.
According to a second aspect of the present invention, in the compressor according to the first aspect, the oil return path is a path for returning the lubricating oil discharged from the upper end portion of the main bearing to the oil sump. And
According to a third aspect of the present invention, in the compressor according to the first or second aspect, the compression mechanism portion includes a cylinder and a main bearing member that forms the main bearing on the upper side of the cylinder, A cover member that covers at least a part of the main bearing member is provided on the upper surface side of the main bearing member, and the oil return path is a space between the main bearing member and the cover member.
According to a fourth aspect of the present invention, in the compressor according to the third aspect, the shape of the cover member is a shape along the upper surface of the main bearing member.
According to a fifth aspect of the present invention, in the compressor according to the third aspect, the shape of the cover member is a circle centered on the shaft.
According to a sixth aspect of the present invention, in the compressor according to any one of the first to fifth aspects, carbon dioxide is used as the working fluid.

本発明の圧縮機によれば、油戻し経路を作動流体の主たる流れ場から隔離し、油溜りへ戻る潤滑油が、例えば主軸受7aの上端部7dから溢れる冷凍機油が作動流体と混合されるのを防止することにより、圧縮機から作動流体に混合して吐出される冷凍機油の量を低減し、圧縮機の信頼性と効率を向上させ、かつ、高効率の冷凍サイクルを得ることができる。   According to the compressor of the present invention, the lubricating oil that isolates the oil return path from the main flow field of the working fluid and returns to the oil sump, for example, the refrigerating machine oil overflowing from the upper end 7d of the main bearing 7a is mixed with the working fluid. By reducing the amount of refrigerating machine oil mixed and discharged from the compressor to the working fluid, the reliability and efficiency of the compressor can be improved, and a highly efficient refrigerating cycle can be obtained. .

本発明の第1の実施の形態による圧縮機は、油戻し経路を、圧縮機構部から下側空間内に吐出された作動流体の主たる流れ場から隔離したものである。本実施の形態によれば、油戻し経路を流れて油溜りに戻る潤滑油が、作動流体の主たる流れ場から隔離されるので、下側空間に生じる旋回流に巻き込まれて作動流体に混合することが防止される。従って、密閉容器外に吐出される冷凍機油の量を低減することができる。
本発明の第2の実施の形態は、第1の実施の形態による圧縮機において、油戻し経路を、主軸受の上端部から排出された潤滑油を油溜りへ戻す経路としたものである。本実施の形態によれば、主軸受の上端部から排出される潤滑油を、作動流体に混合することなく油溜りへ戻すことができる。
本発明の第3の実施の形態は、第1又は第2の実施の形態による圧縮機において、圧縮機構部は、シリンダと、シリンダの上側に主軸受を形成する主軸受部材を備え、主軸受部材の上面側に、当該主軸受部材の少なくとも一部を覆うカバー部材を設け、油戻し経路を主軸受部材とカバー部材との間の空間としたものである。本実施の形態によれば、カバー部材によって、油戻し経路を作動流体の主たる流れ場から隔離するので、潤滑油を作動流体に混合することなく油溜りへ戻すことができる。
本発明の第4の実施の形態は、第3の実施の形態による圧縮機において、カバー部材の形状を、主軸受部材の上面に沿う形状としたものである。本実施の形態によれば、下部空間の空間容積の減少を最小限に留めることができ、下部空間における油分離効果の減少を最小限にすることができる。
本発明の第5の実施の形態は、第3の実施の形態による圧縮機において、カバー部材の形状を、シャフトを中心とする円形としたものである。本実施の形態によれば、カバー部材の加工が簡単になり、安価に製作することができる。
本発明の第6の実施の形態は、第1から第5の実施の形態による圧縮機において、作動流体として二酸化炭素を用いたものである。二酸化炭素は、冷凍機油との密度差が少なく、冷凍機油が二酸化炭素の流れに巻き込まれ易くなるが、本実施の形態によれば、油戻し経路を二酸化炭素の主たる流れ場から隔離して、油溜りに戻る冷凍機油が二酸化炭素の流れに巻き込まれることを防止するので、環境に優しい二酸化炭素を作動流体として用いることができる。
In the compressor according to the first embodiment of the present invention, the oil return path is isolated from the main flow field of the working fluid discharged from the compression mechanism portion into the lower space. According to the present embodiment, since the lubricating oil that flows through the oil return path and returns to the oil sump is isolated from the main flow field of the working fluid, it is caught in the swirling flow generated in the lower space and mixed with the working fluid. It is prevented. Therefore, the amount of refrigerating machine oil discharged outside the sealed container can be reduced.
According to the second embodiment of the present invention, in the compressor according to the first embodiment, the oil return path is a path for returning the lubricating oil discharged from the upper end portion of the main bearing to the oil sump. According to the present embodiment, the lubricating oil discharged from the upper end portion of the main bearing can be returned to the oil reservoir without being mixed with the working fluid.
According to a third embodiment of the present invention, in the compressor according to the first or second embodiment, the compression mechanism unit includes a cylinder and a main bearing member that forms a main bearing on the upper side of the cylinder, and the main bearing A cover member that covers at least a part of the main bearing member is provided on the upper surface side of the member, and the oil return path is a space between the main bearing member and the cover member. According to the present embodiment, since the oil return path is isolated from the main flow field of the working fluid by the cover member, the lubricating oil can be returned to the oil sump without being mixed with the working fluid.
In the compressor according to the third embodiment, the fourth embodiment of the present invention is such that the shape of the cover member is a shape along the upper surface of the main bearing member. According to the present embodiment, it is possible to minimize the decrease in the space volume of the lower space, and it is possible to minimize the decrease in the oil separation effect in the lower space.
In the compressor according to the third embodiment, the fifth embodiment of the present invention is such that the shape of the cover member is a circle centered on the shaft. According to this embodiment, the processing of the cover member is simplified and can be manufactured at low cost.
The sixth embodiment of the present invention uses carbon dioxide as a working fluid in the compressors according to the first to fifth embodiments. Carbon dioxide has a small density difference from the refrigerating machine oil, and the refrigerating machine oil is easily caught in the flow of carbon dioxide, but according to the present embodiment, the oil return path is isolated from the main flow field of carbon dioxide, Since the refrigerating machine oil returning to the oil sump is prevented from being caught in the flow of carbon dioxide, environmentally friendly carbon dioxide can be used as a working fluid.

