JP2005344658A - Electric gas compressor - Google Patents

Electric gas compressor Download PDF

Info

Publication number
JP2005344658A
JP2005344658A JP2004167359A JP2004167359A JP2005344658A JP 2005344658 A JP2005344658 A JP 2005344658A JP 2004167359 A JP2004167359 A JP 2004167359A JP 2004167359 A JP2004167359 A JP 2004167359A JP 2005344658 A JP2005344658 A JP 2005344658A
Authority
JP
Japan
Prior art keywords
refrigerant
compression mechanism
lubricating oil
suction chamber
guide passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004167359A
Other languages
Japanese (ja)
Inventor
Seiichiro Yoda
誠一郎 依田
Hiromasa Shimaguchi
博匡 島口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Compressor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Compressor Inc filed Critical Calsonic Compressor Inc
Priority to JP2004167359A priority Critical patent/JP2005344658A/en
Publication of JP2005344658A publication Critical patent/JP2005344658A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve various problems resulting from the compression of a liquid in an electric gas compressor. <P>SOLUTION: This electric gas compressor 10 comprises an electric motor 16 disposed in an intake chamber 15 formed in communication with the intake port 11 of a housing 12 and cooled by a refrigerant flow flowing from the intake port 11 into the intake chamber 15, a gas compression mechanism 17 disposed in the housing 12 and operated by the electric motor 16, a refrigerant guide passage 30 guiding a refrigerant flowing in the intake chamber 15 to the compression mechanism 17 to compress the refrigerant in the compression mechanism, and a lubricating oil guide passage 31 having one end opened to the bottom part of the intake chamber 15 to supply a lubricating oil separated from the refrigerant in the intake chamber 15 and accumulated at the bottom part of the intake chamber to the compression mechanism 17 through the refrigerant guide passage 30 and the other end opening to the refrigerant guide passage 30. The lubricating oil at the bottom part of the intake chamber 15 is entrained to the compression mechanism 17 via. the lubricating oil guide passage 31 by a refrigerant flow flowing through the refrigerant guide passage 30 toward the compression mechanism 17. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ハウジングに駆動源である電動モータが組み込まれた電動気体圧縮機に関し、特に、冷凍機や空気調和装置に冷媒圧縮機として組み込むのに好適な電動気体圧縮機に関する。   The present invention relates to an electric gas compressor in which an electric motor as a drive source is incorporated in a housing, and more particularly to an electric gas compressor suitable for incorporation as a refrigerant compressor in a refrigerator or an air conditioner.

従来のこの種の電動気体圧縮機に、そのハウジング内を流れる冷媒流を利用して駆動源である電動モータを冷却するため、ハウジングの吸入ポートに連通する吸入室内に電動モータを配置したものがある(例えば、特許文献1参照。)。   In this type of conventional electric gas compressor, an electric motor is disposed in a suction chamber that communicates with a suction port of the housing in order to cool an electric motor that is a driving source by using a refrigerant flow flowing in the housing. (For example, refer to Patent Document 1).

電動モータの作動によって気体圧縮機構が動作すると、ハウジングの吸入ポートから吸入室を経て冷媒が気体圧縮機構に吸入され、該気体圧縮機構によって圧縮され冷媒は、そのハウジングに形成された吐出ポートから凝縮器に圧送される。   When the gas compression mechanism is operated by the operation of the electric motor, the refrigerant is sucked into the gas compression mechanism through the suction port of the housing and is compressed by the gas compression mechanism, and the refrigerant is condensed from the discharge port formed in the housing. It is pumped to the vessel.

電動モータは前記した吸入ポートから電動モータが配置された吸入室を経て気体圧縮機へ流れる冷媒流によって好適に冷却されるが、冷媒に含まれる潤滑油が吸入室内で分離し、該吸入室内に溜まることがある。このような潤滑油が分離した冷媒が圧縮機構に送られると、該圧縮機構の動作部に潤滑油の不足が生じ、圧縮機構の円滑な動作が困難となる。   The electric motor is suitably cooled by the refrigerant flow flowing from the suction port to the gas compressor through the suction chamber in which the electric motor is disposed. However, the lubricating oil contained in the refrigerant is separated in the suction chamber, May accumulate. When such a refrigerant from which the lubricating oil is separated is sent to the compression mechanism, a shortage of lubricating oil occurs in the operating portion of the compression mechanism, making it difficult to smoothly operate the compression mechanism.

そこで、特許文献1では、吸入室内に分離した潤滑油が溜まることを防止すべく吸入室から圧縮機構に冷媒を案内する冷媒案内通路の冷媒入り開口を吸入室の底部に設けることが提案された。   Therefore, in Patent Document 1, it has been proposed to provide a refrigerant-containing opening of a refrigerant guide passage for guiding refrigerant from the suction chamber to the compression mechanism at the bottom of the suction chamber in order to prevent the separated lubricating oil from accumulating in the suction chamber. .

