JP4125047B2 - Hydrophilic cross-linked chitosan foam - Google Patents

Hydrophilic cross-linked chitosan foam Download PDF

Info

Publication number
JP4125047B2
JP4125047B2 JP2002167441A JP2002167441A JP4125047B2 JP 4125047 B2 JP4125047 B2 JP 4125047B2 JP 2002167441 A JP2002167441 A JP 2002167441A JP 2002167441 A JP2002167441 A JP 2002167441A JP 4125047 B2 JP4125047 B2 JP 4125047B2
Authority
JP
Japan
Prior art keywords
chitosan
foam
acid
hydrophilic
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002167441A
Other languages
Japanese (ja)
Other versions
JP2004010795A (en
Inventor
雅信 高杉
雅文 椙山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishikawa Rubber Co Ltd
Original Assignee
Nishikawa Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishikawa Rubber Co Ltd filed Critical Nishikawa Rubber Co Ltd
Priority to JP2002167441A priority Critical patent/JP4125047B2/en
Priority to DE2003113427 priority patent/DE10313427B4/en
Publication of JP2004010795A publication Critical patent/JP2004010795A/en
Application granted granted Critical
Publication of JP4125047B2 publication Critical patent/JP4125047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Cosmetics (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は親水性架橋キトサン発泡体に関する。また、本発明は、特に均一で緻密な気泡を有する感触性に優れた架橋キトサン発泡体に関する。
本発明の親水性架橋キトサン発泡体は、スポンジ様のシート状弾性体として、化粧用に適用可能であり、化粧用パック基材、顔や体の洗浄具、化粧用パフ等に好適に利用される。
【0002】
【従来の技術】
キトサンを酸水溶液に溶解することで、キトサンのアミノ基を官能基として適当な架橋剤により架橋した後、水分を除去することで水不溶性のキトサン架橋体を得る方法は既に知られている。
水溶媒中でのキトサンの溶解法としては酢酸を用いることが一般に行われるが、酢酸に溶解したキトサンを架橋した後、乾燥して得られたキトサン架橋体は酢酸臭が残っており商品性に劣ったものとなる。
キトサンのアミノ基を官能基とする架橋剤としては、ジイソシアネートやジアルデヒド等もあるが、一般にジイソシアネートは反応性が高く水溶液中では溶媒の水とも反応するので、架橋剤としてジイソシアネートを添加した後に急速に反応が進み速やかに混合しないと架橋物にバラツキが生じるため、操作性に難がある。ジアルデヒドの場合は一般に臭気の強いものが多く、キトサンを架橋した後、乾燥して得られたキトサン架橋体に臭気が残って商品性に劣ったものとなる問題があった。
また、デンプンやゼラチン等の天然高分子化合物を水に溶解状態にし、架橋剤の添加、pH変化、温度変化等でゲル化させ、得られた含水ゲル化物を凍結乾燥を行うことで凍結時の氷結晶部分を気泡とした発泡体を得るという方法は知られている。
一般の凍結乾燥法は、−30〜−40℃の冷凍庫で凍結させた後、真空乾燥が行われる。この凍結温度では含水ゲル化物の表面付近の水分と中心部付近の水分が氷になる時間の差が大きく、表面付近で形成された氷結晶が成長し、中心付近の水分が少ない状態で凍結が完結する。
上記の凍結物を真空乾燥して氷結晶を昇華させると不均一で大きな気泡が形成され、好ましくない外観の発泡体となる問題があった。
【0003】
【発明が解決しょうとする課題】
従って、本発明の目的は、上記従来のキトサンゲル化物の発泡体の欠点を改良することであり、即ち、キトサンの溶解のため添加する無機または有機酸及びゲル化のための架橋剤等による臭気が残らなく、生体に対して安全性が高く、更に均一な気泡を有し、好ましい外観を示し、感触性に優れた親水性架橋キトサン発泡体を提供することである。
【0004】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意検討を重ねた結果、−50℃以下の温度で急速に凍結し、真空乾燥を行うことにより、上記課題を解決できることを見出した。
即ち、本発明は、以下の通りである。
(1)キトサンを水に分散させた縣濁液に、希塩酸あるいは臭気のない有機酸を加えpH5.0〜6.0の範囲で溶解し、該溶液を脂肪族系ジエポキシ化合物によって架橋処理した含水ゲル化物を、凍結乾燥により形成されたものであることを特徴とする親水性架橋キトサン発泡体。
以下に、更に、本発明の好ましい態様を挙げる。
(2)前記脂肪族系ジエポキシ化合物が、ポリエチレングリコールジグリシジルエーテルであることを特徴とする前記(1)に記載の親水性架橋キトサン発泡体。
(3)前記ポリエチレングリコールジグリシジルエーテルが、エチレングリコールジグリシジルエーテルであることを特徴とする前記(2)に記載の親水性架橋キトサン発泡体。
(4)前記含水ゲル化物を、−50℃以下の条件で急速に凍結させた後、真空乾燥を行い形成されたものであることを特徴とする前記(1)〜(3)に記載の親水性架橋キトサン発泡体。
【0005】
本発明の親水性架橋キトサン発泡体は、先ず、キトサン溶解のための酸として、臭気が残らないよう、希塩酸あるいは臭気のない有機酸を使用し、肌と同等のpH5.0〜6.0に調整してキトサン水溶液を調製する。該キトサン溶液を、生体に対して安全性の高い架橋剤である、脂肪族系ジエポキシ化合物を用いて架橋を行い含水ゲル化物を形成する。該含水ゲル化物を、凍結乾燥することにより形成される。好ましくは、−50℃以下の温度で急速に凍結することにより、均一で緻密な氷結晶を形成させた後、真空乾燥を行い、氷結晶を昇華させ気泡を形成させることにより、均一で緻密な気泡構造を有する発泡体が得られる。
キトサン溶解に塩酸を用いた場合、塩酸臭は架橋後の乾燥時に消滅するため、無臭の発泡体を得ることができる。
通常の凍結乾燥法により得られた発泡体に比べて臭気がなく、生体に対して安全性が高く、更に外観、感触性に優れ、肌にやさしいスポンジ様のシート状弾性体が得られ、化粧用としての商品性の高い、均一な気泡を有する親水性架橋キトサン発泡体を得ることができるという効果を奏する。
【0006】
【発明の実施の形態】
以下に本発明の親水性架橋キトサン発泡体について詳細に説明する。
本発明の親水性架橋キトサン発泡体は、先ず、臭気が残らなく、生体に対して安全性が高いことが特徴である。
本発明の親水性架橋キトサン発泡体の製造において、真空乾燥後に臭気が残らないようにするため、キトサンを水に膨潤・溶解するために加える酸(無機酸または有機酸)として、希塩酸、又は臭気の残らない有機酸としては、クエン酸、グルコン酸、コハク酸、乳酸、フマル酸、リンゴ酸等を用いる。
【0007】
キトサンを水に分散させた懸濁液に、上記の酸水溶液を使用して、キトサン懸濁液のpHをpH5.0〜6.0、好ましくはpH5.0〜5.5に調整する。
キトサン懸濁液のpHが5.0未満では得られた発泡体は肌に対する刺激が強いものとなり、6.0を超えて高くなるとキトサンの溶解が不充分で架橋反応が行えなくなり、共に不適である。なお、上記のpH範囲はキトサンのアミノ基と、架橋剤との反応に適し、また肌と同等の範囲である。塩酸を用いた場合、塩酸臭は架橋後の乾燥時に消滅する。
【0008】
上記キトサン溶液中のキトサンの濃度に格別の限定はないが、好ましい濃度としては、1〜10重量%の範囲である。
1重量%未満では得られた発泡体の強度が弱く、実用には不向きであり、10重量%を超えて高くなると、酸水溶液に溶解時の粘度が高く、架橋反応が均一にできなくなり、共に不適である。
【0009】
本発明の親水性架橋キトサン発泡体の製造において、上記の水に溶解状態のキトサン溶液から含水ゲル化物を得るための架橋方法は、臭気と同時に、生体に対しての安全性を高めるため、 生体に対して安全性の高い架橋剤として、脂肪族系ジエポキシ化合物を添加し、架橋剤に応じたpH、温度、時間の条件下で反応させ、ゲル化処理を行う。
脂肪族系ジエポキシ化合物としては、ポリエチレングリコールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ヘキサンジオールジグリシジルエーテル等が挙げられる。最も好ましいのは、エチレングリコールジグリシジルエーテルである。
架橋剤の添加量は、特に限定はないが、一般にキトサンのアミノ基に対して、ジエポキシ化合物のグリシジル基が1〜20モル%であることが好ましい。
【0010】
次に、本発明の親水性架橋キトサン発泡体は、前記の様に、水に溶解状態のキトサン溶液に、少なくとも架橋剤を含有させ、pHおよび温度の条件の調節により、該溶液をゲル化した含水ゲル化物に対して、凍結乾燥を行うことにより、凍結時の氷結晶部分を気泡とした発泡体を得ることができる。
本発明の親水性架橋キトサン発泡体の好ましい態様である均一で緻密な気泡を有する親水性架橋キトサン発泡体は、上記の凍結乾燥において、−50℃以下の条件で急速に凍結させた後、真空乾燥を行うことが特徴である。
−50℃以下の条件で急速に凍結させる方法としては、例えば、ドライアイスに直接接触させる、ドライアイス・メタノールや液体窒素に浸漬する、−50℃以下の冷気を衝突噴流させる、あるいは動磁場の中で微弱な振動を与え氷結晶化を抑えながら−50℃以下の条件で過冷却状態にし一気に凍結する方法等が挙げられる。
感触性に優れた商品性の高いシート状の均一な気泡を有する親水性架橋キトサン発泡体を得るため、シート状の含水ゲル化物を−50℃以下の条件で急速に凍結させるか、又は、ブロック状の含水ゲル化物を−50℃以下の条件で急速に凍結させた後、所望の厚さにスライスしたシート状物を、真空乾燥を行うことにより、通常の凍結乾燥法により得られた発泡体に比べて外観、感触性に優れ、肌にやさしいスポンジ様のシート状弾性体が得られ、化粧用としての商品性の高い、均一な気泡を有する親水性架橋キトサン発泡体を得ることができる。
【0011】
また、上記過冷却状態にし一気に凍結すると同時に、その凍結時間としては、1時間以内が好ましく、より好ましく30分以内である。
1時間を超えて長くなると、氷結晶が成長し、真空乾燥後、粗い気泡となり、不適である。
真空乾燥を行う際の真空度としては、氷結晶が溶けないよう真空度60Pa 以下の真空下とする必要がある。
【0012】
本発明の親水性架橋キトサン発泡体の製造において、前記キトサン溶液中には、必要に応じて更に可塑剤、シート強度向上剤等の添加剤を含有させることができる。
例えば、発泡体の強度を上げるために繊維状の水不溶性添加剤を混合すること、乾燥時の発泡体に柔軟性を与えるためにグリセリン等の可塑剤を混合することもできる。
【0013】
可塑剤としては、グリセリン、PEG、PPG、PEGあるいはPPGの脂肪酸エステル等を挙げることができる。親水性架橋キトサン発泡体の乾燥時の可塑化ために添加する。
添加量としては、特に限定はないが、一般にキトサン重量に対して、10〜50重量%であることが好ましい。
【0014】
シート強度向上剤としては、セルロース、絹繊維等を挙げることができる。親水性架橋キトサン発泡体の乾燥時のシート強度向上のために添加する。
添加量としては、特に限定はないが、一般にキトサン重量に対して、10〜50重量%であることが好ましい。
【0015】
【実施例】
以下に本発明を実施例によって更に具体的に説明するが、勿論本発明の範囲は、これらによって限定されるものではない。
〔実施例1〕
(シート状キトサン発泡体の調製)
平均粒径100μm、脱アセチル化率85%のカニ由来キトサン15gおよび乾燥時のシート強度を向上させるためのセルロースパウダー(KCフロックW-100:日本製紙(株)製)0.75gを蒸留水1kgによく分散させた後、1Nの塩酸を徐々に加えてpHを5.3に調整し、乾燥時の可塑剤としてグリセリン7.5gを添加してよく撹拌して混合した。上記の混合物を60℃の湯浴中に1時間放置した後、エチレングリコールジグリシジルエーテル(エポキシ当量=113)を計算値として架橋度が5%となるように加えて素早く撹拌し,よく混合した後、遠心分離器により100G×10分間の脱気を行った。脱気された混合物を80mm×120mm×20mm深さ(0.1mm厚さ)のポリエチレン製トレーに気泡を巻き込まないよう注意深く、2mmの厚さになるように流し込んだ。混合物を流し込んだトレーを60℃の湯浴上で3時間放置した後、室温で放冷してエポキシ架橋されたキトサンの含水ゲル化物を得た。
【0016】
得られた含水ゲル化物トレーをドライアイスの上に敷いた銅板上に置き、トレー上面にも銅板を敷き、その上にドライアイスを載せた状態で急速に凍結させた。含水ゲル凍結物は真空乾燥機を用いて室温で40時間の真空乾燥を行いキトサン発泡体を得た。得られたキトサン発泡体は、厚さ≒1.8mm、見掛け密度=0.06g/cm3で吸水量が自重の19倍をもつ、無臭で表面状態の滑らかな感触のよい保水性に優れた発泡体であった。
【0017】
〔実施例2〕
実施例1で用いたエチレングリコールジグリシジルエーテル(エポキシ当量=113)に代えて、エチレングリコールが9分子のポリエチレングリコールジグリシジルエーテル(エポキシ当量=268)を計算値として架橋度が5%となるように加えた以外は、実施例1と同じ操作を行った。
得られたキトサン発泡体は、厚さ≒1.5mm、見掛け密度=0.08g/cm3で吸水量が自重の15倍をもつ、無臭で表面状態の滑らかな感触のよい保水性に優れた発泡体であった。
【0018】
〔比較例1}
実施例1で用いた1Nの塩酸に代えて試薬特級の酢酸を使用した以外は、実施例1と同じ操作を行った。得られたキトサン発泡体は酢酸臭が強く、商品性に劣るものであった。
【0019】
〔比較例2〕
実施例1で用いたエチレングリコールジグリシジルエーテルに代えて試薬特級の25%グルタールアルデヒド溶液を使用した以外は、実施例1と同じ操作を行った。得られたキトサン発泡体はアルデヒド臭が強く、商品性に劣るものであった。
【0020】
上記の結果から明らかなように、本発明に係わる実施例1の親水性架橋キトサン発泡体は、それぞれ満足すべき結果を得たが、各比較例のキトサン発泡体は、何らかの性質において不満足なものであった。
【0021】
【発明の効果】
以上説明したように、本発明の親水性架橋キトサン発泡体は、先ず、キトサン溶解のための酸として、臭気が残らないよう、希塩酸あるいは臭気のない有機酸を使用し、肌と同等のpH5.0〜6.0に調整してキトサン水溶液を調製する。該キトサン溶液を、脂肪族系ジエポキシ化合物を用いて架橋を行い含水ゲル化物を形成する。該含水ゲル化物を、凍結乾燥することにより形成される。好ましくは、−50℃以下の温度で急速に凍結することにより、均一で緻密な氷結晶を形成させた後、真空乾燥を行うことにより、均一で緻密な気泡構造を有する発泡体が得られる。
通常の凍結乾燥法により得られた発泡体に比べて臭気がなく、生体に対して安全性が高く、更に外観、感触性に優れ、肌にやさしいスポンジ様のシート状弾性体が得られ、化粧用としての商品性の高い、均一な気泡を有する親水性架橋キトサン発泡体を得ることができるという効果を奏する。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrophilic crosslinked chitosan foam. The present invention also relates to a cross-linked chitosan foam having particularly uniform and fine bubbles and excellent touch feeling.
The hydrophilic cross-linked chitosan foam of the present invention is applicable as a sponge-like sheet-like elastic body for cosmetic purposes, and is suitably used for cosmetic pack base materials, facial and body cleaning tools, cosmetic puffs and the like. The
[0002]
[Prior art]