以下、本発明の一実施例について、図面を参照しながら説明する。
本発明の第1の実施例のロータリ圧縮機は、図4で説明した従来のロータリ圧縮機とほぼ同様な構成であり、同一機能部品については同一の符号を適用する。
図1は、本発明の第1の実施例におけるロータリ圧縮機の縦断面図である。図2は、図1に示すロータリ圧縮機の圧縮機構部の横断面図であり、図1におけるZ1−Z1矢視の断面に相当する。図3は、図1に示すロータリ圧縮機の回転電動機部の下部空間における横断面図であり、図1におけるZ2−Z2矢視の断面に相当する。
図に示すロータリ圧縮機は、密閉容器1と、この密閉容器1内部の下方に配置された圧縮機構部と、その上部に配置された回転電動機部とから構成される。圧縮機構部は、偏心部2aを有して中心軸Lを中心に回転可能なシャフト2と、シリンダ3と、偏心部2aに嵌合されてシャフト2の回転に伴ってシリンダ3の内側で偏心回転運動を行うローラ4と、ローラ4に先端を接しながらシリンダ3のベーン溝3aの内部を往復運動するベーン5と、ベーン5をローラ4に押し付けるバネ6と、シャフト2を支える主軸受7aやシリンダ3から作動流体を吐出する吐出孔7cなどを有してシリンダ3の上側の開口部を閉塞する主軸受部材7と、シャフト2を支える副軸受8aを有してシリンダ3の下側の開口部を閉塞する副軸受部材8とを含み構成される。また、主軸受7aと副軸受8aの摺動面には、潤滑油を供給する油供給手段としての螺旋溝7b,8bがそれぞれ設けられている。また、主軸受部材7と副軸受部材8に挟まれたシリンダ3とローラ4の間の空間は、ベーン5により吸入室9と圧縮室10に分割されている。
一方、回転電動機部は、密閉容器1内部に固定された固定子11と、シャフト2に嵌合された回転子12とを含み構成される。固定子11の外周側には、作動流体の流路とするための複数の切欠き11aが設けられ、固定子11と回転子12の間に、隙間18が設けられている。そして、密閉容器1の上部に、密閉容器1の外部から固定子11に通電するための導入端子13と、作動流体を密閉容器1の内部から冷凍サイクルに吐出する吐出管15とが設けられ、密閉容器1の側部に、作動流体を冷凍サイクルから吸入室9に導く吸入管14が設けられ、密閉容器1の底部に、冷凍機油が貯留される油溜り16が設けられている構成である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
The rotary compressor according to the first embodiment of the present invention has substantially the same configuration as the conventional rotary compressor described with reference to FIG. 4, and the same reference numerals are applied to the same functional parts.
FIG. 1 is a longitudinal sectional view of a rotary compressor according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view of the compression mechanism portion of the rotary compressor shown in FIG. 1, and corresponds to a cross section taken along arrows Z1-Z1 in FIG. FIG. 3 is a cross-sectional view in the lower space of the rotary motor portion of the rotary compressor shown in FIG. 1, and corresponds to a cross section taken along arrows Z2-Z2 in FIG.
The rotary compressor shown in the figure is composed of a hermetic container 1, a compression mechanism part arranged below the inside of the hermetic container 1, and a rotary electric motor part arranged on the upper part thereof. The compression mechanism portion has an eccentric portion 2 a and is rotatable about the central axis L, the cylinder 3, and fitted to the eccentric portion 2 a so as to be eccentric inside the cylinder 3 as the shaft 2 rotates. A roller 4 that rotates, a vane 5 that reciprocates inside the vane groove 3a of the cylinder 3 while contacting the tip of the roller 4, a spring 6 that presses the vane 5 against the roller 4, a main bearing 7a that supports the shaft 2, A main bearing member 7 that has a discharge hole 7c for discharging the working fluid from the cylinder 3 and closes the opening on the upper side of the cylinder 3 and a sub bearing 8a that supports the shaft 2 and has an opening on the lower side of the cylinder 3 And a secondary bearing member 8 that closes the portion. The sliding surfaces of the main bearing 7a and the auxiliary bearing 8a are provided with spiral grooves 7b and 8b as oil supply means for supplying lubricating oil, respectively. A space between the cylinder 3 and the roller 4 sandwiched between the main bearing member 7 and the sub bearing member 8 is divided into a suction chamber 9 and a compression chamber 10 by a vane 5.
On the other hand, the rotary motor unit includes a stator 11 fixed inside the sealed container 1 and a rotor 12 fitted to the shaft 2. On the outer peripheral side of the stator 11, a plurality of notches 11 a for providing a working fluid flow path are provided, and a gap 18 is provided between the stator 11 and the rotor 12. Then, an introduction terminal 13 for energizing the stator 11 from the outside of the sealed container 1 and a discharge pipe 15 for discharging the working fluid from the inside of the sealed container 1 to the refrigeration cycle are provided on the upper part of the sealed container 1, A suction pipe 14 that guides the working fluid from the refrigeration cycle to the suction chamber 9 is provided at the side of the sealed container 1, and an oil reservoir 16 that stores refrigerating machine oil is provided at the bottom of the sealed container 1. .

本実施例のロータリ圧縮機では、上記構成に加え、主軸受部材7の上面7e側(即ち回転電動機部の下側空間17側)に、上面7eと空間31を隔ててカバー部材32を設置した構成としている。空間31の大きさは、主軸受7aの上端部7dから溢れ出し、主軸受部材7の上面7eを流れる冷凍機油の流れの厚みと同程度とする。冷凍機油の流れの厚みは、主軸受7aへの冷凍機油の供給量が多いほど、また冷凍機油の粘度が高いほど厚くなる。
上記カバー部材32は、シャフト2を中心とする円形であり、かつ、主軸受部材7の上面7eに沿う形状とするために、主軸受部材7の中央に突き出て主軸受7aを覆う凸部32aが設けられている。この凸部32aには、シャフト2が貫通する孔32bと、その周囲の鍔部32cとが設けられており、シャフト2と孔32bの隙間33は、摺動が生じない範囲で極力小さく構成されている。
また、カバー部材32の外周側の円形の縁32dは、主軸受部材7の連通孔7fを半分程度まで覆う大きさとし、縁32dには鍔部32eが設けられている。更に、カバー部材32の主軸受部材7の吐出孔7cと相対する箇所には、吐出孔7cから吐出される作動流体がカバー部材32の上側に抜けて流れるように吐出孔32fが設けられている。尚、吐出孔32fが吐出孔7cと隙間無く連通するように、カバー部材32の吐出孔32fの周囲に厚肉部32gを設け、厚肉部32gを主軸受部材7の上面7eと直接接触させている。
In the rotary compressor of the present embodiment, in addition to the above configuration, a cover member 32 is installed on the upper surface 7e side of the main bearing member 7 (that is, on the lower space 17 side of the rotary motor portion) with the upper surface 7e and the space 31 therebetween. It is configured. The size of the space 31 overflows from the upper end 7d of the main bearing 7a and is approximately the same as the thickness of the flow of the refrigerating machine oil flowing through the upper surface 7e of the main bearing member 7. The thickness of the flow of the refrigerating machine oil increases as the amount of refrigerating machine oil supplied to the main bearing 7a increases and the viscosity of the refrigerating machine oil increases.
The cover member 32 has a circular shape centering on the shaft 2 and a convex portion 32a that protrudes into the center of the main bearing member 7 and covers the main bearing 7a in order to have a shape along the upper surface 7e of the main bearing member 7. Is provided. The convex portion 32a is provided with a hole 32b through which the shaft 2 passes and a flange portion 32c around the shaft 32, and a gap 33 between the shaft 2 and the hole 32b is configured to be as small as possible without causing sliding. ing.
The circular edge 32d on the outer peripheral side of the cover member 32 is sized to cover the communication hole 7f of the main bearing member 7 to about half, and a flange 32e is provided on the edge 32d. Further, a discharge hole 32 f is provided at a portion of the cover member 32 facing the discharge hole 7 c of the main bearing member 7 so that the working fluid discharged from the discharge hole 7 c flows out to the upper side of the cover member 32. . A thick part 32g is provided around the discharge hole 32f of the cover member 32 so that the discharge hole 32f communicates with the discharge hole 7c without any gap, and the thick part 32g is brought into direct contact with the upper surface 7e of the main bearing member 7. ing.

次に、本実施例のロータリ圧縮機の動作について説明する。
導入端子13を介し、固定子11に通電して回転子12を回転させると、シャフト2の偏心部2aによりローラ4は偏心回転運動を行い、吸入室9と圧縮室10の容積が変化する。これに伴い作動流体は、吸入管14から吸入室9に吸入され、圧縮室10にて圧縮される。圧縮された作動流体は、主軸受部材7の吐出孔7cとカバー部材32の吐出孔32fを経て、回転電動機部の下部空間17に噴出する。噴出した作動流体の主たる流れ場は、作動流体が回転子12の下端面12aに衝突し、回転子12の回転運動によって強い旋回流となる。その後、作動流体は、固定子11と回転子12の隙間18や、固定子11の切欠き11aを通過し、回転電動機部の上部空間19に噴出した後、吐出管15から密閉容器1の外部に吐出される。
一方、油溜り16の冷凍機油は、シャフト2の回転運動に伴い副軸受8aの螺旋溝8bを通り、副軸受8aを潤滑しながらシャフト2の偏心部2aまで汲み上げられる。汲み上げられた冷凍機油の一部は、偏心部2aとローラ4の嵌合部やローラ4の上下端面と主軸受部材7及び副軸受部材8の間の隙間を、潤滑及びシールしながら吸入室9や圧縮室10に流れ込み、作動流体と混合された状態となって、主軸受部材7の吐出孔7cとカバー部材32の吐出孔32fを通過して下部空間17に吐出される。
そして、吐出された冷凍機油の一部は、回転電動機部の下部空間17や上部空間19等で重力や遠心力等により分離されるが、その残りは、分離されずに作動流体とともに吐出管15から密閉容器1の外部に吐出される。
また、残りの冷凍機油は、シャフト2の回転運動に伴い主軸受7aの螺旋溝7bを通り、主軸受7aを潤滑しながら主軸受7aの上端部7dまで汲み上げられる。その後、上端部7dから溢れ出し、カバー部材32と主軸受部材7の上面7eとの間の空間31を流れ、カバー部材32の縁32dまで到達すると鍔部32eにより流れを下向きに変え、主軸受部材7の外周側に設けられた複数の連通孔7fを通って油溜り16に戻る。
Next, the operation of the rotary compressor of this embodiment will be described.
When the stator 11 is energized through the introduction terminal 13 to rotate the rotor 12, the roller 4 is eccentrically rotated by the eccentric portion 2 a of the shaft 2, and the volumes of the suction chamber 9 and the compression chamber 10 are changed. Accordingly, the working fluid is sucked into the suction chamber 9 from the suction pipe 14 and compressed in the compression chamber 10. The compressed working fluid is jetted into the lower space 17 of the rotary motor section through the discharge hole 7c of the main bearing member 7 and the discharge hole 32f of the cover member 32. In the main flow field of the ejected working fluid, the working fluid collides with the lower end surface 12 a of the rotor 12 and becomes a strong swirl flow by the rotational movement of the rotor 12. After that, the working fluid passes through the gap 18 between the stator 11 and the rotor 12 and the notch 11a of the stator 11 and is ejected to the upper space 19 of the rotary motor unit, and then is discharged from the discharge pipe 15 to the outside of the sealed container 1. Discharged.
On the other hand, the refrigerating machine oil in the oil sump 16 is pumped up to the eccentric portion 2a of the shaft 2 while lubricating the auxiliary bearing 8a through the spiral groove 8b of the auxiliary bearing 8a as the shaft 2 rotates. Part of the refrigerating machine oil pumped up is a suction chamber 9 while lubricating and sealing the gap between the eccentric portion 2 a and the fitting portion of the roller 4 and the upper and lower end surfaces of the roller 4 and the main bearing member 7 and the auxiliary bearing member 8. Or flows into the compression chamber 10, is mixed with the working fluid, passes through the discharge hole 7 c of the main bearing member 7 and the discharge hole 32 f of the cover member 32, and is discharged into the lower space 17.
A part of the discharged refrigerating machine oil is separated by gravity, centrifugal force or the like in the lower space 17 or the upper space 19 of the rotary electric motor unit, but the remainder is not separated but is discharged together with the working fluid in the discharge pipe 15. To the outside of the sealed container 1.
The remaining refrigeration oil passes through the spiral groove 7b of the main bearing 7a as the shaft 2 rotates, and is pumped up to the upper end 7d of the main bearing 7a while lubricating the main bearing 7a. Thereafter, it overflows from the upper end portion 7d, flows in the space 31 between the cover member 32 and the upper surface 7e of the main bearing member 7, and when reaching the edge 32d of the cover member 32, the flow is changed downward by the flange portion 32e. It returns to the oil sump 16 through a plurality of communication holes 7f provided on the outer peripheral side of the member 7.

以上のように、本実施例のロータリ圧縮機では、主軸受7aを潤滑して上端部7dから溢れた冷凍機油が油溜り16に戻るまでの油戻し経路は、カバー部材32と主軸受部材7の上面7eとの間の空間31であり、吐出孔32fから回転電動機部の下部空間17に吐出された作動流体の主たる流れ場から完全に隔離されている。そのため、主軸受7aの上端部7dから溢れて油溜り16に戻る冷凍機油が、作動流体に混合されることを完全に防止することができる。
従って、本実施例のロータリ圧縮機により、冷凍機油が作動流体とともに密閉容器1の外部に吐出される量を低減することができる。すなわち、油溜り16における冷凍機油の油面が低下して圧縮機構部の潤滑が不十分となり信頼性が低下したり、圧縮機構部のシールが不十分となり効率が低下したりすることを防止することができる。
また、圧縮機から吐出された冷凍機油が熱交換器の伝熱管の内壁に付着し、作動流体と伝熱管内壁面の間の熱伝達率を低下させる影響を減らすことができ、冷凍サイクルの性能を向上させることができる。
As described above, in the rotary compressor of this embodiment, the oil return path from the refrigerating machine oil that has lubricated the main bearing 7a and overflowed from the upper end 7d to the oil sump 16 is the cover member 32 and the main bearing member 7. A space 31 between the upper surface 7e and the main flow field of the working fluid discharged from the discharge hole 32f to the lower space 17 of the rotary electric motor unit. Therefore, it is possible to completely prevent the refrigerating machine oil that overflows from the upper end portion 7d of the main bearing 7a and returns to the oil sump 16 from being mixed with the working fluid.
Therefore, the rotary compressor of the present embodiment can reduce the amount of refrigerating machine oil discharged to the outside of the hermetic container 1 together with the working fluid. That is, the oil level of the refrigerating machine oil in the oil sump 16 is reduced, and the compression mechanism portion is not sufficiently lubricated to reduce reliability, and the compression mechanism portion is not sufficiently sealed to reduce efficiency. be able to.
In addition, the refrigeration oil discharged from the compressor adheres to the inner wall of the heat exchanger tube of the heat exchanger, reducing the effect of lowering the heat transfer coefficient between the working fluid and the inner wall surface of the heat exchanger tube. Can be improved.

また、本実施例のロータリ圧縮機では、カバー部材32の凸部32aに鍔部32cを設け、シャフト2とカバー部材32の間の隙間33を小さくした構成としている。この構成により、主軸受7aの上端部7dから溢れた冷凍機油が、隙間33からカバー部材32の上側、即ち回転電動機部の下部空間17側に漏れ、作動流体の流れに巻き込まれることを防止することができる。従って、冷凍機油が作動流体とともに密閉容器1の外部に吐出される量をさらに低減することができるので、カバー部材32による効果をさらに向上させることができる。
また、カバー部材32の形状(図1に示す断面形状)を、主軸受部材7の上面7eに沿う形状としたことにより、カバー部材32と主軸受部材7の上面7eとの間に、冷凍機油を戻すのに十分な空間31を設けても、下部空間17の空間容積の減少を最小限に留めることができる。従って、回転電動機部の下部空間17の広い空間容積により、作動流体の流速を低下させて作動流体から冷凍機油を重力で分離する効果や、作動流体の滞留時間が長くなることにより、より多くの冷凍機油を分離する効果の減少を最小限にすることができる。
また、カバー部材32の形状(図3に示す平面形状)を、シャフト2を中心とする円形としたことにより、カバー部材32の加工が簡単で、安価であるとともに、主軸受7aの上端部7dの円周方向に何れの位置から溢れた冷凍機油についても、効率よく油溜り16に戻すことができる。なお、カバー32部材は必ずしも円形である必要は無く、主軸受7aから油溜り16へ連通する空間31を構成できる形状であれば、油吐出低減の機能を果たすことは言うまでも無い。
Further, in the rotary compressor of the present embodiment, the flange portion 32 c is provided on the convex portion 32 a of the cover member 32, and the gap 33 between the shaft 2 and the cover member 32 is reduced. With this configuration, the refrigerating machine oil overflowing from the upper end portion 7d of the main bearing 7a is prevented from leaking from the gap 33 to the upper side of the cover member 32, that is, the lower space 17 side of the rotary motor portion, and being caught in the flow of the working fluid. be able to. Accordingly, the amount of the refrigerating machine oil discharged together with the working fluid to the outside of the sealed container 1 can be further reduced, so that the effect of the cover member 32 can be further improved.
Further, since the shape of the cover member 32 (cross-sectional shape shown in FIG. 1) is a shape along the upper surface 7e of the main bearing member 7, the refrigerator oil is provided between the cover member 32 and the upper surface 7e of the main bearing member 7. Even if a sufficient space 31 is provided to return the space, a decrease in the space volume of the lower space 17 can be minimized. Therefore, due to the large space volume of the lower space 17 of the rotary motor unit, the effect of separating the refrigeration oil from the working fluid by reducing the flow velocity of the working fluid and the retention time of the working fluid being increased, The reduction in the effect of separating the refrigerating machine oil can be minimized.
Further, since the shape of the cover member 32 (planar shape shown in FIG. 3) is a circle centered on the shaft 2, the processing of the cover member 32 is simple and inexpensive, and the upper end portion 7d of the main bearing 7a. Refrigerating machine oil overflowing from any position in the circumferential direction can be efficiently returned to the oil sump 16. Needless to say, the cover 32 member does not necessarily have a circular shape, and can function to reduce oil discharge as long as the space 31 communicates from the main bearing 7 a to the oil reservoir 16.

また、カバー部材32の外周側の縁32dに鍔部32eを設けたことにより、空間31は油溜り16に連通する主軸受部材7の連通孔7fに対してのみ開口しているので、回転電動機部の下部空間17における作動流体の流れが空間31に流れ込み難くなり、作動流体と冷凍機油が混合するのを防止することができる。これによって、冷凍機油が作動流体とともに密閉容器1の外部に吐出される量を低減することができるので、カバー部材32の効果をさらに向上させることができる。
また、カバー部材32が、主軸受部材7の連通孔7fの一部を覆うことにより、空間31を流れてきた冷凍機油が連通孔7fを通じて油溜り16に戻り易くなるとともに、回転電動機部の下部空間17で重力や遠心力などにより作動流体から分離された冷凍機油を、主軸受部材7の連通孔7fのカバー部材32に覆われていない部分から油溜り16に戻すことができ、回転電動機部の下部空間17での冷凍機油の分離を妨げることを防止することができる。
また、作動流体として二酸化炭素を用いた場合、フロンを用いた場合に比べて二酸化炭素の密度が非常に大きいので、冷凍機油と二酸化炭素の密度差が少なくなる。従って、主軸受7aの上端部7dから溢れた冷凍機油は二酸化炭素の流れに巻き込まれ易くなるが、本実施例では、油戻し経路を作動流体の主たる流れ場から隔離するので、油溜りに戻る冷凍機油が二酸化炭素の流れに巻き込まれるのを防止することができる。例えば、カバー部材32を設置した場合、その効果がより顕著になり、環境に優しい二酸化炭素を作動流体として用いることができる。
Further, since the flange 32e is provided on the edge 32d on the outer peripheral side of the cover member 32, the space 31 is opened only to the communication hole 7f of the main bearing member 7 communicating with the oil reservoir 16, so that the rotary motor It becomes difficult for the flow of the working fluid in the lower space 17 of the part to flow into the space 31, and mixing of the working fluid and the refrigerating machine oil can be prevented. As a result, the amount of the refrigerating machine oil discharged together with the working fluid to the outside of the sealed container 1 can be reduced, so that the effect of the cover member 32 can be further improved.
Further, the cover member 32 covers a part of the communication hole 7f of the main bearing member 7, so that the refrigeration oil flowing through the space 31 can easily return to the oil sump 16 through the communication hole 7f, and the lower part of the rotary motor portion. The refrigerating machine oil separated from the working fluid by gravity or centrifugal force in the space 17 can be returned to the oil sump 16 from the portion of the communication hole 7f of the main bearing member 7 that is not covered by the cover member 32. It is possible to prevent the separation of the refrigerating machine oil in the lower space 17.
Further, when carbon dioxide is used as the working fluid, the density difference between the refrigerating machine oil and carbon dioxide is reduced because the density of carbon dioxide is very large compared to the case of using chlorofluorocarbon. Therefore, the refrigerating machine oil overflowing from the upper end portion 7d of the main bearing 7a is likely to be caught in the flow of carbon dioxide, but in this embodiment, the oil return path is isolated from the main flow field of the working fluid, and thus returns to the oil sump. Refrigerating machine oil can be prevented from being caught in the flow of carbon dioxide. For example, when the cover member 32 is installed, the effect becomes more prominent, and environmentally friendly carbon dioxide can be used as the working fluid.

本発明にかかる圧縮機は、作動流体を圧縮・搬送する機能を有し、冷凍冷蔵庫や空調機等、冷媒式ヒートポンプ用として有用である。また真空ポンプ等の用途にも応用できる。   The compressor according to the present invention has a function of compressing and conveying a working fluid, and is useful for a refrigerant heat pump such as a refrigerator-freezer or an air conditioner. It can also be applied to uses such as vacuum pumps.

本発明の第1の実施例におけるロータリ圧縮機の縦断面図The longitudinal cross-sectional view of the rotary compressor in 1st Example of this invention 図1に示すロータリ圧縮機の圧縮機構部の横断面図1 is a cross-sectional view of a compression mechanism portion of the rotary compressor shown in FIG. 図1に示すロータリ圧縮機の回転電動機部の下部空間における横断面図Cross section in the lower space of the rotary motor section of the rotary compressor shown in FIG. 従来のロータリ圧縮機の縦断面図Longitudinal sectional view of a conventional rotary compressor 従来の圧縮機の油分離板の周辺の詳細断面図Detailed cross-sectional view around the oil separator plate of a conventional compressor

符号の説明Explanation of symbols

1 密閉容器
2 シャフト
3 シリンダ
7 主軸受部材
7a 主軸受
7b 螺旋溝
7c 吐出孔
7d 上端部
7e 上面
7f 連通孔
11 固定子
12 回転子
16 油溜り
17 下部空間
31 空間
32 カバー部材
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Shaft 3 Cylinder 7 Main bearing member 7a Main bearing 7b Spiral groove 7c Discharge hole 7d Upper end part 7e Upper surface 7f Communication hole 11 Stator 12 Rotor 16 Oil sump 17 Lower space 31 Space 32 Cover member

Claims (6)

固定子及び回転子から構成された回転電動機部と、前記回転電動機部の下側に下部空間を設けて配置されるとともに前記回転子によって回転させられて作動流体を圧縮する圧縮機構部と、前記回転電動機部及び前記圧縮機構部を内包して底部に潤滑油の油溜りを有する密閉容器とを備え、前記圧縮機構部が、少なくとも、前記回転子が固定されたシャフトと、前記シャフトを支持する主軸受と、前記油溜りから前記主軸受へ前記潤滑油を供給する油供給手段と、前記主軸受を潤滑した前記潤滑油を前記油溜りへ戻す油戻し経路とを有した圧縮機であって、前記油戻し経路を、前記圧縮機構部から前記下部空間内に吐出された前記作動流体の主たる流れ場から隔離したことを特徴とする圧縮機。   A rotary electric motor unit composed of a stator and a rotor, a compression mechanism unit which is arranged with a lower space below the rotary electric motor unit and is rotated by the rotor to compress the working fluid; A sealed container including a rotary motor portion and the compression mechanism portion and having a sump of lubricating oil in a bottom portion, and the compression mechanism portion supports at least the shaft to which the rotor is fixed and the shaft. A compressor having a main bearing, oil supply means for supplying the lubricating oil from the oil reservoir to the main bearing, and an oil return path for returning the lubricating oil that has lubricated the main bearing to the oil reservoir. The compressor is characterized in that the oil return path is isolated from the main flow field of the working fluid discharged from the compression mechanism portion into the lower space. 前記油戻し経路を、前記主軸受の上端部から排出された前記潤滑油を前記油溜りへ戻す経路としたことを特徴とする請求項1に記載の圧縮機。   The compressor according to claim 1, wherein the oil return path is a path for returning the lubricating oil discharged from the upper end portion of the main bearing to the oil reservoir. 前記圧縮機構部は、シリンダと、前記シリンダの上側に前記主軸受を形成する主軸受部材を備え、前記主軸受部材の上面側に、当該主軸受部材の少なくとも一部を覆うカバー部材を設け、前記油戻し経路を前記主軸受部材と前記カバー部材との間の空間としたことを特徴とする請求項1又は請求項2に記載の圧縮機。   The compression mechanism portion includes a cylinder and a main bearing member that forms the main bearing on the upper side of the cylinder, and a cover member that covers at least a part of the main bearing member is provided on the upper surface side of the main bearing member, The compressor according to claim 1, wherein the oil return path is a space between the main bearing member and the cover member. 前記カバー部材の形状を、前記主軸受部材の上面に沿う形状としたことを特徴とする請求項3に記載の圧縮機。   The compressor according to claim 3, wherein a shape of the cover member is a shape along an upper surface of the main bearing member. 前記カバー部材の形状を、前記シャフトを中心とする円形としたことを特徴とする請求項3に記載の圧縮機。   The compressor according to claim 3, wherein the shape of the cover member is a circle centered on the shaft. 前記作動流体として二酸化炭素を用いたことを特徴とする請求項1から請求項5のいずれかに記載の圧縮機。
The compressor according to any one of claims 1 to 5, wherein carbon dioxide is used as the working fluid.
JP2003388339A 2003-11-18 2003-11-18 Compressor Withdrawn JP2007154658A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003388339A JP2007154658A (en) 2003-11-18 2003-11-18 Compressor
PCT/JP2004/017436 WO2005050023A1 (en) 2003-11-18 2004-11-17 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003388339A JP2007154658A (en) 2003-11-18 2003-11-18 Compressor

Publications (1)

Publication Number Publication Date
JP2007154658A true JP2007154658A (en) 2007-06-21

Family

ID=34616186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003388339A Withdrawn JP2007154658A (en) 2003-11-18 2003-11-18 Compressor

Country Status (2)

Country Link
JP (1) JP2007154658A (en)
WO (1) WO2005050023A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127507A (en) * 2007-11-22 2009-06-11 Fujitsu General Ltd Rotary compressor
WO2020208777A1 (en) * 2019-04-11 2020-10-15 三菱電機株式会社 Compressor, and electric motor for compressor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878082B (en) * 2012-09-21 2015-05-20 广东美芝制冷设备有限公司 Rotating compressor of low pressure structure in shell
CN103511279B (en) * 2013-08-01 2016-04-06 广东美芝制冷设备有限公司 Rotary compressor and there is the chiller plant of this rotary compressor
CN103821722A (en) * 2013-12-03 2014-05-28 广东美芝制冷设备有限公司 Compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578390A (en) * 1980-06-17 1982-01-16 Toshiba Corp Hermetic type rotary compressor
JP2616922B2 (en) * 1987-05-22 1997-06-04 株式会社日立製作所 Screw compressor
US4955797A (en) * 1989-02-15 1990-09-11 Tecumseh Products Company Valve indexing for a compressor
JPH02227596A (en) * 1989-02-28 1990-09-10 Toshiba Corp Sealed type motor-driven compressor
JP3723458B2 (en) * 2001-02-14 2005-12-07 三洋電機株式会社 Rotary compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009127507A (en) * 2007-11-22 2009-06-11 Fujitsu General Ltd Rotary compressor
WO2020208777A1 (en) * 2019-04-11 2020-10-15 三菱電機株式会社 Compressor, and electric motor for compressor
JPWO2020208777A1 (en) * 2019-04-11 2021-11-18 三菱電機株式会社 Compressor and motor for compressor

Also Published As

Publication number Publication date
WO2005050023A1 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
US10648471B2 (en) Scroll compressor
JP4799437B2 (en) Fluid machinery
JP4146693B2 (en) Scroll compressor
RU2600206C1 (en) Scroll compressor
EP2949933B1 (en) Hermetic compressor and refrigerator
KR101214672B1 (en) Vane rotary type compressor
JP2003269356A (en) Horizontal type rotary compressor
JP2007154658A (en) Compressor
JP2007154657A (en) Compressor
JP2007518911A (en) Compressor
JP2007518911A5 (en)
EP1580433A2 (en) Multistage rotary compressor
JP2006336463A (en) Compressor
JP2006348928A (en) Compressor
EP1911975B1 (en) Sealed electric compressor
WO2006033500A1 (en) Internal gear compressor
JP2005344658A (en) Electric gas compressor
JP2000097185A (en) Rotary compressor
JP6635672B2 (en) Displacement compressor
KR100831720B1 (en) Hermetic Compressor
JP4029061B2 (en) Compressor
JP2006220088A (en) Fluid machine and refrigerating apparatus using the same
JP4263047B2 (en) Horizontal type compressor
KR101148666B1 (en) Discharging system of vane rotating type compressor
JP2004346740A (en) Compressor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703