これによれば、吸入ポートに連通する吸入室内に流れる冷媒は、該吸入室内の底部に開放する冷媒案内通路から吸入室の底部に溜まる潤滑油と共に圧縮機構に供給されることから、圧縮機構の潤滑油不足を解消することができる。
特開2004−36455号公報(第4−6頁、図3)
According to this, the refrigerant flowing in the suction chamber communicating with the suction port is supplied to the compression mechanism together with the lubricating oil accumulated in the bottom portion of the suction chamber from the refrigerant guide passage opened to the bottom portion of the suction chamber. Lack of lubricating oil can be resolved.
JP 2004-36455 A (page 4-6, FIG. 3)

しかしながら、吸入室内の潤滑油と冷媒とは、吸入室の底部から圧縮機構に伸びる共通の冷媒案内通路を経て圧縮機構に案内されることから、気体圧縮機の作動停止時に吸入室の底部に分離した潤滑油や液化した冷媒が溜まると、再起動時に、これら潤滑油や液化した冷媒のような液体のみが圧縮機構に供給される虞がある。   However, since the lubricating oil and refrigerant in the suction chamber are guided to the compression mechanism through a common refrigerant guide passage extending from the bottom of the suction chamber to the compression mechanism, they are separated into the bottom of the suction chamber when the operation of the gas compressor is stopped. If the lubricating oil or the liquefied refrigerant accumulates, only the liquid such as the lubricating oil or the liquefied refrigerant may be supplied to the compression mechanism at the time of restart.

このような気体を含まない液体が圧縮機構に供給されると、該圧縮機構に液圧縮が生じ、圧縮機構の動作部に大きな負荷が掛かり、この動作部の破損や電動モータへの過大な負荷を招き、また異音や振動の発生を引き起こす。   When such a gas-free liquid is supplied to the compression mechanism, liquid compression occurs in the compression mechanism, and a large load is applied to the operation part of the compression mechanism, and this operation part is damaged or an excessive load is applied to the electric motor. Cause abnormal noise and vibration.

そこで、本発明の目的は、前記したような気体を含まない液体が圧縮機構へ供給されることによって生じる液圧縮に起因する種々の不具合の解消を図ることにある。   Accordingly, an object of the present invention is to eliminate various problems caused by liquid compression caused by supplying a liquid that does not contain gas as described above to a compression mechanism.

本発明は、ハウジング内で該ハウジングの吸入ポートに連通して形成された吸入室内に配置され、前記吸入ポートから前記吸入室に流入する冷媒流によって冷却を受ける電動モータと、前記ハウジング内に配置され前記電動モータの駆動力により作動される気体圧縮機構と、前記吸入室内に流入した冷媒を前記圧縮機構で圧縮すべく該圧縮機構に案内する冷媒案内路と、前記吸入室で前記冷媒から分離して該吸入室内の底部に溜まる潤滑油を前記冷媒案内路を経て前記圧縮機構に供給すべく一端が前記吸入室の底部に開放し他端が前記冷媒案内路に開放する潤滑油案内通路とを備え、前記冷媒案内路を前記圧縮機構へ向けて流れる冷媒流により前記吸入室の底部の潤滑油を前記潤滑油案内通路を経て前記圧縮機構へ連行可能としたことを特徴とする。   The present invention relates to an electric motor that is disposed in a suction chamber formed in a housing in communication with a suction port of the housing, and that is cooled by a refrigerant flow flowing from the suction port into the suction chamber, and is disposed in the housing. A gas compression mechanism that is operated by the driving force of the electric motor, a refrigerant guide path that guides the refrigerant flowing into the suction chamber to the compression mechanism to be compressed by the compression mechanism, and a refrigerant that is separated from the refrigerant in the suction chamber. A lubricating oil guide passage having one end opened to the bottom of the suction chamber and the other end opened to the refrigerant guide passage so as to supply the lubricating oil accumulated at the bottom of the suction chamber to the compression mechanism through the refrigerant guide passage. The lubricating oil at the bottom of the suction chamber can be taken to the compression mechanism through the lubricating oil guide passage by the refrigerant flow flowing through the refrigerant guide path toward the compression mechanism. To.

本発明に係る前記気体圧縮機では、吸入室の底部に溜まる潤滑油のような液体は吸入室の底部に一端が開放する潤滑油案内通路を経て冷媒案内路に案内される。他方、吸入室内の気体を含む冷媒ガスは、前記潤滑油案内通路を経ることなく、該潤滑油案内通路の他端が開放する前記冷媒案内路を経て、気体圧縮機構に流れる。この冷媒案内路を気体圧縮機構へ流れる冷媒ガス流は、潤滑油案内通路の前記他端より該潤滑油案内通路を案内される潤滑油のような液体を圧縮機構へ連行する。   In the gas compressor according to the present invention, a liquid such as lubricating oil that accumulates at the bottom of the suction chamber is guided to the refrigerant guide passage through a lubricating oil guide passage that opens at one end to the bottom of the suction chamber. On the other hand, the refrigerant gas containing the gas in the suction chamber flows to the gas compression mechanism through the refrigerant guide path opened at the other end of the lubricant guide path without passing through the lubricant guide path. The refrigerant gas flow flowing through the refrigerant guide path to the gas compression mechanism entrains a liquid such as lubricating oil guided through the lubricant guide path from the other end of the lubricant guide path to the compression mechanism.

その結果、吸入室の底部に例え潤滑油や液化した冷媒が溜まっても、これら液体のみが気体圧縮機構に供給されることなく、また冷却ガスが適正な潤滑油を含む状態で気体圧縮機構に供給される。従って、気体圧縮機構の潤滑油不足や液圧縮に起因する種々の不具合の解消を図ることができる。   As a result, even if lubricating oil or liquefied refrigerant accumulates at the bottom of the suction chamber, only these liquids are not supplied to the gas compressing mechanism, and the cooling gas contains appropriate lubricating oil in the gas compressing mechanism. Supplied. Accordingly, it is possible to solve various problems caused by lack of lubricating oil in the gas compression mechanism and liquid compression.

前記圧縮機構がその径方向に対向する一対の吸入口を有する場合、前記冷媒案内路は、前記両吸入口を連通すべく前記圧縮機構の周方向へ伸びる円弧状の第1の連結路部分と、該連結路部分を前記吸入室に連結する直線状の第2の連結路部分とで構成することができ、吸入室に開放する前記潤滑油案内通路を前記第1の連結路部分で前記冷媒案内通路に連結することができる。また、前記第2の連結路部分は前記第1の連結路部分の前記潤滑油案内通路が連結する部位よりも上部位置で該第1の連結路部分に連結することができる。   When the compression mechanism has a pair of suction ports that are opposed to each other in the radial direction, the refrigerant guide path includes an arc-shaped first connection path portion that extends in the circumferential direction of the compression mechanism so as to communicate the suction ports. The connecting passage portion can be constituted by a linear second connecting passage portion that connects to the suction chamber, and the lubricant guide passage that opens to the suction chamber serves as the refrigerant in the first connecting passage portion. It can be connected to a guide passage. Further, the second connecting path portion can be connected to the first connecting path portion at a position higher than a portion of the first connecting path portion to which the lubricant guide passage is connected.

本発明は、前記電動モータ及び前記気体圧縮機構がそれらの軸線を一致させて配置されたいわゆる横置き型電動気体圧縮機に適用することができる。   The present invention can be applied to a so-called horizontal electric gas compressor in which the electric motor and the gas compression mechanism are arranged with their axes aligned.

本発明によれば、再起動時における気体圧縮機構の液圧縮を防止し、また圧縮機構への潤滑油供給不足を確実に防止することができることから、この液圧縮による気体圧縮機の動作部への大きな負荷やこの過大負荷による動作部の破損あるいは電動モータへの過大な負荷を防止し、これらによる耐久性の劣化を防止し、液圧縮による異音や振動の発生を防止することができる。   According to the present invention, liquid compression of the gas compression mechanism at the time of restart can be prevented, and insufficient supply of lubricating oil to the compression mechanism can be reliably prevented. Large load, damage to the operating part due to this excessive load or excessive load on the electric motor can be prevented, durability deterioration due to these can be prevented, and abnormal noise and vibration due to liquid compression can be prevented.

本発明を図示の実施例に沿って以下に詳細に説明する。   The present invention will be described in detail below with reference to illustrated embodiments.

本発明に係る気体圧縮機は、例えば自動車に搭載される空気調和装置に適用され、空気調和装置の構成要素である従来よく知られた凝縮器、膨張弁及び蒸発器等と共に、冷却サイクルのための冷媒循環経路を構成する。   The gas compressor according to the present invention is applied to, for example, an air conditioner mounted on an automobile and is used for a cooling cycle together with conventionally well-known condensers, expansion valves, evaporators, and the like that are components of the air conditioner. The refrigerant circulation path is configured.

本発明に係る気体圧縮機10は、図1に示す例では、前記蒸発器(図示せず)に接続される吸入ポート11が形成された一端開放の筒状のフロントハウジング部材12aと、両端開放の筒状の中間ハウジング部材12bと、前記凝縮器(図示せず)に接続される吐出ポート13が形成された一端開放の筒状のリアハウジング部材12cとが全体に円筒状に組み付けられて構成された3分割式ハウジング12を備える。   In the example shown in FIG. 1, the gas compressor 10 according to the present invention includes a cylindrical front housing member 12 a having an open end formed with a suction port 11 connected to the evaporator (not shown), and both ends open. A cylindrical intermediate housing member 12b and a cylindrical rear housing member 12c having an open end formed with a discharge port 13 connected to the condenser (not shown) are assembled in a cylindrical shape as a whole. The three-part housing 12 is provided.

中間ハウジング部材12bには、ハウジング12内を軸線方向に区画する隔壁14が形成されている。この隔壁14により、ハウジング12内の隔壁14よりもフロントハウジング部材12aの側には、吸入ポート11に連通する吸入室15が区画され、吸入室15内には電動モータ16が配置されている。また、ハウジング12内の隔壁14よりもリアハウジング部材12cの側には、気体圧縮機構17が配置され、吐出ポート13に連通する高圧室18が規定されている。   A partition wall 14 is formed in the intermediate housing member 12b to partition the housing 12 in the axial direction. The partition wall 14 defines a suction chamber 15 communicating with the suction port 11 on the front housing member 12 a side of the partition wall 14 in the housing 12, and an electric motor 16 is disposed in the suction chamber 15. Further, a gas compression mechanism 17 is arranged on the rear housing member 12 c side of the partition wall 14 in the housing 12, and a high pressure chamber 18 communicating with the discharge port 13 is defined.

電動モータ16は、図示の例では、従来よく知られた多相ブラシレス直流モータである。電動モータ16は、フロントハウジング部材12aに形成された軸受19でハウジング12の軸線に一致して回転可能に支持された回転軸20と、該回転軸に固定されるロータ16aと、該ロータを取り巻いて配置され、フロントハウジング部材12aに固定されるステータ16bとを備える。電動モータ16は、従来よく知られているように、ロータ16aに埋設された永久磁石(図示せず)とステータ16bの固定子巻き線16cに供給される多相パルス電流によって生じる界磁との磁気相互作用により、回転軸20が一方向に回転する。前記固定子巻き線への給電のためにフロントハウジング部材12aには、電気コネクタ21が設けられている。   In the illustrated example, the electric motor 16 is a well-known multiphase brushless DC motor. The electric motor 16 includes a rotary shaft 20 that is rotatably supported by a bearing 19 formed on the front housing member 12a so as to coincide with the axis of the housing 12, a rotor 16a that is fixed to the rotary shaft, and surrounding the rotor. And a stator 16b fixed to the front housing member 12a. As is well known in the art, the electric motor 16 includes a permanent magnet (not shown) embedded in the rotor 16a and a field generated by a multiphase pulse current supplied to the stator winding 16c of the stator 16b. Due to the magnetic interaction, the rotating shaft 20 rotates in one direction. An electrical connector 21 is provided on the front housing member 12a for supplying power to the stator winding.