A method for obtaining a water-insoluble chitosan crosslinked product by dissolving chitosan in an acid aqueous solution to crosslink with an appropriate crosslinking agent using the amino group of chitosan as a functional group and then removing water is already known.
As a method for dissolving chitosan in an aqueous solvent, acetic acid is generally used. However, a crosslinked chitosan obtained by cross-linking chitosan dissolved in acetic acid and then drying it has an acetic acid odor, and is therefore commercially available. It will be inferior.
There are diisocyanates and dialdehydes as cross-linking agents having the amino group of chitosan as a functional group. However, diisocyanates are generally highly reactive and react with the solvent water in aqueous solutions. However, if the reaction proceeds and the mixture is not rapidly mixed, there will be variations in the cross-linked product, which is difficult to operate. In the case of dialdehyde, generally, there are many strong odors, and there is a problem that odor remains in the chitosan crosslinked product obtained by crosslinking chitosan and then drying, resulting in poor merchantability.
In addition, natural polymer compounds such as starch and gelatin are dissolved in water and gelled by addition of a crosslinking agent, pH change, temperature change, etc., and the resulting hydrogel product is freeze-dried to effect freezing. A method of obtaining a foamed body having ice crystal portions as bubbles is known.
In a general freeze-drying method, vacuum drying is performed after freezing in a freezer at −30 to −40 ° C. At this freezing temperature, there is a large time difference between the moisture near the surface of the hydrogel and the moisture near the center, and the ice crystals formed near the surface grow and freeze with little moisture near the center. Complete.
When the above frozen product is vacuum-dried to sublimate ice crystals, non-uniform and large bubbles are formed, resulting in a foam having an undesirable appearance.
[0003]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to improve the above-mentioned drawbacks of the conventional chitosan gelled foam, that is, the odor caused by the inorganic or organic acid added for the dissolution of chitosan and the crosslinking agent for the gelation. It is to provide a hydrophilic cross-linked chitosan foam that is highly safe to living organisms, has uniform air bubbles, has a preferable appearance, and is excellent in touch.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that the above problem can be solved by rapidly freezing at a temperature of −50 ° C. or lower and vacuum drying.
That is, the present invention is as follows.
(1) A hydrous solution in which chitosan is dispersed in water and diluted hydrochloric acid or organic acid without odor is added and dissolved in a pH range of 5.0 to 6.0, and the solution is crosslinked with an aliphatic diepoxy compound. A hydrophilic cross-linked chitosan foam characterized in that a gelled product is formed by freeze-drying.
The preferred embodiments of the present invention will be further described below.
(2) The hydrophilic crosslinked chitosan foam according to (1), wherein the aliphatic diepoxy compound is polyethylene glycol diglycidyl ether.
(3) The hydrophilic crosslinked chitosan foam as described in (2) above, wherein the polyethylene glycol diglycidyl ether is ethylene glycol diglycidyl ether.
(4) The hydrophilic gel described in (1) to (3), which is formed by rapidly freezing the hydrated gelled product under a condition of −50 ° C. or less and then vacuum drying. Cross-linked chitosan foam.
[0005]
First, the hydrophilic cross-linked chitosan foam of the present invention uses dilute hydrochloric acid or an organic acid having no odor as an acid for dissolving the chitosan so that the pH is 5.0 to 6.0 equivalent to the skin. Adjust to prepare an aqueous chitosan solution. The chitosan solution is crosslinked with an aliphatic diepoxy compound, which is a highly safe crosslinking agent for a living body, to form a hydrogel product. The hydrogel product is formed by lyophilization. Preferably, a uniform and dense ice crystal is formed by rapidly freezing at a temperature of −50 ° C. or lower, followed by vacuum drying, and the ice crystal is sublimated to form bubbles, thereby forming a uniform and dense ice crystal. A foam having a cellular structure is obtained.
When hydrochloric acid is used for dissolving chitosan, the odor of hydrochloric acid disappears upon drying after crosslinking, so that an odorless foam can be obtained.
Compared with foams obtained by the usual freeze-drying method, there is no odor, it is safe for the living body, and it has excellent appearance and feel, and is a sponge-like elastic sheet that is gentle on the skin. As a result, it is possible to obtain a hydrophilic cross-linked chitosan foam having a high level of commercial properties and having uniform bubbles.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the hydrophilic crosslinked chitosan foam of the present invention will be described in detail.
The hydrophilic cross-linked chitosan foam of the present invention is characterized by no odor remaining and high safety for a living body.
In the production of the hydrophilic crosslinked chitosan foam of the present invention, dilute hydrochloric acid or odor is used as an acid (inorganic acid or organic acid) added to swell and dissolve chitosan in water so that no odor remains after vacuum drying. As the organic acid that does not remain, citric acid, gluconic acid, succinic acid, lactic acid, fumaric acid, malic acid and the like are used.
[0007]
The pH of the chitosan suspension is adjusted to pH 5.0 to 6.0, preferably pH 5.0 to 5.5 using the above acid aqueous solution in a suspension in which chitosan is dispersed in water.
When the pH of the chitosan suspension is less than 5.0, the obtained foam is strongly irritating to the skin, and when it exceeds 6.0, the chitosan is not sufficiently dissolved and the crosslinking reaction cannot be performed. is there. The above pH range is suitable for the reaction between the amino group of chitosan and the crosslinking agent, and is the same range as the skin. When hydrochloric acid is used, the hydrochloric acid odor disappears upon drying after crosslinking.
[0008]
The concentration of chitosan in the chitosan solution is not particularly limited, but a preferable concentration is in the range of 1 to 10% by weight.
If it is less than 1% by weight, the strength of the obtained foam is weak and unsuitable for practical use. If it exceeds 10% by weight, the viscosity when dissolved in an acid aqueous solution is high, and the crosslinking reaction cannot be made uniform. Unsuitable.
[0009]
In the production of the hydrophilic cross-linked chitosan foam of the present invention, the cross-linking method for obtaining a water-containing gelled product from the chitosan solution dissolved in water described above improves the safety to the living body simultaneously with the odor. In contrast, an aliphatic diepoxy compound is added as a highly safe crosslinking agent, and the mixture is reacted under the conditions of pH, temperature, and time according to the crosslinking agent to perform a gelation treatment.
Examples of the aliphatic diepoxy compound include polyethylene glycol diglycidyl ether, ethylene glycol diglycidyl ether, hexanediol diglycidyl ether, and the like. Most preferred is ethylene glycol diglycidyl ether.
Although the addition amount of a crosslinking agent does not have limitation in particular, Generally, it is preferable that the glycidyl group of a diepoxy compound is 1-20 mol% with respect to the amino group of chitosan.
[0010]
