WO2020203319A1 - Electrolyzer, method for controlling same, and program - Google Patents

Electrolyzer, method for controlling same, and program Download PDF

Info

Publication number
WO2020203319A1
WO2020203319A1 PCT/JP2020/012107 JP2020012107W WO2020203319A1 WO 2020203319 A1 WO2020203319 A1 WO 2020203319A1 JP 2020012107 W JP2020012107 W JP 2020012107W WO 2020203319 A1 WO2020203319 A1 WO 2020203319A1
Authority
WO
WIPO (PCT)
Prior art keywords
lock mechanism
contact plate
electrolytic cell
plate
control device
Prior art date
Application number
PCT/JP2020/012107
Other languages
French (fr)
Japanese (ja)
Inventor
裕人 鈴木
泰崇 穴見
平田 浩一
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CA3134517A priority Critical patent/CA3134517C/en
Priority to CN202080024941.2A priority patent/CN113661274A/en
Priority to JP2021511429A priority patent/JP7058374B2/en
Priority to AU2020255626A priority patent/AU2020255626B2/en
Priority to KR1020217027542A priority patent/KR102571358B1/en
Priority to US17/599,906 priority patent/US20220195613A1/en
Priority to EP20782684.3A priority patent/EP3951019A4/en
Publication of WO2020203319A1 publication Critical patent/WO2020203319A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/04Regulation of the inter-electrode distance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/05Pressure cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/75Assemblies comprising two or more cells of the filter-press type having bipolar electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/26Locking mechanisms

Definitions

  • the present invention relates to an electrolytic cell, a control method thereof, and a program.
  • electrolysis in order to perform electrolysis (hereinafter referred to as "electrolysis") of an aqueous alkali metal chloride solution such as a saline solution or water, an electrolytic cell containing a laminated body in which a plurality of electrolytic cells are laminated has been used. ing. At present, a technique has been proposed in which the laminated body in the electrolytic cell is pressurized in the stacking direction at a predetermined pressure by a pressurizing machine to suppress leakage of the contents (electrolytic solution, etc.) filled in the electrolytic cell. (See, for example, Patent Document 1).
  • the pressing force is applied to the laminated body by moving the pressing plate by a hydraulic actuator or the like, but the pressing force is released without the hydraulic actuator operating.
  • the pressing plate retracts due to the expansion of the electrolytic cell due to a temperature change or the like.
  • a safety device having a contact plate fixed at a predetermined position and a lock mechanism (including a lock nut) attached to a rod moving with a pressing plate has been provided.
  • the locking mechanism is brought into contact with the contact plate to prevent the pressing plate from further retracting, thereby adopting a technique for maintaining the pressing force.
  • the present invention has been made in view of such circumstances, and is laminated by automatically adjusting the position of the lock mechanism of the safety device in an electrolytic cell containing a laminated body in which a plurality of electrolytic cells are laminated.
  • the purpose is to maintain the pressing force applied to the body.
  • the electrolytic cell according to the present invention is arranged in a laminate in which a plurality of electrolytic cells having an anode chamber and a cathode chamber are laminated via a diaphragm and at least one end side in the lamination direction of the laminate.
  • the pressing plate, the actuator that generates pressing pressure along the stacking direction by moving the pressing plate, the contact plate arranged at a predetermined position, and the pressing plate are attached so as to extend in the stacking direction. It has a rod that moves relative to the contact plate together with the pressing plate, and a lock mechanism attached to the rod.
  • the lock mechanism comes into contact with the contact plate and the rod and the pressing plate
  • the distance between the safety device configured to maintain the pressing force by preventing the retreat of the stack and the locking mechanism and the contact plate to maintain the pressing force acting on the laminate is within a certain range. It is provided with a control device for adjusting.
  • the method for producing an electrolysis product according to the present invention is a method for producing an electrolysis product by supplying a raw material to the present electrolytic cell and performing electrolysis.
  • control method includes a laminate in which a plurality of electrolytic cells having an anode chamber and a cathode chamber are laminated via a diaphragm, and a pressing plate arranged at least on one end side in the lamination direction of the laminate.
  • An actuator that generates pressing force along the stacking direction by moving the pressing plate, a contact plate arranged at a predetermined position, and a contact plate attached to the pressing plate so as to extend in the stacking direction and contact with the pressing plate. It has a rod that moves relative to the plate and a lock mechanism attached to the rod, and when the actuator does not operate, the lock mechanism abuts on the contact plate to prevent the rod and the pressing plate from retracting.
  • a laminate in which a plurality of electrolytic cells having an anode chamber and a cathode chamber are laminated via a diaphragm, and a pressing plate arranged at least one end side in the lamination direction of the laminate are pressed.
  • An actuator that generates a pressing force along the stacking direction by moving the plates, a contact plate arranged at a predetermined position, and a contact plate attached to the pressing plate so as to extend in the stacking direction and together with the pressing plate. It has a rod that moves relative to the rod and a lock mechanism attached to the rod, and when the actuator does not operate, the lock mechanism abuts on the contact plate to prevent the rod and the pressing plate from retreating.
  • the control device includes a control step of adjusting the distance between the locking mechanism and the contact plate within a specific range.
  • the locking mechanism of the safety device abuts on the contact plate to prevent the rod and the pressing plate from retreating, so that the pressing force can be maintained.
  • the control device automatically adjusts the distance between the lock mechanism and the abutting plate within a specific range, so that the laminated body
  • the pressing force acting on the pressure can be maintained at a predetermined value (for example, 10 kg / cm 2 ) or more. Therefore, even when the actuator is not operated, an appropriate pressing force can be maintained without human intervention, and leakage of the liquid filled inside the electrolytic cell can be prevented.
  • the lock mechanism may include a lock nut.
  • the control device can adjust the position of the lock mechanism and / or the contact plate so as to maintain the pressing force acting on the laminated body at 10 kg / cm 2 or more.
  • the control device in the control method (program) of the electrolytic cell according to the present invention, in the control step, is a lock mechanism and / or a contact plate so as to maintain the pressing force acting on the laminated body at 10 kg / cm 2 or more. The position can be adjusted.
  • the control device determines the distance between the lock mechanism and the abutting plate by the following equation (1):
  • C MAX (mm / cell) Seal surface pressure during electrolysis (kg / cm 2 ) x 0.011-0.108 ... (1)
  • the position of the locking mechanism and / or the abutting plate can be adjusted so as to maintain the maximum clearance per cell calculated in CMAX or less.
  • the distance between the lock mechanism and the contact plate is equal to or less than the maximum clearance C MAX per cell calculated by the above formula (1).
  • the control device can adjust the position of the locking mechanism and / or the abutment plate so as to maintain.
  • the control device can adjust the position of the lock mechanism and / or the contact plate so as to maintain the distance between the lock mechanism and the contact plate at 7 mm or less. Further, in the control method (program) of the electrolytic cell according to the present invention, in the control step, the control device sets the lock mechanism and / or the contact plate so as to maintain the distance between the lock mechanism and the contact plate at 7 mm or less. The position of can be adjusted.
  • the control device can move the lock mechanism and / or the contact plate at a speed of 4.5 mm / h or more. Further, in the control method (program) of the electrolytic cell according to the present invention, in the control step, the control device can move the lock mechanism and / or the contact plate at a speed of 4.5 mm / h or more.
  • a sensor for detecting a change in the position of the lock mechanism due to the movement of the pressing plate can be further provided.
  • the control device keeps the distance between the lock mechanism and the contact plate within a specific range so as to maintain the pressing force acting on the laminate based on the position change of the lock mechanism detected by the sensor. Can be adjusted.
  • a detection step of detecting a change in the position of the lock mechanism due to the movement of the pressing plate with a sensor can be further included.
  • the control device specifies the distance between the lock mechanism and the contact plate so as to maintain the pressing force acting on the laminated body based on the position change of the lock mechanism detected in the detection step. It can be adjusted within the range of.
  • the pressing force applied to the laminated body is maintained by automatically adjusting the position of the lock mechanism of the safety device. Is possible.
  • the electrolytic cell 1 according to the present embodiment includes a laminated body 30 in which a plurality of electrolytic cells 10 are laminated via a diaphragm 20.
  • the electrolytic cells 10 constituting the laminated body 30 are installed in the anode chamber 11, the cathode chamber 12, the partition wall 13 installed between the anode chamber 11 and the cathode chamber 12, and the anode chamber 11. It has an anode 11a and a cathode 12a installed in the cathode chamber 12.
  • the cathode chamber 12 further includes a current collector 12b, a support 12c that supports the current collector 12b, and a metal elastic body 12d.
  • the metal elastic body 12d is installed between the current collector 12b and the cathode 12a.
  • the support 12c is installed between the current collector 12b and the partition wall 13.
  • the current collector 12b is electrically connected to the cathode 12a via the metal elastic body 12d.
  • the partition wall 13 is electrically connected to the current collector 12b via the support 12c. Therefore, the partition wall 13, the support 12c, the current collector 12b, the metal elastic body 12d, and the cathode 12a are electrically connected. The entire surface of the cathode 12a is preferably coated with a catalyst layer for the reduction reaction. Further, in the form of electrical connection, the partition wall 13 and the support 12c, the support 12c and the current collector 12b, the current collector 12b and the metal elastic body 12d are directly attached, and the cathode 12a is laminated on the metal elastic body 12d. It may be in the form of being. As a method of directly attaching each of these constituent members to each other, welding or the like can be mentioned.
  • FIG. 4 is a cross-sectional view of two adjacent electrolytic cells 10 in the electrolytic cell 1.
  • the electrolytic cell 10, the diaphragm (ion exchange membrane) 20, and the electrolytic cell 10 are arranged in series in this order.
  • a diaphragm 20 is arranged between the anode chamber 11 of one electrolytic cell 10 and the cathode chamber 12 of the other electrolytic cell 10 of the two adjacent electrolytic cells 10 in the electrolytic cell 1. That is, the anode chamber 11 of the electrolytic cell 10 and the cathode chamber 12 of the electrolytic cell 10 adjacent thereto are separated by a diaphragm 20.
  • the electrolytic cell 1 is configured such that a plurality of electrolytic cells 10 connected in series via a diaphragm 20 are supported by an electrolytic cell frame 2. That is, the electrolytic cell 1 in the present embodiment includes a plurality of electrolytic cells 10 arranged in series, a diaphragm 20 arranged between adjacent electrolytic cells 10, and an electrolytic cell frame 2 supporting them. It is a multi-pole electrolytic cell. As shown in FIG. 2, the electrolytic cell 1 is assembled by arranging a plurality of electrolytic cells 10 in series via a diaphragm 20 and pressurizing and connecting them by a pressing plate 40 (described later) of a pressurizing machine.
  • the configuration of the electrolytic cell frame 2 is not particularly limited as long as it can support and connect each member, and various aspects can be adopted.
  • the electrolytic cell 1 includes an anode terminal 3 and a cathode terminal 4 connected to a power source.
  • the anode 11a of the electrolytic cell 10 located at the end of the plurality of electrolytic cells 10 connected in series in the electrolytic cell 1 is electrically connected to the anode terminal 3.
  • the cathode 12a of the electrolytic cell 10 located at the opposite end of the anode terminal 3 is electrically connected to the cathode terminal 4.
  • the current during electrolysis flows from the anode terminal 3 side toward the cathode terminal 4 via the anode and the cathode of each electrolytic cell 10.
  • An electrolytic cell having only an anode chamber (anode terminal cell) and an electrolytic cell having only a cathode chamber (cathode terminal cell) may be arranged at both ends of the connected electrolytic cells 10.
  • the anode terminal 3 is connected to the anode terminal cell arranged at one end thereof
  • the cathode terminal 4 is connected to the cathode terminal cell arranged at the other end.
  • salt water raw material
  • pure water or a low-concentration sodium hydroxide aqueous solution raw material
  • cathode chamber 12 Each liquid is supplied to each electrolytic solution cell 10 from an electrolytic solution supply pipe (not shown) via an electrolytic solution supply hose (not shown). Further, the electrolytic solution and the product obtained by electrolysis are recovered from an electrolytic solution recovery tube (not shown).
  • electrolysis sodium ions in salt water move from the anode chamber 11 of one electrolysis cell 10 to the cathode chamber 12 of the adjacent electrolysis cell 10 through the diaphragm 20.
  • the current during electrolysis flows along the direction (stacking direction) in which the electrolysis cells 10 are connected in series. That is, the current flows from the anode chamber 11 to the cathode chamber 12 through the diaphragm 20.
  • the electrolysis of salt water chlorine gas is generated on the anode 11a side, and sodium hydroxide (solute) and hydrogen gas are generated on the cathode 12a side.
  • the chlorine gas, sodium hydroxide and hydrogen gas produced correspond to the electrolytic products in the present invention.
  • the anode side gasket 14 is arranged on the surface of the frame body constituting the anode chamber 11, and the cathode side gasket 15 is arranged on the surface of the frame body forming the cathode chamber 12.
  • the electrolytic cells 10 are connected to each other so that the anode-side gasket 14 included in one electrolytic cell 10 and the cathode-side gasket 15 of the electrolytic cell 10 adjacent thereto sandwich the diaphragm 20. With these gaskets, when a plurality of electrolytic cells 10 are connected in series via the diaphragm 20, airtightness can be imparted to the connection points.
  • Gaskets 14 and 15 function to seal between the electrolytic cell 10 and the diaphragm 20.
  • Specific examples of the gaskets 14 and 15 include a frame-shaped rubber sheet having an opening formed in the center.
  • the gaskets 14 and 15 are required to have resistance to corrosive electrolytes, generated gases, and the like, and to be used for a long period of time. Therefore, from the viewpoint of chemical resistance and hardness, vulcanized products of ethylene / propylene / diene rubber (EPDM rubber), vulcanized products of ethylene / propylene rubber (EPM rubber), cross-linked peroxide products, etc. are usually used as gaskets 14 and 15. ..
  • gaskets 14 and 15 may have an opening so as not to obstruct the flow of the electrolytic solution, and the shape thereof is not particularly limited.
  • frame-shaped gaskets 14 and 15 are attached with an adhesive or the like along the peripheral edge of each opening of the anode chamber frame forming the anode chamber 11 or the cathode chamber frame forming the cathode chamber 12.
  • each electrolytic cell 10 to which the gaskets 14 and 15 are attached may be tightened via the diaphragm 20.
  • electrolytic solution and electrolytic products such as alkali metal hydroxide, chlorine gas, and hydrogen gas generated by electrolysis from leaking to the outside of the electrolytic cell 10.
  • the electrolytic cell 1 generates a pressing force along the stacking direction by moving the pressing plate 40 that applies pressing force to the laminated body 30 and the pressing plate 40.
  • It includes an actuator 50.
  • the pressing plate 40 is a part of the pressurizing machine, and as shown in FIGS. 1 and 2, is arranged on the anode terminal 3 side in the stacking direction of the laminated body 30 and presses the laminated body 30 toward the cathode terminal 4. It fulfills the function.
  • the actuator 50 functions to generate a pressing force along the stacking direction by moving the pressing plate 40.
  • a hydraulic cylinder operated by hydraulic pressure is adopted as the actuator 50.
  • the electrolytic cell 1 includes a safety device 60 configured to maintain a pressing force acting on the laminated body 30 when the actuator 50 does not operate.
  • the safety device 60 is attached to the abutting plate 61 arranged (fixed) at a predetermined position and the pressing plate 40 so as to extend in the laminating direction of the laminated body 30, and is attached to the abutting plate 61 together with the pressing plate 40. It has a rod 62 that moves relatively and a lock mechanism 63 attached to the rod 62.
  • a predetermined pressing force can be applied to the laminated body 30 by the pressing plate 40 by operating the actuator 50.
  • the pressing plate 40 may retract due to the expansion of the electrolytic cell 10 due to a temperature change or the like. Although it may occur, even if such a situation occurs, as shown in FIG. 6, the lock mechanism 63 of the safety device 60 comes into contact with the contact plate 61 to prevent the rod 62 and the pressing plate 40 from retreating. , It becomes possible to maintain the pressing force acting on the laminated body 30.
  • the lock mechanism 63 has a lock nut and the like.
  • the pressing plate 40, the rod 62, and the lock mechanism 63 move in the direction opposite to the contact plate 61, and the lock mechanism 63 and the contact plate 61 There may be a gap between the two.
  • the pressing force acting on the laminated body 30 when the actuator 50 is not operated may decrease, and leakage of the electrolytic solution or the electrolytic product may occur.
  • the operator has periodically performed the work of tightening the lock mechanism 63 and moving it to the contact plate 61 side.
  • a technique for automatically tightening the lock mechanism 63 (automatically adjusting the position of the lock mechanism 63) has been desired.
  • the electrolytic cell 1 is provided with a mechanism for automatically adjusting the position of the lock mechanism 63 of the safety device 60. That is, as shown in FIG. 7, the electrolytic cell 1 is laminated based on the position change of the lock mechanism 63 detected by the sensor 70 and the sensor 70 that detects the position change of the lock mechanism 63 due to the movement of the pressing plate 40. It includes a control device 80 that adjusts the position of the lock mechanism 63 so as to maintain the pressing force acting on the body 30. At this time, in order to maintain the pressing force acting on the laminated body 30, it is necessary to adjust the distance between the lock mechanism 63 and the contact plate 61 within a specific range. In addition to adjusting the position of the lock mechanism 63, the distance between the lock mechanism 63 and the contact plate 61 may be adjusted based on the position change of the stroke of the pressing plate 40 or a specific cell or actuator.
  • the sensor 70 has, for example, a pair of light emitting elements and a light receiving element arranged so as to sandwich the lock mechanism 63, and locks by receiving the light emitted from the light emitting element toward the lock mechanism 63 by the light receiving element.
  • a configuration for detecting the position change of the mechanism 63 can be adopted, but the configuration is not particularly limited to such a configuration, and any configuration that can detect the position change of the lock mechanism 63 may be adopted.
  • the control device 80 includes a computer having a memory, a CPU, and the like for recording various programs and various data.
  • the control device 80 in the present embodiment receives information regarding the position change of the lock mechanism 63 sent from the sensor 70, generates a control signal based on the received information, outputs the control signal to the motor 90, and drives the motor 90.
  • the lock nut 63 is moved with respect to the rod 62 via the chain 91 to adjust the position of the lock mechanism 63, thereby functioning to maintain the pressing force acting on the laminated body 30.
  • Equation (1) corresponds to an approximate equation calculated based on the graph of FIG.
  • control device 80 adjusts the position of the lock mechanism 63 so that the distance between the lock mechanism 63 and the contact plate 61 is maintained at 7 mm or less based on the position change of the lock mechanism 63 detected by the sensor 70. Is preferable. As the distance between the lock mechanism 63 and the contact plate 61 increases, the thickness of the gaskets 14 and 15 (see FIG. 5) when the actuator is not operated increases, the sealing pressure decreases, and the electrolytic cell 10 There is a possibility that the liquid filled inside may leak, but according to the experiment of the inventor of the present application, by maintaining the distance between the lock mechanism 63 and the abutting plate 61 of 7 mm or less, the laminate 30 has a possibility of leaking. It has been clarified that the pressing force acting can be maintained at 10 kg / cm 2 or more, and the leakage of the liquid filled inside the electrolytic cell 10 can be prevented.
  • the minimum value of the pressing force acting on the laminated body 30 is set to "10 kg / cm 2 ", but the maximum value of the pressing force acting on the laminated body 30 is the scale of the electrolytic cell 1 or the maximum value. It can be set appropriately (for example, about 70 kg / cm 2 ) in consideration of the specifications, the specifications of the gaskets 14 and 15, the period of use, and the like. Further, the control device 80 in the present embodiment sets the lock mechanism 63 at a speed of 4.5 mm / h or more in consideration of the creep speed of the gaskets 14 and 15 (the thickness gradually decreases due to the pressing force). It works to move with.
  • the operator maintains the operating state of the safety device 60, the sensor 70, and the control device 80 even when the operation of the actuator 50 of the electrolytic cell 1 is stopped.
  • the sensor 70 detects the position change of the lock mechanism 63 due to the movement of the pressing plate 40 due to the temperature change or the like (detection step: S1).
  • the control device 80 adjusts the position of the lock mechanism 63 so as to maintain the pressing force acting on the laminated body 30 based on the position change of the lock mechanism 63 detected in the detection step S1 (control step: S2).
  • control step S2 the control device 80 moves the lock mechanism 63 at a speed of 4.5 mm / h or more.
  • the distance between the lock mechanism 63 and the contact plate 61 at the time when the operation of the actuator 50 was stopped was 10 mm, whereas the lock mechanism 63 was moved to the contact plate 61 side due to the expansion of the electrolytic cell 10.
  • the control device 80 moves between the lock mechanism 63 and the contact plate 61.
  • the distance is equal to or less than the maximum clearance C MAX shown in the equation (1), it is determined that the movement of the lock mechanism 63 is unnecessary, and the position of the lock mechanism 63 is not adjusted.
  • the lock mechanism 63 moved 3 mm in the direction opposite to the contact plate 61 due to the contraction of the electrolytic cell 10, and as a result, the distance between the lock mechanism 63 and the contact plate 61 became equal to or more than the maximum clearance CMAX.
  • the control unit 80 moves the lock mechanism 63 to the contact plate 61 side to the distance between the locking mechanism 63 and the contact plate 61 is equal to or smaller than the maximum clearance C MAX
  • the pressing force acting on the laminate 30 is maintained at 10 kg / cm 2 or more.
  • the control device 80 maintains the pressing force acting on the laminated body 30 at 10 kg / cm 2 or more even when the distance between the lock mechanism 63 and the contact plate 61 is the maximum clearance CMAX or less.
  • the position of the lock mechanism 63 can also be adjusted. That is, a target value (target distance) of the distance between the lock mechanism 63 and the contact plate 61 is set within the range of 0 to C MAX , and the control device 80 is set so that the actual distance becomes the target distance. Can adjust the position of the lock mechanism 63. For example, when the target value (target distance) of the distance between the lock mechanism 63 and the contact plate 61 is set to 4 mm and the distance detected by the sensor 70 is 3.5 mm, the control device 80 locks. The lock mechanism 63 can be moved by outputting a control signal to the motor 90 that increases the distance between the nut 63 and the contact plate 61 by 0.5 mm.
  • the lock mechanism 63 of the safety device 60 comes into contact with the contact plate 61 to prevent the rod 62 and the pressing plate 40 from retreating.
  • the pressing force can be maintained.
  • the control device 80 automatically adjusts the position of the lock mechanism 63 to obtain a predetermined pressing force acting on the laminated body 30. It can be maintained above the value (10 kg / cm 2 ). Therefore, even when the actuator 50 does not operate, an appropriate pressing force can be maintained without human intervention, and leakage of the liquid filled inside the electrolytic cell 10 can be prevented.
  • the contact plate 61 of the safety device 60 is fixed at a predetermined position, while the pressing force acting on the laminated body 30 is maintained by moving the "lock mechanism 63".
  • the position of the "contact plate 61" is configured so that the "contact plate 61" can be moved, and instead of moving the lock mechanism 63 (or in addition to moving the lock mechanism 63). It is also possible to maintain the pressing force acting on the laminated body 30 by adjusting.
  • the present invention is not limited to the above embodiments, and those skilled in the art with appropriate design changes are also included in the scope of the present invention as long as they have the features of the present invention. .. That is, each element included in the embodiment and its arrangement, material, condition, shape, size, etc. are not limited to those exemplified, and can be appropriately changed. In addition, the elements included in the embodiment can be combined as much as technically possible, and the combination thereof is also included in the scope of the present invention as long as the features of the present invention are included.
  • Electrolytic cell 10 Electrolytic cell 11 .
  • Anode chamber 12 ...
  • Cathode chamber 20 ...
  • Diaphragm 30 ... Laminated body 40 ... Press plate 50 .
  • Actuator 60 Safety device 61 .
  • Contact plate 62 ...
  • Rod 63 Lock mechanism 70 .
  • Sensor 80 ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Actuator (AREA)

Abstract

Provided is an electrolyzer which houses a stack obtained by stacking a plurality of electrolytic cells, wherein by automatically adjusting the position of the locking mechanism of a safety device, the pressing force applied to the stack is maintained. The electrolyzer 1 comprises: a stack 30 obtained by stacking a plurality of electrolytic cells 10 with membranes 20 interposed therebetween; a pressing plate 40 positioned on one end of the stack 30 in the stacking direction; an actuator 50 which generates a pressing force in the stacking direction by moving the pressing plate 40; a safety device 60 which is constituted to maintain the pressing force by having the locking mechanism 63 come into contact with the contact plate 61, thereby hindering the retraction of the pressing plate 40, when the actuator 50 is not operating; and a control device 80 which adjusts the distance between the contact plate 61 and the locking mechanism 63 within a specific range, so as to maintain the pressing force that acts upon the stack 30.

Description

電解槽及びその制御方法並びにプログラムElectrolytic cell and its control method and program
 本発明は、電解槽及びその制御方法並びにプログラムに関する。 The present invention relates to an electrolytic cell, a control method thereof, and a program.
 従来より、食塩水等のアルカリ金属塩化物水溶液や水の電気分解(以下、「電解」と称する)を行うために、複数の電解セルが積層されてなる積層体を格納した電解槽が使用されている。現在においては、電解槽内の積層体を加圧機によって所定の圧力で積層方向に加圧することにより、電解セル内に充填された内容物(電解液等)の漏れを抑制する技術が提案されている(例えば、特許文献1参照)。 Conventionally, in order to perform electrolysis (hereinafter referred to as "electrolysis") of an aqueous alkali metal chloride solution such as a saline solution or water, an electrolytic cell containing a laminated body in which a plurality of electrolytic cells are laminated has been used. ing. At present, a technique has been proposed in which the laminated body in the electrolytic cell is pressurized in the stacking direction at a predetermined pressure by a pressurizing machine to suppress leakage of the contents (electrolytic solution, etc.) filled in the electrolytic cell. (See, for example, Patent Document 1).
国際公開第2012/114915号International Publication No. 2012/114915
 ところで、特許文献1に記載されたような加圧機では、油圧アクチュエータ等によって押圧板を移動させることにより積層体に押圧力を加えているが、油圧アクチュエータが作動せずに押圧力が解除されたときは、温度変化等により電解セルが膨張すること等に起因して押圧板が後退するという事態が発生する。近年においては、かかる事態に備えて、所定の位置に固定される当接板と、押圧板とともに移動するロッドに取り付けられた(例えばロックナットを含む)ロック機構と、を有する安全装置を設けておき、押圧板がある程度後退した場合にロック機構が当接板に当接するようにして押圧板のそれ以上の後退を阻止することにより、押圧力を維持する技術が採用されている。 By the way, in the pressurizing machine as described in Patent Document 1, the pressing force is applied to the laminated body by moving the pressing plate by a hydraulic actuator or the like, but the pressing force is released without the hydraulic actuator operating. In some cases, the pressing plate retracts due to the expansion of the electrolytic cell due to a temperature change or the like. In recent years, in preparation for such a situation, a safety device having a contact plate fixed at a predetermined position and a lock mechanism (including a lock nut) attached to a rod moving with a pressing plate has been provided. When the pressing plate is retracted to some extent, the locking mechanism is brought into contact with the contact plate to prevent the pressing plate from further retracting, thereby adopting a technique for maintaining the pressing force.
 しかし、上記のような従来の安全装置においては、ロック機構の位置調整を自動で行うことができないことから、押圧力を維持するためにロック機構を手動で定期的に締め付ける作業を行う必要があり、その作業が煩雑となっていた。 However, in the conventional safety device as described above, since the position of the lock mechanism cannot be adjusted automatically, it is necessary to manually and periodically tighten the lock mechanism in order to maintain the pressing force. , The work was complicated.
 本発明は、かかる事情に鑑みてなされたものであり、複数の電解セルが積層されてなる積層体を格納した電解槽において、安全装置のロック機構の位置を自動的に調整することにより、積層体に加える押圧力を維持することを目的とする。 The present invention has been made in view of such circumstances, and is laminated by automatically adjusting the position of the lock mechanism of the safety device in an electrolytic cell containing a laminated body in which a plurality of electrolytic cells are laminated. The purpose is to maintain the pressing force applied to the body.
 前記目的を達成するため、本発明に係る電解槽は、陽極室及び陰極室を有する電解セルが隔膜を介して複数積層されてなる積層体と、積層体の積層方向における少なくとも一端側に配置された押圧板と、押圧板を移動させることにより積層方向に沿った押圧力を発生させるアクチュエータと、所定の位置に配置される当接板と、積層方向に延在するように押圧板に取り付けられ押圧板とともに当接板に対して相対的に移動するロッドと、ロッドに取り付けられたロック機構と、を有し、アクチュエータが作動しないときにロック機構が当接板に当接してロッド及び押圧板の後退を阻止することにより押圧力を維持するように構成された安全装置と、積層体に作用する押圧力を維持するようにロック機構と当接板との間の距離を特定の範囲内に調整する制御装置と、を備えるものである。また、本発明に係る電解生成物の製造方法は、本電解槽に原料を供給し、電解を行うことにより、電解生成物を製造する方法である。 In order to achieve the above object, the electrolytic cell according to the present invention is arranged in a laminate in which a plurality of electrolytic cells having an anode chamber and a cathode chamber are laminated via a diaphragm and at least one end side in the lamination direction of the laminate. The pressing plate, the actuator that generates pressing pressure along the stacking direction by moving the pressing plate, the contact plate arranged at a predetermined position, and the pressing plate are attached so as to extend in the stacking direction. It has a rod that moves relative to the contact plate together with the pressing plate, and a lock mechanism attached to the rod. When the actuator does not operate, the lock mechanism comes into contact with the contact plate and the rod and the pressing plate The distance between the safety device configured to maintain the pressing force by preventing the retreat of the stack and the locking mechanism and the contact plate to maintain the pressing force acting on the laminate is within a certain range. It is provided with a control device for adjusting. Further, the method for producing an electrolysis product according to the present invention is a method for producing an electrolysis product by supplying a raw material to the present electrolytic cell and performing electrolysis.
 また、本発明に係る制御方法は、陽極室及び陰極室を有する電解セルが隔膜を介して複数積層されてなる積層体と、積層体の積層方向における少なくとも一端側に配置された押圧板と、押圧板を移動させることにより積層方向に沿った押圧力を発生させるアクチュエータと、所定の位置に配置される当接板と、積層方向に延在するように押圧板に取り付けられ押圧板とともに当接板に対して相対的に移動するロッドと、ロッドに取り付けられたロック機構と、を有し、アクチュエータが作動しないときにロック機構が当接板に当接してロッド及び押圧板の後退を阻止することにより押圧力を維持するように構成された安全装置と、を備える電解槽の制御方法であって、積層体に作用する押圧力を維持するように制御装置がロック機構と当接板との間の距離を特定の範囲内に調整する制御工程を含むものである。 Further, the control method according to the present invention includes a laminate in which a plurality of electrolytic cells having an anode chamber and a cathode chamber are laminated via a diaphragm, and a pressing plate arranged at least on one end side in the lamination direction of the laminate. An actuator that generates pressing force along the stacking direction by moving the pressing plate, a contact plate arranged at a predetermined position, and a contact plate attached to the pressing plate so as to extend in the stacking direction and contact with the pressing plate. It has a rod that moves relative to the plate and a lock mechanism attached to the rod, and when the actuator does not operate, the lock mechanism abuts on the contact plate to prevent the rod and the pressing plate from retracting. This is a control method for an electrolytic cell including a safety device configured to maintain a pressing force, and the control device is a locking mechanism and an abutting plate so as to maintain the pressing force acting on the laminate. It includes a control step of adjusting the distance between them within a specific range.
 また、本発明に係るプログラムは、陽極室及び陰極室を有する電解セルが隔膜を介して複数積層されてなる積層体と、積層体の積層方向における少なくとも一端側に配置された押圧板と、押圧板を移動させることにより積層方向に沿った押圧力を発生させるアクチュエータと、所定の位置に配置される当接板と、積層方向に延在するように押圧板に取り付けられ押圧板とともに当接板に対して相対的に移動するロッドと、ロッドに取り付けられたロック機構と、を有し、アクチュエータが作動しないときにロック機構が当接板に当接してロッド及び押圧板の後退を阻止することにより押圧力を維持するように構成された安全装置と、を備える電解槽を制御する工程群をコンピュータに実行させるプログラムであって、工程群は、積層体に作用する押圧力を維持するように制御装置がロック機構と当接板との間の距離を特定の範囲内に調整する制御工程を含むものである。 Further, in the program according to the present invention, a laminate in which a plurality of electrolytic cells having an anode chamber and a cathode chamber are laminated via a diaphragm, and a pressing plate arranged at least one end side in the lamination direction of the laminate are pressed. An actuator that generates a pressing force along the stacking direction by moving the plates, a contact plate arranged at a predetermined position, and a contact plate attached to the pressing plate so as to extend in the stacking direction and together with the pressing plate. It has a rod that moves relative to the rod and a lock mechanism attached to the rod, and when the actuator does not operate, the lock mechanism abuts on the contact plate to prevent the rod and the pressing plate from retreating. A program that causes a computer to execute a process group for controlling an electrolytic cell equipped with a safety device configured to maintain a pressing force, and the process group is to maintain the pressing force acting on the laminate. The control device includes a control step of adjusting the distance between the locking mechanism and the contact plate within a specific range.
 かかる構成及び方法を採用すると、アクチュエータが作動しないときに、安全装置のロック機構が当接板に当接してロッド及び押圧板の後退を阻止することにより押圧力を維持することができる。この際、温度変化等に起因して電解セルが膨張収縮した場合においても、制御装置がロック機構と当接板との間の距離を特定の範囲内に自動的に調整することにより、積層体に作用する押圧力を所定の値(例えば10kg/cm2)以上に維持することができる。従って、アクチュエータが作動しない状態においても、人の手を加えることなく適切な押圧力を維持することができ、電解セルの内部に充填された液体の漏れを防ぐことが可能となる。なお、ロック機構は、ロックナットを含むことができる。 By adopting such a configuration and method, when the actuator does not operate, the locking mechanism of the safety device abuts on the contact plate to prevent the rod and the pressing plate from retreating, so that the pressing force can be maintained. At this time, even when the electrolytic cell expands and contracts due to a temperature change or the like, the control device automatically adjusts the distance between the lock mechanism and the abutting plate within a specific range, so that the laminated body The pressing force acting on the pressure can be maintained at a predetermined value (for example, 10 kg / cm 2 ) or more. Therefore, even when the actuator is not operated, an appropriate pressing force can be maintained without human intervention, and leakage of the liquid filled inside the electrolytic cell can be prevented. The lock mechanism may include a lock nut.
 本発明に係る電解槽において、制御装置は、積層体に作用する押圧力を10kg/cm2以上に維持するようにロック機構及び/又は当接板の位置を調整することができる。また、本発明に係る電解槽の制御方法(プログラム)において、制御工程では、積層体に作用する押圧力を10kg/cm2以上に維持するように制御装置がロック機構及び/又は当接板の位置を調整することができる。 In the electrolytic cell according to the present invention, the control device can adjust the position of the lock mechanism and / or the contact plate so as to maintain the pressing force acting on the laminated body at 10 kg / cm 2 or more. Further, in the control method (program) of the electrolytic cell according to the present invention, in the control step, the control device is a lock mechanism and / or a contact plate so as to maintain the pressing force acting on the laminated body at 10 kg / cm 2 or more. The position can be adjusted.
 本発明に係る電解槽において、制御装置は、ロック機構と当接板との間の距離を、以下の式(1):
 CMAX(mm/cell)=電解時のシール面圧(kg/cm2)×0.011-0.108 …(1)
で算出される1セル当たりの最大クリアランスCMAX以下に維持するように、ロック機構及び/又は当接板の位置を調整することができる。また、本発明に係る電解槽の制御方法(プログラム)において、制御工程では、ロック機構と当接板との間の距離を上記式(1)で算出される1セル当たりの最大クリアランスCMAX以下に維持するように、制御装置がロック機構及び/又は当接板の位置を調整することができる。
In the electrolytic cell according to the present invention, the control device determines the distance between the lock mechanism and the abutting plate by the following equation (1):
C MAX (mm / cell) = Seal surface pressure during electrolysis (kg / cm 2 ) x 0.011-0.108 ... (1)
The position of the locking mechanism and / or the abutting plate can be adjusted so as to maintain the maximum clearance per cell calculated in CMAX or less. Further, in the control method (program) of the electrolytic cell according to the present invention, in the control step, the distance between the lock mechanism and the contact plate is equal to or less than the maximum clearance C MAX per cell calculated by the above formula (1). The control device can adjust the position of the locking mechanism and / or the abutment plate so as to maintain.
 本発明に係る電解槽において、制御装置は、ロック機構と当接板との間の距離を7mm以下に維持するようにロック機構及び/又は当接板の位置を調整することができる。また、本発明に係る電解槽の制御方法(プログラム)において、制御工程では、ロック機構と当接板との間の距離を7mm以下に維持するように制御装置がロック機構及び/又は当接板の位置を調整することができる。 In the electrolytic cell according to the present invention, the control device can adjust the position of the lock mechanism and / or the contact plate so as to maintain the distance between the lock mechanism and the contact plate at 7 mm or less. Further, in the control method (program) of the electrolytic cell according to the present invention, in the control step, the control device sets the lock mechanism and / or the contact plate so as to maintain the distance between the lock mechanism and the contact plate at 7 mm or less. The position of can be adjusted.
 本発明に係る電解槽において、制御装置は、ロック機構及び/又は当接板を4.5mm/h以上の速度で移動させることができる。また、本発明に係る電解槽の制御方法(プログラム)において、制御工程では、制御装置がロック機構及び/又は当接板を4.5mm/h以上の速度で移動させることができる。 In the electrolytic cell according to the present invention, the control device can move the lock mechanism and / or the contact plate at a speed of 4.5 mm / h or more. Further, in the control method (program) of the electrolytic cell according to the present invention, in the control step, the control device can move the lock mechanism and / or the contact plate at a speed of 4.5 mm / h or more.
 本発明に係る電解槽において、押圧板の移動に伴うロック機構の位置変化を検出するセンサをさらに備えることができる。かかる場合において、制御装置は、センサで検出したロック機構の位置変化に基づいて、積層体に作用する押圧力を維持するようにロック機構と当接板との間の距離を特定の範囲内に調整することができる。また、本発明に係る電解槽の制御方法(プログラム)において、押圧板の移動に伴うロック機構の位置変化をセンサで検出する検出工程をさらに含むことができる。かかる場合において、制御工程では、検出工程で検出したロック機構の位置変化に基づいて、積層体に作用する押圧力を維持するように制御装置がロック機構と当接板との間の距離を特定の範囲内に調整することができる。 In the electrolytic cell according to the present invention, a sensor for detecting a change in the position of the lock mechanism due to the movement of the pressing plate can be further provided. In such a case, the control device keeps the distance between the lock mechanism and the contact plate within a specific range so as to maintain the pressing force acting on the laminate based on the position change of the lock mechanism detected by the sensor. Can be adjusted. Further, in the electrolytic cell control method (program) according to the present invention, a detection step of detecting a change in the position of the lock mechanism due to the movement of the pressing plate with a sensor can be further included. In such a case, in the control step, the control device specifies the distance between the lock mechanism and the contact plate so as to maintain the pressing force acting on the laminated body based on the position change of the lock mechanism detected in the detection step. It can be adjusted within the range of.
 本発明によれば、複数の電解セルが積層されてなる積層体を格納した電解槽において、安全装置のロック機構の位置を自動的に調整することにより、積層体に加える押圧力を維持することが可能となる。 According to the present invention, in an electrolytic cell storing a laminated body in which a plurality of electrolytic cells are laminated, the pressing force applied to the laminated body is maintained by automatically adjusting the position of the lock mechanism of the safety device. Is possible.
本発明の実施形態に係る電解槽の構成を説明するための簡略化した構成図である。It is a simplified block diagram for demonstrating the structure of the electrolytic cell which concerns on embodiment of this invention. 本発明の実施形態に係る電解槽の分解斜視図である。It is an exploded perspective view of the electrolytic cell which concerns on embodiment of this invention. 本発明の実施形態に係る電解槽の電解セルの断面図である。It is sectional drawing of the electrolytic cell of the electrolytic cell which concerns on embodiment of this invention. 図3に示す電解セルが2つ直列に接続された状態を示す断面図である。It is sectional drawing which shows the state which two electrolytic cells shown in FIG. 3 are connected in series. 図4に示す2つの電解セルの間に配置されるガスケットを説明するための説明図である。It is explanatory drawing for demonstrating the gasket arranged between two electrolytic cells shown in FIG. 本発明の実施形態に係る電解槽の安全装置の構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure of the safety device of the electrolytic cell which concerns on embodiment of this invention. 本発明の実施形態に係る電解槽の制御装置等の構成を説明するための説明図である。It is explanatory drawing for demonstrating the structure of the control apparatus and the like of the electrolytic cell which concerns on embodiment of this invention. 電解時のシール面圧と1セル当たりの最大クリアランスとの相関関係を示すグラフである。It is a graph which shows the correlation between the seal surface pressure at the time of electrolysis and the maximum clearance per cell. 本発明の実施形態に係る電解槽の制御方法を説明するためのフローチャートである。It is a flowchart for demonstrating the control method of the electrolytic cell which concerns on embodiment of this invention.
 以下、図面を参照して、本発明の実施形態について説明する。なお、以下の実施形態はあくまでも好適な適用例であって、本発明の適用範囲がこれらに限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments are merely suitable application examples, and the scope of application of the present invention is not limited thereto.
 まず、図1~図8を用いて、本発明の実施形態に係る電解槽1の構成について説明する。本実施形態に係る電解槽1は、図1に示すように、複数の電解セル10が隔膜20を介して積層されてなる積層体30を備えている。 First, the configuration of the electrolytic cell 1 according to the embodiment of the present invention will be described with reference to FIGS. 1 to 8. As shown in FIG. 1, the electrolytic cell 1 according to the present embodiment includes a laminated body 30 in which a plurality of electrolytic cells 10 are laminated via a diaphragm 20.
 積層体30を構成する電解セル10は、図3に示すように、陽極室11と、陰極室12と、陽極室11及び陰極室12の間に設置された隔壁13と、陽極室11に設置された陽極11aと、陰極室12に設置された陰極12aと、を有している。陰極室12は、集電体12bと、集電体12bを支持する支持体12cと、金属弾性体12dと、を更に有する。金属弾性体12dは、集電体12b及び陰極12aの間に設置されている。支持体12cは、集電体12b及び隔壁13の間に設置されている。集電体12bは、金属弾性体12dを介して、陰極12aと電気的に接続されている。隔壁13は、支持体12cを介して、集電体12bと電気的に接続されている。したがって、隔壁13、支持体12c、集電体12b、金属弾性体12d及び陰極12aは電気的に接続されている。陰極12aの表面全体は還元反応のための触媒層で被覆されていることが好ましい。また、電気的接続の形態は、隔壁13と支持体12c、支持体12cと集電体12b、集電体12bと金属弾性体12dがそれぞれ直接取り付けられ、金属弾性体12d上に陰極12aが積層される形態であってもよい。これらの各構成部材を互いに直接取り付ける方法として、溶接等があげられる。 As shown in FIG. 3, the electrolytic cells 10 constituting the laminated body 30 are installed in the anode chamber 11, the cathode chamber 12, the partition wall 13 installed between the anode chamber 11 and the cathode chamber 12, and the anode chamber 11. It has an anode 11a and a cathode 12a installed in the cathode chamber 12. The cathode chamber 12 further includes a current collector 12b, a support 12c that supports the current collector 12b, and a metal elastic body 12d. The metal elastic body 12d is installed between the current collector 12b and the cathode 12a. The support 12c is installed between the current collector 12b and the partition wall 13. The current collector 12b is electrically connected to the cathode 12a via the metal elastic body 12d. The partition wall 13 is electrically connected to the current collector 12b via the support 12c. Therefore, the partition wall 13, the support 12c, the current collector 12b, the metal elastic body 12d, and the cathode 12a are electrically connected. The entire surface of the cathode 12a is preferably coated with a catalyst layer for the reduction reaction. Further, in the form of electrical connection, the partition wall 13 and the support 12c, the support 12c and the current collector 12b, the current collector 12b and the metal elastic body 12d are directly attached, and the cathode 12a is laminated on the metal elastic body 12d. It may be in the form of being. As a method of directly attaching each of these constituent members to each other, welding or the like can be mentioned.
 図4は、電解槽1内において隣接する2つの電解セル10の断面図である。図4に示すように、電解セル10、隔膜(イオン交換膜)20、電解セル10がこの順序で直列に並べられている。電解槽1内において隣接する2つの電解セル10のうち一方の電解セル10の陽極室11と他方の電解セル10の陰極室12との間に隔膜20が配置されている。すなわち、電解セル10の陽極室11と、これに隣接する電解セル10の陰極室12と、は隔膜20で隔てられる。 FIG. 4 is a cross-sectional view of two adjacent electrolytic cells 10 in the electrolytic cell 1. As shown in FIG. 4, the electrolytic cell 10, the diaphragm (ion exchange membrane) 20, and the electrolytic cell 10 are arranged in series in this order. A diaphragm 20 is arranged between the anode chamber 11 of one electrolytic cell 10 and the cathode chamber 12 of the other electrolytic cell 10 of the two adjacent electrolytic cells 10 in the electrolytic cell 1. That is, the anode chamber 11 of the electrolytic cell 10 and the cathode chamber 12 of the electrolytic cell 10 adjacent thereto are separated by a diaphragm 20.
 図1及び図2に示すように、電解槽1は、隔膜20を介して直列に接続された複数の電解セル10を電解槽フレーム2で支持する形で構成される。すなわち、本実施形態における電解槽1は、直列に配置された複数の電解セル10と、隣接する電解セル10の間に配置された隔膜20と、これらを支持する電解槽フレーム2と、を備える複極式電解槽である。図2に示すように、電解槽1は、隔膜20を介して複数の電解セル10を直列に配置し、加圧機の押圧板40(後述)によって加圧されて連結されることにより組み立てられる。電解槽フレーム2の構成は、各部材を支持できると共に連結できるものである限り特に限定されず、種々の態様を採用することができる。 As shown in FIGS. 1 and 2, the electrolytic cell 1 is configured such that a plurality of electrolytic cells 10 connected in series via a diaphragm 20 are supported by an electrolytic cell frame 2. That is, the electrolytic cell 1 in the present embodiment includes a plurality of electrolytic cells 10 arranged in series, a diaphragm 20 arranged between adjacent electrolytic cells 10, and an electrolytic cell frame 2 supporting them. It is a multi-pole electrolytic cell. As shown in FIG. 2, the electrolytic cell 1 is assembled by arranging a plurality of electrolytic cells 10 in series via a diaphragm 20 and pressurizing and connecting them by a pressing plate 40 (described later) of a pressurizing machine. The configuration of the electrolytic cell frame 2 is not particularly limited as long as it can support and connect each member, and various aspects can be adopted.
 また、図1及び図2に示すように、電解槽1は、電源に接続される陽極端子3と陰極端子4とを備えている。電解槽1内で直列に連結された複数の電解セル10のうち最も端に位置する電解セル10の陽極11aは、陽極端子3に電気的に接続される。電解槽1内で直列に連結された複数の電解セル10のうち陽極端子3の反対側の端に位置する電解セル10の陰極12aは、陰極端子4に電気的に接続される。電解時の電流は、陽極端子3側から、各電解セル10の陽極及び陰極を経由して、陰極端子4へ向かって流れる。なお、連結した電解セル10の両端には、陽極室のみを有する電解セル(陽極ターミナルセル)と、陰極室のみを有する電解セル(陰極ターミナルセル)と、を各々配置してもよい。この場合、その一端に配置された陽極ターミナルセルに陽極端子3が接続され、他の端に配置された陰極ターミナルセルに陰極端子4が接続される。 Further, as shown in FIGS. 1 and 2, the electrolytic cell 1 includes an anode terminal 3 and a cathode terminal 4 connected to a power source. The anode 11a of the electrolytic cell 10 located at the end of the plurality of electrolytic cells 10 connected in series in the electrolytic cell 1 is electrically connected to the anode terminal 3. Of the plurality of electrolytic cells 10 connected in series in the electrolytic cell 1, the cathode 12a of the electrolytic cell 10 located at the opposite end of the anode terminal 3 is electrically connected to the cathode terminal 4. The current during electrolysis flows from the anode terminal 3 side toward the cathode terminal 4 via the anode and the cathode of each electrolytic cell 10. An electrolytic cell having only an anode chamber (anode terminal cell) and an electrolytic cell having only a cathode chamber (cathode terminal cell) may be arranged at both ends of the connected electrolytic cells 10. In this case, the anode terminal 3 is connected to the anode terminal cell arranged at one end thereof, and the cathode terminal 4 is connected to the cathode terminal cell arranged at the other end.
 塩水の電解を行なう場合、各陽極室11には塩水(原料)が供給され、陰極室12には純水又は低濃度の水酸化ナトリウム水溶液(原料)が供給される。各液体は、図示していない電解液供給管から、図示していない電解液供給ホースを経由して、各電解セル10に供給される。また、電解液及び電解による生成物は、図示していない電解液回収管より回収される。電解において、塩水中のナトリウムイオンは、一方の電解セル10の陽極室11から、隔膜20を通過して、隣の電解セル10の陰極室12へ移動する。よって、電解中の電流は、電解セル10が直列に連結された方向(積層方向)に沿って流れることになる。すなわち、電流は、隔膜20を介して陽極室11から陰極室12に向かって流れる。塩水の電解に伴い、陽極11a側で塩素ガスが生成し、陰極12a側で水酸化ナトリウム(溶質)と水素ガスが生成する。生成された塩素ガス、水酸化ナトリウム及び水素ガスは、本発明における電解生成物に相当するものである。 When electrolyzing salt water, salt water (raw material) is supplied to each anode chamber 11, and pure water or a low-concentration sodium hydroxide aqueous solution (raw material) is supplied to the cathode chamber 12. Each liquid is supplied to each electrolytic solution cell 10 from an electrolytic solution supply pipe (not shown) via an electrolytic solution supply hose (not shown). Further, the electrolytic solution and the product obtained by electrolysis are recovered from an electrolytic solution recovery tube (not shown). In electrolysis, sodium ions in salt water move from the anode chamber 11 of one electrolysis cell 10 to the cathode chamber 12 of the adjacent electrolysis cell 10 through the diaphragm 20. Therefore, the current during electrolysis flows along the direction (stacking direction) in which the electrolysis cells 10 are connected in series. That is, the current flows from the anode chamber 11 to the cathode chamber 12 through the diaphragm 20. With the electrolysis of salt water, chlorine gas is generated on the anode 11a side, and sodium hydroxide (solute) and hydrogen gas are generated on the cathode 12a side. The chlorine gas, sodium hydroxide and hydrogen gas produced correspond to the electrolytic products in the present invention.
 なお、本実施形態においては、図5に示すように、陽極室11を構成する枠体表面に陽極側ガスケット14を配置し、陰極室12を構成する枠体表面に陰極側ガスケット15を配置している。1つの電解セル10が備える陽極側ガスケット14と、これに隣接する電解セル10の陰極側ガスケット15と、が隔膜20を挟持するように、電解セル10同士が接続される。これらのガスケットにより、隔膜20を介して複数の電解セル10を直列に接続する際に、接続箇所に気密性を付与することができる。 In the present embodiment, as shown in FIG. 5, the anode side gasket 14 is arranged on the surface of the frame body constituting the anode chamber 11, and the cathode side gasket 15 is arranged on the surface of the frame body forming the cathode chamber 12. ing. The electrolytic cells 10 are connected to each other so that the anode-side gasket 14 included in one electrolytic cell 10 and the cathode-side gasket 15 of the electrolytic cell 10 adjacent thereto sandwich the diaphragm 20. With these gaskets, when a plurality of electrolytic cells 10 are connected in series via the diaphragm 20, airtightness can be imparted to the connection points.
 ガスケット14・15は、電解セル10と隔膜20との間をシールするように機能するものである。ガスケット14・15の具体例としては、中央に開口部が形成された額縁状のゴム製シート等が挙げられる。ガスケット14・15には、腐食性の電解液や生成するガス等に対して耐性を有し、長期間使用できることが求められる。そこで、耐薬品性や硬度の点から、通常、エチレン・プロピレン・ジエンゴム(EPDMゴム)、エチレン・プロピレンゴム(EPMゴム)の加硫品や過酸化物架橋品等がガスケット14・15として用いられる。また、必要に応じて液体に接する領域(接液部)をポリテトラフルオロエチレン(PTFE)やテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)等のフッ素系樹脂で被覆したガスケットを用いることもできる。これらガスケット14・15は、電解液の流れを妨げないように、それぞれ開口部を有していればよく、その形状は特に限定されない。例えば、陽極室11を構成する陽極室枠又は陰極室12を構成する陰極室枠の各開口部の周縁に沿って、額縁状のガスケット14・15が接着剤等で貼り付けられる。そして、例えば隔膜20を介して2体の電解セル10を接続する場合(図4参照)、隔膜20を介してガスケット14・15を貼り付けた各電解セル10を締め付ければよい。これにより、電解液や、電解により生成されたアルカリ金属水酸化物、塩素ガス、水素ガス等の電解生成物が電解セル10の外部に漏れることを抑制することができる。 Gaskets 14 and 15 function to seal between the electrolytic cell 10 and the diaphragm 20. Specific examples of the gaskets 14 and 15 include a frame-shaped rubber sheet having an opening formed in the center. The gaskets 14 and 15 are required to have resistance to corrosive electrolytes, generated gases, and the like, and to be used for a long period of time. Therefore, from the viewpoint of chemical resistance and hardness, vulcanized products of ethylene / propylene / diene rubber (EPDM rubber), vulcanized products of ethylene / propylene rubber (EPM rubber), cross-linked peroxide products, etc. are usually used as gaskets 14 and 15. .. If necessary, use a gasket in which the region in contact with the liquid (contact portion) is coated with a fluororesin such as polytetrafluoroethylene (PTFE) or tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA). You can also. Each of the gaskets 14 and 15 may have an opening so as not to obstruct the flow of the electrolytic solution, and the shape thereof is not particularly limited. For example, frame-shaped gaskets 14 and 15 are attached with an adhesive or the like along the peripheral edge of each opening of the anode chamber frame forming the anode chamber 11 or the cathode chamber frame forming the cathode chamber 12. Then, for example, when two electrolytic cells 10 are connected via the diaphragm 20 (see FIG. 4), each electrolytic cell 10 to which the gaskets 14 and 15 are attached may be tightened via the diaphragm 20. As a result, it is possible to prevent the electrolytic solution and electrolytic products such as alkali metal hydroxide, chlorine gas, and hydrogen gas generated by electrolysis from leaking to the outside of the electrolytic cell 10.
 また、本実施形態に係る電解槽1は、図2に示すように、積層体30に押圧力を加える押圧板40と、押圧板40を移動させることにより積層方向に沿った押圧力を発生させるアクチュエータ50と、を備えている。押圧板40は、加圧機の一部であり、図1及び図2に示すように、積層体30の積層方向における陽極端子3側に配置されて、積層体30を陰極端子4側に押圧するという機能を果たすものである。アクチュエータ50は、押圧板40を移動させることにより積層方向に沿った押圧力を発生させるように機能する。本実施形態においては、アクチュエータ50として、油圧によって作動する油圧式シリンダを採用している。 Further, as shown in FIG. 2, the electrolytic cell 1 according to the present embodiment generates a pressing force along the stacking direction by moving the pressing plate 40 that applies pressing force to the laminated body 30 and the pressing plate 40. It includes an actuator 50. The pressing plate 40 is a part of the pressurizing machine, and as shown in FIGS. 1 and 2, is arranged on the anode terminal 3 side in the stacking direction of the laminated body 30 and presses the laminated body 30 toward the cathode terminal 4. It fulfills the function. The actuator 50 functions to generate a pressing force along the stacking direction by moving the pressing plate 40. In this embodiment, a hydraulic cylinder operated by hydraulic pressure is adopted as the actuator 50.
 また、本実施形態に係る電解槽1は、図6に示すように、アクチュエータ50が作動しないときに積層体30に作用する押圧力を維持するように構成された安全装置60を備えている。安全装置60は、所定の位置に配置(固定)される当接板61と、積層体30の積層方向に延在するように押圧板40に取り付けられ押圧板40とともに当接板61に対して相対的に移動するロッド62と、ロッド62に取り付けられたロック機構63と、を有している。電解槽1の通常運転時においては、アクチュエータ50が作動することにより、押圧板40によって積層体30に対して所定の押圧力を加えることができる。一方、アクチュエータ50に動力源が供給されないこと等に起因してアクチュエータ50が作動しない場合には、温度変化等により電解セル10が膨張すること等に起因して押圧板40が後退するという事態が発生し得るが、そのような事態が発生しても、図6に示すように安全装置60のロック機構63が当接板61に当接し、ロッド62及び押圧板40の後退を阻止することにより、積層体30に作用する押圧力を維持することが可能となる。ロック機構63は、ロックナット等を有している。 Further, as shown in FIG. 6, the electrolytic cell 1 according to the present embodiment includes a safety device 60 configured to maintain a pressing force acting on the laminated body 30 when the actuator 50 does not operate. The safety device 60 is attached to the abutting plate 61 arranged (fixed) at a predetermined position and the pressing plate 40 so as to extend in the laminating direction of the laminated body 30, and is attached to the abutting plate 61 together with the pressing plate 40. It has a rod 62 that moves relatively and a lock mechanism 63 attached to the rod 62. During the normal operation of the electrolytic cell 1, a predetermined pressing force can be applied to the laminated body 30 by the pressing plate 40 by operating the actuator 50. On the other hand, when the actuator 50 does not operate due to the fact that the power source is not supplied to the actuator 50 or the like, the pressing plate 40 may retract due to the expansion of the electrolytic cell 10 due to a temperature change or the like. Although it may occur, even if such a situation occurs, as shown in FIG. 6, the lock mechanism 63 of the safety device 60 comes into contact with the contact plate 61 to prevent the rod 62 and the pressing plate 40 from retreating. , It becomes possible to maintain the pressing force acting on the laminated body 30. The lock mechanism 63 has a lock nut and the like.
 ここで、温度変化等により電解セル10が収縮した場合には、押圧板40とロッド62とロック機構63とが当接板61とは反対方向に移動し、ロック機構63と当接板61との間に間隙が生じる場合がある。かかる状況においては、アクチュエータ50の非作動時に積層体30に作用する押圧力が低下し、電解液や電解生成物の漏れが発生する場合がある。このような事態を防ぐため、従来は、作業者がロック機構63を締め付けて当接板61側に移動させる作業を定期的に行っていた。しかし、かかる作業は煩雑であるため、ロック機構63を自動的に締め付ける(ロック機構63の位置を自動調整する)技術が待望されていた。 Here, when the electrolytic cell 10 contracts due to a temperature change or the like, the pressing plate 40, the rod 62, and the lock mechanism 63 move in the direction opposite to the contact plate 61, and the lock mechanism 63 and the contact plate 61 There may be a gap between the two. In such a situation, the pressing force acting on the laminated body 30 when the actuator 50 is not operated may decrease, and leakage of the electrolytic solution or the electrolytic product may occur. In order to prevent such a situation, conventionally, the operator has periodically performed the work of tightening the lock mechanism 63 and moving it to the contact plate 61 side. However, since such work is complicated, a technique for automatically tightening the lock mechanism 63 (automatically adjusting the position of the lock mechanism 63) has been desired.
 そこで、本実施形態に係る電解槽1は、安全装置60のロック機構63の位置を自動調整する機構を設けている。すなわち、電解槽1は、図7に示すように、押圧板40の移動に伴うロック機構63の位置変化を検出するセンサ70と、センサ70で検出したロック機構63の位置変化に基づいて、積層体30に作用する押圧力を維持するようにロック機構63の位置を調整する制御装置80と、を備えている。この時、積層体30に作用する押圧力を維持するためには、ロック機構63と当接板61との間の距離を特定の範囲内に調整することが必要である。なお、ロック機構63の位置調整だけでなく、押圧板40や特定のセルやアクチュエータのストロークの位置変化に基づいて、ロック機構63と当接板61との間の距離を調整してもよい。 Therefore, the electrolytic cell 1 according to the present embodiment is provided with a mechanism for automatically adjusting the position of the lock mechanism 63 of the safety device 60. That is, as shown in FIG. 7, the electrolytic cell 1 is laminated based on the position change of the lock mechanism 63 detected by the sensor 70 and the sensor 70 that detects the position change of the lock mechanism 63 due to the movement of the pressing plate 40. It includes a control device 80 that adjusts the position of the lock mechanism 63 so as to maintain the pressing force acting on the body 30. At this time, in order to maintain the pressing force acting on the laminated body 30, it is necessary to adjust the distance between the lock mechanism 63 and the contact plate 61 within a specific range. In addition to adjusting the position of the lock mechanism 63, the distance between the lock mechanism 63 and the contact plate 61 may be adjusted based on the position change of the stroke of the pressing plate 40 or a specific cell or actuator.
 センサ70としては、例えば、ロック機構63を挟むように配置された一対の発光素子及び受光素子を有し、発光素子からロック機構63に向けて照射した光を受光素子で受光することにより、ロック機構63の位置変化を検出する構成を採用することができるが、特にそのような構成に限定されるものではなく、ロック機構63の位置変化を検出することができるものであればよい。 The sensor 70 has, for example, a pair of light emitting elements and a light receiving element arranged so as to sandwich the lock mechanism 63, and locks by receiving the light emitted from the light emitting element toward the lock mechanism 63 by the light receiving element. A configuration for detecting the position change of the mechanism 63 can be adopted, but the configuration is not particularly limited to such a configuration, and any configuration that can detect the position change of the lock mechanism 63 may be adopted.
 制御装置80は、各種プログラム及び各種データを記録するメモリやCPU等を有するコンピュータを備えている。本実施形態における制御装置80は、センサ70から送られたロック機構63の位置変化に関する情報を受信し、受信した情報に基づいて制御信号を生成してモータ90に出力し、モータ90を駆動してチェーン91を介してロックナット63をロッド62に対して移動させてロック機構63の位置を調整することにより、積層体30に作用する押圧力を維持するように機能するものである。 The control device 80 includes a computer having a memory, a CPU, and the like for recording various programs and various data. The control device 80 in the present embodiment receives information regarding the position change of the lock mechanism 63 sent from the sensor 70, generates a control signal based on the received information, outputs the control signal to the motor 90, and drives the motor 90. The lock nut 63 is moved with respect to the rod 62 via the chain 91 to adjust the position of the lock mechanism 63, thereby functioning to maintain the pressing force acting on the laminated body 30.
 本実施形態における制御装置80は、積層体30に作用する押圧力を10kg/cm2以上に維持するように、ロック機構63の位置を調整する。また本実施形態に係る制御装置80は、ロック機構63と当接板61との間の距離を、以下の式(1):
 CMAX(mm/cell)=電解時のシール面圧(kg/cm2)×0.011-0.108 …(1)
で算出されるCMAX(1セル当たりの最大クリアランス)以下に維持するようにロック機構63の位置を調整する。図8のグラフは、電解時のシール面圧(kg/cm2)と、1セル当たりの最大クリアランス(リークするクリアランス)(mm/cell)と、の相関関係を示すグラフであり、電解時のシール面圧を横軸(x軸)に、1セル当たりの最大クリアランスを縦軸(y軸)に、それぞれ採った場合における測定結果をプロットしたものである。式(1)は、図8のグラフに基づいて算出した近似式に相当する。
The control device 80 in the present embodiment adjusts the position of the lock mechanism 63 so as to maintain the pressing force acting on the laminated body 30 at 10 kg / cm 2 or more. Further, in the control device 80 according to the present embodiment, the distance between the lock mechanism 63 and the contact plate 61 is set to the following equation (1):
C MAX (mm / cell) = Seal surface pressure during electrolysis (kg / cm 2 ) x 0.011-0.108 ... (1)
The position of the lock mechanism 63 is adjusted so as to maintain the C MAX (maximum clearance per cell) calculated in 1. The graph of FIG. 8 is a graph showing the correlation between the sealing surface pressure (kg / cm 2 ) during electrolysis and the maximum clearance (leakage clearance) (mm / cell) per cell, and is a graph showing the correlation during electrolysis. The measurement results when the seal surface pressure is taken on the horizontal axis (x-axis) and the maximum clearance per cell is taken on the vertical axis (y-axis) are plotted. Equation (1) corresponds to an approximate equation calculated based on the graph of FIG.
 また、制御装置80は、センサ70で検出したロック機構63の位置変化に基づき、ロック機構63と当接板61との間の距離を7mm以下に維持するようにロック機構63の位置を調整することが好ましい。ロック機構63と当接板61との間の距離が大きくなるほど、アクチュエータの非作動時におけるガスケット14・15(図5参照)の厚さが増大し、シール圧が低下して、電解セル10の内部に充填された液体が漏れる可能性が生じるが、本願の発明者の実験によれば、ロック機構63と当接板61との間の距離を7mm以下に維持することにより、積層体30に作用する押圧力を10kg/cm2以上に維持することができ、電解セル10の内部に充填された液体の漏れを防止することができることが明らかとなっている。 Further, the control device 80 adjusts the position of the lock mechanism 63 so that the distance between the lock mechanism 63 and the contact plate 61 is maintained at 7 mm or less based on the position change of the lock mechanism 63 detected by the sensor 70. Is preferable. As the distance between the lock mechanism 63 and the contact plate 61 increases, the thickness of the gaskets 14 and 15 (see FIG. 5) when the actuator is not operated increases, the sealing pressure decreases, and the electrolytic cell 10 There is a possibility that the liquid filled inside may leak, but according to the experiment of the inventor of the present application, by maintaining the distance between the lock mechanism 63 and the abutting plate 61 of 7 mm or less, the laminate 30 has a possibility of leaking. It has been clarified that the pressing force acting can be maintained at 10 kg / cm 2 or more, and the leakage of the liquid filled inside the electrolytic cell 10 can be prevented.
 なお、本実施形態においては、積層体30に作用する押圧力の最低値を「10kg/cm2」に設定したが、積層体30に作用する押圧力の最大値は、電解槽1の規模や仕様、ガスケット14・15の仕様や使用期間、等を考慮して適宜(例えば70kg/cm2程度に)設定することができる。また、本実施形態における制御装置80は、ガスケット14・15のクリープ(押圧力により徐々に厚さが減少すること)の速度等を考慮して、ロック機構63を4.5mm/h以上の速度で移動させるように機能する。 In the present embodiment, the minimum value of the pressing force acting on the laminated body 30 is set to "10 kg / cm 2 ", but the maximum value of the pressing force acting on the laminated body 30 is the scale of the electrolytic cell 1 or the maximum value. It can be set appropriately (for example, about 70 kg / cm 2 ) in consideration of the specifications, the specifications of the gaskets 14 and 15, the period of use, and the like. Further, the control device 80 in the present embodiment sets the lock mechanism 63 at a speed of 4.5 mm / h or more in consideration of the creep speed of the gaskets 14 and 15 (the thickness gradually decreases due to the pressing force). It works to move with.
 次に、図9のフローチャートを用いて、本実施形態に係る電解槽1の制御方法について説明する。 Next, the control method of the electrolytic cell 1 according to the present embodiment will be described with reference to the flowchart of FIG.
 作業者は、電解槽1のアクチュエータ50の作動を停止させた場合においても、安全装置60、センサ70及び制御装置80の作動状態を維持する。そして、温度変化等に起因した押圧板40の移動に伴うロック機構63の位置変化をセンサ70で検出する(検出工程:S1)。次いで、検出工程S1で検出したロック機構63の位置変化に基づいて、積層体30に作用する押圧力を維持するように制御装置80がロック機構63の位置を調整する(制御工程:S2)。制御工程S2では、制御装置80がロック機構63を4.5mm/h以上の速度で移動させるようにしている。 The operator maintains the operating state of the safety device 60, the sensor 70, and the control device 80 even when the operation of the actuator 50 of the electrolytic cell 1 is stopped. Then, the sensor 70 detects the position change of the lock mechanism 63 due to the movement of the pressing plate 40 due to the temperature change or the like (detection step: S1). Next, the control device 80 adjusts the position of the lock mechanism 63 so as to maintain the pressing force acting on the laminated body 30 based on the position change of the lock mechanism 63 detected in the detection step S1 (control step: S2). In the control step S2, the control device 80 moves the lock mechanism 63 at a speed of 4.5 mm / h or more.
 例えば、アクチュエータ50の作動を停止させた時点におけるロック機構63と当接板61との間の距離が10mmであったのに対し、電解セル10の膨張によりロック機構63が当接板61側に4mm移動した結果、ロック機構63と当接板61との間の距離が6mmになったことをセンサ70で検出した場合には、制御装置80は、ロック機構63と当接板61との間の距離が式(1)に示す最大クリアランスCMAX以下である場合はロック機構63の移動は不要であると判断し、ロック機構63の位置調整を行わない。一方、その後、電解セル10の収縮によりロック機構63が当接板61とは反対方向に3mm移動した結果、ロック機構63と当接板61との間の距離が最大クリアランスCMAX以上になったことをセンサ70で検出した場合には、制御装置80は、ロック機構63と当接板61との間の距離が最大クリアランスCMAX以下となるまでロック機構63を当接板61側に移動させて積層体30に作用する押圧力を10kg/cm2以上に維持する。 For example, the distance between the lock mechanism 63 and the contact plate 61 at the time when the operation of the actuator 50 was stopped was 10 mm, whereas the lock mechanism 63 was moved to the contact plate 61 side due to the expansion of the electrolytic cell 10. When the sensor 70 detects that the distance between the lock mechanism 63 and the contact plate 61 has become 6 mm as a result of moving 4 mm, the control device 80 moves between the lock mechanism 63 and the contact plate 61. When the distance is equal to or less than the maximum clearance C MAX shown in the equation (1), it is determined that the movement of the lock mechanism 63 is unnecessary, and the position of the lock mechanism 63 is not adjusted. On the other hand, after that, the lock mechanism 63 moved 3 mm in the direction opposite to the contact plate 61 due to the contraction of the electrolytic cell 10, and as a result, the distance between the lock mechanism 63 and the contact plate 61 became equal to or more than the maximum clearance CMAX. when detected by the sensor 70 that the control unit 80 moves the lock mechanism 63 to the contact plate 61 side to the distance between the locking mechanism 63 and the contact plate 61 is equal to or smaller than the maximum clearance C MAX The pressing force acting on the laminate 30 is maintained at 10 kg / cm 2 or more.
 なお、制御装置80は、ロック機構63と当接板61との間の距離が最大クリアランスCMAX以下である場合においても、積層体30に作用する押圧力を10kg/cm2以上に維持するようにロック機構63の位置調整を行うこともできる。すなわち、0~CMAXの範囲内でロック機構63と当接板61との間の距離の目標値(目標距離)を設定しておき、実際の距離がその目標距離になるように制御装置80がロック機構63の位置を調整することができる。例えば、ロック機構63と当接板61との間の距離の目標値(目標距離)を4mmと設定しておき、センサ70で検出した距離が3.5mmである場合に、制御装置80がロックナット63と当接板61との間の距離を0.5mm分増加させるような制御信号をモータ90に出力して、ロック機構63を移動させることができる。 The control device 80 maintains the pressing force acting on the laminated body 30 at 10 kg / cm 2 or more even when the distance between the lock mechanism 63 and the contact plate 61 is the maximum clearance CMAX or less. The position of the lock mechanism 63 can also be adjusted. That is, a target value (target distance) of the distance between the lock mechanism 63 and the contact plate 61 is set within the range of 0 to C MAX , and the control device 80 is set so that the actual distance becomes the target distance. Can adjust the position of the lock mechanism 63. For example, when the target value (target distance) of the distance between the lock mechanism 63 and the contact plate 61 is set to 4 mm and the distance detected by the sensor 70 is 3.5 mm, the control device 80 locks. The lock mechanism 63 can be moved by outputting a control signal to the motor 90 that increases the distance between the nut 63 and the contact plate 61 by 0.5 mm.
 以上説明した実施形態に係る電解槽1においては、アクチュエータ50が作動しないときに、安全装置60のロック機構63が当接板61に当接してロッド62及び押圧板40の後退を阻止することにより押圧力を維持することができる。この際、温度変化等に起因して電解セル10が膨張収縮した場合においても、制御装置80がロック機構63の位置を自動的に調整することにより、積層体30に作用する押圧力を所定の値(10kg/cm2)以上に維持することができる。従って、アクチュエータ50が作動しない状態においても、人の手を加えることなく適切な押圧力を維持することができ、電解セル10の内部に充填された液体の漏れを防ぐことが可能となる。 In the electrolytic cell 1 according to the embodiment described above, when the actuator 50 does not operate, the lock mechanism 63 of the safety device 60 comes into contact with the contact plate 61 to prevent the rod 62 and the pressing plate 40 from retreating. The pressing force can be maintained. At this time, even when the electrolytic cell 10 expands and contracts due to a temperature change or the like, the control device 80 automatically adjusts the position of the lock mechanism 63 to obtain a predetermined pressing force acting on the laminated body 30. It can be maintained above the value (10 kg / cm 2 ). Therefore, even when the actuator 50 does not operate, an appropriate pressing force can be maintained without human intervention, and leakage of the liquid filled inside the electrolytic cell 10 can be prevented.
 なお、以上の実施形態においては、安全装置60の当接板61を所定の位置に固定する一方、「ロック機構63」を移動させることにより積層体30に作用する押圧力を維持するようにした例を示したが、「当接板61」を移動可能に構成し、ロック機構63を移動させることに代えて(又はロック機構63を移動させることに加えて)「当接板61」の位置を調整することにより積層体30に作用する押圧力を維持することもできる。 In the above embodiment, the contact plate 61 of the safety device 60 is fixed at a predetermined position, while the pressing force acting on the laminated body 30 is maintained by moving the "lock mechanism 63". Although an example is shown, the position of the "contact plate 61" is configured so that the "contact plate 61" can be moved, and instead of moving the lock mechanism 63 (or in addition to moving the lock mechanism 63). It is also possible to maintain the pressing force acting on the laminated body 30 by adjusting.
 本発明は、以上の実施形態に限定されるものではなく、かかる実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。すなわち、前記実施形態が備える各要素及びその配置、材料、条件、形状、サイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、前記実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。 The present invention is not limited to the above embodiments, and those skilled in the art with appropriate design changes are also included in the scope of the present invention as long as they have the features of the present invention. .. That is, each element included in the embodiment and its arrangement, material, condition, shape, size, etc. are not limited to those exemplified, and can be appropriately changed. In addition, the elements included in the embodiment can be combined as much as technically possible, and the combination thereof is also included in the scope of the present invention as long as the features of the present invention are included.
 1…電解槽
 10…電解セル
 11…陽極室
 12…陰極室
 20…隔膜
 30…積層体
 40…押圧板
 50…アクチュエータ
 60…安全装置
 61…当接板
 62…ロッド
 63…ロック機構
 70…センサ
 80…制御装置
 S1…検出工程
 S2…制御工程
1 ... Electrolytic cell 10 ... Electrolytic cell 11 ... Anode chamber 12 ... Cathode chamber 20 ... Diaphragm 30 ... Laminated body 40 ... Press plate 50 ... Actuator 60 ... Safety device 61 ... Contact plate 62 ... Rod 63 ... Lock mechanism 70 ... Sensor 80 … Control device S1… Detection process S2… Control process

Claims (22)

  1.  陽極室及び陰極室を有する電解セルが隔膜を介して複数積層されてなる積層体と、
     前記積層体の積層方向における少なくとも一端側に配置された押圧板と、
     前記押圧板を移動させることにより前記積層方向に沿った押圧力を発生させるアクチュエータと、
     所定の位置に配置される当接板と、前記積層方向に延在するように前記押圧板に取り付けられ前記押圧板とともに前記当接板に対して相対的に移動するロッドと、前記ロッドに取り付けられたロック機構と、を有し、前記アクチュエータが作動しないときに前記ロック機構が前記当接板に当接して前記ロッド及び前記押圧板の後退を阻止することにより前記押圧力を維持するように構成された安全装置と、
     前記積層体に作用する押圧力を維持するように前記ロック機構と前記当接板との間の距離を特定の範囲内に調整する制御装置と、
    を備える、電解槽。
    A laminate in which a plurality of electrolytic cells having an anode chamber and a cathode chamber are laminated via a diaphragm, and
    A pressing plate arranged at least on one end side in the stacking direction of the laminated body,
    An actuator that generates a pressing force along the stacking direction by moving the pressing plate, and an actuator.
    A contact plate arranged at a predetermined position, a rod attached to the pressing plate so as to extend in the stacking direction and moving relative to the contact plate together with the pressing plate, and a rod attached to the rod. The locking mechanism is provided, and when the actuator does not operate, the locking mechanism abuts on the abutting plate to prevent the rod and the pressing plate from retreating, thereby maintaining the pressing force. With the configured safety device
    A control device that adjusts the distance between the lock mechanism and the contact plate within a specific range so as to maintain the pressing force acting on the laminate.
    An electrolytic cell.
  2.  前記制御装置は、前記積層体に作用する押圧力を10kg/cm2以上に維持するように前記ロック機構及び/又は前記当接板の位置を調整する、請求項1に記載の電解槽。 The electrolytic cell according to claim 1, wherein the control device adjusts the positions of the lock mechanism and / or the abutting plate so as to maintain the pressing force acting on the laminated body at 10 kg / cm 2 or more.
  3.  前記制御装置は、前記ロック機構と前記当接板との間の距離を、以下の式(1):
     CMAX(mm/cell)=電解時のシール面圧(kg/cm2)×0.011-0.108 …(1)
    で算出される1セル当たりの最大クリアランスCMAX以下に維持するように、前記ロック機構及び/又は前記当接板の位置を調整する、請求項1又は2に記載の電解槽。
    The control device determines the distance between the lock mechanism and the contact plate according to the following equation (1):
    C MAX (mm / cell) = Seal surface pressure during electrolysis (kg / cm 2 ) x 0.011-0.108 ... (1)
    The electrolytic cell according to claim 1 or 2, wherein the position of the lock mechanism and / or the contact plate is adjusted so as to maintain the maximum clearance per cell calculated in the above CMAX or less.
  4.  前記制御装置は、前記ロック機構と前記当接板との間の距離を7mm以下に維持するように前記ロック機構及び/又は前記当接板の位置を調整する、請求項1から3の何れか一項に記載の電解槽。 Any one of claims 1 to 3, wherein the control device adjusts the position of the lock mechanism and / or the contact plate so as to maintain the distance between the lock mechanism and the contact plate to 7 mm or less. The electrolytic cell according to item 1.
  5.  前記制御装置は、前記ロック機構及び/又は前記当接板を4.5mm/h以上の速度で移動させる、請求項1から4の何れか一項に記載の電解槽。 The electrolytic cell according to any one of claims 1 to 4, wherein the control device moves the lock mechanism and / or the contact plate at a speed of 4.5 mm / h or more.
  6.  前記ロック機構は、ロックナットを含む、請求項1から5の何れか一項に記載の電解槽。 The electrolytic cell according to any one of claims 1 to 5, wherein the lock mechanism includes a lock nut.
  7.  前記押圧板の移動に伴う前記ロック機構の位置変化を検出するセンサを備え、
     前記制御装置は、前記センサで検出した前記ロック機構の位置変化に基づいて、前記積層体に作用する押圧力を維持するように前記ロック機構と前記当接板との間の距離を特定の範囲内に調整する、請求項1から6の何れか一項に記載の電解槽。
    A sensor for detecting a change in the position of the lock mechanism due to the movement of the pressing plate is provided.
    Based on the position change of the lock mechanism detected by the sensor, the control device sets a specific range of the distance between the lock mechanism and the contact plate so as to maintain the pressing force acting on the laminate. The electrolytic cell according to any one of claims 1 to 6, which is adjusted within.
  8.  陽極室及び陰極室を有する電解セルが隔膜を介して複数積層されてなる積層体と、
     前記積層体の積層方向における少なくとも一端側に配置された押圧板と、
     前記押圧板を移動させることにより前記積層方向に沿った押圧力を発生させるアクチュエータと、
     所定の位置に配置される当接板と、前記積層方向に延在するように前記押圧板に取り付けられ前記押圧板とともに前記当接板に対して相対的に移動するロッドと、前記ロッドに取り付けられたロック機構と、を有し、前記アクチュエータが作動しないときに前記ロック機構が前記当接板に当接して前記ロッド及び前記押圧板の後退を阻止することにより前記押圧力を維持するように構成された安全装置と、
    を備える電解槽の制御方法であって、
     前記積層体に作用する押圧力を維持するように制御装置が前記ロック機構と前記当接板との間の距離を特定の範囲内に調整する制御工程を含む、電解槽の制御方法。
    A laminate in which a plurality of electrolytic cells having an anode chamber and a cathode chamber are laminated via a diaphragm, and
    A pressing plate arranged at least on one end side in the stacking direction of the laminated body,
    An actuator that generates a pressing force along the stacking direction by moving the pressing plate, and an actuator.
    A contact plate arranged at a predetermined position, a rod attached to the pressing plate so as to extend in the stacking direction and moving relative to the contact plate together with the pressing plate, and a rod attached to the rod. The locking mechanism is provided, and when the actuator does not operate, the locking mechanism abuts on the abutting plate to prevent the rod and the pressing plate from retreating, thereby maintaining the pressing force. With the configured safety device
    It is a control method of an electrolytic cell provided with
    A method for controlling an electrolytic cell, comprising a control step in which a control device adjusts a distance between the lock mechanism and the contact plate within a specific range so as to maintain a pressing force acting on the laminate.
  9.  前記制御工程では、前記積層体に作用する押圧力を10kg/cm2以上に維持するように前記制御装置が前記ロック機構及び/又は前記当接板の位置を調整する、請求項8に記載の電解槽の制御方法。 The eighth aspect of the present invention, wherein in the control step, the control device adjusts the positions of the lock mechanism and / or the contact plate so as to maintain the pressing force acting on the laminate at 10 kg / cm 2 or more. How to control the electrolytic cell.
  10.  前記制御工程では、前記ロック機構と前記当接板との間の距離を、以下の式(1):
     CMAX(mm/cell)=電解時のシール面圧(kg/cm2)×0.011-0.108 …(1)
    で算出される1セル当たりの最大クリアランスCMAX以下に維持するように、前記制御装置が前記ロック機構及び/又は前記当接板の位置を調整する、請求項8又は9に記載の電解槽の制御方法。
    In the control step, the distance between the lock mechanism and the contact plate is determined by the following equation (1):
    C MAX (mm / cell) = Seal surface pressure during electrolysis (kg / cm 2 ) x 0.011-0.108 ... (1)
    The electrolytic cell according to claim 8 or 9, wherein the control device adjusts the positions of the lock mechanism and / or the abutting plate so as to maintain the maximum clearance per cell calculated in the above CMAX or less. Control method.
  11.  前記制御工程では、前記ロック機構と前記当接板との間の距離を7mm以下に維持するように前記制御装置が前記ロック機構及び/又は前記当接板の位置を調整する、請求項8から10の何れか一項に記載の電解槽の制御方法。 According to claim 8, in the control step, the control device adjusts the positions of the lock mechanism and / or the contact plate so as to maintain the distance between the lock mechanism and the contact plate to 7 mm or less. 10. The method for controlling an electrolytic cell according to any one of items 10.
  12.  前記制御工程では、前記制御装置が前記ロック機構及び/又は前記当接板を4.5mm/h以上の速度で移動させる、請求項8から11の何れか一項に記載の電解槽の制御方法。 The method for controlling an electrolytic cell according to any one of claims 8 to 11, wherein in the control step, the control device moves the lock mechanism and / or the contact plate at a speed of 4.5 mm / h or more. ..
  13.  前記ロック機構は、ロックナットを含む、請求項8から12の何れか一項に記載の電解槽の制御方法。 The method for controlling an electrolytic cell according to any one of claims 8 to 12, wherein the lock mechanism includes a lock nut.
  14.  前記押圧板の移動に伴う前記ロック機構の位置変化をセンサで検出する検出工程をさらに含み、
     前記制御工程では、前記検出工程で検出した前記ロック機構の位置変化に基づいて、前記積層体に作用する押圧力を維持するように前記制御装置が前記ロック機構と前記当接板との間の距離を特定の範囲内に調整する、請求項8から13の何れか一項に記載の電解槽の制御方法。
    It further includes a detection step of detecting a change in the position of the lock mechanism with a sensor due to the movement of the pressing plate.
    In the control step, based on the position change of the lock mechanism detected in the detection step, the control device betweens the lock mechanism and the contact plate so as to maintain the pressing force acting on the laminate. The method for controlling an electrolytic cell according to any one of claims 8 to 13, wherein the distance is adjusted within a specific range.
  15.  陽極室及び陰極室を有する電解セルが隔膜を介して複数積層されてなる積層体と、
     前記積層体の積層方向における少なくとも一端側に配置された押圧板と、
     前記押圧板を移動させることにより前記積層方向に沿った押圧力を発生させるアクチュエータと、
     所定の位置に配置される当接板と、前記積層方向に延在するように前記押圧板に取り付けられ前記押圧板とともに前記当接板に対して相対的に移動するロッドと、前記ロッドに取り付けられたロック機構と、を有し、前記アクチュエータが作動しないときに前記ロック機構が前記当接板に当接して前記ロッド及び前記押圧板の後退を阻止することにより前記押圧力を維持するように構成された安全装置と、
    を備える電解槽を制御する工程群をコンピュータに実行させるプログラムであって、
     前記工程群は、
     前記積層体に作用する押圧力を維持するように制御装置が前記ロック機構と前記当接板との間の距離を特定の範囲内に調整する制御工程を含む、プログラム。
    A laminate in which a plurality of electrolytic cells having an anode chamber and a cathode chamber are laminated via a diaphragm, and
    A pressing plate arranged at least on one end side in the stacking direction of the laminated body,
    An actuator that generates a pressing force along the stacking direction by moving the pressing plate, and an actuator.
    A contact plate arranged at a predetermined position, a rod attached to the pressing plate so as to extend in the stacking direction and moving relative to the contact plate together with the pressing plate, and a rod attached to the rod. The locking mechanism is provided, and when the actuator does not operate, the locking mechanism abuts on the abutting plate to prevent the rod and the pressing plate from retreating, thereby maintaining the pressing force. With the configured safety device
    It is a program that causes a computer to execute a group of processes for controlling an electrolytic cell.
    The process group
    A program comprising a control step in which a control device adjusts the distance between the locking mechanism and the abutting plate within a specific range so as to maintain a pressing force acting on the laminate.
  16.  前記制御工程では、前記積層体に作用する押圧力を10kg/cm2以上に維持するように前記制御装置が前記ロック機構及び/又は前記当接板の位置を調整する、請求項15に記載のプログラム。 15. The 15th aspect of the control step, wherein the control device adjusts the positions of the lock mechanism and / or the abutting plate so as to maintain the pressing force acting on the laminated body at 10 kg / cm 2 or more. program.
  17.  前記制御工程では、前記ロック機構と前記当接板との間の距離を、以下の式(1):
     CMAX(mm/cell)=電解時のシール面圧(kg/cm2)×0.011-0.108 …(1)
    で算出される1セル当たりの最大クリアランスCMAX以下に維持するように、前記制御装置が前記ロック機構及び/又は前記当接板の位置を調整する、請求項15又は16に記載のプログラム。
    In the control step, the distance between the lock mechanism and the contact plate is determined by the following equation (1):
    C MAX (mm / cell) = Seal surface pressure during electrolysis (kg / cm 2 ) x 0.011-0.108 ... (1)
    The program according to claim 15 or 16, wherein the control device adjusts the position of the locking mechanism and / or the abutting plate so as to maintain the maximum clearance C MAX or less per cell calculated in.
  18.  前記制御工程では、前記ロック機構と前記当接板との間の距離を7mm以下に維持するように前記制御装置が前記ロック機構及び/又は前記当接板の位置を調整する、請求項15から17の何れか一項に記載のプログラム。 According to claim 15, in the control step, the control device adjusts the positions of the lock mechanism and / or the contact plate so as to maintain the distance between the lock mechanism and the contact plate to 7 mm or less. The program according to any one of 17.
  19.  前記制御工程では、前記制御装置が前記ロック機構及び/又は前記当接板を4.5mm/h以上の速度で移動させる、請求項15から18の何れか一項に記載のプログラム。 The program according to any one of claims 15 to 18, wherein in the control step, the control device moves the lock mechanism and / or the contact plate at a speed of 4.5 mm / h or more.
  20.  前記ロック機構は、ロックナットを含む、請求項15から19の何れか一項に記載のプログラム。 The program according to any one of claims 15 to 19, wherein the lock mechanism includes a lock nut.
  21.  前記工程群は、前記押圧板の移動に伴う前記ロック機構の位置変化をセンサで検出する検出工程をさらに含み、
     前記制御工程では、前記検出工程で検出した前記ロック機構の位置変化に基づいて、前記積層体に作用する押圧力を維持するように前記制御装置が前記ロック機構と前記当接板との間の距離を特定の範囲内に調整する、請求項15から20の何れか一項に記載のプログラム。
    The process group further includes a detection step of detecting a change in the position of the lock mechanism with a sensor due to the movement of the pressing plate.
    In the control step, the control device betweens the lock mechanism and the contact plate so as to maintain the pressing force acting on the laminate based on the position change of the lock mechanism detected in the detection step. The program according to any one of claims 15 to 20, which adjusts the distance within a specific range.
  22.  請求項1から7の何れか一項に記載の電解槽に原料を供給し、電解を行うことにより、電解生成物を製造する方法。 A method for producing an electrolysis product by supplying a raw material to the electrolytic cell according to any one of claims 1 to 7 and performing electrolysis.
PCT/JP2020/012107 2019-04-01 2020-03-18 Electrolyzer, method for controlling same, and program WO2020203319A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA3134517A CA3134517C (en) 2019-04-01 2020-03-18 Electrolyzer, method for controlling same, and program
CN202080024941.2A CN113661274A (en) 2019-04-01 2020-03-18 Electrolytic cell, and control method and program therefor
JP2021511429A JP7058374B2 (en) 2019-04-01 2020-03-18 Electrolytic cell and its control method and program
AU2020255626A AU2020255626B2 (en) 2019-04-01 2020-03-18 Electrolyzer, method for controlling same, and program
KR1020217027542A KR102571358B1 (en) 2019-04-01 2020-03-18 Electrolyzer and its control method and program
US17/599,906 US20220195613A1 (en) 2019-04-01 2020-03-18 Electrolyzer, method for controlling same, and program
EP20782684.3A EP3951019A4 (en) 2019-04-01 2020-03-18 Electrolyzer, method for controlling same, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-069856 2019-04-01
JP2019069856 2019-04-01

Publications (1)

Publication Number Publication Date
WO2020203319A1 true WO2020203319A1 (en) 2020-10-08

Family

ID=72668888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012107 WO2020203319A1 (en) 2019-04-01 2020-03-18 Electrolyzer, method for controlling same, and program

Country Status (8)

Country Link
US (1) US20220195613A1 (en)
EP (1) EP3951019A4 (en)
JP (1) JP7058374B2 (en)
KR (1) KR102571358B1 (en)
CN (1) CN113661274A (en)
AU (1) AU2020255626B2 (en)
CA (1) CA3134517C (en)
WO (1) WO2020203319A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210611A1 (en) * 2020-04-16 2021-10-21 旭化成株式会社 Electrolysis system and method for using same
EP4112782A1 (en) * 2021-06-30 2023-01-04 Siemens Energy Global GmbH & Co. KG Mounting device and use of the mounting device for mounting electrolysis cells of an electrolyzer
WO2023280678A1 (en) 2021-07-08 2023-01-12 thyssenkrupp nucera AG & Co. KGaA Electrolyzer with multi-cell elements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150385A (en) * 1989-07-27 1991-06-26 De Nora Permelec Spa Novel squeezer device and method of its use
WO2012114915A1 (en) 2011-02-25 2012-08-30 旭化成ケミカルズ株式会社 Large electrolytic vessel and electrolysis-stopping method
JP2015124425A (en) * 2013-12-27 2015-07-06 旭化成株式会社 Manifold unit and cell
WO2018168863A1 (en) * 2017-03-13 2018-09-20 旭化成株式会社 Electrolytic cell and electrolytic bath

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB844208A (en) * 1958-12-09 1960-08-10 Progress Engineers Ltd Improvements in and relating to filter presses
US3233733A (en) * 1962-01-31 1966-02-08 Du Pont Filter press
US4479426A (en) * 1982-11-01 1984-10-30 Alfa-Laval Ab Method of closing, compressing and opening of presses for membrane filters and apparatus for carrying out the method
US4756817A (en) * 1986-08-29 1988-07-12 The Dow Chemical Company Apparatus for pressing plate-type structures
JP3150385B2 (en) 1991-11-07 2001-03-26 株式会社日立製作所 Color cathode ray tube
US5855778A (en) * 1997-08-07 1999-01-05 William R. Perrin Ontario Ltd. Filter press
JP4124914B2 (en) * 1999-06-14 2008-07-23 クロリンエンジニアズ株式会社 Electrolytic cell
WO2006106463A1 (en) * 2005-04-04 2006-10-12 Seprotech (Pty) Limited Filter press with novel filter pack clamping arrangement
US20120127902A1 (en) 2010-11-23 2012-05-24 Alaa Muqattash System and method for mac layer clock drift compensation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150385A (en) * 1989-07-27 1991-06-26 De Nora Permelec Spa Novel squeezer device and method of its use
WO2012114915A1 (en) 2011-02-25 2012-08-30 旭化成ケミカルズ株式会社 Large electrolytic vessel and electrolysis-stopping method
JP2015124425A (en) * 2013-12-27 2015-07-06 旭化成株式会社 Manifold unit and cell
WO2018168863A1 (en) * 2017-03-13 2018-09-20 旭化成株式会社 Electrolytic cell and electrolytic bath

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021210611A1 (en) * 2020-04-16 2021-10-21 旭化成株式会社 Electrolysis system and method for using same
EP4112782A1 (en) * 2021-06-30 2023-01-04 Siemens Energy Global GmbH & Co. KG Mounting device and use of the mounting device for mounting electrolysis cells of an electrolyzer
WO2023274731A1 (en) 2021-06-30 2023-01-05 Siemens Energy Global GmbH & Co. KG Mounting device, and use of the mounting device for mounting electrolysis cells of an electrolyser
WO2023280678A1 (en) 2021-07-08 2023-01-12 thyssenkrupp nucera AG & Co. KGaA Electrolyzer with multi-cell elements

Also Published As

Publication number Publication date
KR102571358B1 (en) 2023-08-25
AU2020255626A1 (en) 2021-10-28
AU2020255626B2 (en) 2022-12-22
CA3134517C (en) 2023-08-29
JP7058374B2 (en) 2022-04-21
US20220195613A1 (en) 2022-06-23
JPWO2020203319A1 (en) 2021-10-21
CN113661274A (en) 2021-11-16
KR20210120078A (en) 2021-10-06
CA3134517A1 (en) 2020-10-08
EP3951019A1 (en) 2022-02-09
EP3951019A4 (en) 2022-06-08

Similar Documents

Publication Publication Date Title
WO2020203319A1 (en) Electrolyzer, method for controlling same, and program
US4915803A (en) Combination seal and frame cover member for a filter press type electrolytic cell
US5824199A (en) Electrochemical cell having an inflatable member
US4898653A (en) Combination electrolysis cell seal member and membrane tentering means
US11319635B2 (en) Electrolysis vessel for alkaline water electrolysis
US4219394A (en) Membrane assembly for electrolytic cells
US4894128A (en) Membrane unit for electrolytic cell
WO2000039365A1 (en) Multi-pole ion exchange membrane electrolytic bath
JP2003160891A (en) Clamping device in solid polymer type water electrolytic cell
CN118064915A (en) Safety device for electrolytic cell and control method thereof
US4902397A (en) Electrolytic cell with differential gas pressure control device
CA3054542C (en) Alkaline water electrolysis device
US4886586A (en) Combination electrolysis cell seal member and membrane tentering means for a filter press type electrolytic cell
JP5840549B2 (en) Cathode side gasket for electrolytic cell and electrolytic cell
CA1141333A (en) Method and apparatus for installation of a membrane to an electrolytic cell
NO964949L (en) Electrode for use in membrane electrolyzers
KR102402495B1 (en) Gasket for electrolytic cell and electrolytic cell using same
JP2012097313A (en) Water electrolyzer
NO821435L (en) COMPOSITION MEMBRANE / ELECTRODE, PROCEDURE FOR PREPARING SAME, ELECTROCHEMICAL CELL AND PROCEDURE FOR ELECTROLYSE OF ALKALIMETAL HALOGENIDES
JPH04154980A (en) Electrolytic cell
JP2005307280A (en) High-pressure type and solid-polymer type water electrolysis tank

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20782684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021511429

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217027542

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3134517

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020255626

Country of ref document: AU

Date of ref document: 20200318

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020782684

Country of ref document: EP

Effective date: 20211102