回転軸20は、ハウジング12の軸線に沿って隔壁部材14を貫通し、前記気体圧縮機構17に伸びる。   The rotary shaft 20 extends through the partition wall member 14 along the axis of the housing 12 and extends to the gas compression mechanism 17.

気体圧縮機構17は、例えば従来よく知られたベーンロータリー式気体圧縮機である。ベーンロータリー式気体圧縮機構17では、楕円形を規定する両端開放のシリンダ部材22と、該シリンダ部材の両端を閉鎖するフロントサイドブロック23a及びリアサイドブロック23bから成る両サイドブロック23a、23bとにより、図2に示すような楕円形横断面形状を有するシリンダ室17aが規定される。   The gas compression mechanism 17 is, for example, a conventionally well-known vane rotary type gas compressor. The vane rotary type gas compression mechanism 17 includes a cylinder member 22 that is open at both ends that defines an elliptical shape, and both side blocks 23a and 23b that are configured by a front side block 23a and a rear side block 23b that close both ends of the cylinder member. A cylinder chamber 17a having an elliptical cross-sectional shape as shown in FIG.

シリンダ室17a内には、図2に示すように、回転軸20に固定されたロータ17bが回転軸20と一体的に回転可能に配置されている。ロータ17bにはベーン17dを進退可能に収容するベーン溝17cが形成されており、各ベーン溝17c内のベーン17dは、従来よく知られているように、油貯め凹所24から背圧室17eに供給される油圧によってシリンダ室17aの周壁へ向けて押圧される。   In the cylinder chamber 17a, as shown in FIG. 2, a rotor 17b fixed to the rotary shaft 20 is disposed so as to be rotatable integrally with the rotary shaft 20. The rotor 17b is formed with a vane groove 17c for accommodating the vane 17d so as to be able to advance and retreat. The vane 17d in each vane groove 17c is, as is well known, from the oil storage recess 24 to the back pressure chamber 17e. Is pressed toward the peripheral wall of the cylinder chamber 17a.

ロータ17bが回転軸20の回転に伴ってこれと一体的に回転すると、該ロータのベーン17dがシリンダ室17aの周壁を摺動する。このベーン17dの摺動に伴い、従来よく知られているように、各ベーン17dで区画された複数の加圧室17gの容積がそれぞれ増減する。この加圧室17gの容積の増減に伴い、気体圧縮機構17は、吸入室15から後述する吸入口25(図3参照)を経て冷媒ガスを吸入し、加圧室17gで圧縮された冷媒ガスを逆止弁26が設けられた吐出口27を経てリアハウジング部材12c内に区画された高圧室18(図1参照)に吐出する。   When the rotor 17b rotates integrally with the rotation of the rotating shaft 20, the vane 17d of the rotor slides on the peripheral wall of the cylinder chamber 17a. As the vane 17d slides, the volumes of the plurality of pressurizing chambers 17g partitioned by the vanes 17d increase or decrease, as is well known. As the volume of the pressurizing chamber 17g increases or decreases, the gas compression mechanism 17 sucks the refrigerant gas from the suction chamber 15 through a suction port 25 (see FIG. 3) described later, and is compressed in the pressurization chamber 17g. Is discharged into a high-pressure chamber 18 (see FIG. 1) partitioned in the rear housing member 12c through a discharge port 27 provided with a check valve 26.

再び図1を参照するに、吐出ポート13に連通する高圧室18には、吐出口27から案内された冷媒ガスを高圧室18に排出する排出口28が開放し、この排出口28から排出される冷媒ガス中の油分を分離するための油分離器29が配置されている。   Referring to FIG. 1 again, in the high pressure chamber 18 communicating with the discharge port 13, a discharge port 28 for discharging the refrigerant gas guided from the discharge port 27 to the high pressure chamber 18 is opened and discharged from the discharge port 28. An oil separator 29 for separating the oil in the refrigerant gas is disposed.

冷媒ガスを圧縮する気体圧縮機構17は、図示の例では、フロントサイドブロック23aで隔壁14に支持されている。このフロントサイドブロック23aと、該フロントサイドブロックとに関連して、図1、図3及び図4に示すように、吸入室15内の冷媒ガスをシリンダ室17aに案内する冷媒案内路30と、潤滑油案内通路31とが形成されている。   In the illustrated example, the gas compression mechanism 17 that compresses the refrigerant gas is supported by the partition wall 14 by a front side block 23a. In relation to the front side block 23a and the front side block, as shown in FIGS. 1, 3 and 4, a refrigerant guide path 30 for guiding the refrigerant gas in the suction chamber 15 to the cylinder chamber 17a, A lubricating oil guide passage 31 is formed.

