JP4762785B2 - Gelatin sponge - Google Patents
Gelatin sponge Download PDFInfo
- Publication number
- JP4762785B2 JP4762785B2 JP2006138972A JP2006138972A JP4762785B2 JP 4762785 B2 JP4762785 B2 JP 4762785B2 JP 2006138972 A JP2006138972 A JP 2006138972A JP 2006138972 A JP2006138972 A JP 2006138972A JP 4762785 B2 JP4762785 B2 JP 4762785B2
- Authority
- JP
- Japan
- Prior art keywords
- gelatin
- sponge body
- sodium
- body according
- gelatin sponge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Materials For Medical Uses (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Description
本発明はゼラチンスポンジ体に関し、詳細には、密な気泡構造で水湿潤時の強度が補強され、さらに乾燥時の感触が良好なゼラチンスポンジ体に関する。 The present invention relates to a gelatin sponge body, and in particular, relates to a gelatin sponge body having a dense cell structure that is reinforced in strength when wet with water and has a good feel when dried.
従来より、熱傷や褥傷に生じる皮膚欠損側面に適用し、治療を促進させる創傷被覆剤、創傷用グラフトおよび培養皮膚基材として、ゼラチン等からなるスポンジ状成形体が利用されている。(例えば特許文献1)
このようなスポンジ状成形体では、創傷被覆剤および創傷用グラフトにおいては、スポンジ内へ血管や繊維芽細胞を侵入させ欠損した皮膚細胞を再構築させ、また、培養皮膚基材においては、繊維芽細胞や角質化細胞などの懸濁液を基材へ滴下し密着させ一定期間培養し作成するため、スポンジ表面・内部の空孔径やその連続性、内部空孔の形態が皮膚細胞形成に影響する。
Conventionally, sponge-like molded bodies made of gelatin or the like have been used as wound dressings, wound grafts, and cultured skin base materials that are applied to the side of skin defects caused by burns and bruises to promote treatment. (For example, Patent Document 1)
In such a sponge-like molded product, in wound dressings and wound grafts, blood vessels and fibroblasts are infiltrated into the sponge to reconstruct the defective skin cells, and in the cultured skin substrate, fibroblasts are reconstructed. Since a suspension of cells, keratinized cells, etc. is dropped onto the base material and intimately cultured for a certain period of time, the pore size and continuity of the sponge surface / internal continuity and the shape of the internal pores affect skin cell formation. .
培養皮膚は、一般にその基材と皮膚由来の繊維芽細胞や角質化細胞などより構成される。該培養皮膚を皮膚欠損部位に適用したとき、前記繊維芽細胞や角質化細胞などより産生される液性因子により、創縁からの繊維芽細胞、角質化細胞、血管内皮細胞の遊走・増殖を促進させ、皮膚を再構築させるといわれている。培養皮膚は前記繊維芽細胞や角質化細胞などの懸濁液を基材へ滴下し、接着させて一定期間培養して作製することができる。培養皮膚基材がスポンジ状成型体である場合、スポンジ表面の空孔径が一定であり、さらに内部空孔の形態も一定であれば、滴下した細胞は一様に基材に接着し得ると考えられ、作製した培養皮膚は一定の創傷治癒能力が期待される。
しかしながら、従来のスポンジ状成形体からなる培養皮膚基材は、内部空孔の大きさが不均一であり、配向性も有しないため、滴下した細胞の一様な接着を期待することができず、また一定の創傷治癒能力も期待することができない。
Cultured skin is generally composed of a base material, skin-derived fibroblasts, keratinized cells, and the like. When the cultured skin is applied to a skin defect site, migration / proliferation of fibroblasts, keratinocytes, and vascular endothelial cells from the wound edge is caused by humoral factors produced by the fibroblasts and keratinocytes. It is said to promote and rebuild the skin. The cultured skin can be prepared by dropping a suspension of the fibroblasts, keratinized cells, and the like onto a base material, allowing them to adhere, and culturing for a certain period. If the cultured skin base material is a sponge-like molded body, it is considered that if the pore diameter on the sponge surface is constant and the shape of the internal pores is also constant, the dropped cells can adhere to the base material uniformly. The prepared cultured skin is expected to have a certain wound healing ability.
However, the conventional cultured skin base material composed of a sponge-like molded body cannot have uniform adhesion of the dropped cells because the size of the internal pores is non-uniform and it does not have orientation. Also, a certain wound healing ability cannot be expected.
また従来のゼラチンスポンジ体は、ゼラチン水溶液を冷却してゲル化、凍結させたのち、真空凍結乾燥を行うことにより製造されていたが、ゲル化時にゼラチンが結晶化するために、まだらで気泡構造が粗いスポンジ体しか得られなかった。
本発明は、上記課題を解決する為になされたものであり、密な気泡構造を有し、さらになめらかな感触を有するゼラチンスポンジ体を提供することを目的とする。
In addition, the conventional gelatin sponge body was manufactured by cooling the gelatin aqueous solution to gel and freezing, followed by vacuum lyophilization. However, since gelatin gelatinizes during gelation, it has a mottled cell structure. However, only a rough sponge body was obtained.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a gelatin sponge body having a dense cell structure and a smooth feel.
本発明者は、銑意検討を重ねた結果、以下の構成を採用することによって、上記目的が達成され、本発明を成すに至った。
即ち本発明は、以下の通りである。
(1)ゼラチン水溶液とポリアニオンをpH5〜11の条件で混合し、冷却してゲル化し、凍結したのち、真空凍結乾燥を行うことで得られたゼラチンスポンジ体。
(2)塩状態のポリアニオンを用いた(1)に記載のゼラチンスポンジ体。
(3)ポリアニオンの添加量をゼラチン100部に対して1〜50部とした(1)に記載のゼラチンスポンジ体。
(4)真空凍結乾燥後に減圧下で、120〜140℃の温度で10〜48時間加熱あるいは、前記混合時に架橋剤を添加した(1)に記載のゼラチンスポンジ体。
(5)酸処理ゼラチン水溶液をpH5〜7に調整した後、塩状態のポリアニオンを混合した(1)〜(4)に記載のゼラチンスポンジ体。
(6)酸処理ゼラチンの等イオン点がpH8〜9である(1)〜(5)のいずれかに記載のゼラチンスポンジ体。
(7)酸処理ゼラチンが魚由来のものである(1)〜(6)のいずれかに記載のゼラチンスポンジ体。
As a result of repeated arbitrary studies, the present inventor has achieved the above object by adopting the following configuration, and has achieved the present invention.
That is, the present invention is as follows.
(1) A gelatin sponge body obtained by mixing an aqueous gelatin solution and a polyanion under conditions of pH 5 to 11, cooling to gel, freezing, and then vacuum lyophilization.
(2) The gelatin sponge body according to (1) using a polyanion in a salt state.
(3) The gelatin sponge body according to (1), wherein the amount of polyanion added is 1 to 50 parts per 100 parts of gelatin.
(4) The gelatin sponge body according to (1), which is heated at 120 to 140 ° C. for 10 to 48 hours under reduced pressure after vacuum freeze-drying or a crosslinking agent is added during the mixing.
(5) The gelatin sponge body according to (1) to (4), wherein the acid-treated gelatin aqueous solution is adjusted to pH 5 to 7, and then mixed with a salt-state polyanion.
(6) The gelatin sponge body according to any one of (1) to (5), wherein the isoionic point of the acid-treated gelatin is pH 8-9.
(7) The gelatin sponge body according to any one of (1) to (6), wherein the acid-treated gelatin is derived from fish.
(8)前記混合時に繊維状物を分散させた(1)〜(7)のいずれかに記載のゼラチンスポンジ体。
(9)繊維状物がセルロースである(8)に記載のゼラチンスポンジ体。
(10)繊維状物の繊維径が10〜500μm、繊維長が0.1〜5mmである(8)に記載のゼラチンスポンジ体。
(11)前記混合時に絹パウダーを分散させた(1)〜(8)のいずれかに記載のゼラチンスポンジ体。
(12)絹パウダーの粒径が100μm以下である(11)に記載のゼラチンスポンジ体。
(13)絹パウダーの粒径が10μm以下である(11)または(12)に記載のゼラチンスポンジ体。
(14)絹パウダーの添加量が,乾燥重量比で1%以上である(11)〜(13)のいずれかに記載のゼラチンスポンジ体。
(15)絹パウダーの添加量が,乾燥重量比で10%以上50%未満である(11)〜(14)のいずれかに記載のゼラチンスポンジ体。
(16)前記混合時に可塑剤を添加した(1)に記載のゼラチンスポンジ体。
(8) The gelatin sponge body according to any one of (1) to (7), wherein a fibrous material is dispersed during the mixing.
(9) The gelatin sponge body according to (8), wherein the fibrous material is cellulose.
(10) The gelatin sponge body according to (8), wherein the fibrous material has a fiber diameter of 10 to 500 μm and a fiber length of 0.1 to 5 mm.
(11) The gelatin sponge body according to any one of (1) to (8), wherein silk powder is dispersed during the mixing.
(12) The gelatin sponge body according to (11), wherein the particle size of the silk powder is 100 μm or less.
(13) The gelatin sponge body according to (11) or (12), wherein the particle size of the silk powder is 10 μm or less.
(14) The gelatin sponge body according to any one of (11) to (13), wherein the addition amount of silk powder is 1% or more by dry weight ratio.
(15) The gelatin sponge body according to any one of (11) to (14), wherein the addition amount of the silk powder is 10% or more and less than 50% by dry weight ratio.
(16) The gelatin sponge body according to (1), wherein a plasticizer is added during the mixing.
(17)ゼラチン水溶液とポリアニオンをpH5〜11の条件で混合し、冷却してゲル化し凍結したのち、真空凍結乾燥を行うゼラチンスポンジ体の製造方法。
(18)塩状態のポリアニオンを用いる(17)に記載のゼラチンスポンジ体の製造方法。
(19)ポリアニオンの添加量をゼラチン100部に対して1〜50部とする(17)に記載のゼラチンスポンジ体の製造方法。
(20)真空凍結乾燥後に減圧下で、120〜140℃の温度で10〜48時間加熱あるいは、前記混合時に架橋剤を添加する(17)に記載のゼラチンスポンジ体の製造方法。
(21)酸処理ゼラチン水溶液をpH5〜7に調整した後、塩状態のポリアニオンを混合した(17)〜(20)に記載のゼラチンスポンジ体の製造方法。
(22)酸処理ゼラチンの等イオン点がpH8〜9である(17)〜(21)のいずれかに記載のゼラチンスポンジ体の製造方法。
(23)酸処理ゼラチンが魚由来のものである(17)〜(22)のいずれかに記載のゼラチンスポンジ体の製造方法。
(17) A method for producing a gelatin sponge body in which an aqueous gelatin solution and a polyanion are mixed under conditions of pH 5 to 11, cooled, gelled and frozen, and then vacuum freeze-dried.
(18) The method for producing a gelatin sponge body according to (17), wherein a polyanion in a salt state is used.
(19) The method for producing a gelatin sponge according to (17), wherein the polyanion is added in an amount of 1 to 50 parts per 100 parts of gelatin.
(20) The method for producing a gelatin sponge according to (17), wherein after the freeze-drying under vacuum, heating is performed at a temperature of 120 to 140 ° C. for 10 to 48 hours, or a crosslinking agent is added during the mixing.
(21) The method for producing a gelatin sponge body according to (17) to (20), wherein the acid-treated gelatin aqueous solution is adjusted to pH 5 to 7, and then a salt polyanion is mixed.
(22) The method for producing a gelatin sponge body according to any one of (17) to (21), wherein the isoionic point of the acid-treated gelatin is pH 8-9.
(23) The method for producing a gelatin sponge body according to any one of (17) to (22), wherein the acid-treated gelatin is derived from fish.
(24)前記混合時に繊維状物を分散させる(17)〜(23)のいずれかに記載のゼラチンスポンジ体の製造方法。
(25)繊維状物がセルロースである(24)に記載のゼラチンスポンジ体の製造方法。
(26)繊維状物の繊維径が10〜500μm、繊維長が0.1〜5mmである(24)に記載のゼラチンスポンジ体の製造方法。
(27)前記混合時に絹パウダーを分散させた(17)〜(24)のいずれかに記載のゼラチンスポンジ体の製造方法。
(28)絹パウダーの粒径が100μm以下である(27)に記載のゼラチンスポンジ体の製造方法。
(29)絹パウダーの粒径が10μm以下である(27)または(28)に記載のゼラチンスポンジ体の製造方法。
(30)絹パウダーの添加量が,乾燥重量比で1%以上である(27)〜(29)のいずれかに記載のゼラチンスポンジ体の製造方法。
(31)絹パウダーの添加量が,乾燥重量比で10%以上50%未満である(27)〜(30)のいずれかに記載のゼラチンスポンジ体の製造方法。
(32)前記混合時に可塑剤を添加する(17)に記載のゼラチンスポンジ体の製造方法。
(24) The method for producing a gelatin sponge according to any one of (17) to (23), wherein the fibrous material is dispersed during the mixing.
(25) The method for producing a gelatin sponge body according to (24), wherein the fibrous material is cellulose.
(26) The method for producing a gelatin sponge body according to (24), wherein the fibrous material has a fiber diameter of 10 to 500 μm and a fiber length of 0.1 to 5 mm.
(27) The method for producing a gelatin sponge body according to any one of (17) to (24), wherein silk powder is dispersed during the mixing.
(28) The method for producing a gelatin sponge body according to (27), wherein the particle size of the silk powder is 100 μm or less.
(29) The method for producing a gelatin sponge body according to (27) or (28), wherein the particle size of the silk powder is 10 μm or less.
(30) The method for producing a gelatin sponge body according to any one of (27) to (29), wherein the addition amount of the silk powder is 1% or more by dry weight ratio.
(31) The method for producing a gelatin sponge body according to any one of (27) to (30), wherein the addition amount of the silk powder is 10% or more and less than 50% by dry weight ratio.
(32) The method for producing a gelatin sponge according to (17), wherein a plasticizer is added during the mixing.
本発明のゼラチンスポンジ体は、ゼラチン水溶液と塩状態のポリアニオンをpH5〜11の条件で混合し、冷却してゲル化し、凍結したのち、真空凍結乾燥を行うことで、密な気泡構造を有することができる。
また、真空凍結乾燥後に減圧下で120〜140℃の温度で10〜48時間加熱あるいは、ゼラチン水溶液とポリアニオンの混合時に架橋剤を添加することや、ゼラチン水溶液とポリアニオンの混合時に繊維物と絹パウダーを分散させたことにより、上記スポンジ体の水湿潤時の強度を優れたものとしたり、乾燥時及び湿潤時の感触をなめらかなものとしたりすることができる。
The gelatin sponge body of the present invention has a dense cell structure by mixing an aqueous gelatin solution and a salt polyanion under the conditions of pH 5 to 11, cooling to gel, freezing, and then vacuum lyophilization. Can do.
Further, after vacuum freeze-drying, heating at 120 to 140 ° C. under reduced pressure for 10 to 48 hours, adding a crosslinking agent when mixing the gelatin aqueous solution and the polyanion, or mixing the gelatin aqueous solution and the polyanion with the fiber and silk powder By dispersing, the strength of the sponge body when wet with water can be made excellent, and the feel when dry and wet can be made smooth.
以下、本発明のゼラチンスポンジ体及びゼラチンスポンジ体の製造方法について詳細に説明する。
本発明のゼラチンスポンジ体は、ゼラチン水溶液とポリアニオンをpH5〜11の条件で混合し、冷却してゲル化し、凍結したのち、真空凍結乾燥を行うことで得られる。
ゼラチン水溶液とポリアニオンを混合するとポリイオンコンプレックスを形成し、ゼラチン水溶液のpH条件によっては沈殿物となる。このため、ゼラチン水溶液のpHはポリイオンコンプレックスが形成されても沈殿物の発生しないpH5〜11であり、pH5〜7が好ましい。
また、塩になっていないポリアニオンをゼラチン水溶液に加えると添加量に応じてゼラチン水溶液のpHが低下する。上記の通りpHが5以下になると、急激にポリイオンコンプレックスの沈殿が生じてしまうので、特に限定されないが、ナトリウム塩、カリウム塩、アンモニウム塩等の塩状態で添加するのが好ましい。
Hereinafter, the gelatin sponge body and the method for producing the gelatin sponge body of the present invention will be described in detail.
The gelatin sponge body of the present invention can be obtained by mixing an aqueous gelatin solution and a polyanion under the conditions of pH 5 to 11, cooling to gel, freezing, and vacuum lyophilization.
When an aqueous gelatin solution and a polyanion are mixed, a polyion complex is formed, and a precipitate is formed depending on the pH condition of the aqueous gelatin solution. For this reason, pH of gelatin aqueous solution is pH 5-11 in which a precipitate does not generate | occur | produce, even if a polyion complex is formed, and pH 5-7 are preferable.
Further, when a polyanion that is not converted to a salt is added to the gelatin aqueous solution, the pH of the gelatin aqueous solution is lowered according to the amount added. As described above, when the pH is 5 or less, polyion complex precipitates abruptly. Therefore, although not particularly limited, it is preferably added in a salt state such as sodium salt, potassium salt or ammonium salt.
ゼラチン水溶液とポリアニオンを混合する際の混合比としては、特に限定されないが、ゼラチン100部に対しポリアニオン1〜50部が好ましい。
ポリアニオンの混合量が少ないと気泡構造を密にする効果に欠け、多いとゼラチン固有の特性・感触が少なくなることがある。
本発明に用いられるゼラチン水溶液のゼラチンとしては、特に限定されないが、Aタイプゼラチンと呼ばれる酸処理ゼラチンであることが好ましく、特に限定されないが、等イオン点がpH8〜9であることが好ましい。また、酸処理ゼラチンとしては、特に限定されないが、魚由来であることが好ましい。
The mixing ratio when mixing the gelatin aqueous solution and the polyanion is not particularly limited, but is preferably 1 to 50 parts of the polyanion with respect to 100 parts of the gelatin.
If the amount of polyanion mixed is small, the effect of densifying the cell structure is lacking, and if it is large, the characteristics and feel inherent to gelatin may be reduced.
The gelatin of the gelatin aqueous solution used in the present invention is not particularly limited, but is preferably acid-treated gelatin called A-type gelatin, and is not particularly limited, but the isoionic point is preferably pH 8-9. The acid-treated gelatin is not particularly limited, but is preferably derived from fish.
本発明に含まれるポリアニオンは、特に限定されないが、キサンタンガム、アルギン酸ナトリウム、ヒアルロン酸ナトリウム、コンドロイチン硫酸ナトリウム、ポリグルタミン酸ナトリウム、ポリアクリル酸ナトリウム、カルボキシメチルセルロースナトリウムなど、水に可溶で、かつ、官能基としてカルボキシル基をもつ高分子であり、生体に対して強い毒性を示さないものであれば、生体由来の天然高分子でも、合成高分子でも、いずれを用いてもよい。また、前述の通りポリアニオンは塩状態が好ましい。 The polyanion included in the present invention is not particularly limited, but is soluble in water and has a functional group such as xanthan gum, sodium alginate, sodium hyaluronate, sodium chondroitin sulfate, sodium polyglutamate, sodium polyacrylate, sodium carboxymethylcellulose, etc. As long as it is a polymer having a carboxyl group and does not show strong toxicity to the living body, either a natural polymer derived from a living body or a synthetic polymer may be used. As described above, the polyanion is preferably in a salt state.
また、本発明に係るゼラチンスポンジ体は、真空凍結乾燥後に減圧下で120〜140℃の温度で10〜48時間加熱あるいは、ゼラチン水溶液と塩状態のポリアニオンの混合時に架橋剤を添加、またはゼラチン水溶液と塩状態のポリアニオンの混合時に繊維物を分散、もしくは可塑剤を添加することにより、水湿潤時の強度に優れたものとなる。 In addition, the gelatin sponge according to the present invention is heated at 120 to 140 ° C. under reduced pressure for 10 to 48 hours after vacuum freeze-drying, or a cross-linking agent is added at the time of mixing an aqueous gelatin solution with a salt polyanion, or an aqueous gelatin solution When the fiber is dispersed with a polyanion in a salt state or a plasticizer is added, the strength when wet with water is improved.
ゼラチン水溶液とポリアニオンの混合時に添加する架橋剤としては、特に限定されないが、ヘキサメチレンジイソシアネート等の多価イソシアネート化合物、エチレングリコールジグリシジルエーテル等の多価エポキシ化合物等が好ましい。ゼラチン水溶液とポリアニオンの混合時に添加する繊維状物としては、特に限定されないが、セルロースに代表される親水性の繊維が好ましい。疎水性の繊維でも親水処理を施し、ゼラチン、ポリアニオン混合水溶液中に均一に分散できればよい。
前記繊維状物の繊維径は、10〜500μm、繊維長は0.1〜5mmが好ましい。繊維径が細すぎると補強効果が弱くなり、太すぎると肌への感触が悪くなることがある。繊維長は短すぎると補強効果が弱くなり、長すぎると感触が優れなくなることがある。
本発明のゼラチンスポンジ体における、該繊維状物の添加量は、特に限定されないが、ゼラチン100部に対して、10〜200部が適当であり、添加量が少ないと補強効果に欠け、添加量が多すぎるとかえって弱くなることがある。
The crosslinking agent added at the time of mixing the gelatin aqueous solution and the polyanion is not particularly limited, but a polyvalent isocyanate compound such as hexamethylene diisocyanate, a polyvalent epoxy compound such as ethylene glycol diglycidyl ether, and the like are preferable. The fibrous material added at the time of mixing the aqueous gelatin solution and the polyanion is not particularly limited, but hydrophilic fibers represented by cellulose are preferable. It is sufficient that a hydrophobic fiber is subjected to a hydrophilic treatment and can be uniformly dispersed in a gelatin / polyanion mixed aqueous solution.
The fiber diameter of the fibrous material is preferably 10 to 500 μm, and the fiber length is preferably 0.1 to 5 mm. If the fiber diameter is too thin, the reinforcing effect is weakened, and if it is too thick, the feel to the skin may be deteriorated. If the fiber length is too short, the reinforcing effect will be weak, and if it is too long, the feel may not be excellent.
The addition amount of the fibrous material in the gelatin sponge body of the present invention is not particularly limited, but 10 to 200 parts is appropriate with respect to 100 parts of gelatin. If there is too much, it may become weak.
本発明に係るゼラチンスポンジ体は、ゼラチン水溶液と塩状態のポリアニオンの混合時に絹パウダーを分散することにより、乾燥時の感触がなめらかなものとなる。 In the gelatin sponge body according to the present invention, the silk powder is dispersed at the time of mixing the gelatin aqueous solution and the salt-state polyanion, so that the feeling upon drying becomes smooth.
ゼラチン水溶液とポリアニオンの混合時に添加する絹パウダーとしては、ゼラチン、ポリアニオン混合水溶液中に均一に分散できるものであれば、特に限定されない。
前記絹パウダーの粒径は100μm以下であるのが好ましく、10μm以下であることがさらに好ましい。粒径が100μm以上だと滑らかな感触が得られないことがある。
本発明のゼラチンスポンジ体における、該絹パウダーの添加量は、特に限定されないが、ゼラチンに対し乾燥重量比で1%以上であるのが好ましく、10%以上50%未満であることがさらに好ましい。添加量が1%以下では絹パウダー特有のなめらかさが得られず、また、50%を超えると感触に差がなくなることがある。
The silk powder added at the time of mixing the gelatin aqueous solution and the polyanion is not particularly limited as long as it can be uniformly dispersed in the gelatin and polyanion mixed aqueous solution.
The silk powder preferably has a particle size of 100 μm or less, and more preferably 10 μm or less. If the particle size is 100 μm or more, a smooth feel may not be obtained.
The amount of the silk powder added to the gelatin sponge body of the present invention is not particularly limited, but is preferably 1% or more, more preferably 10% or more and less than 50%, based on the dry weight of gelatin. When the addition amount is 1% or less, the smoothness peculiar to silk powder cannot be obtained, and when it exceeds 50%, the difference in feel may be lost.
なお、ポリイオンコンプレックスの沈殿を形成させることなく混合したゼラチンとポリアニオンとの混合液は粘度が上昇し、混合液を冷却してゲル化する間に繊維状物や絹パウダーが沈降して分離することがない。 Note that the viscosity of the mixed solution of gelatin and polyanion mixed without forming a precipitate of the polyion complex increases in viscosity, and the fibrous material and silk powder settle and separate while the mixture is cooled and gelled. There is no.
また、乾燥時のスポンジ体に柔軟性が求められる場合は、柔軟性を付与するために可塑剤を添加してもよい。可塑剤としては、特に限定されないが、グリセリン、ポリエチレングリコール、流動パラフィン等、いずれを用いてもよい。水不溶性の可塑剤を添加する場合は、乳化剤との併用が好ましい。 Moreover, when flexibility is required for the sponge body at the time of drying, a plasticizer may be added to impart flexibility. The plasticizer is not particularly limited, and any of glycerin, polyethylene glycol, liquid paraffin, and the like may be used. When adding a water-insoluble plasticizer, combined use with an emulsifier is preferable.
以下に本発明のゼラチンスポンジ体の製造方法についてより具体的に説明する。
ゼラチン水溶液とポリアニオンの混合液をステンレス容器に気泡が混入しないように充填し、5℃の冷蔵庫内で予備冷却し気泡構造を安定させた後、−60℃の送風型冷凍庫で凍結する。
得られた凍結ゼラチン溶液ブロックを50Pa以下の真空度で真空凍結乾燥を行い、ブロック状のスポンジ体を得る。真空凍結乾燥の終点は圧力上昇法で確認できる。
Hereinafter, the method for producing the gelatin sponge body of the present invention will be described more specifically.
A mixture of an aqueous gelatin solution and a polyanion is filled in a stainless steel container so that bubbles do not mix, precooled in a refrigerator at 5 ° C. to stabilize the bubble structure, and then frozen in a -60 ° C. blow-type freezer.
The obtained frozen gelatin solution block is vacuum lyophilized at a degree of vacuum of 50 Pa or less to obtain a block-like sponge body. The end point of vacuum freeze-drying can be confirmed by the pressure rise method.
さらに上記ブロック状のスポンジ体を真空乾燥機中100Pa以下・120℃で加熱脱水架橋を行う。加熱脱水架橋を行うことで、水湿潤時の強度を付与したスポンジ体を得ることができる。また、前記混合液に架橋剤を添加する場合は、加熱脱水架橋を行わなくてもよい。 Further, the block-like sponge body is subjected to heat dehydration crosslinking in a vacuum dryer at 100 Pa or less and 120 ° C. By performing heat dehydration crosslinking, a sponge body imparted with strength when wet with water can be obtained. Moreover, when adding a crosslinking agent to the said liquid mixture, it is not necessary to perform heat dehydration crosslinking.
ゲル化時の形状でスポンジ体の形状は決まり、シート状のスポンジ体、ブロック状のスポンジ体、さらにはブロック状のスポンジ体をスライスしてシート状のスポンジ体等、用途に合わせた形状のゼラチンスポンジ体を得ることができる。 The shape of the sponge body is determined by the shape at the time of gelation, and the sheet-like sponge body, the block-like sponge body, and the gelatin of the shape according to the use such as the sheet-like sponge body by slicing the block-like sponge body A sponge body can be obtained.
以下本発明を実施例によって詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1
サケ皮を脱脂、水洗後、熱水で抽出したゼラチンを用い、pH5.8の5%ゼラチン水溶液250gに0.5%キサンタンガム水溶液250g(ゼラチン固形分100に対して10部)加え、50℃の温水浴中で攪拌機でよく混合した。この時、水溶液の粘度は上昇したが沈殿の発生は認めなかった。
さらに3mmに粉砕されたパルプを水に4%分散させたスラリー状パルプ250g(ゼラチン固形分100に対して80部)を加え、50℃の温水浴中で攪拌機により混合し、パルプ分散ゼラチン溶液を得た。
上記パルプ分散ゼラチン溶液を120mm×170mm×50mm(深さ)のステンレス容器に30mmの厚さに気泡が混入しないように注意深く充填し、そのステンレス容器を5℃の冷蔵庫内に12時間以上放置した後、−60℃の送風型冷凍庫内に1時間放置し、ゼラチン溶液を凍結させ凍結ブロックを得た。
上記凍結ブロックを50Pa以下の真空度で真空凍結乾燥を行い、ブロック状のスポンジ体を得た。さらにブロック状のスポンジ体を真空乾燥機中で、100Pa以下・120℃で48時間放置し、加熱脱水架橋を行った。
そのブロック状スポンジ体を1.5mmの厚さにスライスし、スポンジ体シートを得た。得られたスポンジ体シートの外観像写真を図1に、電子顕微鏡写真を図2に示す。得られたスポンジ体シートは均一な気泡構造をもった感触のよいものであった。
また、スポンジ体シートの表面のきめの細かさの指標として、色差計(ミノルタ(株)製 CR−300)により明度指数を測定した。ランダムに5ヶ所測定した明度指数は、88.9±2.52(平均±SD)であった。
次に、スポンジ体シートを50mm×50mmの大きさに切り取り、水に浸したところ瞬時に吸水した。吸水したシートは端をつまんで持ち上げても破れることなく、架橋剤を用いなくても肌に密着させるパック用シートとして充分な強度をもっていた。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
Example 1
Degreased salmon skin, washed with water, and using gelatin extracted with hot water, 250 g of 0.5% xanthan gum aqueous solution (10 parts with respect to gelatin solid content of 100) was added to 250 g of 5% gelatin aqueous solution at pH 5.8, and 50 ° C. Mix well with a stirrer in a warm water bath. At this time, the viscosity of the aqueous solution increased, but no precipitation was observed.
Further, 250 g of slurry pulp (80 parts with respect to gelatin solid content of 100) in which 4% of the pulp pulverized to 3 mm was dispersed in water was added and mixed with a stirrer in a hot water bath at 50 ° C. to obtain a pulp-dispersed gelatin solution. Obtained.
The pulp-dispersed gelatin solution was carefully filled into a 120 mm × 170 mm × 50 mm (depth) stainless steel container to a thickness of 30 mm so that air bubbles would not mix, and the stainless steel container was left in a refrigerator at 5 ° C. for 12 hours or longer. The gelatin solution was frozen for 1 hour in a -60 ° C blast freezer to obtain a frozen block.
The freeze block was vacuum freeze-dried at a vacuum degree of 50 Pa or less to obtain a block-like sponge body. Further, the block-like sponge body was left in a vacuum dryer at 100 Pa or less and 120 ° C. for 48 hours to carry out heat dehydration crosslinking.
The block-like sponge body was sliced to a thickness of 1.5 mm to obtain a sponge body sheet. The appearance image photograph of the obtained sponge body sheet is shown in FIG. 1, and the electron micrograph is shown in FIG. The obtained sponge sheet had a uniform cell structure and a good feel.
Moreover, the brightness index was measured with a color difference meter (CR-300 manufactured by Minolta Co., Ltd.) as an index of the fineness of the surface of the sponge sheet. The brightness index measured at five random locations was 88.9 ± 2.52 (mean ± SD).
Next, the sponge body sheet was cut into a size of 50 mm × 50 mm and immersed in water to absorb water instantly. The water-absorbed sheet was not torn even if it was picked up and lifted, and had sufficient strength as a pack sheet to adhere to the skin without using a crosslinking agent.
実施例2
キサンタンガムをγ−ポリグルタミン酸ナトリウムに代えた以外、実施例1と同様にスポンジ体シートを作製した。得られたスポンジ体シートの外観像写真を図3に、電子顕微鏡写真を図4に示す。
得られたスポンジ体シートは均一な気泡構造をもった感触のよいものであった。
また、スポンジ体シートをランダムに5ヶ所測定した明度指数は、86.2±3.54(平均±SD)であった。
また、スポンジ体シートの吸水性・強度共に実施例1と同様であった。
Example 2
A sponge sheet was prepared in the same manner as in Example 1 except that xanthan gum was replaced with sodium γ-polyglutamate. The appearance image photograph of the sponge body sheet obtained is shown in FIG. 3, and the electron micrograph is shown in FIG.
The obtained sponge sheet had a uniform cell structure and a good feel.
In addition, the brightness index of the sponge body sheet measured at five random locations was 86.2 ± 3.54 (average ± SD).
Further, both the water absorption and strength of the sponge sheet were the same as those in Example 1.
実施例3
サケ皮を脱脂、酸処理、水洗後、熱水で抽出したゼラチンにクエン酸を用いてpH6.0に調整した5%ゼラチン水溶液250gに0.5%カルボキシメチルセルロースナトリウム(CMC1280:ダイセル化学工業(株)製)水溶液250g(ゼラチン固形分100に対して10部)加え、50℃の温水浴中で攪拌機によりよく混合した。さらに、3mmに粉砕されたパルプを水に4%分散させたスラリー状パルプ125g(ゼラチン固形分100に対して40部)、平均粒径5μmの絹パウダーを水に4%分散させたスラリー状絹パウダー62.5g(ゼラチン固形分100に対して20部,全固形分中11.6%)、架橋剤としてエチレングリコールジグリシジルエーテル0.25g(ゼラチン固形分100に対して2部)を加え、50℃の温水浴中で攪拌機により1時間混合した。
上記水溶液を120mm×170mm×50mm深さのステンレス容器に20mmの厚さに気泡が混入しないように注意深く充填し、そのステンレス容器を5℃の冷蔵庫内に12時間以上放置した後、−60℃の送風型冷凍庫内に1時間放置し、ゼラチン溶液を凍結させ凍結ブロックを得た。
上記凍結ブロックを50Pa以下の真空度で真空凍結乾燥を行い、ブロック状のスポンジ発泡体を得た。そのブロック状スポンジ発泡体を1.5mmの厚さにスライスし、スポンジ発泡体シートを作成した。
得られたスポンジ体シートは均一で密な気泡構造をもち、柔軟で感触は良好な、絹パウダーによる独特ななめらかなものであった。
また、スポンジ体シートをランダムに5ヶ所測定した明度指数は、89.0±1.67(平均±SD)であった。
また、スポンジ体シートの吸水性・強度共に実施例1と同様であり、肌の細かい部分への密着性も良好であった。
Example 3
Degreased, acid-treated, washed with water, washed with hot water, extracted with hot water and adjusted to pH 6.0 with citric acid, 0.5% sodium carboxymethylcellulose (CMC1280: Daicel Chemical Industries, Ltd.) )) 250 g of aqueous solution (10 parts with respect to gelatin solid content of 100) was added and mixed well in a warm water bath at 50 ° C. with a stirrer. Furthermore, 125 g of slurry pulp in which 4% of pulp pulverized to 3 mm is dispersed in water (40 parts with respect to gelatin solid content of 100) and 4% of silk powder having an average particle diameter of 5 μm dispersed in water Add 62.5 g of powder (20 parts to 100% gelatin solids, 11.6% in total solids), 0.25 g of ethylene glycol diglycidyl ether (2 parts to gelatin solids 100) as a crosslinking agent, The mixture was mixed with a stirrer in a warm water bath at 50 ° C. for 1 hour.
The above aqueous solution was carefully filled in a 120 mm × 170 mm × 50 mm deep stainless steel container so that no air bubbles would be mixed into a thickness of 20 mm, and the stainless steel container was left in a refrigerator at 5 ° C. for 12 hours or longer. The gelatin solution was frozen for 1 hour in a blow-type freezer to obtain a frozen block.
The freeze block was vacuum freeze dried at a vacuum degree of 50 Pa or less to obtain a block-like sponge foam. The block-like sponge foam was sliced to a thickness of 1.5 mm to prepare a sponge foam sheet.
The obtained sponge body sheet had a uniform and dense cell structure, was soft and had a good touch, and was unique and smooth with silk powder.
In addition, the brightness index of the sponge body sheet measured at five random locations was 89.0 ± 1.67 (average ± SD).
Further, the water absorption and strength of the sponge body sheet were the same as those in Example 1, and the adhesion to fine parts of the skin was also good.
実施例4
スラリー状絹パウダーに代えてスラリー状パルプを増量した以外は実施例3と同様にスポンジ体シートを作成した。
得られたスポンジ体シートは均一な気泡構造をもち、柔軟で感触は良好であったが、なめらかさに欠けるものであった。
また、スポンジ体シートをランダムに5ヶ所測定した明度指数は、86.5±1.77(平均±SD)であった。
また、スポンジ体シートの吸水性・強度共に実施例3と同様であった。
Example 4
A sponge sheet was prepared in the same manner as in Example 3 except that the amount of slurry pulp was increased in place of the slurry silk powder.
The obtained sponge body sheet had a uniform cell structure and was soft and good in touch, but lacked smoothness.
In addition, the brightness index of the sponge body sheet measured at five random locations was 86.5 ± 1.77 (average ± SD).
Further, both the water absorption and strength of the sponge sheet were the same as those in Example 3.
比較例1
0.5%キサンタンガム水溶液250gを水250gに代えた以外、実施例1と同様スポンジ体シートを作製した。得られたスポンジ体シートの外観像写真を図5に、電子顕微鏡写真を図6に示す。
得られたスポンジ体シートはまだらな外観でざらついた感触のものであった。
また、スポンジ体シートをランダムに5ヶ所測定した明度指数は、69.5±1.29(平均±SD)であった。
Comparative Example 1
A sponge sheet was prepared in the same manner as in Example 1 except that 250 g of 0.5% xanthan gum aqueous solution was replaced with 250 g of water. The appearance image photograph of the sponge body sheet obtained is shown in FIG. 5, and the electron micrograph is shown in FIG.
The obtained sponge sheet had a mottled appearance and a rough feel.
In addition, the brightness index of the sponge body sheet measured at five random locations was 69.5 ± 1.29 (average ± SD).
比較例2
キサンタンガムをアニオン性官能基をもたないグアーガムに代えた以外、実施例1と同様にスポンジ体シートを作製した。得られたスポンジ体シートの外観像写真を図7に、電子顕微鏡写真を図8に示す。
得られたスポンジ体シートはまだらな外観でざらついた感触のものであった。
また、スポンジ体シートをランダムに5ヶ所測定した明度指数は、72.5±1.77(平均±SD)であった。
Comparative Example 2
A sponge body sheet was prepared in the same manner as in Example 1 except that xanthan gum was replaced with guar gum having no anionic functional group. An appearance image photograph of the obtained sponge sheet is shown in FIG. 7, and an electron micrograph is shown in FIG.
The obtained sponge sheet had a mottled appearance and a rough feel.
In addition, the brightness index of the sponge body sheet measured at five random locations was 72.5 ± 1.77 (average ± SD).
比較例3
実施例1のゼラチン水溶液にクエン酸を添加してpHを4.5に調製したゼラチン水溶液に、0.5%キサンタンガム水溶液250gを加え、50℃の温水浴中で攪拌機により混合したところ沈殿物が発生し、その溶液を5℃の冷蔵庫中に12時間放置してもゲル化ができなかった。
Comparative Example 3
250 g of 0.5% xanthan gum aqueous solution was added to the gelatin aqueous solution prepared by adding citric acid to the gelatin aqueous solution of Example 1 to adjust the pH to 4.5, and the mixture was mixed with a stirrer in a 50 ° C. warm water bath. Even when the solution was left in a refrigerator at 5 ° C. for 12 hours, gelation was not possible.
比較例4
実施例1のパルプ分散ゼラチン溶液に10%クエン酸水溶液を加えてpHを4.5にしたところ、沈殿物が発生し、その溶液を5℃の冷蔵庫中に12時間放置してもゲル化ができなかった。
Comparative Example 4
When 10% citric acid aqueous solution was added to the pulp-dispersed gelatin solution of Example 1 to adjust the pH to 4.5, a precipitate was generated, and gelation occurred even when the solution was left in a refrigerator at 5 ° C. for 12 hours. could not.
比較例5
カルボキシメチルセルロースナトリウムをアニオン性官能基をもたない増粘剤であるグアーガムにした以外は実施例3と同様に行った。
得られたスポンジ体シートはまだらな外観でざらついた感触のものであり、絹パウダー含有による感触の向上は認められなかった。
また、スポンジ体シートをランダムに5ヶ所測定した明度指数は、70.5±1.57(平均±SD)と低値であった。
Comparative Example 5
The same operation as in Example 3 was conducted except that sodium carboxymethylcellulose was changed to guar gum which is a thickener having no anionic functional group.
The resulting sponge sheet had a mottled and rough feel, and no improvement in feel due to the silk powder was observed.
Further, the brightness index obtained by randomly measuring five sponge body sheets was a low value of 70.5 ± 1.57 (average ± SD).
以上から明らかなように、本発明に係る実施例1〜4のゼラチンスポンジ体は気泡構造が密で、水湿潤時の強度に優れている。また、実施例3のゼラチンスポンジ体は乾燥時の感触もなめらかである。 As is clear from the above, the gelatin sponge bodies of Examples 1 to 4 according to the present invention have a dense cell structure and excellent strength when wet with water. Moreover, the gelatin sponge body of Example 3 has a smooth feel when dried.
本発明のゼラチンスポンジ体から得られる成形品は、細胞を培養する基材や化粧水等を
含浸させたスキンケアシートとして使用できる。
The molded product obtained from the gelatin sponge body of the present invention can be used as a skin care sheet impregnated with a substrate for culturing cells, lotion or the like.
Claims (8)
ポリアニオンとしてキサンタンガム、アルギン酸ナトリウム、ヒアルロン酸ナトリウム、コンドロイチン硫酸ナトリウム、ポリグルタミン酸ナトリウム、ポリアクリル酸ナトリウム、カルボキシメチルセルロースナトリウムの内の少なくとも一つをpH5〜11の条件で混合し、
前記混合時に繊維状物として水に不溶なセルロースを分散させ、
冷却してゲル化し、凍結したのち、真空凍結乾燥を行うことで得られたゼラチンスポンジ体。 Gelatin aqueous solution and polyanion as xanthane gum, sodium alginate, sodium hyaluronate, sodium chondroitin sulfate, sodium polyglutamate, sodium polyacrylate, sodium carboxymethylcellulose are mixed under the conditions of pH 5-11,
Disperse cellulose insoluble in water as a fibrous material during the mixing,
Gelatin sponge body obtained by cooling, gelling, freezing, and vacuum lyophilization.
ポリアニオンとしてキサンタンガム、アルギン酸ナトリウム、ヒアルロン酸ナトリウム、コンドロイチン硫酸ナトリウム、ポリグルタミン酸ナトリウム、ポリアクリル酸ナトリウム、カルボキシメチルセルロースナトリウムの内の少なくとも一つをpH5〜11の条件で混合し、
冷却してゲル化し、凍結したのち、真空凍結乾燥を行うゼラチンスポンジ体の製造方法。 With gelatin aqueous solution
Mix at least one of xanthan gum, sodium alginate, sodium hyaluronate, sodium chondroitin sulfate, sodium polyglutamate, sodium polyacrylate, sodium carboxymethylcellulose as a polyanion under the conditions of pH 5-11 ,
A method for producing a gelatin sponge body comprising cooling, gelling, freezing, and then vacuum lyophilization.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006138972A JP4762785B2 (en) | 2005-06-02 | 2006-05-18 | Gelatin sponge |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005162999 | 2005-06-02 | ||
JP2005162999 | 2005-06-02 | ||
JP2006138972A JP4762785B2 (en) | 2005-06-02 | 2006-05-18 | Gelatin sponge |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007009185A JP2007009185A (en) | 2007-01-18 |
JP4762785B2 true JP4762785B2 (en) | 2011-08-31 |
Family
ID=37748082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006138972A Expired - Fee Related JP4762785B2 (en) | 2005-06-02 | 2006-05-18 | Gelatin sponge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4762785B2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7361368B2 (en) | 2002-06-28 | 2008-04-22 | Advanced Cardiovascular Systems, Inc. | Device and method for combining a treatment agent and a gel |
US8821473B2 (en) | 2003-04-15 | 2014-09-02 | Abbott Cardiovascular Systems Inc. | Methods and compositions to treat myocardial conditions |
US7641643B2 (en) | 2003-04-15 | 2010-01-05 | Abbott Cardiovascular Systems Inc. | Methods and compositions to treat myocardial conditions |
US8828433B2 (en) | 2005-04-19 | 2014-09-09 | Advanced Cardiovascular Systems, Inc. | Hydrogel bioscaffoldings and biomedical device coatings |
US9539410B2 (en) | 2005-04-19 | 2017-01-10 | Abbott Cardiovascular Systems Inc. | Methods and compositions for treating post-cardial infarction damage |
US20080125745A1 (en) | 2005-04-19 | 2008-05-29 | Shubhayu Basu | Methods and compositions for treating post-cardial infarction damage |
US8187621B2 (en) | 2005-04-19 | 2012-05-29 | Advanced Cardiovascular Systems, Inc. | Methods and compositions for treating post-myocardial infarction damage |
US7732190B2 (en) | 2006-07-31 | 2010-06-08 | Advanced Cardiovascular Systems, Inc. | Modified two-component gelation systems, methods of use and methods of manufacture |
US9242005B1 (en) | 2006-08-21 | 2016-01-26 | Abbott Cardiovascular Systems Inc. | Pro-healing agent formulation compositions, methods and treatments |
US8741326B2 (en) | 2006-11-17 | 2014-06-03 | Abbott Cardiovascular Systems Inc. | Modified two-component gelation systems, methods of use and methods of manufacture |
US9005672B2 (en) | 2006-11-17 | 2015-04-14 | Abbott Cardiovascular Systems Inc. | Methods of modifying myocardial infarction expansion |
US8192760B2 (en) * | 2006-12-04 | 2012-06-05 | Abbott Cardiovascular Systems Inc. | Methods and compositions for treating tissue using silk proteins |
JP5724108B2 (en) * | 2009-04-22 | 2015-05-27 | メドスキン ソリューションズ ドクター ズベラック アーゲーMedSkin Solutions Dr.Suwelack AG | Lyophilized composition |
EP3761956B1 (en) * | 2018-03-08 | 2024-06-12 | Catalent U.K. Swindon Zydis Limited | Process to reduce endotoxin in gelatin |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4292972A (en) * | 1980-07-09 | 1981-10-06 | E. R. Squibb & Sons, Inc. | Lyophilized hydrocolloio foam |
JPH01293143A (en) * | 1988-05-21 | 1989-11-27 | Ain Kk | Method for crushing gelatin and manufacture of silk, resin film, resin coating film, and paint using such |
JPH0749490B2 (en) * | 1989-04-06 | 1995-05-31 | 新田ゼラチン株式会社 | Collagen sponge manufacturing method |
JP2995353B2 (en) * | 1991-05-02 | 1999-12-27 | 宮城化学工業株式会社 | Gelatin composition for silver halide photographic materials |
JPH0910294A (en) * | 1995-06-30 | 1997-01-14 | Kyowa Hakko Kogyo Co Ltd | Heat insulating film or sheet |
JPH11279296A (en) * | 1998-03-25 | 1999-10-12 | Bmg:Kk | Bioabsorbable heat-treated gelatin and collagen sheet |
JP2003149777A (en) * | 2001-11-16 | 2003-05-21 | Konica Corp | Silver halide color photographic sensitive material |
JP2004002521A (en) * | 2002-05-31 | 2004-01-08 | Nishikawa Rubber Co Ltd | Process for producing foamed body of hydrophilic natural polymer compound |
JP2005095331A (en) * | 2003-09-24 | 2005-04-14 | Ihara Suisan Kk | Foamed body sheet containing fishskin dermal collagen and its use |
-
2006
- 2006-05-18 JP JP2006138972A patent/JP4762785B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007009185A (en) | 2007-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4762785B2 (en) | Gelatin sponge | |
US11781032B2 (en) | Polymer compositions and coatings | |
Alizadeh et al. | Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by a combined freeze-drying/leaching method | |
Hsieh et al. | Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering | |
Zhu et al. | Manufacture of layered collagen/chitosan-polycaprolactone scaffolds with biomimetic microarchitecture | |
Kim et al. | Biocompatible bacterial cellulose composites for biomedical application | |
Yan et al. | Layer-by-layer assembly of 3D alginate-chitosan-gelatin composite scaffold incorporating bacterial cellulose nanocrystals for bone tissue engineering | |
Tohamy et al. | Novel polysaccharide hybrid scaffold loaded with hydroxyapatite: Fabrication, bioactivity, and in vivo study | |
CN107903336B (en) | Creatine phosphate modified chitosan material and preparation method and application thereof | |
KR20230158445A (en) | Composition for hydrogel sheet, hydrogel sheet made from the composition and method of manufacturing thereof | |
Khoshnood et al. | Development of novel alginate‐polyethyleneimine cell‐laden bioink designed for 3D bioprinting of cutaneous wound healing scaffolds | |
CN106421884A (en) | Method for preparing hemostatic sponge by two-step freezing method | |
CN111420123A (en) | Degradable anti-adhesion double-layer dura mater patch and preparation method thereof | |
CN110698719A (en) | Preparation of polyvinyl alcohol-based hydrogel | |
Cai et al. | The effect of chitosan content on the crystallinity, thermal stability, and mechanical properties of bacterial cellulose—chitosan composites | |
CN114028620A (en) | Mineralized artificial periosteum and preparation method and application thereof | |
CN113018517A (en) | 3D printing skin stent and preparation method and application thereof | |
CN113248743A (en) | Biocompatible degradable three-dimensional cellulose gel and preparation method and application thereof | |
Chen et al. | Characterization of konjac glucomannan-gelatin IPN physical hydrogel scaffold | |
Kucińska-Lipka et al. | Polyurethanes modified with natural polymers for medical application. Part II. Polyurethane/gelatin, polyurethane/starch, polyurethane/cellulose | |
CN112940304A (en) | Three-dimensional cell culture scaffold, fibroblast gel and preparation method thereof | |
CN116099041B (en) | Bioactive glass composite hydrogel scaffold material and preparation method and application thereof | |
Lungu et al. | The influence of glycosaminoglycan type on the collagen-glycosaminoglycan porous scaffolds | |
JPH09327507A (en) | Solid polysacchride material for use as wound bandage material | |
Takeda et al. | Fabrication of 2D and 3D constructs from reconstituted decellularized tissue extracellular matrices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071127 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080627 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110324 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110601 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110608 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |