JP2000355786A - Electrolytic cell - Google Patents

Electrolytic cell

Info

Publication number
JP2000355786A
JP2000355786A JP11166507A JP16650799A JP2000355786A JP 2000355786 A JP2000355786 A JP 2000355786A JP 11166507 A JP11166507 A JP 11166507A JP 16650799 A JP16650799 A JP 16650799A JP 2000355786 A JP2000355786 A JP 2000355786A
Authority
JP
Japan
Prior art keywords
cathode
anode
electrolytic cell
polymer electrolyte
solid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11166507A
Other languages
Japanese (ja)
Other versions
JP4124914B2 (en
Inventor
Shigeki Sudo
茂樹 須藤
Yoshitsugu Kitazawa
喜次 北澤
Masahiro Oshima
政弘 大嶋
Masashi Tanaka
正志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
De Nora Permelec Ltd
ThyssenKrupp Nucera Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Permelec Electrode Ltd
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd, Permelec Electrode Ltd, Kawasaki Heavy Industries Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP16650799A priority Critical patent/JP4124914B2/en
Publication of JP2000355786A publication Critical patent/JP2000355786A/en
Application granted granted Critical
Publication of JP4124914B2 publication Critical patent/JP4124914B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electrolytic cell laminated with a multiplicity of unit electrolytic cells having solid high-polymer electrolyte membranes. SOLUTION: A plurality of the unit electrolytic cells, which are arranged with anodes 3 and cathodes 4 via the solid high-polymer electrolytic membranes and consist of anode chamber partition walls 5 which segment the anode chambers 7 arranged with the anodes and cathode chamber partition walls 6 which segment the cathode chambers 9 arranged with the cathodes, are laminated by interposing conductive elastic bodies 18 between the anode chamber partition walls and the cathode chamber partition walls and arranging anode side end plates and cathode side end plates at both ends.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子電解質を用
いた電解槽に関するもので、とくに水の電気分解に好適
な電解槽に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic cell using a solid polymer electrolyte, and more particularly to an electrolytic cell suitable for electrolysis of water.

【0002】[0002]

【従来の技術】水の電解槽としては各種のものが知られ
ているが、固体高分子電解質を用いた電解槽は、固体高
分子電解質膜の有するプロトンあるいは酸素イオン等の
透過を利用して電気分解を行うものであり、酸やアルカ
リ等の液体の電解質を用いることなく水を供給するのみ
で電気分解を行うことができるという特徴を有してい
る。
2. Description of the Related Art Various types of water electrolyzers are known. An electrolyzer using a solid polymer electrolyte utilizes the permeation of protons or oxygen ions of a solid polymer electrolyte membrane. The electrolysis is performed, and the electrolysis can be performed only by supplying water without using a liquid electrolyte such as an acid or an alkali.

【0003】固体高分子電解質を用いた水電解槽では、
陽イオン交換膜の両面に触媒電極を接合することが行わ
れており、このために、陽極と陰極との電極間距離が小
さく、固体高分子電解質と電極が直接接合されているの
で両者の間には気泡は存在しないので、低電圧で大きな
電流密度で通電することが可能であり、また電解液によ
る導電性を利用していないので、原料の水には、導電性
が極めて小さな高純度の水を用いることができ、高純度
の水素、酸素を得ることが可能という特徴を有してい
る。
[0003] In a water electrolyzer using a solid polymer electrolyte,
Catalytic electrodes are bonded to both sides of the cation exchange membrane.The distance between the anode and the cathode is small, and the solid polymer electrolyte and the electrodes are directly bonded. Since there are no bubbles in the water, it is possible to conduct electricity at a low voltage and with a large current density, and because the conductivity of the electrolyte is not used, the water of the raw material has very small conductivity and high purity. It has a feature that water can be used and high-purity hydrogen and oxygen can be obtained.

【0004】しかしながら、固体高分子電解質膜への電
極の接合には、化学めっきを行ったり、フッ素樹脂等を
用いて一体化することが行われているが、品質の安定し
た面積の大きな電極を形成することは難しく、電極面積
が大きな大型の電解槽を得ることは困難であった。
[0004] However, the bonding of the electrode to the solid polymer electrolyte membrane is performed by chemical plating or integration using a fluororesin or the like. It was difficult to form, and it was difficult to obtain a large electrolytic cell having a large electrode area.

【0005】そこで、電極面積が大きな電解槽を容易に
製造するために、陽極および陰極を固体高分子電解質膜
に直接に接合せずに、固体高分子電解質とは別に作製し
た電極を固体高分子電解質膜の両面に密着させた電解槽
が提案されている。例えば、図6は、固体高分子電解質
の両面に電極を積層して密着した電解槽である。図6
(A)は、固体高分子電解槽の正面図であり、図6
(B)は、図6(A)においてA−A線で切断した断面
図を示している。固体高分子電解質41、陽極42、陰
極43、複極板44を多数積層し、端板45、46を多
くの締め付けボルト47によって締め付けている。とこ
ろが、このような電解槽では、電極面積が大きくなる
と、端板面に歪みが生じることが避けられず、また積層
数が多くなると接触の不均一な電極が生じることとな
り、固体高分子電解質膜41と陽極42および陰極43
との間の接触の不良個所、電気分解時の通電電流の不均
一が生じることとなり、電流の集中する箇所が生じるこ
とによる固体高分子電解質や電極の劣化、あるいは電解
電圧の上昇等が生じるので好ましくない。
Therefore, in order to easily manufacture an electrolytic cell having a large electrode area, the anode and the cathode were not directly joined to the solid polymer electrolyte membrane, but an electrode made separately from the solid polymer electrolyte was used. There has been proposed an electrolytic cell in which both surfaces of an electrolyte membrane are in close contact with each other. For example, FIG. 6 shows an electrolytic cell in which electrodes are stacked on and adhered to both surfaces of a solid polymer electrolyte. FIG.
(A) is a front view of the solid polymer electrolyte tank, and FIG.
FIG. 6B is a cross-sectional view taken along line AA in FIG. A large number of solid polymer electrolytes 41, anodes 42, cathodes 43, and bipolar plates 44 are laminated, and end plates 45 and 46 are fastened by a number of fastening bolts 47. However, in such an electrolytic cell, if the electrode area is large, it is inevitable that the end plate surface is distorted, and if the number of laminations is large, an electrode with non-uniform contact is generated, and the solid polymer electrolyte membrane 41, anode 42 and cathode 43
And the current flowing during the electrolysis is not uniform, and the solid polymer electrolyte and electrodes are deteriorated due to the concentration of the current, or the electrolytic voltage is increased. Not preferred.

【0006】また、このような固体高分子電解質膜と電
極との接触の不均一が生じるのを防止するために、端板
の一部に押し付け用のねじ部材を取り付けて、積層体を
押し付けて不均一が生じることを防止すること(特開平
6−184783号)が提案されているが、数多くの固
体高分子電解質膜および電極を積層した電解槽において
は、極めて大型の押し付け用のねじ部材を必要とし、そ
の効果も満足するものではなかった。
Further, in order to prevent such nonuniform contact between the solid polymer electrolyte membrane and the electrode, a pressing screw member is attached to a part of the end plate, and the laminate is pressed. Although it has been proposed to prevent the occurrence of non-uniformity (Japanese Patent Application Laid-Open No. 6-184783), in an electrolytic cell having a large number of solid polymer electrolyte membranes and electrodes laminated, an extremely large pressing screw member is required. Necessary, and the effect was not satisfactory.

【0007】[0007]

【発明が解決しようとする課題】本発明は、固体高分子
電解質膜を用いた電解面積が大きな電解槽を提供するこ
とを課題とするものであり、固体高分子電解質膜と電極
との均一な接触を形成するとともに両者の接触を高めて
電解性能の優れた電解槽を提供することを課題とするも
のである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electrolytic cell using a solid polymer electrolyte membrane and having a large electrolysis area. An object of the present invention is to provide an electrolytic cell having excellent electrolytic performance by forming a contact and enhancing the contact between the two.

【0008】[0008]

【課題を解決するための手段】本発明は、固体高分子電
解質膜を介して陽極および陰極を配置した単位電解槽を
積層した電解槽において、固体高分子電解質膜を介して
陽極および陰極を配置し、陽極を配置した陽極室を区画
する陽極室隔壁および陰極を配置した陰極室を区画する
陰極室隔壁からなる単位電解槽の複数個を、陽極室隔壁
と陰極室隔壁の間に導電性弾性体を介在させて積層した
ものである電解槽である。積層体の両端部には、陽極側
端板と陰極側端板を配置し、陽極側端板と陰極側端板間
の距離が伸縮可能であるとともに圧縮力を与えた状態で
保持する保持手段で保持した前記の電解槽である。
According to the present invention, there is provided an electrolytic cell comprising a unit electrolytic cell in which an anode and a cathode are arranged via a solid polymer electrolyte membrane, and an anode and a cathode are arranged via a solid polymer electrolyte membrane. A plurality of unit electrolytic cells each comprising an anode compartment partitioning an anode compartment in which an anode is disposed and a cathode compartment partitioning a cathode compartment in which a cathode is disposed, are provided with conductive elasticity between the anode compartment partition and the cathode compartment partition. This is an electrolytic cell that is laminated with a body interposed. At both ends of the laminated body, an anode-side end plate and a cathode-side end plate are disposed, and a distance between the anode-side end plate and the cathode-side end plate is expandable and contractable, and holding means for holding a state in which a compressive force is applied. It is the above-mentioned electrolytic cell held by.

【0009】[0009]

【発明の実施の形態】以下に図面を参照して本発明を説
明する。図1は、本発明の電解槽を説明する図であり、
2個の単位電解槽を積層した状態を示す図である。単位
電解槽1は、固体高分子電解質膜2に密着して多孔性の
陽極3と陰極4を有しており、陽極3および陰極4に
は、それぞれ陽極室隔壁5および陰極室隔壁6が接して
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a diagram illustrating an electrolytic cell of the present invention,
It is a figure which shows the state which laminated | stacked two unit electrolytic cells. The unit electrolytic cell 1 has a porous anode 3 and a cathode 4 in close contact with the solid polymer electrolyte membrane 2, and the anode 3 and the cathode 4 are in contact with the anode compartment partition 5 and the cathode compartment partition 6, respectively. ing.

【0010】多孔性の陽極および陰極は、多孔性金属、
網状体、エキスパンデッドメタル、金属繊維の織布、不
織布、金属繊維の焼結体等の多孔性の導電性基体とし
て、陽極は電極触媒物質として白金族の金属またはその
酸化物を少なくとも1種含むものが好ましく、とくに白
金、イリジウム、酸化イリジウム、酸化ルテニウムを少
なくとも1種含む触媒層を形成したものが好ましい。一
方、陰極には電極触媒物質として、白金、白金黒、イリ
ジウム等を用いることが好ましい。
[0010] The porous anode and cathode are made of a porous metal,
The anode is made of at least one platinum group metal or its oxide as an electrode catalyst material as a porous conductive substrate such as a reticulated body, expanded metal, woven or nonwoven fabric of metal fiber, or sintered body of metal fiber. A catalyst layer containing at least one of platinum, iridium, iridium oxide, and ruthenium oxide is particularly preferable. On the other hand, it is preferable to use platinum, platinum black, iridium or the like as an electrode catalyst material for the cathode.

【0011】固体高分子電解質膜には、フッ素樹脂系の
イオン交換膜、炭化水素系樹脂系のイオン交換膜、イオ
ン交換物質を結着用樹脂と一体化したもの等を用いるこ
とができる。また、これらの陽極の電極触媒物質は、多
孔性のチタン、ニオブ等の導電性基体の表面に直接に析
出させても、陽極触媒物質をフッ素樹脂を結着剤として
表面に塗布することによって製造することができる。ま
た、陰極触媒物質は、ニッケル、ステンレスからなる多
孔性の集電体上に、直接に析出させて形成しても、ある
いはフッ素樹脂を結着剤として集電体の表面に塗布して
形成しても良い。
As the solid polymer electrolyte membrane, a fluororesin-based ion-exchange membrane, a hydrocarbon-based resin-based ion-exchange membrane, an ion-exchange substance integrated with a binder resin, or the like can be used. In addition, even if these electrode catalyst materials for the anode are directly deposited on the surface of a conductive substrate such as porous titanium or niobium, they are manufactured by applying the anode catalyst material to the surface using a fluororesin as a binder. can do. In addition, the cathode catalyst material may be formed by directly depositing on a porous current collector made of nickel or stainless steel, or by applying a fluorine resin as a binder to the surface of the current collector. May be.

【0012】陽極および陰極の電極触媒は、多孔性の導
電性物質の全面に形成されていなくても良く、固体高分
子電解質膜に面する側にのみ存在したものでも良い。ま
た陽極室7には、陽極3と多孔性の陽極集電体8とを積
層して配置し、陰極室9には、陰極4と多孔性の陰極集
電体10を配置したものでも良い。いずれの構成とする
場合にも、電気分解に供する水が電極に供給され、生成
する酸素および水素が速やかに陽極室および陰極室から
取り出されるように、陽極、陰極、陽極集電体、および
陰極集電体は、多孔性の大きなものを用いることが好ま
しい。
The anode and cathode electrode catalysts do not need to be formed on the entire surface of the porous conductive material, and may be present only on the side facing the solid polymer electrolyte membrane. In the anode chamber 7, the anode 3 and the porous anode current collector 8 may be stacked and arranged, and in the cathode chamber 9, the cathode 4 and the porous cathode current collector 10 may be arranged. In any case, the anode, the cathode, the anode current collector, and the cathode are provided so that water to be subjected to electrolysis is supplied to the electrodes, and oxygen and hydrogen generated are quickly taken out of the anode chamber and the cathode chamber. It is preferable to use a current collector having high porosity.

【0013】陽極室7は、陽極室枠11と固体高分子電
解質膜2および陽極室隔壁5によって形成され、ガスケ
ット12によって気密性を確保している。陽極室枠11
には、陽極室7内へ水を導入する通路(図示せず)、生
成した酸素気泡を含んだ水を取り出す陽極室生成物通路
13および酸素気泡を含んだ水を陽極室から電解槽外へ
導く陽極室生成物管路14を有しており、各単位電解槽
の陽極室で生成した酸素気泡を含んだ水が外部へ取り出
される。
The anode chamber 7 is formed by the anode chamber frame 11, the solid polymer electrolyte membrane 2, and the anode chamber partition walls 5, and a gasket 12 ensures airtightness. Anode chamber frame 11
A passage (not shown) for introducing water into the anode chamber 7, an anode chamber product passage 13 for taking out water containing oxygen bubbles generated, and water containing oxygen bubbles from the anode chamber to the outside of the electrolytic cell. It has an anode chamber product line 14 for guiding, and water containing oxygen bubbles generated in the anode chamber of each unit electrolytic cell is taken out.

【0014】陽極室隔壁および陰極室隔壁には、それぞ
れ厚さが0.5〜2mm程度の金属板を用いることがで
き、チタン、ニオブ、ジルコニウム、ニッケル、ステン
レス等の電気分解環境において安定な材料を用いること
ができる。一方、陰極室9は、陰極室枠15と固体高分
子電解質膜2および陰極室隔壁6によって形成され、ガ
スケット12によって気密性を確保している。陰極室枠
15には、陰極室9内へ水を導入する通路は存在しな
い。
A metal plate having a thickness of about 0.5 to 2 mm can be used for each of the anode chamber partition and the cathode chamber partition, and materials such as titanium, niobium, zirconium, nickel, and stainless steel which are stable in an electrolytic environment. Can be used. On the other hand, the cathode chamber 9 is formed by the cathode chamber frame 15, the solid polymer electrolyte membrane 2, and the cathode chamber partition walls 6, and the gasket 12 ensures airtightness. The cathode chamber frame 15 has no passage for introducing water into the cathode chamber 9.

【0015】陰極室9へは陽極での反応で生成したプロ
トンと陽極室内の水が電気泳動によって移行し、陰極で
生成した水素気泡を含んだ水が生じるので、陰極室に
は、水素気泡を含んだ水を取り出す陰極室生成物通路1
6および陰極室生成物管路17が接続されている。
The protons generated by the reaction at the anode and the water in the anode chamber migrate to the cathode chamber 9 by electrophoresis, and water containing hydrogen bubbles generated at the cathode is generated. Cathode chamber product passage 1 for taking out the contained water
6 and the cathode chamber product line 17 are connected.

【0016】陽極、陰極、固体高分子電解質膜、陽極室
枠、陰極室枠、陽極室隔壁および陰極室隔壁で構成され
る単位電解槽1は、導電性弾性体18を介して積層され
ており、導電性弾性体18は導電性弾性体とほぼ同じ厚
さの中間枠体19の内部に配置して積層されている。
The unit electrolytic cell 1 composed of an anode, a cathode, a solid polymer electrolyte membrane, an anode compartment frame, a cathode compartment frame, an anode compartment partition and a cathode compartment partition is laminated with a conductive elastic body 18 interposed therebetween. The conductive elastic body 18 is disposed and laminated inside an intermediate frame 19 having substantially the same thickness as the conductive elastic body.

【0017】導電性弾性体18は、弾性を有するゴム、
合成樹脂等中に銅、導電性炭素材料などからなる導電性
の良好な繊維、粒子、板状体を分散したものであって、
弾性を有するとともに両面に接触する単位電解槽の陽極
室隔壁と陰極室隔壁の間の導電性を確保するものであ
る。導電性弾性体18を配置して単位電解槽を積層する
と、単位電解槽の積層数が多数となっても単位電解槽間
での良好な導電接続を形成するとともに、固体高分子電
解質膜面に電極を均一に密着することができるので単位
電解槽の通電面の全面にわたり電流分布を均一とするこ
とが可能となる。
The conductive elastic body 18 is made of rubber having elasticity,
Copper, conductive fibers made of conductive carbon material and the like in a synthetic resin or the like, which are obtained by dispersing conductive fibers, particles, and a plate-like body,
This is to ensure conductivity between the anode compartment walls and the cathode compartment walls of the unit electrolytic cell which have elasticity and come into contact with both surfaces. When unit electrolyzers are stacked by disposing the conductive elastic body 18, a good conductive connection between the unit electrolyzers is formed even when the number of stacked unit electrolyzers is large, and the solid electrolytic polymer membrane is formed on the surface of the solid polymer electrolyte membrane. Since the electrodes can be uniformly adhered, the current distribution can be made uniform over the entire energized surface of the unit electrolytic cell.

【0018】図2は、電解槽を説明する分解斜視図であ
る。固体高分子電解質膜2の一方の面には、陽極室枠1
1と陽極室隔壁5によって形成される陽極室7内に陽極
3が設けられており、固体高分子電解質膜2の他方の面
には、陰極室枠15と陰極室隔壁6によって形成された
陰極室9内には陰極4が設けられている。
FIG. 2 is an exploded perspective view illustrating the electrolytic cell. An anode chamber frame 1 is provided on one surface of the solid polymer electrolyte membrane 2.
The anode 3 is provided in the anode chamber 7 formed by the anode chamber 1 and the anode chamber partition 5, and the cathode formed by the cathode chamber frame 15 and the cathode chamber partition 6 is provided on the other surface of the solid polymer electrolyte membrane 2. The cathode 4 is provided in the chamber 9.

【0019】さらに、陰極室隔壁6に接して中間枠体1
9が配置されており、中間枠体19の内部には、導電性
弾性体18が陰極室隔壁6とを接して配置されており、
中間枠体19の他方の面には、隣接する単位電解槽の陽
極室隔壁5が配置されている。
Further, the intermediate frame 1 contacts the cathode chamber partition 6.
9 are arranged, and a conductive elastic body 18 is arranged inside the intermediate frame 19 in contact with the cathode chamber partition 6.
On the other surface of the intermediate frame 19, the anode chamber partition walls 5 of the adjacent unit electrolytic cells are arranged.

【0020】固体高分子電解質膜2、陽極室枠11、陰
極室枠15、陽極室隔壁5および陰極室隔壁6には、い
ずれにも陽極室へ水を供給する水供給管路20、陽極室
8内で生成する酸素気泡含有水を取り出す陽極室生成物
管路14、陰極室内で生成する水素気泡含有水を取り出
す陰極室生成物管路17が設けられている。また、陽極
室枠11には、陽極室7と水供給管路20とを連通する
水供給通路20a、陽極室7と陽極室生成物管路14を
連通する陽極室生成物通路(図示せず)が設けられてお
り、陽極室への水の供給と生成物の取り出しを行ってお
り、陰極室枠15には、陰極室内で生成した水素気泡を
含んだ水を陰極室生成物管路へ導入する陽極室生成物通
路を有している。また、陽極室隔壁5、陽極室枠11、
固体高分子電解質膜2、陰極室枠15、陰極室隔壁6の
間には、ガスケット(図示せず)が配置されて気密が保
持されている。
Each of the solid polymer electrolyte membrane 2, the anode compartment frame 11, the cathode compartment frame 15, the anode compartment partition 5 and the cathode compartment partition 6, has a water supply conduit 20 for supplying water to the anode compartment, an anode compartment. An anode chamber product line 14 for taking out the oxygen bubble-containing water generated in 8 and a cathode room product line 17 for taking out the hydrogen bubble-containing water generated in the cathode chamber are provided. The anode chamber frame 11 also includes a water supply passage 20a that connects the anode chamber 7 and the water supply pipe 20, and an anode chamber product passage (not shown) that connects the anode chamber 7 and the anode chamber product pipe 14. ) Is provided to supply water to the anode chamber and take out products, and the cathode chamber frame 15 supplies water containing hydrogen bubbles generated in the cathode chamber to the cathode chamber product line. It has an anode compartment product passage for introduction. Also, the anode chamber partition 5, the anode chamber frame 11,
A gasket (not shown) is arranged between the solid polymer electrolyte membrane 2, the cathode chamber frame 15, and the cathode chamber partition 6 to maintain airtightness.

【0021】図3は、本発明の電解槽の流体および電流
の流れを説明する図である。電解槽21は、陽極室7お
よび陰極室9からなる単位電解槽1の多数を直列に積層
したものであり、水供給管路20から各陽極室には水を
供給し、直流電源22から単位電解槽1の個数に応じた
電流を供給して電気分解が行われる。
FIG. 3 is a diagram for explaining the flow of fluid and current in the electrolytic cell of the present invention. The electrolytic cell 21 is formed by stacking a large number of unit electrolytic cells 1 comprising an anode chamber 7 and a cathode chamber 9 in series. Water is supplied to each anode chamber from a water supply pipe 20 and a unit is supplied from a DC power supply 22. Electrolysis is performed by supplying a current corresponding to the number of the electrolytic cells 1.

【0022】電気分解によって、陽極室では酸素が発生
するとともに、プロトンが生成し、固体電解質膜を透過
して陰極室へ移行し水素を発生し、同時に電気泳動によ
って陽極室から陰極室へ水が移行する。その結果、陽極
室からは酸素気泡を含有した水が生成し、陰極室からは
水素気泡を含有した水が生成する。それぞれ陽極室生成
物管路14、陰極室生成物管路17から外部へ取り出さ
れる。本発明の電解槽21では、各単位電解槽を形成す
る部材に管路を形成したので、単位電解槽を積層した電
解槽のいずれかの端部から水を供給し、またいずれか端
部から生成物を取り出すことができる。
By the electrolysis, oxygen is generated in the anode chamber and protons are generated. The protons pass through the solid electrolyte membrane and migrate to the cathode chamber to generate hydrogen. At the same time, water is transferred from the anode chamber to the cathode chamber by electrophoresis. Transition. As a result, water containing oxygen bubbles is generated from the anode chamber, and water containing hydrogen bubbles is generated from the cathode chamber. The product is taken out of the anode chamber product line 14 and the cathode chamber product line 17, respectively. In the electrolytic cell 21 of the present invention, since a conduit is formed in a member forming each unit electrolytic cell, water is supplied from one end of the electrolytic cell in which the unit electrolytic cells are stacked, and The product can be removed.

【0023】例えば、電解有効面積20dm2 の単位電
解槽を75個積層した電解槽に、100A/dm2 の電
流密度で通電し、陽極室から3.4m3/h の流速で水
を供給すると、陽極室からは32m3/h(0℃1気
圧)の酸素と3.05m3/hの水が生成し、陰極室か
らは63m3/h(0℃1気圧)の酸素と0.3m3/h
の水が生成する。
[0023] For example, the unit electrolytic cell of the electrolytic effective area 20 dm 2 in an electrolytic bath and 75 laminated, energized at a current density of 100A / dm 2, the supply water at a flow rate of 3.4 m 3 / h from the anode chamber From the anode chamber, 32 m 3 / h (0 ° C., 1 atm) of oxygen and 3.05 m 3 / h of water were generated, and from the cathode chamber, 63 m 3 / h (0 ° C., 1 atm) of oxygen and 0.3 m 2 3 / h
Of water is produced.

【0024】また、図4には、単位電解槽を積層した電
解槽を説明する図を示す。図4(A)は、正面図であ
り、図4(B)は、右側面方向から見た図である。電解
槽21は、陽極側端板23面に単位電解槽を導電性弾性
体および中間枠体を介在させて積層したものであり、所
定の数の単位電解槽を積層した後に陰極側端板24を積
層し、同一円周上に均等に締め付け棒25を配置し、ナ
ット26で締め付けられている。
FIG. 4 is a diagram illustrating an electrolytic cell in which unit electrolytic cells are stacked. FIG. 4A is a front view, and FIG. 4B is a view seen from the right side direction. The electrolytic cell 21 is obtained by laminating unit electrolytic cells on the surface of the anode-side end plate 23 with a conductive elastic body and an intermediate frame interposed therebetween. Are stacked, the tightening rods 25 are evenly arranged on the same circumference, and tightened with the nuts 26.

【0025】また、端板とナットとの間には、締め付け
棒の軸方向への伸縮が可能なバネ状部材27を設けて締
め付けられている。バネ状部材としては、皿バネ、コイ
ルバネ等が用いられており、これによって陽極側端板と
陰極側端板との距離を伸縮可能な圧縮力が与えられた状
態で保持される。これによって、電気分解によって発生
する熱による熱膨張による電解槽の変形を防止できるの
で、単位電解槽の電極面に加わる圧力が不均一となるこ
とを防止することができる。また、陰極側端板24に
は、電解槽21へ水を供給する2個の水供給管路20が
設けられており、2個の水供給管路20の中心を結ぶ線
に対称な位置に陽極室生成物管路14、および陰極室生
成物管路17が配置されている。陽極側端板23および
陰極側端板24には、それぞれ陽極側導電接続体28、
陰極側導電接続体29を有しており、これらの導電接続
体を通じて電解槽への導電接続を行うことができる。
Further, a spring-like member 27 is provided between the end plate and the nut so that the tightening rod can expand and contract in the axial direction. As the spring-like member, a disc spring, a coil spring, or the like is used, and the spring-like member is held in a state where a compressive force capable of expanding and contracting the distance between the anode side end plate and the cathode side end plate is applied. This can prevent deformation of the electrolytic cell due to thermal expansion due to heat generated by the electrolysis, thereby preventing non-uniform pressure applied to the electrode surface of the unit electrolytic cell. In addition, two water supply pipes 20 for supplying water to the electrolytic cell 21 are provided on the cathode side end plate 24, and the two water supply pipes 20 are symmetrical with respect to a line connecting the centers of the two water supply pipes 20. An anode compartment product line 14 and a cathode compartment product line 17 are arranged. The anode-side end plate 23 and the cathode-side end plate 24 have an anode-side conductive connector 28,
It has a cathode-side conductive connector 29, through which conductive connection to the electrolytic cell can be made.

【0026】図5は、電解槽の締め付け棒の締め付け部
を説明する図であり、図5(A)は、1個の締め付け部
を説明する側面の拡大図であり、図5(B)は、1個の
皿バネの斜視図を示し、図5(C)は断面図を示す。陰
極側端板24を貫く締め付け棒25の軸が、径の大きな
側を互いに接した皿バネ30の複数対を貫通しており、
ワッシャ31を介してナット26が取り付けられている
陰極側端板24は、皿バネと位置が固定したナットで保
持されているので、陰極側端板24は、締め付け棒の軸
方向へ伸縮可能となり、電解槽の温度上昇による熱膨張
が生じても電解槽が不均一に変形することが防止され
る。その結果、高分子固体電解質と電極との間での接触
部に不均一が生じることはなく電流分布の不均一等が生
じることはない。
FIG. 5 is a view for explaining a fastening portion of a fastening rod of the electrolytic cell. FIG. 5A is an enlarged side view for explaining one fastening portion, and FIG. FIG. 5C shows a perspective view of one disc spring, and FIG. 5C shows a cross-sectional view. The shaft of the clamping rod 25 penetrating the cathode side end plate 24 penetrates a plurality of pairs of disc springs 30 whose large diameter sides are in contact with each other,
Since the cathode side end plate 24 to which the nut 26 is attached via the washer 31 is held by a nut whose position is fixed to a disc spring, the cathode side end plate 24 can expand and contract in the axial direction of the clamping rod. In addition, even if thermal expansion occurs due to a rise in the temperature of the electrolytic cell, non-uniform deformation of the electrolytic cell is prevented. As a result, non-uniformity does not occur in the contact portion between the solid polymer electrolyte and the electrode, and non-uniformity in the current distribution does not occur.

【0027】[0027]

【発明の効果】本発明によれば、固体高分子電解質膜と
電極との接触を一様となり、固体高分子電解質膜面での
電流分布を均一なものとすることができるので、電気分
解性能の優れた電解槽を得ることができる。
According to the present invention, the contact between the solid polymer electrolyte membrane and the electrode becomes uniform, and the current distribution on the solid polymer electrolyte membrane surface can be made uniform. And an electrolytic cell excellent in the above can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の電解槽を説明する図であり、
2個の単位電解槽を積層した図である。
FIG. 1 is a diagram illustrating an electrolytic cell of the present invention;
It is the figure which laminated | stacked two unit electrolytic cells.

【図2】図2は、電解槽を説明する分解斜視図である。FIG. 2 is an exploded perspective view illustrating an electrolytic cell.

【図3】図3は、本発明の電解槽の流体および電流の流
れを説明する図である。
FIG. 3 is a diagram illustrating the flow of fluid and current in the electrolytic cell of the present invention.

【図4】図4には、単位電解槽を積層した電解槽を説明
する図である。
FIG. 4 is a diagram illustrating an electrolytic cell in which unit electrolytic cells are stacked.

【図5】図5は、電解槽のタイロッドの締め付け部を説
明する図である。
FIG. 5 is a diagram illustrating a fastening portion of a tie rod of an electrolytic cell.

【図6】図6は、固体高分子電解質の両面に電極を積層
して密着した電解槽である。
FIG. 6 is an electrolytic cell in which electrodes are laminated on and adhered to both surfaces of a solid polymer electrolyte.

【符号の説明】[Explanation of symbols]

1…単位電解槽、2…固体高分子電解質膜、3…陽極、
4…陰極、5…陽極室隔壁、6…陰極室隔壁、7…陽極
室、8…陽極集電体、9…陰極室、10…陰極集電体、
11…陽極室枠、12…ガスケット、13…陽極室生成
物通路、14…陽極室生成物管路、15…陰極室枠、1
6…陰極室生成物通路、17…陰極室生成物管路、18
…導電性弾性体、19…中間枠体、20…水供給管路、
20a…水供給通路、21…電解槽、22…直流電源、
23…陽極側端板、24…陰極側端板、25…締め付け
棒、26…ナット、27…バネ状部材、28…陽極側導
電接続体、29…陰極側導電接続体、30…皿バネ、3
1…ワッシャ、41…固体高分子電解質、42…陽極、
43…陰極、44…複極板、45,46…端板、47…
締め付けボルト
1 unit electrolyzer, 2 solid polymer electrolyte membrane, 3 anode
4—Cathode, 5—Anode compartment, 6—Cathode compartment, 7—Anode compartment, 8—Anode current collector, 9—Cathode compartment, 10—Cathode current collector,
11 ... Anode compartment frame, 12 ... Gasket, 13 ... Anode compartment product passage, 14 ... Anode compartment product line, 15 ... Cathode compartment frame, 1
6 ... Cathode product passage, 17 ... Cathode product line, 18
... conductive elastic body, 19 ... intermediate frame, 20 ... water supply conduit,
20a: water supply passage, 21: electrolytic cell, 22: DC power supply,
23 ... Anode-side end plate, 24 ... Cathode-side end plate, 25 ... Tightening rod, 26 ... Nut, 27 ... Spring-like member, 28 ... Anode-side conductive connector, 29 ... Cathode-side conductive connector, 30 ... Belleville spring, 3
DESCRIPTION OF SYMBOLS 1 ... Washer, 41 ... Solid polymer electrolyte, 42 ... Anode,
43 ... Cathode, 44 ... Dipole plate, 45, 46 ... End plate, 47 ...
Tightening bolt

───────────────────────────────────────────────────── フロントページの続き (72)発明者 須藤 茂樹 岡山県玉野市東高崎24−6 クロリンエン ジニアズ株式会社岡山事業所内 (72)発明者 北澤 喜次 東京都江東区深川2丁目6番11号 富岡橋 ビル クロリンエンジニアズ株式会社内 (72)発明者 大嶋 政弘 岐阜県各務原市川崎町1番地 川崎重工業 株式会社岐阜工場内 (72)発明者 田中 正志 神奈川県藤沢市遠藤2023−15 ペルメレッ ク電極株式会社内 Fターム(参考) 4K021 AA01 BA02 CA02 CA04 DB04 DB31 DB49 DB50 DB53 EA03 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Shigeki Sudo 24-6 Higashi-Takasaki, Tamano-shi, Okayama Chlorine Engineers Co., Ltd. Okayama Office (72) Inventor Kiji Kitazawa 2-6-111 Fukagawa, Koto-ku, Tokyo Tomiokabashi Building Chlorin Engineers Co., Ltd. (72) Inventor Masahiro Oshima 1 Kawasakicho, Kakamigahara-shi, Gifu Prefecture Kawasaki Heavy Industries, Ltd. Gifu Factory (72) Inventor Masashi Tanaka 2023-15 Endo, Fujisawa-shi, Kanagawa Prefecture Permelec Electrode Co., Ltd. F term (reference) 4K021 AA01 BA02 CA02 CA04 DB04 DB31 DB49 DB50 DB53 EA03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜を介して陽極および
陰極を配置した単位電解槽を積層した電解槽において、
固体高分子電解質膜を介して陽極および陰極を配置し、
陽極を配置した陽極室を区画する陽極室隔壁および陰極
を配置した陰極室を区画する陰極室隔壁からなる単位電
解槽の複数個を、陽極室隔壁と陰極室隔壁の間に導電性
弾性体を介在させて積層したものであることを特徴とす
る電解槽。
An electrolytic cell comprising a unit electrolytic cell in which an anode and a cathode are arranged via a solid polymer electrolyte membrane.
An anode and a cathode are arranged via a solid polymer electrolyte membrane,
A plurality of unit electrolytic cells each comprising an anode compartment partitioning an anode compartment in which an anode is arranged and a cathode compartment partitioning a cathode compartment in which a cathode is arranged, a conductive elastic body between the anode compartment partition and the cathode compartment partition. An electrolytic cell characterized by being laminated with interposition.
【請求項2】 積層体の両端部には、陽極側端板と陰極
側端板を配置し、陽極側端板と陰極側端板間の距離が伸
縮可能であるとともに圧縮力を与えた状態で保持する保
持手段で保持したことを特徴とする請求項1記載の電解
槽。
2. An anode-side end plate and a cathode-side end plate are arranged at both ends of the laminate, and the distance between the anode-side end plate and the cathode-side end plate can be expanded and contracted and a compressive force is applied. 2. The electrolytic cell according to claim 1, wherein said electrolytic cell is held by holding means.
JP16650799A 1999-06-14 1999-06-14 Electrolytic cell Expired - Lifetime JP4124914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16650799A JP4124914B2 (en) 1999-06-14 1999-06-14 Electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16650799A JP4124914B2 (en) 1999-06-14 1999-06-14 Electrolytic cell

Publications (2)

Publication Number Publication Date
JP2000355786A true JP2000355786A (en) 2000-12-26
JP4124914B2 JP4124914B2 (en) 2008-07-23

Family

ID=15832639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16650799A Expired - Lifetime JP4124914B2 (en) 1999-06-14 1999-06-14 Electrolytic cell

Country Status (1)

Country Link
JP (1) JP4124914B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270292A (en) * 2006-03-31 2007-10-18 Daido Metal Co Ltd Solid polymer membrane type water electrolyzer
JP2007284729A (en) * 2006-04-14 2007-11-01 Star Energy:Kk Unit tank
JP2014029034A (en) * 2013-11-11 2014-02-13 Hirotsugu Tsuji Combustion gas generator
JP2014520968A (en) * 2011-07-20 2014-08-25 ニュー エンエーエル ハイドロジェン アーエス Structure, method and use of frame of electrolyzer
CN113661274A (en) * 2019-04-01 2021-11-16 旭化成株式会社 Electrolytic cell, and control method and program therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270292A (en) * 2006-03-31 2007-10-18 Daido Metal Co Ltd Solid polymer membrane type water electrolyzer
JP2007284729A (en) * 2006-04-14 2007-11-01 Star Energy:Kk Unit tank
JP2014520968A (en) * 2011-07-20 2014-08-25 ニュー エンエーエル ハイドロジェン アーエス Structure, method and use of frame of electrolyzer
JP2014029034A (en) * 2013-11-11 2014-02-13 Hirotsugu Tsuji Combustion gas generator
CN113661274A (en) * 2019-04-01 2021-11-16 旭化成株式会社 Electrolytic cell, and control method and program therefor
EP3951019A4 (en) * 2019-04-01 2022-06-08 Asahi Kasei Kabushiki Kaisha Electrolyzer, method for controlling same, and program

Also Published As

Publication number Publication date
JP4124914B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
US6022634A (en) Membrane electrochemical cell provided with gas diffusion electrodes in contact with porour, flat, metal current conductors having highly distributed contact area
CA1282733C (en) Electrolytic cell with solid polymer electrolyte diaphragm and porous electrode catalyst
US4663003A (en) Electrolysis cell
US9057136B2 (en) Production of low temperature electrolytic hydrogen
JP6483111B2 (en) Alkaline solution electrolysis cell
KR101362680B1 (en) Elastic current distributor for percolating cells
CN114174558A (en) Modular electrolyzer cell and method for converting carbon dioxide to gaseous products at elevated pressure with high conversion rate
KR20170012199A (en) Device for producing organic hydride
EP0443430B1 (en) Monopolar ion exchange membrane electrolytic cell assembly
JPH0995791A (en) Solid polyelectrolyte water electrolyzer and its electrode structure
US4541911A (en) Method of assembling a filter press type electrolytic cell
JP2893238B2 (en) Water electrolyzer using polymer electrolyte membrane
JP4124914B2 (en) Electrolytic cell
JP2010007151A5 (en)
JP3072333B2 (en) Water electrolyzer using solid polymer electrolyte membrane
EP1724861A1 (en) Novel materials for alkaline electrolysers and alkaline fuel cells
JPH08260177A (en) Water electrolytic cell using solid high molecular electrolyte membrane
JP2955675B2 (en) Water electrolyzer using solid polymer electrolyte membrane
JPS5848686A (en) Cation exchange membrane for electrolyzing aqueous solution of alkali chloride
JP3078570B2 (en) Electrochemical electrode
KR910003644B1 (en) Monopolar bipolar and/or hybrid membrane cell
JP3212318B2 (en) Monopolar ion exchange membrane electrolytic cell
JP3164741B2 (en) Solid electrolyte membrane electrolyzer
JP2015124425A (en) Manifold unit and cell
JP2961228B2 (en) Water electrolyzer using solid polymer electrolyte membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080507

R150 Certificate of patent or registration of utility model

Ref document number: 4124914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term