フロントサイドブロック23aには、図3に示すように、該フロントサイドブロック23aをその板厚方向に貫通してシリンダ室17aの側部に開放する前記吸入口25がシリンダ室17aの径方向に対向して形成されている。また、フロントサイドブロック23aの隔壁14に対向する面には、回転軸20の外方でその周方向へ沿って伸び、両端が両吸入口25に至る円弧状の凹溝30aが形成されている。この凹溝30aは、その溝の開放面を隔壁14で閉鎖されることにより、該隔壁との間に冷媒案内路30のための第1の連結路部分30aを形成する。第1の連結路部分30aは、図4に示すように、隔壁14にその板厚方向に形成された貫通孔から成る第2の連結路部分30bを経て吸入室15内の側壁に開放する。この第2の連結路部分30bが吸入室15内に開放する高さ位置は、吸入室15内に溜まる潤滑油の油面よりも高くなるように設定されている。   In the front side block 23a, as shown in FIG. 3, the suction port 25 that passes through the front side block 23a in the thickness direction and opens to the side of the cylinder chamber 17a is opposed to the radial direction of the cylinder chamber 17a. Is formed. Further, on the surface of the front side block 23 a that faces the partition wall 14, an arc-shaped concave groove 30 a that extends along the circumferential direction outside the rotating shaft 20 and reaches both suction ports 25 at both ends is formed. . The concave groove 30a forms a first connection path portion 30a for the refrigerant guide path 30 between the groove 30a and the partition wall by closing the open surface of the groove with the partition wall 14. As shown in FIG. 4, the first connection path portion 30 a opens to the side wall in the suction chamber 15 through a second connection path portion 30 b formed of a through hole formed in the partition wall 14 in the plate thickness direction. The height position at which the second connection path portion 30 b opens into the suction chamber 15 is set to be higher than the oil level of the lubricating oil accumulated in the suction chamber 15.

潤滑油案内通路31は、図3及び図4に示すように、冷媒案内路30の第1の連結路部分30aの中央下部で該第1の連結路部分30aに連通し、図中下方へ向けて伸長すべくフロントサイドブロック23aに形成された第1の通路部分31aと、該連通路部分から中間ハウジング部材12bの隔壁14を経て吸入室15の底部に開放する第2の通路部分31bとを備える。   As shown in FIGS. 3 and 4, the lubricating oil guide passage 31 communicates with the first connection path portion 30a at the lower center portion of the first connection path portion 30a of the refrigerant guide path 30, and is directed downward in the figure. A first passage portion 31a formed in the front side block 23a to be extended and a second passage portion 31b opened from the communication passage portion to the bottom of the suction chamber 15 through the partition wall 14 of the intermediate housing member 12b. Prepare.

第1の連結路部分30a及び第2の連結路部分30bから成る冷媒案内路30は、吸入室15の底部に開放することはなく、前記したように、吸入室15内に溜まる潤滑油の油面よりも高くなるように設定されていることから、図1に示すように回転軸20が横方向に成るような配置姿勢で運転されている限り、例え吸入室15内に潤滑油が溜まっても、この潤滑油が冷媒案内路30の第2の連結路部分30bから冷媒案内路30に吸引されることはない。   The refrigerant guide path 30 composed of the first connection path portion 30a and the second connection path portion 30b does not open to the bottom of the suction chamber 15, and as described above, the lubricant oil that accumulates in the suction chamber 15 Since it is set to be higher than the surface, as long as the rotary shaft 20 is operated in the lateral orientation as shown in FIG. 1, the lubricating oil accumulates in the suction chamber 15. However, the lubricating oil is not sucked into the refrigerant guide path 30 from the second connection path portion 30 b of the refrigerant guide path 30.

潤滑油案内通路31を第1の連結路部分30aの中央下部で該第1の連結路部分に連通させることに代えて、第1の連結路部分30aの両端間であるその中間部で該第1の連結部分に連通させることができる。   Instead of connecting the lubricating oil guide passage 31 to the first connection path portion at the center lower portion of the first connection path portion 30a, the middle portion between the both ends of the first connection path portion 30a is replaced with the first guide path portion 30a. It is possible to communicate with one connecting portion.

本発明に係る気体圧縮機10では、電動モータ16の起動により気体圧縮機構17が作動されると、吸入ポート11から吸入室15内に潤滑油を含む冷媒ガスが吸引され、この冷媒ガスは電動モータ16を冷却しながら冷媒案内路30を経て気体圧縮機構17に案内される。吸入室15内を流れる冷媒ガス中の潤滑油の一部は凝縮により吸入室15の底部に溜まるが、前記したように、吸入室15の底部に溜まった潤滑油が冷媒案内路30の第2の連結路部分30bに向かうことはない。しかしながら、冷媒案内路30を流れる冷媒ガス流の増大によって冷媒案内路30内の潤滑油案内通路31が開放する部分の圧力が低下すると、いわゆるベンチュリー効果によって、吸入室15の底部の潤滑油が潤滑油案内通路31を経て第1の連結路部分30aに向けて吸引される。   In the gas compressor 10 according to the present invention, when the gas compression mechanism 17 is activated by the activation of the electric motor 16, the refrigerant gas containing lubricating oil is sucked into the suction chamber 15 from the suction port 11, and this refrigerant gas is electrically driven. The motor 16 is guided to the gas compression mechanism 17 through the refrigerant guide path 30 while being cooled. A part of the lubricating oil in the refrigerant gas flowing in the suction chamber 15 is accumulated at the bottom of the suction chamber 15 due to condensation. As described above, the lubricating oil accumulated at the bottom of the suction chamber 15 is second in the refrigerant guide path 30. It does not go to the connecting path portion 30b. However, when the pressure at the portion where the lubricating oil guide passage 31 in the refrigerant guide passage 30 opens due to an increase in the flow of the refrigerant gas flowing through the refrigerant guide passage 30, the lubricating oil at the bottom of the suction chamber 15 is lubricated by the so-called Venturi effect. The oil is sucked through the oil guide passage 31 toward the first connecting passage portion 30a.

その結果、吸入室15内の潤滑油は、潤滑油案内通路31を経て順次第1の連結路部分30aに吸引され、該第1の連結路部分30aを経る冷媒ガスと混合された状態でこの冷媒ガスにより各吸入口25から適正にシリンダ室17aに連行される。   As a result, the lubricating oil in the suction chamber 15 is sequentially sucked into the first connecting passage portion 30a through the lubricating oil guide passage 31, and is mixed with the refrigerant gas passing through the first connecting passage portion 30a. The refrigerant gas properly entrains each cylinder port 17a to the cylinder chamber 17a.

シリンダ室17aに冷媒ガスと共に吸入された潤滑油は、冷媒ガスと適正に混合されていることから、加圧室17gでの冷媒ガスの圧縮で液圧縮を引き起こすことなく、気体圧縮機構17の各摺動部を適正に潤滑する。   Since the lubricating oil sucked into the cylinder chamber 17a together with the refrigerant gas is appropriately mixed with the refrigerant gas, the compression of the refrigerant gas in the pressurizing chamber 17g causes liquid compression without causing liquid compression. Lubricate the sliding part properly.

気体圧縮機構17から排出された冷媒ガス中の潤滑油は、前記したように、油分離器29で分離され、高圧室18内に保留される。この高圧室18内の潤滑油の一部は、従来よく知られているように、油貯め凹所24に供給されベーン17dの背圧として利用される。   As described above, the lubricating oil in the refrigerant gas discharged from the gas compression mechanism 17 is separated by the oil separator 29 and held in the high-pressure chamber 18. A part of the lubricating oil in the high-pressure chamber 18 is supplied to the oil storage recess 24 and used as the back pressure of the vane 17d as is well known.

本発明に係る気体圧縮機10では、前記したように、吸入室15の底部に溜まる潤滑油は、冷媒案内路30を流れる冷媒流によって引き起こされるベンチュリー効果を利用して潤滑油案内通路31から冷媒案内路30の第1の連結路部分30aを経て気体圧縮機構17に供給されるので、吸入室15内の潤滑油のみが気体圧縮機構17に吸引されることはなく、これにより従来のような液圧縮が防止できる。   In the gas compressor 10 according to the present invention, as described above, the lubricating oil accumulated at the bottom of the suction chamber 15 is supplied from the lubricating oil guide passage 31 by using the venturi effect caused by the refrigerant flow flowing through the refrigerant guide passage 30. Since it is supplied to the gas compression mechanism 17 through the first connection path portion 30a of the guide path 30, only the lubricating oil in the suction chamber 15 is not sucked into the gas compression mechanism 17, thereby Liquid compression can be prevented.

前記した吸入室15内の潤滑油が連行されるためには、潤滑油案内通路31を経て吸入室15内の潤滑油を吸い上げる必要がある。使用冷媒がR134aであり、気体圧縮機10の容積が25cc/revであり、その体積効率が80%であり、冷媒案内路30の横断面積が25平方mmであり、図3に示すように2つの吸入口25へ向けて分流を生じさせる場合であって、停止時の温度が30度の均一温度であり、気体圧縮機10の起動回転数が1000rmpであるとすると、冷媒案内路30における潤滑油案内通路31が開放する部分での冷媒流速は6.7m/sとなり、気体圧縮機構17内は飽和状態であり冷媒密度は37.5kg/立方メートルであることから、動圧(静圧降下分)は834Paとなる。潤滑油の密度は、約1kg/立方メートルであることから、潤滑油案内通路31を経て約85mmの高さまで潤滑油を吸い上げることが可能となる。   In order for the lubricating oil in the suction chamber 15 to be entrained, it is necessary to suck up the lubricating oil in the suction chamber 15 via the lubricating oil guide passage 31. The refrigerant used is R134a, the volume of the gas compressor 10 is 25 cc / rev, the volume efficiency is 80%, the cross-sectional area of the refrigerant guide path 30 is 25 square mm, and as shown in FIG. Lubricating in the refrigerant guide path 30 is a case where a flow is caused to flow toward the two inlets 25 and the temperature at the time of stoppage is a uniform temperature of 30 degrees and the starting rotational speed of the gas compressor 10 is 1000 rpm. The refrigerant flow velocity at the portion where the oil guide passage 31 is opened is 6.7 m / s, the gas compression mechanism 17 is saturated, and the refrigerant density is 37.5 kg / cubic meter. ) Is 834 Pa. Since the density of the lubricating oil is about 1 kg / cubic meter, the lubricating oil can be sucked up to a height of about 85 mm through the lubricating oil guide passage 31.

このように、潤滑油案内通路31による高低差と、最低動圧発生条件(低温低速)とで潤滑油案内通路31を経て潤滑油を吸い上げ、この吸い上げた潤滑油をシリンダ室17aに連行し得る流速が発生するように、冷媒案内路30の横断面積が決定される。   As described above, the lubricating oil can be sucked up through the lubricating oil guide passage 31 due to the height difference between the lubricating oil guide passage 31 and the minimum dynamic pressure generation condition (low temperature and low speed), and the sucked lubricating oil can be taken to the cylinder chamber 17a. The cross-sectional area of the refrigerant guide path 30 is determined so that the flow velocity is generated.

本発明に係る気体圧縮機10によれば、前記したように、吸入室15内の潤滑油のみが気体圧縮機構17に吸引されることはなく、液圧縮が防止できることから、液圧縮による動作部への負荷の増大を防止することができ、負荷の増大による動作部の破損や電動モータへの過大な負荷を防止し、気体圧縮機10の動作の信頼性を高めることができる。また液圧縮による起動時の異音や振動の発生を防止することができる。   According to the gas compressor 10 according to the present invention, as described above, only the lubricating oil in the suction chamber 15 is not sucked into the gas compression mechanism 17 and liquid compression can be prevented. An increase in load on the gas compressor 10 can be prevented, damage to the operating unit due to an increase in load and an excessive load on the electric motor can be prevented, and the reliability of the operation of the gas compressor 10 can be improved. In addition, it is possible to prevent the generation of abnormal noise and vibration at the time of startup due to liquid compression.

前記したところでは、気体圧縮機構17としてベーンロータリー式気体圧縮機構の例を示したが、気体圧縮機構としてスクロール式及びその他の圧縮機構を採用することができる。また、電動モータ16についても、前記した多相ブラシレス直流モータの他、種々の電動モータを採用することができる。   As described above, an example of the vane rotary type gas compression mechanism has been shown as the gas compression mechanism 17, but a scroll type and other compression mechanisms can be adopted as the gas compression mechanism. As the electric motor 16, various electric motors can be adopted in addition to the above-described multiphase brushless DC motor.

本発明に係る気体圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the gas compressor which concerns on this invention. 図1に示す線II-IIに沿って得られた断面図である。It is sectional drawing obtained along line II-II shown in FIG. 図1に示す線III-IIIに沿って得られた断面図である。FIG. 3 is a cross-sectional view taken along line III-III shown in FIG. 図1に示す線IV-IVに沿って得られた断面図である。FIG. 4 is a cross-sectional view taken along line IV-IV shown in FIG.

符号の説明Explanation of symbols

10 気体圧縮機
11 吸入ポート
12(12a、12b、12c) ハウジング(フロントハウジング部材、中間ハウジング部材、リアハウジング部材)
14 隔壁
15 吸入室
16 電動モータ
17 気体圧縮機構
20 回転軸
25 吸入口
30(30a、30b) 冷媒案内路(第1の連結路部分、第2の連結路部分)
31(31a、31b) 潤滑油案内通路(第1の通路部分、第2の通路部分)
10 Gas compressor 11 Suction port 12 (12a, 12b, 12c) Housing (front housing member, intermediate housing member, rear housing member)
14 Partition 15 Suction chamber 16 Electric motor 17 Gas compression mechanism 20 Rotating shaft 25 Suction port 30 (30a, 30b) Refrigerant guide path (first connection path part, second connection path part)
31 (31a, 31b) Lubricating oil guide passage (first passage portion, second passage portion)

Claims (3)

ハウジング内で該ハウジングの吸入ポートに連通して形成された吸入室内に配置され、前記吸入ポートから前記吸入室に流入する冷媒流によって冷却を受ける電動モータと、前記ハウジング内に配置され前記電動モータの駆動力により作動される気体圧縮機構と、前記吸入室内に流入した冷媒を前記圧縮機構で圧縮すべく該圧縮機構に案内する冷媒案内路と、前記吸入室で前記冷媒から分離して該吸入室内の底部に溜まる潤滑油を前記冷媒案内路を経て前記圧縮機構に供給すべく一端が前記吸入室の底部に開放し他端が前記冷媒案内路に開放する潤滑油案内通路とを備え、前記冷媒案内路を前記圧縮機構へ向けて流れる冷媒流により前記吸入室の底部の潤滑油を前記潤滑油案内通路を経て前記圧縮機構へ連行可能としたことを特徴とする電動気体圧縮機。   An electric motor disposed in a suction chamber formed in the housing in communication with the suction port of the housing and receiving cooling by a refrigerant flow flowing from the suction port into the suction chamber; and the electric motor disposed in the housing A gas compression mechanism that is actuated by the driving force, a refrigerant guide path that guides the refrigerant flowing into the suction chamber to the compression mechanism to be compressed by the compression mechanism, and the suction chamber separated from the refrigerant in the suction chamber A lubricating oil guide passage having one end opened to the bottom of the suction chamber and the other end opened to the refrigerant guide passage so as to supply the lubricating oil accumulated in the bottom of the room to the compression mechanism through the refrigerant guide passage, The electric motor characterized in that the lubricating oil flowing through the refrigerant guide path toward the compression mechanism allows the lubricating oil at the bottom of the suction chamber to be taken to the compression mechanism through the lubricating oil guide path. Body compressor. 前記圧縮機構はその径方向に対向する一対の吸入口を有し、前記冷媒案内路は、前記両吸入口を連通すべく前記圧縮機構の周方向へ伸びる円弧状の第1の連結路部分と、該連結路部分を前記吸入室に連結する直線状の第2の連結路部分とを有し、前記潤滑油案内通路は前記第1の連結路部分で前記冷媒案内通路に連結され、前記第2の連結路部分は前記第1の連結路部分の前記潤滑油案内通路が連結する部位よりも上部位置で該第1の連結路部分に連結されている請求項1記載の電動気体圧縮機。   The compression mechanism has a pair of suction ports that are opposed to each other in the radial direction, and the refrigerant guide path includes an arc-shaped first connection path portion that extends in a circumferential direction of the compression mechanism so as to communicate the suction ports. A linear second connecting passage portion connecting the connecting passage portion to the suction chamber, the lubricating oil guide passage being connected to the refrigerant guide passage at the first connecting passage portion, 2. The electric gas compressor according to claim 1, wherein the second connecting path portion is connected to the first connecting path portion at a position higher than a portion of the first connecting path portion to which the lubricant guide passage is connected. 前記電動モータ及び前記気体圧縮機構が軸線を一致させて配置された横置き型電動気体圧縮機である請求項1または2に記載の電動気体圧縮機。   3. The electric gas compressor according to claim 1, wherein the electric motor and the gas compression mechanism are a horizontal electric gas compressor in which axes are aligned with each other.
JP2004167359A 2004-06-04 2004-06-04 Electric gas compressor Pending JP2005344658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004167359A JP2005344658A (en) 2004-06-04 2004-06-04 Electric gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004167359A JP2005344658A (en) 2004-06-04 2004-06-04 Electric gas compressor

Publications (1)

Publication Number Publication Date
JP2005344658A true JP2005344658A (en) 2005-12-15

Family

ID=35497258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167359A Pending JP2005344658A (en) 2004-06-04 2004-06-04 Electric gas compressor

Country Status (1)

Country Link
JP (1) JP2005344658A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121536A (en) * 2008-11-19 2010-06-03 Calsonic Kansei Corp Gas compressor
WO2011125406A1 (en) 2010-04-01 2011-10-13 カルソニックカンセイ株式会社 Electrically driven gas compressor
CN108691765A (en) * 2017-04-07 2018-10-23 斯泰克波尔国际工程产品有限公司 Epitrochoid vacuum pump
JP2020112108A (en) * 2019-01-11 2020-07-27 株式会社Soken Electric compressor
WO2022004896A1 (en) * 2020-07-03 2022-01-06 ダイキン工業株式会社 Use as coolant in compressor, compressor, and refrigeration cycle device
CN113898585A (en) * 2021-10-26 2022-01-07 浙江象睿机电设备有限公司 Intelligent energy consumption control device of air compressor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121536A (en) * 2008-11-19 2010-06-03 Calsonic Kansei Corp Gas compressor
WO2011125406A1 (en) 2010-04-01 2011-10-13 カルソニックカンセイ株式会社 Electrically driven gas compressor
JP2011214549A (en) * 2010-04-01 2011-10-27 Calsonic Kansei Corp Electrically driven gas compressor
CN102822524A (en) * 2010-04-01 2012-12-12 康奈可关精株式会社 Electrically driven gas compressor
US8944781B2 (en) 2010-04-01 2015-02-03 Calsonic Kansei Corporation Electrically driven gas compressor
CN108691765B (en) * 2017-04-07 2022-01-21 斯泰克波尔国际工程产品有限公司 External rotation wheel line vacuum pump
CN108691765A (en) * 2017-04-07 2018-10-23 斯泰克波尔国际工程产品有限公司 Epitrochoid vacuum pump
JP2020112108A (en) * 2019-01-11 2020-07-27 株式会社Soken Electric compressor
JP7206929B2 (en) 2019-01-11 2023-01-18 株式会社Soken electric compressor
JP2022013931A (en) * 2020-07-03 2022-01-18 ダイキン工業株式会社 Use of refrigerant in compressor, compressor, and refrigeration cycle system
WO2022004896A1 (en) * 2020-07-03 2022-01-06 ダイキン工業株式会社 Use as coolant in compressor, compressor, and refrigeration cycle device
JP7377838B2 (en) 2020-07-03 2023-11-10 ダイキン工業株式会社 Use as refrigerant in compressors, compressors, and refrigeration cycle equipment
CN113898585A (en) * 2021-10-26 2022-01-07 浙江象睿机电设备有限公司 Intelligent energy consumption control device of air compressor
CN113898585B (en) * 2021-10-26 2023-08-04 浙江象睿机电设备有限公司 Intelligent energy consumption control device of air compressor

Similar Documents

Publication Publication Date Title
US6672101B2 (en) Electrically driven compressors and methods for circulating lubrication oil through the same
US20070183916A1 (en) Oil pump for a scroll compressor
US20020136653A1 (en) Scroll compressors and methods for circulating lubrication oil through the same
JP4470914B2 (en) 2-stage compressor
EP2187060B1 (en) Hermetic compressor and refrigeration cycle device having the same
US20020136652A1 (en) Electrically driven compressors and methods for circulating lubrication oil through the same
JP2007085297A (en) Scroll compressor
JP2008232134A (en) Electric compressor
JP2005344658A (en) Electric gas compressor
CN107893758B (en) Scroll compressor and air conditioner with same
JP3838186B2 (en) 2-stage compressor
JP4848844B2 (en) Electric compressor
JP2006348928A (en) Compressor
JP2012189002A (en) Compressor
JP2005048666A (en) Scroll compressor
JP2012036862A (en) Hermetically-sealed compressor, and refrigerating cycle apparatus
EP1010893A2 (en) Compressor with lubricating oil control
CN102822524B (en) Electrically driven gas compressor
JP4489514B2 (en) Gas compressor
JP3601067B2 (en) Hermetic compressor
JP4747941B2 (en) Electric compressor
JP4797548B2 (en) Hermetic electric compressor
JP2005248862A (en) Gas compressor and air conditioner for vehicle
KR20050031242A (en) Electrically driven compressor
JP2009250124A (en) Motor-driven compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090911

A131 Notification of reasons for refusal

Effective date: 20091006

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100223

Free format text: JAPANESE INTERMEDIATE CODE: A02