Next, as described above, the hydrophilic cross-linked chitosan foam of the present invention contains at least a cross-linking agent in a chitosan solution dissolved in water, and gels the solution by adjusting the pH and temperature conditions. By performing freeze-drying on the water-containing gelled product, it is possible to obtain a foam in which the ice crystal portion at the time of freezing is a bubble.
The hydrophilic cross-linked chitosan foam having uniform and fine bubbles, which is a preferred embodiment of the hydrophilic cross-linked chitosan foam of the present invention, is rapidly frozen under the condition of −50 ° C. or lower in the above lyophilization, and then subjected to vacuum. It is characterized by drying.
Examples of the method of rapidly freezing at −50 ° C. or less include, for example, direct contact with dry ice, immersion in dry ice / methanol or liquid nitrogen, collision of cold air at −50 ° C. or less, or dynamic magnetic field Among them, there may be mentioned a method of freezing all at once in a supercooled state under a temperature of −50 ° C. or less while giving weak vibration and suppressing ice crystallization.
In order to obtain a hydrophilic cross-linked chitosan foam having a sheet-like uniform cell with excellent merchantability, the sheet-like water-containing gelled product is rapidly frozen under a condition of −50 ° C. or lower, or blocked. A foam obtained by a normal freeze-drying method is obtained by rapidly freezing the hydrated gel-like product at -50 ° C. or less and then vacuum-drying the sheet sliced to a desired thickness. Compared to the above, a sponge-like sheet-like elastic body excellent in appearance and feel and gentle to the skin can be obtained, and a hydrophilic cross-linked chitosan foam having uniform air bubbles can be obtained which has a high commercial value for cosmetics.
[0011]
Further, at the same time as freezing at a time in the supercooled state, the freezing time is preferably within 1 hour, more preferably within 30 minutes.
When it is longer than 1 hour, ice crystals grow, and after vacuum drying, coarse bubbles are formed, which is inappropriate.
The degree of vacuum at the time of vacuum drying needs to be a vacuum of 60 Pa or less so that ice crystals do not melt.
[0012]
In the production of the hydrophilic crosslinked chitosan foam of the present invention, the chitosan solution may further contain additives such as a plasticizer and a sheet strength improver as necessary.
For example, a fibrous water-insoluble additive may be mixed in order to increase the strength of the foam, and a plasticizer such as glycerin may be mixed in order to give flexibility to the foam during drying.
[0013]
Examples of the plasticizer include glycerin, PEG, PPG, PEG, or a fatty acid ester of PPG. It is added to plasticize the hydrophilic crosslinked chitosan foam during drying.
Although there is no limitation in particular as an addition amount, Generally it is preferable that it is 10 to 50 weight% with respect to the chitosan weight.
[0014]
Examples of the sheet strength improver include cellulose and silk fiber. It is added to improve the sheet strength when drying the hydrophilic crosslinked chitosan foam.
Although there is no limitation in particular as an addition amount, Generally it is preferable that it is 10 to 50 weight% with respect to the chitosan weight.
[0015]
【Example】
The present invention will be described more specifically with reference to the following examples. However, the scope of the present invention is not limited to these examples.
[Example 1]
(Preparation of sheet-like chitosan foam)
1 kg of distilled water 1 kg of crab-derived chitosan with an average particle size of 100 μm and a deacetylation rate of 85% and cellulose powder (KC Flock W-100 manufactured by Nippon Paper Industries Co., Ltd.) for improving sheet strength during drying After being well dispersed, 1N hydrochloric acid was gradually added to adjust the pH to 5.3, 7.5 g of glycerin was added as a plasticizer at the time of drying, and the mixture was stirred well and mixed. After leaving the above mixture in a 60 ° C. water bath for 1 hour, ethylene glycol diglycidyl ether (epoxy equivalent = 113) was added to the calculated value so that the degree of crosslinking was 5%, and the mixture was rapidly stirred and mixed well. Thereafter, deaeration was performed for 100 G × 10 minutes using a centrifuge. The degassed mixture was poured into a polyethylene tray measuring 80 mm × 120 mm × 20 mm deep (0.1 mm thickness) carefully so as not to entrain air bubbles to a thickness of 2 mm. The tray into which the mixture was poured was allowed to stand on a 60 ° C. water bath for 3 hours, and then allowed to cool at room temperature to obtain a water-containing gelled product of epoxy-crosslinked chitosan.
[0016]
The obtained hydrogel tray was placed on a copper plate laid on dry ice, a copper plate was laid on the upper surface of the tray, and the ice was rapidly frozen in a state where dry ice was placed thereon. The frozen hydrogel was vacuum dried at room temperature for 40 hours using a vacuum dryer to obtain a chitosan foam. The obtained chitosan foam was excellent in water retention with an odorless surface and a smooth feel, having a thickness of approximately 1.8 mm, an apparent density of 0.06 g / cm 3 and a water absorption of 19 times its own weight. It was a foam.
[0017]
[Example 2]
Instead of the ethylene glycol diglycidyl ether (epoxy equivalent = 113) used in Example 1, the degree of cross-linking is 5% using a polyethylene glycol diglycidyl ether (epoxy equivalent = 268) having 9 molecules of ethylene glycol as a calculated value. The same operation as in Example 1 was carried out except that.
The obtained chitosan foam was excellent in water retention with an odorless and smooth surface condition, having a thickness of approximately 1.5 mm, an apparent density of 0.08 g / cm 3 and a water absorption of 15 times its own weight. It was a foam.
[0018]
[Comparative Example 1}
The same operation as in Example 1 was performed except that reagent-grade acetic acid was used instead of 1N hydrochloric acid used in Example 1. The obtained chitosan foam had a strong acetic acid odor and was inferior in commercial properties.
[0019]
[Comparative Example 2]
The same operation as in Example 1 was performed except that a reagent-grade 25% glutaraldehyde solution was used instead of the ethylene glycol diglycidyl ether used in Example 1. The obtained chitosan foam had a strong aldehyde odor and poor merchantability.
[0020]
As is clear from the above results, the hydrophilic crosslinked chitosan foam of Example 1 according to the present invention obtained satisfactory results, but the chitosan foam of each comparative example was unsatisfactory in some properties. Met.
[0021]
【The invention's effect】
As described above, the hydrophilic cross-linked chitosan foam of the present invention first uses dilute hydrochloric acid or an organic acid having no odor as an acid for dissolving chitosan so as not to leave an odor, and has a pH of 5. Adjust to 0-6.0 to prepare an aqueous chitosan solution. The chitosan solution is crosslinked with an aliphatic diepoxy compound to form a hydrogel product. The hydrogel product is formed by lyophilization. Preferably, a foam having a uniform and dense cell structure is obtained by rapidly freezing at a temperature of −50 ° C. or less to form uniform and dense ice crystals and then vacuum drying.
Compared with foams obtained by the usual freeze-drying method, there is no odor, it is safe for the living body, and it is excellent in appearance and feel, and is a sponge-like elastic sheet that is gentle on the skin. As a product, it is possible to obtain a hydrophilic cross-linked chitosan foam having uniform air bubbles with high commercial properties.

