JP4124914B2 - Electrolytic cell - Google Patents

Electrolytic cell Download PDF

Info

Publication number
JP4124914B2
JP4124914B2 JP16650799A JP16650799A JP4124914B2 JP 4124914 B2 JP4124914 B2 JP 4124914B2 JP 16650799 A JP16650799 A JP 16650799A JP 16650799 A JP16650799 A JP 16650799A JP 4124914 B2 JP4124914 B2 JP 4124914B2
Authority
JP
Japan
Prior art keywords
cathode
anode
electrolytic cell
chamber
solid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16650799A
Other languages
Japanese (ja)
Other versions
JP2000355786A (en
Inventor
茂樹 須藤
喜次 北澤
政弘 大嶋
正志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Uhde Chlorine Engineers Japan Ltd
De Nora Permelec Ltd
Kawasaki Motors Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Permelec Electrode Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd, Permelec Electrode Ltd, Kawasaki Jukogyo KK filed Critical Chlorine Engineers Corp Ltd
Priority to JP16650799A priority Critical patent/JP4124914B2/en
Publication of JP2000355786A publication Critical patent/JP2000355786A/en
Application granted granted Critical
Publication of JP4124914B2 publication Critical patent/JP4124914B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、固体高分子電解質を用いた電解槽に関するもので、とくに水の電気分解に好適な電解槽に関するものである。
【0002】
【従来の技術】
水の電解槽としては各種のものが知られているが、固体高分子電解質を用いた電解槽は、固体高分子電解質膜の有するプロトンあるいは酸素イオン等の透過を利用して電気分解を行うものであり、酸やアルカリ等の液体の電解質を用いることなく水を供給するのみで電気分解を行うことができるという特徴を有している。
【0003】
固体高分子電解質を用いた水電解槽では、陽イオン交換膜の両面に触媒電極を接合することが行われており、このために、陽極と陰極との電極間距離が小さく、固体高分子電解質と電極が直接接合されているので両者の間には気泡は存在しないので、低電圧で大きな電流密度で通電することが可能であり、また電解液による導電性を利用していないので、原料の水には、導電性が極めて小さな高純度の水を用いることができ、高純度の水素、酸素を得ることが可能という特徴を有している。
【0004】
しかしながら、固体高分子電解質膜への電極の接合には、化学めっきを行ったり、フッ素樹脂等を用いて一体化することが行われているが、品質の安定した面積の大きな電極を形成することは難しく、電極面積が大きな大型の電解槽を得ることは困難であった。
【0005】
そこで、電極面積が大きな電解槽を容易に製造するために、陽極および陰極を固体高分子電解質膜に直接に接合せずに、固体高分子電解質とは別に作製した電極を固体高分子電解質膜の両面に密着させた電解槽が提案されている。
例えば、図6は、固体高分子電解質の両面に電極を積層して密着した電解槽である。図6(A)は、固体高分子電解槽の正面図であり、図6(B)は、図6(A)においてA−A線で切断した断面図を示している。固体高分子電解質41、陽極42、陰極43、複極板44を多数積層し、端板45、46を多くの締め付けボルト47によって締め付けている。ところが、このような電解槽では、電極面積が大きくなると、端板面に歪みが生じることが避けられず、また積層数が多くなると接触の不均一な電極が生じることとなり、固体高分子電解質膜41と陽極42および陰極43との間の接触の不良個所、電気分解時の通電電流の不均一が生じることとなり、電流の集中する箇所が生じることによる固体高分子電解質や電極の劣化、あるいは電解電圧の上昇等が生じるので好ましくない。
【0006】
また、このような固体高分子電解質膜と電極との接触の不均一が生じるのを防止するために、端板の一部に押し付け用のねじ部材を取り付けて、積層体を押し付けて不均一が生じることを防止すること(特開平6−184783号)が提案されているが、数多くの固体高分子電解質膜および電極を積層した電解槽においては、極めて大型の押し付け用のねじ部材を必要とし、その効果も満足するものではなかった。
【0007】
【発明が解決しようとする課題】
本発明は、固体高分子電解質膜を用いた電解面積が大きな電解槽を提供することを課題とするものであり、固体高分子電解質膜と電極との均一な接触を形成するとともに両者の接触を高めて電解性能の優れた電解槽を提供することを課題とするものである。
【0008】
【課題を解決するための手段】
本発明は、固体高分子電解質膜を介して陽極および陰極を配置した単位電解槽を積層した電解槽において、固体高分子電解質膜を介して陽極および陰極を配置し、陽極を配置した陽極室を区画する陽極室隔壁および陰極を配置した陰極室を区画する陰極室隔壁からなる単位電解槽の複数個を、陽極室隔壁と陰極室隔壁の間に設けた中間枠体の内部に導電性弾性体を介在させて積層した電解槽である。
また、管路が形成された陰極室隔壁、陽極室隔壁、中間枠体を積層し、積層体の両端面に供給管路、生成物管路が設けられた陽極側端板と陰極側端板を配置し、陽極側端板と陰極側端板間の距離が伸縮可能であるとともに圧縮力を与えた状態で保持する保持手段で保持した電解槽である。
【0009】
【発明の実施の形態】
以下に図面を参照して本発明を説明する。
図1は、本発明の電解槽を説明する図であり、2個の単位電解槽を積層した状態を示す図である。
単位電解槽1は、固体高分子電解質膜2に密着して多孔性の陽極3と陰極4を有しており、陽極3および陰極4には、それぞれ陽極室隔壁5および陰極室隔壁6が接している。
【0010】
多孔性の陽極および陰極は、多孔性金属、網状体、エキスパンデッドメタル、金属繊維の織布、不織布、金属繊維の焼結体等の多孔性の導電性基体として、陽極は電極触媒物質として白金族の金属またはその酸化物を少なくとも1種含むものが好ましく、とくに白金、イリジウム、酸化イリジウム、酸化ルテニウムを少なくとも1種含む触媒層を形成したものが好ましい。一方、陰極には電極触媒物質として、白金、白金黒、イリジウム等を用いることが好ましい。
【0011】
固体高分子電解質膜には、フッ素樹脂系のイオン交換膜、炭化水素系樹脂系のイオン交換膜、イオン交換物質を結着用樹脂と一体化したもの等を用いることができる。
また、これらの陽極の電極触媒物質は、多孔性のチタン、ニオブ等の導電性基体の表面に直接に析出させても、陽極触媒物質をフッ素樹脂を結着剤として表面に塗布することによって製造することができる。また、陰極触媒物質は、ニッケル、ステンレスからなる多孔性の集電体上に、直接に析出させて形成しても、あるいはフッ素樹脂を結着剤として集電体の表面に塗布して形成しても良い。
【0012】
陽極および陰極の電極触媒は、多孔性の導電性物質の全面に形成されていなくても良く、固体高分子電解質膜に面する側にのみ存在したものでも良い。また陽極室7には、陽極3と多孔性の陽極集電体8とを積層して配置し、陰極室9には、陰極4と多孔性の陰極集電体10を配置したものでも良い。
いずれの構成とする場合にも、電気分解に供する水が電極に供給され、生成する酸素および水素が速やかに陽極室および陰極室から取り出されるように、陽極、陰極、陽極集電体、および陰極集電体は、多孔性の大きなものを用いることが好ましい。
【0013】
陽極室7は、陽極室枠11と固体高分子電解質膜2および陽極室隔壁5によって形成され、ガスケット12によって気密性を確保している。陽極室枠11には、陽極室7内へ水を導入する通路(図示せず)、生成した酸素気泡を含んだ水を取り出す陽極室生成物通路13および酸素気泡を含んだ水を陽極室から電解槽外へ導く陽極室生成物管路14を有しており、各単位電解槽の陽極室で生成した酸素気泡を含んだ水が外部へ取り出される。
【0014】
陽極室隔壁および陰極室隔壁には、それぞれ厚さが0.5〜2mm程度の金属板を用いることができ、チタン、ニオブ、ジルコニウム、ニッケル、ステンレス等の電気分解環境において安定な材料を用いることができる。
一方、陰極室9は、陰極室枠15と固体高分子電解質膜2および陰極室隔壁6によって形成され、ガスケット12によって気密性を確保している。陰極室枠15には、陰極室9内へ水を導入する通路は存在しない。
【0015】
陰極室9へは陽極での反応で生成したプロトンと陽極室内の水が電気泳動によって移行し、陰極で生成した水素気泡を含んだ水が生じるので、陰極室には、水素気泡を含んだ水を取り出す陰極室生成物通路16および陰極室生成物管路17が接続されている。
【0016】
陽極、陰極、固体高分子電解質膜、陽極室枠、陰極室枠、陽極室隔壁および陰極室隔壁で構成される単位電解槽1は、導電性弾性体18を介して積層されており、導電性弾性体18は導電性弾性体とほぼ同じ厚さの中間枠体19の内部に配置して積層されている。
【0017】
導電性弾性体18は、弾性を有するゴム、合成樹脂等中に銅、導電性炭素材料などからなる導電性の良好な繊維、粒子、板状体を分散したものであって、弾性を有するとともに両面に接触する単位電解槽の陽極室隔壁と陰極室隔壁の間の導電性を確保するものである。導電性弾性体18を配置して単位電解槽を積層すると、単位電解槽の積層数が多数となっても単位電解槽間での良好な導電接続を形成するとともに、固体高分子電解質膜面に電極を均一に密着することができるので単位電解槽の通電面の全面にわたり電流分布を均一とすることが可能となる。
【0018】
図2は、電解槽を説明する分解斜視図である。
固体高分子電解質膜2の一方の面には、陽極室枠11と陽極室隔壁5によって形成される陽極室7内に陽極3が設けられており、固体高分子電解質膜2の他方の面には、陰極室枠15と陰極室隔壁6によって形成された陰極室9内には陰極4が設けられている。
【0019】
さらに、陰極室隔壁6に接して中間枠体19が配置されており、中間枠体19の内部には、導電性弾性体18が陰極室隔壁6とを接して配置されており、中間枠体19の他方の面には、隣接する単位電解槽の陽極室隔壁5が配置されている。
【0020】
固体高分子電解質膜2、陽極室枠11、陰極室枠15、陽極室隔壁5および陰極室隔壁6には、いずれにも陽極室へ水を供給する水供給管路20、陽極室8内で生成する酸素気泡含有水を取り出す陽極室生成物管路14、陰極室内で生成する水素気泡含有水を取り出す陰極室生成物管路17が設けられている。また、陽極室枠11には、陽極室7と水供給管路20とを連通する水供給通路20a、陽極室7と陽極室生成物管路14を連通する陽極室生成物通路(図示せず)が設けられており、陽極室への水の供給と生成物の取り出しを行っており、陰極室枠15には、陰極室内で生成した水素気泡を含んだ水を陰極室生成物管路へ導入する陽極室生成物通路を有している。
また、陽極室隔壁5、陽極室枠11、固体高分子電解質膜2、陰極室枠15、陰極室隔壁6の間には、ガスケット(図示せず)が配置されて気密が保持されている。
【0021】
図3は、本発明の電解槽の流体および電流の流れを説明する図である。
電解槽21は、陽極室7および陰極室9からなる単位電解槽1の多数を直列に積層したものであり、水供給管路20から各陽極室には水を供給し、直流電源22から単位電解槽1の個数に応じた電流を供給して電気分解が行われる。
【0022】
電気分解によって、陽極室では酸素が発生するとともに、プロトンが生成し、固体電解質膜を透過して陰極室へ移行し水素を発生し、同時に電気泳動によって陽極室から陰極室へ水が移行する。
その結果、陽極室からは酸素気泡を含有した水が生成し、陰極室からは水素気泡を含有した水が生成する。それぞれ陽極室生成物管路14、陰極室生成物管路17から外部へ取り出される。
本発明の電解槽21では、各単位電解槽を形成する部材に管路を形成したので、単位電解槽を積層した電解槽のいずれかの端部から水を供給し、またいずれか端部から生成物を取り出すことができる。
【0023】
例えば、電解有効面積20dm2 の単位電解槽を75個積層した電解槽に、100A/dm2 の電流密度で通電し、陽極室から3.4m3/h の流速で水を供給すると、陽極室からは32m3/h(0℃1気圧)の酸素と3.05m3/hの水が生成し、陰極室からは63m3/h(0℃1気圧)の酸素と0.3m3/hの水が生成する。
【0024】
また、図4には、単位電解槽を積層した電解槽を説明する図を示す。
図4(A)は、正面図であり、図4(B)は、右側面方向から見た図である。電解槽21は、陽極側端板23面に単位電解槽を導電性弾性体および中間枠体を介在させて積層したものであり、所定の数の単位電解槽を積層した後に陰極側端板24を積層し、同一円周上に均等に締め付け棒25を配置し、ナット26で締め付けられている。
【0025】
また、端板とナットとの間には、締め付け棒の軸方向への伸縮が可能なバネ状部材27を設けて締め付けられている。バネ状部材としては、皿バネ、コイルバネ等が用いられており、これによって陽極側端板と陰極側端板との距離を伸縮可能な圧縮力が与えられた状態で保持される。これによって、電気分解によって発生する熱による熱膨張による電解槽の変形を防止できるので、単位電解槽の電極面に加わる圧力が不均一となることを防止することができる。
また、陰極側端板24には、電解槽21へ水を供給する2個の水供給管路20が設けられており、2個の水供給管路20の中心を結ぶ線に対称な位置に陽極室生成物管路14、および陰極室生成物管路17が配置されている。
陽極側端板23および陰極側端板24には、それぞれ陽極側導電接続体28、陰極側導電接続体29を有しており、これらの導電接続体を通じて電解槽への導電接続を行うことができる。
【0026】
図5は、電解槽の締め付け棒の締め付け部を説明する図であり、図5(A)は、1個の締め付け部を説明する側面の拡大図であり、図5(B)は、1個の皿バネの斜視図を示し、図5(C)は断面図を示す。
陰極側端板24を貫く締め付け棒25の軸が、径の大きな側を互いに接した皿バネ30の複数対を貫通しており、ワッシャ31を介してナット26が取り付けられている陰極側端板24は、皿バネと位置が固定したナットで保持されているので、陰極側端板24は、締め付け棒の軸方向へ伸縮可能となり、電解槽の温度上昇による熱膨張が生じても電解槽が不均一に変形することが防止される。その結果、高分子固体電解質と電極との間での接触部に不均一が生じることはなく電流分布の不均一等が生じることはない。
【0027】
【発明の効果】
本発明によれば、固体高分子電解質膜と電極との接触を一様となり、固体高分子電解質膜面での電流分布を均一なものとすることができるので、電気分解性能の優れた電解槽を得ることができる。
【図面の簡単な説明】
【図1】図1は、本発明の電解槽を説明する図であり、2個の単位電解槽を積層した図である。
【図2】図2は、電解槽を説明する分解斜視図である。
【図3】図3は、本発明の電解槽の流体および電流の流れを説明する図である。
【図4】図4には、単位電解槽を積層した電解槽を説明する図である。
【図5】図5は、電解槽のタイロッドの締め付け部を説明する図である。
【図6】図6は、固体高分子電解質の両面に電極を積層して密着した電解槽である。
【符号の説明】
1…単位電解槽、2…固体高分子電解質膜、3…陽極、4…陰極、5…陽極室隔壁、6…陰極室隔壁、7…陽極室、8…陽極集電体、9…陰極室、10…陰極集電体、11…陽極室枠、12…ガスケット、13…陽極室生成物通路、14…陽極室生成物管路、15…陰極室枠、16…陰極室生成物通路、17…陰極室生成物管路、18…導電性弾性体、19…中間枠体、20…水供給管路、20a…水供給通路、21…電解槽、22…直流電源、23…陽極側端板、24…陰極側端板、25…締め付け棒、26…ナット、27…バネ状部材、28…陽極側導電接続体、29…陰極側導電接続体、30…皿バネ、31…ワッシャ、41…固体高分子電解質、42…陽極、43…陰極、44…複極板、45,46…端板、47…締め付けボルト
[0001]
[Industrial application fields]
The present invention relates to an electrolytic cell using a solid polymer electrolyte, and particularly to an electrolytic cell suitable for water electrolysis.
[0002]
[Prior art]
Various types of water electrolyzers are known, but electrolyzers using solid polymer electrolytes perform electrolysis utilizing the permeation of protons or oxygen ions etc. of the solid polymer electrolyte membrane. Thus, electrolysis can be performed only by supplying water without using a liquid electrolyte such as acid or alkali.
[0003]
In water electrolyzers using solid polymer electrolytes, catalytic electrodes are bonded to both sides of the cation exchange membrane. For this reason, the distance between the anode and the cathode is small, and the solid polymer electrolyte Since there is no air bubble between them and the electrode, it is possible to energize at a low voltage and a large current density, and since the conductivity by the electrolyte is not utilized, As water, high-purity water having extremely low conductivity can be used, and high-purity hydrogen and oxygen can be obtained.
[0004]
However, joining of the electrode to the solid polymer electrolyte membrane is performed by chemical plating or integration using a fluororesin or the like, but it is necessary to form an electrode with a stable and large area. It was difficult to obtain a large electrolytic cell having a large electrode area.
[0005]
Therefore, in order to easily manufacture an electrolytic cell having a large electrode area, an electrode prepared separately from the solid polymer electrolyte is not bonded to the solid polymer electrolyte membrane without directly joining the anode and the cathode to the solid polymer electrolyte membrane. An electrolytic cell in which both surfaces are in close contact with each other has been proposed.
For example, FIG. 6 shows an electrolytic cell in which electrodes are laminated and adhered to both surfaces of a solid polymer electrolyte. 6A is a front view of the solid polymer electrolytic cell, and FIG. 6B shows a cross-sectional view taken along line AA in FIG. 6A. A large number of solid polymer electrolytes 41, anodes 42, cathodes 43, and bipolar plates 44 are stacked, and end plates 45 and 46 are fastened by a number of fastening bolts 47. However, in such an electrolytic cell, when the electrode area becomes large, it is inevitable that the end plate surface is distorted, and when the number of layers increases, an electrode with non-uniform contact is generated, and the solid polymer electrolyte membrane The poor contact between 41 and the anode 42 and the cathode 43, the non-uniformity of the energization current at the time of electrolysis, and the degradation of the solid polymer electrolyte and the electrode due to the occurrence of the current concentration, or the electrolysis This is not preferable because the voltage rises.
[0006]
In addition, in order to prevent such non-uniform contact between the solid polymer electrolyte membrane and the electrode, a pressing screw member is attached to a part of the end plate, and the laminate is pressed to cause non-uniformity. Although it has been proposed to prevent the occurrence (Japanese Patent Laid-Open No. 6-184873), in an electrolytic cell in which a large number of solid polymer electrolyte membranes and electrodes are laminated, an extremely large screw member for pressing is required, The effect was not satisfactory.
[0007]
[Problems to be solved by the invention]
It is an object of the present invention to provide an electrolytic cell having a large electrolytic area using a solid polymer electrolyte membrane, which forms a uniform contact between the solid polymer electrolyte membrane and an electrode and An object of the present invention is to provide an electrolytic cell that is enhanced and has excellent electrolytic performance.
[0008]
[Means for Solving the Problems]
The present invention relates to an electrolytic cell in which a unit electrolytic cell in which an anode and a cathode are disposed via a solid polymer electrolyte membrane is laminated, and an anode chamber in which the anode and the cathode are disposed via the solid polymer electrolyte membrane and the anode is disposed. A plurality of unit cell tanks each comprising an anode chamber partition wall and a cathode chamber partition wall partitioning a cathode chamber in which a cathode is disposed are electrically conductive elastic bodies in an intermediate frame provided between the anode chamber partition wall and the cathode chamber partition wall. It is the electrolytic cell which laminated | stacked by interposing.
Also, a cathode chamber end plate and a cathode side end plate in which a cathode chamber partition wall, an anode chamber partition wall, and an intermediate frame body, in which conduits are formed, are laminated, and supply conduits and product conduits are provided on both end faces of the laminate. The electrolytic cell is held by holding means that holds the anode-side end plate and the cathode-side end plate in a state where the distance between the anode-side end plate and the cathode-side end plate can be expanded and contracted.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to the drawings.
FIG. 1 is a diagram for explaining an electrolytic cell of the present invention, and shows a state in which two unit electrolytic cells are laminated.
The unit cell 1 has a porous anode 3 and a cathode 4 in close contact with the solid polymer electrolyte membrane 2, and the anode chamber partition 5 and the cathode chamber partition 6 are in contact with the anode 3 and the cathode 4, respectively. ing.
[0010]
Porous anodes and cathodes are porous conductive substrates such as porous metals, nets, expanded metals, metal fiber woven fabrics, non-woven fabrics, metal fiber sintered bodies, and anodes as electrocatalyst materials. Those containing at least one platinum group metal or oxide thereof are preferred, and those having a catalyst layer containing at least one platinum, iridium, iridium oxide, and ruthenium oxide are particularly preferred. On the other hand, it is preferable to use platinum, platinum black, iridium or the like as an electrode catalyst material for the cathode.
[0011]
As the solid polymer electrolyte membrane, a fluororesin-based ion exchange membrane, a hydrocarbon-based resin-based ion exchange membrane, a material in which an ion exchange substance is integrated with a binding resin, or the like can be used.
In addition, these anode electrode catalyst materials can be produced by directly depositing the anode catalyst material on the surface of a conductive substrate such as porous titanium or niobium, using a fluororesin as a binder. can do. Further, the cathode catalyst material may be formed by directly depositing on a porous current collector made of nickel or stainless steel, or by coating the surface of the current collector with a fluororesin as a binder. May be.
[0012]
The electrode catalyst for the anode and the cathode may not be formed on the entire surface of the porous conductive material, and may be present only on the side facing the solid polymer electrolyte membrane. The anode chamber 7 may be formed by laminating the anode 3 and the porous anode current collector 8, and the cathode chamber 9 may be provided with the cathode 4 and the porous cathode current collector 10.
In any case, the anode, the cathode, the anode current collector, and the cathode are supplied so that the water used for electrolysis is supplied to the electrode, and the generated oxygen and hydrogen are quickly taken out from the anode chamber and the cathode chamber. It is preferable to use a highly current collector.
[0013]
The anode chamber 7 is formed by the anode chamber frame 11, the solid polymer electrolyte membrane 2, and the anode chamber partition wall 5, and airtightness is secured by the gasket 12. In the anode chamber frame 11, a passage (not shown) for introducing water into the anode chamber 7, an anode chamber product passage 13 for taking out water containing generated oxygen bubbles, and water containing oxygen bubbles from the anode chamber. It has an anode chamber product conduit 14 that leads to the outside of the electrolytic cell, and water containing oxygen bubbles generated in the anode chamber of each unit electrolytic cell is taken out to the outside.
[0014]
A metal plate having a thickness of about 0.5 to 2 mm can be used for each of the anode chamber partition and the cathode chamber partition, and a material that is stable in an electrolysis environment such as titanium, niobium, zirconium, nickel, and stainless steel is used. Can do.
On the other hand, the cathode chamber 9 is formed by the cathode chamber frame 15, the solid polymer electrolyte membrane 2, and the cathode chamber partition 6, and airtightness is secured by the gasket 12. The cathode chamber frame 15 has no passage for introducing water into the cathode chamber 9.
[0015]
Protons generated by the reaction at the anode and water in the anode chamber migrate to the cathode chamber 9 by electrophoresis, and water containing hydrogen bubbles generated at the cathode is generated. Therefore, water containing hydrogen bubbles is generated in the cathode chamber. Are connected to a cathode chamber product passage 16 and a cathode chamber product conduit 17.
[0016]
The unit cell 1 composed of an anode, a cathode, a solid polymer electrolyte membrane, an anode chamber frame, a cathode chamber frame, an anode chamber partition wall, and a cathode chamber partition wall is laminated via a conductive elastic body 18 and is electrically conductive. The elastic body 18 is disposed and laminated inside an intermediate frame 19 having substantially the same thickness as the conductive elastic body.
[0017]
The conductive elastic body 18 is obtained by dispersing fibers, particles, and plate-like bodies made of copper, conductive carbon material, etc. in elastic rubber, synthetic resin, etc., and having elasticity. This ensures electrical conductivity between the anode chamber partition wall and the cathode chamber partition wall of the unit electrolytic cell in contact with both surfaces. When the unit electrolyzers are stacked with the conductive elastic body 18 disposed, a good conductive connection is formed between the unit electrolyzers even when the number of unit electrolyzers is large, and the solid polymer electrolyte membrane surface is formed. Since the electrodes can be uniformly adhered, the current distribution can be made uniform over the entire energization surface of the unit cell.
[0018]
FIG. 2 is an exploded perspective view illustrating the electrolytic cell.
On one surface of the solid polymer electrolyte membrane 2, an anode 3 is provided in an anode chamber 7 formed by the anode chamber frame 11 and the anode chamber partition wall 5, and on the other surface of the solid polymer electrolyte membrane 2. The cathode 4 is provided in the cathode chamber 9 formed by the cathode chamber frame 15 and the cathode chamber partition 6.
[0019]
Further, an intermediate frame 19 is disposed in contact with the cathode chamber partition 6, and a conductive elastic body 18 is disposed in contact with the cathode chamber partition 6 inside the intermediate frame 19. An anode chamber partition wall 5 of an adjacent unit electrolytic cell is disposed on the other surface of 19.
[0020]
In the solid polymer electrolyte membrane 2, the anode chamber frame 11, the cathode chamber frame 15, the anode chamber partition wall 5 and the cathode chamber partition wall 6, the water supply conduit 20 for supplying water to the anode chamber and the anode chamber 8 are used. An anode chamber product line 14 for taking out oxygen bubble-containing water to be generated and a cathode chamber product line 17 for taking out hydrogen bubble-containing water produced in the cathode chamber are provided. Also, the anode chamber frame 11 has a water supply passage 20a that communicates the anode chamber 7 and the water supply conduit 20, and an anode chamber product passage (not shown) that communicates the anode chamber 7 and the anode chamber product conduit 14. ) For supplying water to the anode chamber and taking out the product. In the cathode chamber frame 15, water containing hydrogen bubbles generated in the cathode chamber is supplied to the cathode chamber product conduit. It has an anode chamber product passage for introduction.
A gasket (not shown) is arranged between the anode chamber partition wall 5, the anode chamber frame 11, the solid polymer electrolyte membrane 2, the cathode chamber frame 15, and the cathode chamber partition wall 6 so as to maintain airtightness.
[0021]
FIG. 3 is a diagram illustrating the flow of fluid and current in the electrolytic cell of the present invention.
The electrolytic cell 21 is obtained by laminating a large number of unit electrolytic cells 1 including an anode chamber 7 and a cathode chamber 9 in series. Water is supplied to each anode chamber from a water supply pipe 20 and a unit is supplied from a DC power source 22. Electrolysis is performed by supplying a current corresponding to the number of electrolytic cells 1.
[0022]
Oxygen is generated in the anode chamber by electrolysis, protons are generated, pass through the solid electrolyte membrane, transfer to the cathode chamber, generate hydrogen, and water moves from the anode chamber to the cathode chamber at the same time by electrophoresis.
As a result, water containing oxygen bubbles is generated from the anode chamber, and water containing hydrogen bubbles is generated from the cathode chamber. They are taken out from the anode chamber product line 14 and the cathode chamber product line 17 respectively.
In the electrolytic cell 21 of the present invention, since the pipe line is formed in the member forming each unit electrolytic cell, water is supplied from either end of the electrolytic cell in which the unit electrolytic cells are stacked, and from either end. The product can be removed.
[0023]
For example, the unit electrolytic cell of the electrolytic effective area 20 dm 2 to 75 stacked electrolytic cell is energized at a current density of 100A / dm 2, the supply water at a flow rate of 3.4 m 3 / h from the anode chamber, the anode chamber Produced 32m 3 / h (0 ° C 1 atm) oxygen and 3.05 m 3 / h water from the cathode chamber, and 63 m 3 / h (0 ° c 1 atm) oxygen and 0.3 m 3 / h from the cathode chamber. Water is produced.
[0024]
FIG. 4 is a diagram illustrating an electrolytic cell in which unit electrolytic cells are stacked.
FIG. 4A is a front view, and FIG. 4B is a view as seen from the right side surface direction. The electrolytic cell 21 is formed by laminating unit electrolytic cells on the surface of the anode side end plate 23 with a conductive elastic body and an intermediate frame interposed therebetween, and after laminating a predetermined number of unit electrolytic cells, the cathode side end plate 24. Are stacked, the fastening rods 25 are arranged evenly on the same circumference, and fastened with nuts 26.
[0025]
Further, between the end plate and the nut, a spring-like member 27 capable of extending and contracting in the axial direction of the fastening rod is provided and fastened. As the spring-like member, a disc spring, a coil spring, or the like is used, and thereby, the distance between the anode side end plate and the cathode side end plate is held in a state where a compressive force capable of expanding and contracting is applied. As a result, deformation of the electrolytic cell due to thermal expansion due to heat generated by electrolysis can be prevented, so that the pressure applied to the electrode surface of the unit electrolytic cell can be prevented from becoming uneven.
The cathode side end plate 24 is provided with two water supply pipes 20 for supplying water to the electrolytic cell 21, and is located symmetrically with a line connecting the centers of the two water supply pipes 20. An anode chamber product line 14 and a cathode chamber product line 17 are arranged.
The anode-side end plate 23 and the cathode-side end plate 24 have an anode-side conductive connection body 28 and a cathode-side conductive connection body 29, respectively. Conductive connection to the electrolytic cell can be performed through these conductive connection bodies. it can.
[0026]
FIG. 5 is a view for explaining a fastening portion of a fastening rod of an electrolytic cell, FIG. 5 (A) is an enlarged side view for explaining one fastening portion, and FIG. 5 (B) is one piece. FIG. 5C shows a cross-sectional view of the disc spring.
The axis of the clamping rod 25 that penetrates the cathode side end plate 24 passes through a plurality of pairs of disc springs 30 that are in contact with each other on the large diameter side, and the cathode side end plate to which the nut 26 is attached via a washer 31. 24 is held by a disc spring and a nut fixed in position, so that the cathode side end plate 24 can be expanded and contracted in the axial direction of the clamping rod, and the electrolytic cell is not affected even if thermal expansion occurs due to a rise in the temperature of the electrolytic cell. Non-uniform deformation is prevented. As a result, non-uniformity does not occur at the contact portion between the solid polymer electrolyte and the electrode, and non-uniform current distribution does not occur.
[0027]
【The invention's effect】
According to the present invention, the contact between the solid polymer electrolyte membrane and the electrode becomes uniform, and the current distribution on the surface of the solid polymer electrolyte membrane can be made uniform. Can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining an electrolytic cell of the present invention, in which two unit electrolytic cells are stacked.
FIG. 2 is an exploded perspective view illustrating an electrolytic cell.
FIG. 3 is a diagram for explaining the flow of fluid and current in the electrolytic cell of the present invention.
FIG. 4 is a diagram for explaining an electrolytic cell in which unit electrolytic cells are stacked.
FIG. 5 is a diagram illustrating a tightening portion of a tie rod of an electrolytic cell.
FIG. 6 is an electrolytic cell in which electrodes are laminated and adhered to both surfaces of a solid polymer electrolyte.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Unit electrolytic cell, 2 ... Solid polymer electrolyte membrane, 3 ... Anode, 4 ... Cathode, 5 ... Anode chamber partition, 6 ... Cathode chamber partition, 7 ... Anode chamber, 8 ... Anode collector, 9 ... Cathode chamber DESCRIPTION OF SYMBOLS 10 ... Cathode collector, 11 ... Anode chamber frame, 12 ... Gasket, 13 ... Anode chamber product passage, 14 ... Anode chamber product conduit, 15 ... Cathode chamber frame, 16 ... Cathode chamber product passage, 17 DESCRIPTION OF SYMBOLS ... Cathode chamber product line, 18 ... Conductive elastic body, 19 ... Intermediate frame, 20 ... Water supply line, 20a ... Water supply path, 21 ... Electrolyzer, 22 ... DC power supply, 23 ... Anode-side end plate 24 ... cathode side end plate, 25 ... clamping rod, 26 ... nut, 27 ... spring-like member, 28 ... anode side conductive connector, 29 ... cathode side conductive connector, 30 ... disc spring, 31 ... washer, 41 ... Solid polymer electrolyte, 42 ... anode, 43 ... cathode, 44 ... bipolar plate, 45,46 ... end plate, 47 ... clamping bolt

Claims (2)

固体高分子電解質膜を介して陽極および陰極を配置した単位電解槽を積層した電解槽において、固体高分子電解質膜を介して陽極および陰極を配置し、陽極を配置した陽極室を区画する陽極室隔壁および陰極を配置した陰極室を区画する陰極室隔壁からなる単位電解槽の複数個を、陽極室隔壁と陰極室隔壁の間に設けた中間枠体の内部に導電性弾性体を介在させて積層したものであることを特徴とする電解槽。In an electrolytic cell in which unit electrolytic cells in which an anode and a cathode are arranged via a solid polymer electrolyte membrane are stacked, an anode chamber in which an anode and a cathode are arranged via a solid polymer electrolyte membrane and an anode chamber in which the anode is arranged is partitioned A plurality of unit electrolytic cells each comprising a cathode chamber partition wall that partitions the cathode chamber in which the partition wall and the cathode are arranged are provided with a conductive elastic body interposed in an intermediate frame provided between the anode chamber partition wall and the cathode chamber partition wall. An electrolyzer characterized by being laminated. 管路が形成された陰極室隔壁、陽極室隔壁、中間枠体を積層し、積層体の両端面に供給管路、生成物管路が設けられた陽極側端板と陰極側端板を配置し、陽極側端板と陰極側端板間の距離が伸縮可能であるとともに圧縮力を与えた状態で保持する保持手段で保持したことを特徴とする請求項1記載の電解槽。 A cathode chamber partition wall, an anode chamber partition wall, and an intermediate frame body are laminated, and an anode side end plate and a cathode side end plate provided with supply conduits and product conduits are arranged on both end faces of the laminate. 2. The electrolytic cell according to claim 1, wherein the distance between the anode side end plate and the cathode side end plate is held by holding means which can be expanded and contracted and is held in a state where a compressive force is applied.
JP16650799A 1999-06-14 1999-06-14 Electrolytic cell Expired - Lifetime JP4124914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16650799A JP4124914B2 (en) 1999-06-14 1999-06-14 Electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16650799A JP4124914B2 (en) 1999-06-14 1999-06-14 Electrolytic cell

Publications (2)

Publication Number Publication Date
JP2000355786A JP2000355786A (en) 2000-12-26
JP4124914B2 true JP4124914B2 (en) 2008-07-23

Family

ID=15832639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16650799A Expired - Lifetime JP4124914B2 (en) 1999-06-14 1999-06-14 Electrolytic cell

Country Status (1)

Country Link
JP (1) JP4124914B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5021950B2 (en) * 2006-03-31 2012-09-12 大同メタル工業株式会社 Solid polymer membrane water electrolyzer
JP2007284729A (en) * 2006-04-14 2007-11-01 Star Energy:Kk Unit tank
HUE045048T2 (en) * 2011-07-20 2019-12-30 New Nel Hydrogen As Electrolyser frame concept, method and use
JP5548299B2 (en) * 2013-11-11 2014-07-16 裕紹 辻 Combustion gas generator
WO2020203319A1 (en) * 2019-04-01 2020-10-08 旭化成株式会社 Electrolyzer, method for controlling same, and program

Also Published As

Publication number Publication date
JP2000355786A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
EP0817297B1 (en) Membrane electrochemical cell provided with gas diffusion electrodes in contact with porous, flat, metal current conductors having highly distributed contact area
US4732660A (en) Membrane electrolyzer
US4210512A (en) Electrolysis cell with controlled anolyte flow distribution
US4722773A (en) Electrochemical cell having gas pressurized contact between laminar, gas diffusion electrode and current collector
US4247376A (en) Current collecting/flow distributing, separator plate for chloride electrolysis cells utilizing ion transporting barrier membranes
US4923582A (en) Monopolar, bipolar and/or hybrid memberane cell
JPS6341992B2 (en)
US4217401A (en) Bipolar separator for electrochemical cells and method of preparation thereof
CA1140891A (en) Electrolytic cell with membrane and electrodes bonded to it having outward projections
KR890002061B1 (en) A monopolar electrochemical cell,cell unit and process for conducting electrolysis in monopolar cell series
JPS62156284A (en) Electrode
CA2036353C (en) Monopolar ion exchange membrane electrolytic cell assembly
US4571288A (en) Process for the electrolysis of aqueous alkali metal chloride solution
JP4124914B2 (en) Electrolytic cell
JPH0995791A (en) Solid polyelectrolyte water electrolyzer and its electrode structure
US4541911A (en) Method of assembling a filter press type electrolytic cell
EP0007078A2 (en) Bipolar separator for electrochemical cells, a method for its preparation and an electrochemical cell comprising said separator
JP2893238B2 (en) Water electrolyzer using polymer electrolyte membrane
JP7213537B2 (en) Electrochemical cells and cell stacks
US5254233A (en) Monopolar ion exchange membrane electrolytic cell assembly
AU565760B2 (en) Monopolar, bipolar and/or hybrid membrane cell
JP3212318B2 (en) Monopolar ion exchange membrane electrolytic cell
JP3110656B2 (en) Electrolytic cell
WO1994025644A1 (en) Electrolytic cell
WO2020080201A1 (en) Electrochemical cell and cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080507

R150 Certificate of patent or registration of utility model

Ref document number: 4124914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term