Claims (4)

キトサンを水に分散させた縣濁液に、希塩酸あるいはクエン酸、グルコン酸、コハク酸、乳酸、フマル酸若しくはリンゴ酸を加えpH5.0〜6.0の範囲で溶解し、該溶液を脂肪族系ジエポキシ化合物によって架橋処理した含水ゲル化物を、凍結乾燥により形成されたものであることを特徴とする親水性架橋キトサン発泡体。Diluted hydrochloric acid or citric acid, gluconic acid, succinic acid, lactic acid, fumaric acid or malic acid is added to a suspension of chitosan dispersed in water and dissolved in a pH range of 5.0 to 6.0. A hydrophilic cross-linked chitosan foam characterized in that it is formed by freeze-drying a hydrogel product that has been cross-linked with a system diepoxy compound. 前記脂肪族系ジエポキシ化合物が、ポリエチレングリコールジグリシジルエーテルであることを特徴とする請求項1に記載の親水性架橋キトサン発泡体。  The hydrophilic crosslinked chitosan foam according to claim 1, wherein the aliphatic diepoxy compound is polyethylene glycol diglycidyl ether. 前記脂肪族系ジエポキシ化合物が、エチレングリコールジグリシジルエーテルであることを特徴とする請求項1に記載の親水性架橋キトサン発泡体。  The hydrophilic crosslinked chitosan foam according to claim 1, wherein the aliphatic diepoxy compound is ethylene glycol diglycidyl ether. 前記含水ゲル化物を、−50℃以下の条件で急速に凍結させた後、真空乾燥を行い形成されたものであることを特徴とする請求項1〜3のいずれか1項に記載の親水性架橋キトサン発泡体。  The hydrophilic property according to any one of claims 1 to 3, wherein the water-containing gelled product is formed by rapid freezing under conditions of -50 ° C or lower and then vacuum drying. Cross-linked chitosan foam.
JP2002167441A 2002-06-07 2002-06-07 Hydrophilic cross-linked chitosan foam Expired - Fee Related JP4125047B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002167441A JP4125047B2 (en) 2002-06-07 2002-06-07 Hydrophilic cross-linked chitosan foam
DE2003113427 DE10313427B4 (en) 2002-06-07 2003-03-25 Hydrophilic cross-linked chitosan foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002167441A JP4125047B2 (en) 2002-06-07 2002-06-07 Hydrophilic cross-linked chitosan foam

Publications (2)

Publication Number Publication Date
JP2004010795A JP2004010795A (en) 2004-01-15
JP4125047B2 true JP4125047B2 (en) 2008-07-23

Family

ID=29720187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002167441A Expired - Fee Related JP4125047B2 (en) 2002-06-07 2002-06-07 Hydrophilic cross-linked chitosan foam

Country Status (2)

Country Link
JP (1) JP4125047B2 (en)
DE (1) DE10313427B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3722357A1 (en) 2019-04-10 2020-10-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Chitosan open porous materials containing hydrophilic and/or hydro-phobic functional groups

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1992364A1 (en) * 2007-05-16 2008-11-19 Biosuma S.r.l. Carboxylated polysaccharides phosphated or bisphosphonated derivatives, optionally cross-linked, and their preparation and biomedical uses
JP2010051438A (en) * 2008-08-27 2010-03-11 Fujifilm Corp Method of eliminating organic solvent in structure of chitosan and polymer of biological origin
RU2559429C1 (en) * 2014-05-21 2015-08-10 Эдуард Валентинович Фрончек Method of obtaining chitosan-based hydrogelling agent
CA3015172A1 (en) 2016-02-18 2017-08-24 Privo Technologies, Inc. Two-stage microparticle-based therapeutic delivery system and method
DE102016203441B4 (en) 2016-03-02 2020-03-26 Volkswagen Aktiengesellschaft Body floor structure for a vehicle
WO2018151849A1 (en) 2017-02-17 2018-08-23 Privo Technologies, Inc. Particle-based multi-layer therapeutic delivery device and method
US10478403B1 (en) 2017-05-03 2019-11-19 Privo Technologies, Inc. Intraoperative topically-applied non-implantable rapid release patch
KR102144897B1 (en) * 2018-04-18 2020-08-14 주식회사 엔도비전 Medical Dressing Patch with Chitosan Fabric Sponge Structure Using Chitosan and Method for Preparing the Same
CN110628063B (en) * 2019-10-25 2022-03-18 仲恺农业工程学院 Preparation method of high-toughness cottonseed protein based composite membrane

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287503A (en) * 1987-05-19 1988-11-24 Toyo Roshi Kk Polyamide microporous membrane with fixed chitosan
CA1329800C (en) * 1987-12-29 1994-05-24 Hiroaki Takayanagi Composite separating agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3722357A1 (en) 2019-04-10 2020-10-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Chitosan open porous materials containing hydrophilic and/or hydro-phobic functional groups

Also Published As

Publication number Publication date
JP2004010795A (en) 2004-01-15
DE10313427A1 (en) 2004-01-08
DE10313427B4 (en) 2006-05-11

Similar Documents

Publication Publication Date Title
Zhang et al. Synthesis and characterization of partially biodegradable, temperature and pH sensitive Dex–MA/PNIPAAm hydrogels
US4002173A (en) Diester crosslinked polyglucan hydrogels and reticulated sponges thereof
US20240042091A1 (en) Hemostatic Foam
JP4125047B2 (en) Hydrophilic cross-linked chitosan foam
JP4762785B2 (en) Gelatin sponge
JP2000510360A (en) Dehydrated hydrogel
JP7075403B2 (en) A method for manufacturing a porous hydrogel sheet and a porous hydrogel sheet manufactured by the manufacturing method.
CN111481497A (en) Hydrogel
JPH08337674A (en) Production of polysaccharide foam
JP2006342207A (en) Expandable material composition, expanded material, and method for recycling expanded material
Che et al. Design and fabrication of a triple-responsive chitosan-based hydrogel with excellent mechanical properties for controlled drug delivery
JPH0611810B2 (en) Porous chitin molding and method for producing the same
JP4044291B2 (en) Water-swellable polymer gel and process for producing the same
JP3700940B2 (en) Method for producing porous sheet for skin care
AU2015210908B2 (en) Hydrogel matrix having a non-uniform distribution of oxygen containing cells
JP4728527B2 (en) Method for producing crosslinked hyaluronic acid sponge
JP2004002521A (en) Process for producing foamed body of hydrophilic natural polymer compound
CN111035794B (en) Preparation method of absorbable porous microsphere hemostatic powder
JP2003048940A (en) Polyurethane porous
JP4493826B2 (en) Method for producing polysaccharide sponge and polysaccharide sponge
RU2700693C1 (en) Method of producing chitosan sponge (versions)
JPH11322807A (en) Production of crosslinked hyaluronic acid sponge
JP4187587B2 (en) Method for producing foam
RU2431504C2 (en) Method for preparing composite chitosan and collagen resorbable matrixes for human skin cell culture
KR102403554B1 (en) Hybrid hydrogel injection for dermal filler application based on hyaluronic acid containing biodegradable polymer microparticle and method for preparing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees